2021 IEEE 7th International Conference on Big Data Intelligence and Computing (DataCom) | 978-1-6654-2071-6/21/$31.00 ©2021 IEEE | DOI: 10.1109/DataCom53700.2021.00009

2021 IEEE 7th International Conference on Big Data Intelligence and Computing (DataCom)

Big Data Intelligence Solution for Health Analytics of
COVID-19 Data with Spatial Hierarchy

Carson K. Leung 9, Chenru Zhao
University of Manitoba, Winnipeg, MB, Canada
M kleung@cs.umanitoba.ca

Abstract—In the current era of big data, technological
advancements have made it easy and quick to generate and collect
huge volumes of varieties of data from wide ranges of rich data
sources. These big data may be of different levels of veracity,
including precise data and imprecise or uncertain data. Embedded
in the data are valuable information and useful knowledge that
can be discovered by big data intelligence and computing. In this
paper, we propose a big data intelligence solution for health
analytics with spatial hierarchy. In particular, we focus on
analyzing coronavirus disease 2019 (COVID-19) epidemiological
data at different spatial granularity levels. Since its outbreak,
there have been cumulatively millions of COVID-19 cases
observed in various spatial locations around the world. Our
solution focuses on analyzing and mining valuable information
and useful knowledge (e.g., distribution, frequency, patterns) of
health-related states and characteristics in populations in various
spatial locations in a top-down fashion along the spatial hierarchy.
To reduce redundancy, our solution discovers and returns to users
(e.g., researcher, civilian) new information and knowledge not
found at previous spatial hierarchical levels. The discovered
information and knowledge helps the users to understand the
disease better, and thus take an active role to fight, control, and/or
combat the disease. Evaluation of our big data intelligence solution
on real-life COVID-19 data demonstrates its practicality in health
analytics of the data with spatial hierarchy and in revealing new
knowledge about COVID-19 cases at different spatial granularity
levels. The solution is expected to be adaptable to health analytics
of other diseases.

Keywords—big data, big data intelligence, big data intelligence
and computing, data science, data mining, coronavirus disease,
COVID-19, spatial data

I. INTRODUCTION AND RELATED WORKS

Big data [1-3] are everywhere nowadays. This is partially
due to technological advancements, which in turn have led to
easy production and collection of huge volumes of varieties of
valuable data at high velocities. These big data have been
produced and collected from wide ranges of rich data sources.
The big data may also be of different levels of veracity,
including precise data and imprecise or uncertain data. This
explains why big data—as characterized by the 5Vs of the big
data landscape (i.e., volume, variety, value, velocity, and
veracity)—has been popular and become one of rapidly
expanding research areas spanning the fields of computer
science and information management. Moreover, the term “big
data” has also become a ubiquitous term in understanding and
solving complex problems in various disciplinary fields like

© IEEE 2022. This article is free to access and download, along with rights
for full text and data mining, re-use and analysis.

DOI 10.1109/DataCom53700.2021.00009

13

applied mathematics, business, computational biology,
education, engineering, finance, government, healthcare,
medicine, social networks, telecommunications, and
transportation.

Valuable information and useful knowledge embedded in
the big data can be discovered by big data intelligence and
computing. It can be run in conjunction with data science [4-6],
data mining (e.g., clustering [7, 8], classification [9], graph
mining [10, 11], pattern mining [12-15], sequential mining [16,
17], stream mining [18, 19]), machine learning [20-22], data
analytics [23-26], visual analytics [27-30], social network
analysis [31-35], mathematical and statistical modeling [36],
etc., for social good.

Let us consider a few real-life examples in several real-life
application areas. As a first example, conducting big social data
analytics [37, 38]—such as census microdata on home
languages—allow users (e.g., social scientists, decision makers)
to get a better understanding of the data. This helps them in the
study of social science related phenomena (e.g., successful
detection of shifts in home languages) and inspire them to take
appropriate actions to residents in various communities (e.g., by
providing adequate support or services in their preferred
languages).

As another example, conducting transportation and/or
urban data analytics [39-43]—such as analyses and mining on
data on commuting mode—helps users (e.g., social scientists,
researchers, city planners, policy makers) to get a better
understanding of the demand of commuters in different
neighborhoods, which may inspire them to come up ways to
fulfill demands of commuters, improve existing services, and/or
add new services. It may also inspire users (e.g., residents) to
consider active transportation modes (e.g., cycling, walking)
and/or sustainable transportation modes (e.g., carpooling, public
transit), and thus preserving our environments.

As a third example, conducting business data mining and/or
business data analytics [44] allows users (e.g., business owners)
to get a better understanding of their business data or
transactions. This helps them to recruit and retain customers by
taking appropriate actions in fulfilling the demand of customers
in different geographical locations.

As a fourth example, mining health data and/or disease
reports [45-47]—such as coronavirus disease 2019 (COVID-
19) epidemiological data—for health analytics or health
informatics allows users (e.g., health scientists, decision makers)



to get a better understanding of the disease. This inspires them
to come up with big data intelligence and computing solutions
to flight, control and/or combat the disease. It also allows them
to prepare for adequate resources (e.g., sufficient staff and beds
in regular wards or intensive care units (ICU) in hospitals) to
meet the demands in different spatial locations. By doing so, it
improve our health and well-being.

For big data in the aforementioned four examples and many
real-life applications, there is a common aspect—namely, spatial
component. To elaborate, values of many attributes in these
social data (e.g., census microdata), transportation data (e.g., on-
time performance for public transit buses), business data (e.g.,
sales transactions in various businesses), and/or health data (e.g.,
spatial changes or trends in COVID-19 epidemiological data)
may be stable or may fluctuate among different spatial locations.
Big data intelligence and computing—especially, spatial data
analytics—helps detects and discovers characteristics of the data
and their changes among different spatial locations.

For instance, in business world, sales of certain merchandise
items or products (e.g., essentials food items such as bread and
milk, formal clothes like ties and suits) can be similar among
various spatial locations. Sales of other items or products may
vary from locations to locations (e.g., customers living in warm
and humid coastal regions may buy raincoats or rain boots,
whereas customers living in cool and dry prairies may buy
puffer jackets and snow boots). Hence, on the one hand, mining
these data at a coarse granularity level gives users may only
provide a few summary patterns but insufficient details to see
the differences. For example, mining national data gives users
(e.g., business owners) a summary information—say, national
sales—in merchandise items or products. However, such a
summary may not provide sufficient details on the customer
demand on certain geographical locations. Lack of the
information may lead to unnecessary storage for some items
(e.g., storing lots of snow boots for warm and humid coastal
regions). The matter may be worse for fragile and/or perishable
items. On the other hand, mining these data at a fine granularity
level requires mining solution to deal with huge volumes of data.
The mining results provide users with abundant of patterns,
which may sometimes be excessive and time-consuming to
comprehend. For example, mining data from every municipality
may lead to collections of patterns from more than
5,000 municipalities in Canada.

Similar comments apply to medical world. For instance, as
of October 10, 2021, there have been more than 1.6 million
COVID-19 cases in Canada and close to 237 million COVID-
19 cases worldwide. Out of them, more than 28,000 Canadians
lost their life to COVID-19 and close to 5 million global citizens
deceased due to COVID-19. Mining these huge volumes of
COVID-19 epidemiological data for some useful patterns (e.g.,
characteristics of COIVD-19 cases) require scalable solution.
Moreover, as characteristics of COIVD-19 cases may vary from
locations to locations, big data intelligence and computing
solution for spatial data mining or data analytics in supporting
health analytics is needed. When dealing with spatial data, a
logical question to ask is: At what spatial granularity should we
conduct the mining? On the one hand, mining data for the whole
dataset gives users (e.g., health scientists, decision makers,
civilian) a summary information. However, such a summary
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may not provide sufficient details (e.g., differences in the
demand for spots in the hospitals and/or ICU at different
regions). Lack of the information may lead to undesirable
management of healthcare staff and/or health supplies. On the
other hand, mining local data gives users abundant of patterns,
which may sometimes be excessive and time-consuming to
comprehend. As such, some important patterns may be hidden
in the haystack of patterns and may be oversighted by the users.

Faced with these challenges, we present in this paper a big
data intelligence and computing solution. It analyzes and mines
COVID-19 epidemiological data for spatial characteristics of
COVID-19 cases. It provides users with patterns at several
appropriate levels of granularity in the spatial hierarchy. Hence,
our key contributions of this work include our design and
development of such a big data intelligence and computing
solution for health analytics of COVID-19 data with the spatial
hierarchy. It incorporates external data like population data to
mine and analyze COVID-19 epidemiological data at multiple
granularity levels of the spatial hierarchy.

We organize the rest of this paper by providing background
and discussing related works in the next section. Section III
describes the design of our big data intelligence and computing
solution for health analytics of COVID-19 data with the spatial
hierarchy. Section IV shows evaluation results of our
implemented solution on real-life COVID-19 epidemiological
data. Last but not least, we draw conclusions in Section V.

II. BACKGROUND AND RELATED WORKS

We aim to design a big data intelligence and computing
solution for health analytics. For demonstration in this paper, we
apply the resulting solution to COVID-19 epidemiological data.
Like (a) the severe acute respiratory syndrome (SARS) that
broke out during 2002—-2004 and (b) the Middle East respiratory
syndrome (MERS) that broke out during 2012-2015, COVID-
19 is also a viral disease. Specifically, COVID-19—which was
formerly known as 2019 novel coronavirus (2019-nCoV) and
2019-nCoV acute respiratory disease—is caused by SARS
coronavirus 2 (SARS-CoV-2). Unlike SARS and MERS that
affected only a certain number of countries and regions,
COVID-19 affects worldwide. Specifically, it was reported in
late 2019. The World Health Organization (WHO) declared it as
a Public Health Emergency of International Concern on January
30, 2020, and later declared it as a global pandemic on March
11, 2020. Sadly, COVID-19 is still prevailing in October 2021.

Due to its global impacts, there have been numerous works
related to COVID-19. To name a few, in social sciences,
researchers studied crisis management related to the COVID-19
outbreak [48]. In medical and health sciences, researchers
examined how to manage clinical and treatment information
[49]. Some researchers developed vaccine [50]. In natural
sciences and engineering aspect, researchers have explored
techniques data mining, data science, machine learning,
mathematics, and/or statistics to contribute to the COVID-19
research. For instance, some researchers focused on artificial
intelligence (Al)-driven informatics to track, test, diagnose,
and/or treat COVID-19. These include the detection of COVID-
19 cases by Al-driven analyses of chest computed tomography
(CT) images of potential COVID-19 patients [51].



In contrast, we examine huge volumes of alphanumeric
COVID-19 epidemiological data (cf. CT images). Regarding
related works on COVID-19 epidemiological data, many of
them—especially, those notable dashboards—aim to report the
numbers of new cases and deaths. Visualizing these numbers in
graphical forms may make it easier for laypersons to
comprehend the information. However, when visualizing the
information with bubble maps, the numbers (of new cases or
deaths) are indicated by radii of the bubbles. As such, bubbles
may overlap with, or contain, some other bubbles. Similarly,
when visualizing the information with choropleth maps, the
numbers (of new cases or deaths) are indicated by shading or
coloring. The darker the shade or color, the higher is the number.
As such, small locations may not be easily visible.

In addition to the aforementioned number cases and deaths,
common characteristics associated with these COVID-19 cases
are also important. For example, it is to desirable to mine the
COVID-19 epidemiological data for revealing useful knowledge
like their transmission methods that led to COVID-19, whether
or not they show any symptoms (i.e., symptomatic vs.
asymptomatic), their hospitalization requirements (e.g., ICU,
regular wards, no hospitalization). To elaborate, knowing the
transmission methods help the users (e.g., decision makers,
health officers) to take appropriate actions to break the
transmission links. Knowing information (e.g., symptoms)
about the symptomatic cases helps the users (e.g., healthcare
providers) to detect COVID-19 cases, whereas knowing
information about the asymptomatic cases helps the users to take
appropriate actions to prevent these asymptomatic cases from
spreading the disease (e.g., by self-quarantine). Similarly,
knowing hospitalization requirements helps the users to plan for
the potential demand from patients. Consequently, there have
been some works on analyzing and visualizing these
characteristics of COVID-19 cases [52-55].

Moreover, it is also desirable to mine the COVID-19
epidemiological data for revealing additional useful knowledge
like changes (e.g., spatial changes) in characteristics associated
with the COVID-19 cases. These changes can show the
development of COVID-19 and measure the effects of the
actions (e.g., lockdowns, physical or social distancing, stay-at-
home orders) and/or at different geographical locations.
Consequently, there have been some works on spatial analytics
and temporal analytics of COVID-19 cases [54, 55]. However,
they mostly focused on a single granularity level (e.g., national,
provincial, or regional differences; but not their combinations in
different levels). In contrast, we examine COVID-19 data at
multiple spatial granularity levels.

III. OUR BIG DATA INTELLIGENCE AND COMPUTING SOLUTION

To support health analytics of COVID-19 epidemiological
data, our big data intelligence and computing solution first
builds a spatial hierarchy. It then incorporates population data to
analyze COVID-19 epidemiological data for the discovery of
useful patterns at multiple demographic granularity levels in this
demographic hierarchy.

A. Spatial Hierarchy

Our solution first builds a spatial hierarchy to support health
analytics of COVID-19 epidemiological data. Here, local data
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may be generated and collected from local healthcare providers
or health service facilities (e.g., clinics, hospitals). These data
can then be gathered and reported to higher-up in the spatial
hierarchy. For instance, the local data can be generalized into
municipal health data and/or municipal COVID-19
epidemiological data. These data can then be generalized into
data for the corresponding health administrative units within a
province or state. The provincial data can be grouped and
generalized into data for a specific national regions, and then
country and continent. Finally, at the top of the spatial hierarchy
would be the worldwide data. See Fig 1. Depending on the
application and/or focus, users have flexibility to pick and
choose appropriate layers in the spatial hierarchy.

health admin unit

local healthcare provider /
health service facility

Fig. 1. General spatial hierarchy for health analytics of data

North America
,,,,,,,,,,,, utSbbbnal

Fig. 2. Specific spatial hierarchy for health analytics of Canadian COVID-19
data

As a preview of our evaluation, we apply our big data
intelligence and computing solution to real-life Canadian
COVID-19 epidemiological data. Fig. 2 shows the
corresponding spatial hierarchy for health analytics of Canadian
COVID-19 data. Here, local data were generated and collected
from local health service facilities (e.g., St. Boniface Hospital,
Victoria General Hospital (VGH)). These data were then
gathered to become data for a provincial health region
administrated by a provincial health services authority.
Examples include Toronto Central Local Health Integration
Networks in the province of Ontario (ON), Winnipeg Regional
Health Authority (WRHA) in the province of Manitoba (MB),



and Vancouver Coastal Health in the province of British
Columbia (BC). These data can be generalized into provincial
data, which can then be generalized into data for five national
regions: (1) Atlantic, (2) Quebec (QC), (3) ON + Nunavut (NU),
(4) Prairies + Northwest Territories (NT), and (5) BC + Yukon
(YK). These regional data are then generalized into Canadian
national data at the top of the spatial hierarchy. The hierarchy
could be further extended to include North American and global
worldwide data.

B. Incorporation with Population Data

Observed that population is not evenly distributed. Spatial
regions with higher numbers of population may have higher
chances of having more COVID-19 cases. Hence, after building
the spatial hierarchy, our solution incorporates population data.
By doing so, it shows both (1) the absolute frequency and (2) the
relative frequency with respect to its population.

C. Health Analytics at Multiple Spatial Granuarity Levels

After building the spatial hierarchy and incorporating the
population data, our solution analyzes and mines data at
different spatial granularity levels in this hierarchy. To
elaborate, mining patterns at the top (i.e., coarsest) level of the
hierarchy provides users with overview of the COVID-19
situation and relevant epidemiological information at the top
level in the taxonomy (e.g., entire country or worldwide).
However, the COVID-19 situations may not necessarily evenly
distributed among all spatial locations at lower (i.e., finer) levels
of the hierarchy. For example, the summary characteristics of
Canadian COVID-19 cases may not reflect the local
characteristics of Manitoban cases. Moreover, the summary
characteristics are usually dominated by the observed
characteristics from those with highest numbers of cases (e.g.,
Quebec). As such, it is desirable to be able to mine patterns at
lower levels of the hierarchy.

However, doing so may incur high computational costs and
result in numerous mined patterns and due to numerous numbers
of spatial units (e.g., more than 70 local health service facilities
managed by WRHA) at these lower levels. Although summary
characteristics of COVID-19 cases at higher level may not
reflect the local characteristics in all these finer-grained spatial
units, some may follow the same or similar patterns as their
higher levels in the hierarchy.

Hence, we design and develop our solution so that it returns
patterns to users if these patterns are different from (i.e., not
covered by) those mined from their parents or ancestors in the
hierarchy. Here, we making the following observations.

Observation 1. Pattern mining at each spatial unit at a fine
granularity level can be performed independently.

Observation 2. The frequency of a pattern at a coarser
granularity in a spatial hierarchy can be obtained by aggregating
(e.g., summing) the frequencies of the pattern of the
corresponding time units at a finer granularity. For instance,

frequency of Atlantic Provinces can be obtained by summing the
frequencies of the four corresponding provinces.

Observation 3. Patterns that are frequent at a coarser granularity
in a spatial hierarchy must be frequent locally in at least one of
the corresponding spatial units at a finer granularity.

Based on these observations, our solution mines patterns
(e.g., frequent patterns) as follows. Due to Observation 1, our
solution achieves scalability by conducting spatial analytics
from finer grained data in parallel. Then, based on
Observation 2, once patterns are discovered, their associated
information (e.g., frequencies of patterns) is aggregated to a
higher spatial granularity level. By doing so, it saves extra
efforts in re-computing frequencies of patterns at higher
granularity levels from scratch. Moreover, based on
Observation 3, patterns that are frequent at a coarser granularity
in a hierarchy must be frequent locally in at least one of the
corresponding spatial units at a finer granularity. Hence, once
we gathered patterns that are frequent at the coarser granularity,
our solution checks the aggregated frequencies to determine if
the patterns are frequent at the coarser granularity:

e If not, our solution returns the patterns discovered from
the finer granularity to the users as outlying or
exceptional patterns that are not covered by patterns
discovered from the coarser granularity.

e If so, our solution recursively applies similar process to
aggregate frequencies to the next coarser granularity
level (until it reaches the top level) and determines
whether or not the patterns at the level are frequent.

With this recursive approach, our solution first returns
patterns at the top (i.e., coarsest) level of the hierarchy, which
provide users with overview (e.g., of the COVID-19 situation
and relevant epidemiological information in our evaluation
application) at the top level in the taxonomy (e.g., the entire
country). Then, it also discovers any patterns (e.g., outlying or
exceptional patterns) from finer granularity levels that are not
covered by patterns discovered from coarser granularity levels.

As an extension, since we have the frequency information,
our solution can also return to users any frequent patterns with
large differences in frequencies (especially, relative frequencies)
when compared with frequent patterns discovered at coarser
levels. By doing so, it detects patterns with significant changes
in frequencies.

IV. EVALUATION

A. Setup

For evaluation, we applied our solution to analyzing real-life
Canadian COVID-19 epidemiological data':? [56], including
data on VOC? and vaccination*. We also incorporated Canadian
population data [57] (especially quarterly population estimate
for Q3 of 2021). Note that, although we applied to Canadian
data, our solution is applicable to data from other countries

! https://www.ctvnews.ca/health/coronavirus/tracking-every-case-of-covid-19-in-canada-1.4852102

2 https://health-infobase.canada.ca/covid-19/epidemiological-summary-covid-19-cases.html

3 https://www.ctvnews.ca/health/coronavirus/tracking-variants-of-the-novel-coronavirus-in-canada-1.5296141

4 https://www.ctvnews.ca/health/coronavirus/coronavirus-vaccination-tracker-how-many-people-in-canada-have-received-shots-1.5247509
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and/or regions. Here, the COVID-19 epidemiological data
capture various information about COVID-19 cases, which
include:

e Spatial details (e.g., episode provincial health services
authority, province, national region)

e transmission methods
international travel)

(e.g., domestic acquisition,

e indicating sign of the disease (e.g., asymptomatic,
symptomatic)

e COVID variants®, which include (a) variants of concern
(VOC), (b) variants of interest (VOI), and (c) variants
under monitoring (VUM). Examples of VOC include
alpha (e.g., Phylogenetic Assignment of Named Global
Outbreak (PANGO) lineage B.1.1.7 and its descendent
Q lineages®), beta (B.1.351 and its descendent lineages),
gamma (P.1 and its descendent lineages), and delta (e.g.,
B.1.617.2 and its descendent AY lineages). Omicron
(e.g., B.1.1.529 and BA lineages) was recently added to
the list of VOC on November 26, 2021. Lambda
(lineages C.37 and C.37.1) and mu (B.1.621 and
B.1.621.1) are examples of VOI. Note that the former
VOI kappa (B.1.617.1) is an example of current VUM.
However, other former VOI—such as epsilon (B.1.427
& B.1.429), zeta (P.2), eta (B.1.525), theta (P.3), and iota
(B.1.526)—are not.

e Vaccination status (e.g., ineligible for vaccination;
unvaccinated; received first, second, and/or third doses)

® hospital status (e.g., ICU, regular ward, not hospitalized)
e recovery status (e.g., recovered, deceased)

There are unstated values (which would be skipped for our
evaluation) for some records in these data. This may partially
due to privacy concerns and fast dissemination on reporting the
cases.

B. Results and Observations

With the aforementioned evaluation setup, we first built a
spatial hierarchy as depicted in Fig. 1 to capture information
related to Canadian COVID-19 cases from January 25, 2020
(first COVID-19 case in Canada) to October 10, 2021. With data
(and aggregated data) in this hierarchy, we applied our big data
intelligence and computing solution to discover patterns from
multiple granularity levels. As of October 10, 2021, we observed
from the top (i.e., national) level of the spatial hierarchy:

e There have been 1,662,584 cumulative COVID-19 cases
in Canada. By incorporating population data, we
observed that these 1,662,584 cases account for 4.3% of
the entire Canadian population. Moreover, there have
been 28,203 cumulative deaths, which give a national
case fatality rate is 1.7%.

® 99% of the Canadian COVID-19 cases were acquired
domestically through the community. Among them,

(a)92% did not require hospitalization, and their
recovery rate is 0.99; (b) 6% were admitted to regular
wards in the hospital, and their recovery rate is 0.85; and
(c) 2% were admitted to the ICU, and their recovery rate
is 0.70.

e 417,047 (i.e., 25%) of the Canadian COVID-19 cases
have been identified as VOC. Among them, 64% were
alpha and 30% were delta, with the remaining 5% and
1% as gamma and beta variants respectively.

e 76.6% of all Canadians have been vaccinated with one
dose, and 71.7% of all Canadians have been fully
vaccinated with at least two doses. When considering
only those eligible for vaccination (i.e., aged 12%), 87.6%
and 82.0% were vaccinated with one and at least two
doses respectively. Moreover, less than 1% of Canadians
received their third dose.

Next, we moved down to a finer granularity level in the
hierarchy. At the five (national) regional level, we observed the
following that are not covered by (or different from) the
aforementioned observations:

e In terms of percentage of COVID-19 cases with respect
to the regional population (see Fig. 3), Atlantic Provinces
have a much lower infection rate (of 0.6%) than the
national rate (of 4.3%), whereas Prairies + NT have a
much higher infection rate (of 6.3%). As shown in
Table I, despite their outlying infection rates, case
fatality rates for both regions were similar to the national
rate.

Quebec, on the other hand, has an infection rate (of4.8%)
similar to the national rate, its case fatality rate (of 2.7%)
is much higher than the national rate (of 1.7%).

Population

B e
IS

population (in M)

mE
BC YK AB SK mMB NT ON NU

5 5 4 4 4 4 3 3 2 1 1 1 1

Fig. 3. Population of 13 provinces & territories within the 5 national regions

TABLE L INFECTION AND CASE FATALITY RATES OF 5 NATIONAL
REGIONS

Infection rate (i.e., Case fatality rate (i.e.,

cases + population) deaths < population)
1 Atlantic 0.6% 1.3%
2 Quebec 4.8% 2.7%
3 Ontario + Nunavut 4.0% 1.7%
4 Prairies + NT 6.3% 1.1%
5 BC + Yukon 3.7% 1.0%
Canada 4.3% 1.7%

5 https://www.who.int/en/activities/tracking-SARS-CoV-2-variants/
6 https://cov-lineages.org/lineage list.html
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e In terms of transmission methods, 97% and 93% of
COVID-19 cases in Quebec and Atlantic Provinces
respectively were acquired domestically (i.e., 3% and
7% of their cases were imported through international
travel). Between them, hospital status for cases in
Atlantic Provinces was similar to the national figure.
However, in Quebec, 87% of domestically acquired
cases did not require hospitalization (with a recovery rate
dropped to 92%), 10% were admitted to regular wards
(with a recovery rate dropped to 72%). See Tables II
and IIL.

For Ontario + Nunavut, despite its percentage of
domestic acquisition matches the national percentage (of
99%), it has the lowest non-hospitalization percentage
(of 80%) and highest hospitalization percentage (with
16% in regular wards + 4% to the ICU) among domestic
acquired cases in the five national regions.

TABLE 1L BREAKDOWN OF HOSPITAL STATUS OF DOMESTICALLY
ACQUIRED CASES IN THE 5 NATIONAL REGIONS
No hospitalized | Regular wards | ICU
1 Atlantic 95% 4% 1% 100%
2 Quebec 87% 10% 2% 100%
30N +NU 80% 16% 4% | 100%
4 Prairies + NT 96% 4% 1% | 100%
5BC+YK 95% 4% 1% 100%
Canada 92% 6% 2% | 100%
TABLE III. RECOVERY RATE OF DOMESTICALLY ACQUIRED CASES WITH
3 DIFFERENT HOSPITAL STATUS IN THE 5 NATIONAL REGIONS
No hospitalized | Regular wards ICU
1 Atlantic 99% 91% 80%
2 Quebec 92% 72% 70%
30N +NU 99% 86% 66%
4 Prairies + NT 100% 86% 71%
5BC+YK 99% 92% 78%
Canada 99% 85% 70%

e Quebec is the only region with VOC distribution
percentage that was similar to the national percentage.
To elaborate, Table IV reveals that 90% of variants in
Atlantic Provinces were alpha and 5% were delta; 85%
of variants in Ontario + Nunavut were alpha and 11%
were delta. The ratio of alpha to delta cases dropped to
almost equal (with 51% alpha + 46% delta) in Prairies +
NT. In contrast, BC + YK have more (49% of variants)
delta and fewer (28%) alpha variants.

TABLE 1IV. BREAKDOWN OF COVID-19 VARIANTS OF CONCERNS IN THE
5 NATIONAL REGIONS
Alpha Beta Gamma Delta
1 Atlantic 90% 4% 1% 5% 100%
2 Quebec 63% 1% 1% 36% 100%
3 ON+NU 85% 1% 3% 11% 100%
4 Prairies + NT 51% 0% 3% 46% 100%
5BC+YK 28% 0% 23% 49% 100%
Canada 64% 1% 30% 5% 100%

Then, we moved further down to a finer granularity level in
the hierarchy. At the provincial level, we observed the

18

following that are not covered by (or different from) the
aforementioned observations:

e Among the four Atlantic Provinces, PEI has a lower
infection rate (of 0.2% as shown in Fig. 4 and its zoom-
in view in Fig. 5), no death due to COVID-19 (as shown
in Fig. 6), and no case with beta or gamma variants. No
delta variants were observed in NB. See Fig. 7.

#recovery, death & active cases

600 -
recovered W death mactive

#cases (in K)

0 - - - - —
BC YK AB SK MB NT ON NU Qc NB NS PE NL

5 5 4 ) 4 4 3 3 2 1 1 1 1
Fig. 4. Numbers of recovered, deceased and active cases in 13 provinces &
territories within the 5 national regions
#recovery, death & active cases
recovered W death m active

#cases (in K)

BC YK AB SK mB NT ON NU Qc NB NS PE NL
5 5 4 4 4 4 3 3 2 1 1 1 1

Fig. 5. A zoom-in view on numbers of recovered, deceased and active cases

%recovery, death among inactive cases

recovered M death
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9

©
X

98%
97%
96%

95%
BC YK AB SK MB NT ON NU Qc NB NS PE NL

5 5 4 4 4 4 3 3 2 1 1 1 1

Fig. 6. Infection and death rates for 13 provinces & territories within the
5 national regions
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Fig. 7. VOC for 13 provinces & territories within the 5 national regions

e Between Ontario and Nunavut, the latter has a lower
infection rate (of 1.7%) and a lower case fatality rate (of
0.6%). No beta, gamma or delta variants were observed
there. This may explain why its full vaccination rate was



lower (with 75.2% those who aged 127 received two
doses).

e Among the three Prairie Provinces and NT, both
Manitoba and NT have lower infection rates (of 4.5%
and 3.2% respectively) than the regional rate of 6.3%, but
Alberta has a higher infection rate (of 7.0%). Despite its
low infection rate, Manitoba has a higher case fatality
rate (of 2.0% when compared with the regional rate of
1.1%). In terms of VOC, although no beta variants were
observed in NT, there were more delta variants than
alpha variants there. In contrast, Manitoba has
significantly more alpha variants (80%) than delta
variants (17%). Some people in Alberta and
Saskatchewan received their third dose. See Fig. 8.
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Fig. 8. Vaccination rate for 13 provinces & territories within the 5 national
regions

e Between BC and Yukon, the latter has a lower infection
rate (of 1.9%). No beta or delta variants were observed
there. This is similar to the observations made from the
comparison between Ontario and Nunavut.

C. Comparisons with Related Works on Functionalities

After we demonstrated the functionalities and practicality of
our big data intelligence and computing solution in supporting
health analytics of real-life COVID-19 data, we then compared
the functionalities of our solution with those of the related
works:

e Many of the related works reported mostly the numbers
of COVID-19 cases and deaths, but did not provide
privacy-preserving  details and  epidemiological
characteristics of COVID-19 cases. In contrast, our
solution provides these details and characteristics (e.g.,
transmission methods, hospital status).

e Some related works provided overall data distribution of
COVID-19 cases, but they confined to showing the
distribution of single dimensions/attributes. In contrast,
our solution provides multi-dimensional information like
relationships among attributes (e.g., relationships among
transmission methods, hospital status, and recovery
status).

To recap, when compared with related works, our solution
provides additional functionalities beyond many related works.
Specifically, it provides information (e.g., characteristics of
COVID-19 cases) beyond just the numbers of cases and deaths,
and relationships among these characteristics.
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V. CONCLUSIONS

In this paper, we presented a big data intellgient solution for
health analytics on big COVID-19 epidemological data. Our
solution builds spatial hierarchy to capture data at multiple
granularity levels in this hierarchy. In addition, knowing that
population may not evenly distributed among different
geographical areas, our solution also integrating population data
with epidemological data. It then aggregates attribute values
from a finer granularity level to a coarser granularity level of the
hierarchy, and discovers in a top-down fashion. To minimize
redundancy, it returns to users (a) patterns discovered from the
top level and (b) only exceptional patterns that are not covered
by parent or ancestor levels. By doing so, the numbers of
returned patterns are comperhendible to users becauses the users
can obtain a summary on patterns at the top level and essential
patterns at lower (i.e., finer granularity) levels. Evaluation on
real-life COVID-19 cases from Canada demonstrated the
practicality of our soluton for health analytics of COVID-19
epidemological data—especially, in providing rich knowledge
about characteristics of COVID-19 cases. The discovered
knowledge helps users (e.g., researchers, epidemiologists,
policy makers, civilian) to get a better understanding of the
disease, and thus take an active role in fighting, controlling,
and/or combating the disease. As ongoing and future work, we
explore ways to incorporate temporal data into our current big
data intelligence and computing solution to analyze and
visualize the resulting knowledge. We also transfer knowledge
learned from the current work to health analytics of other
diseases and/or big data analytics in other real-life applications.
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