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Abstract—The 5G network technologies are intended to accom-
modate innovative services with a large influx of data traffic
with lower energy consumption and increased quality of ser-
vice and user quality of experience levels. In order to meet
5G expectations, heterogeneous networks (HetNets) have been
introduced. They involve deployment of additional low power
nodes within the coverage area of conventional high power nodes
and their placement closer to user underlay HetNets. Due to
the increased density of small-cell networks and radio access
technologies, radio resource management (RRM) for potential
5G HetNets has emerged as a critical avenue. It plays a piv-
otal role in enhancing spectrum utilization, load balancing, and
network energy efficiency. In this paper, we summarize the key
challenges, i.e., cross-tier interference, co-tier interference, and
user association-resource-power allocation (UA-RA-PA) emerg-
ing in 5G HetNets and highlight their significance. In addition,
we present a comprehensive survey of RRM schemes based
on interference management (IM), UA-RA-PA and combined
approaches (UA-RA-PA + IM). We introduce a taxonomy for
individual (IM, UA-RA-PA) and combined approaches as a
framework for systematically studying the existing schemes.
These schemes are also qualitatively analyzed and compared to
each other. Finally, challenges and opportunities for RRM in 5G
are outlined, and design guidelines along with possible solutions
for advanced mechanisms are presented.

Index Terms—HetNets, radio resource management, user asso-
ciation, 5G, femtocells, QoS, QoE.
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DRL Deep Reinforcement Learning
EE Energy Efficiency
FBSs Femtocell Base Stations
FUEs Femto-cell User Equipments
GAT Game Theory
GRT Graph Theory
HetNets Heterogeneous Networks
IM Interference Management
IoT Internet of Things
MBSs Macrocell Base Stations
MIMO Multi-Input Multi-Output
MOS Mean-Opinion Score
MR Mixed Reality
MUEs Macro-cell User Equipments
NOMA Non-orthogonal Multiple Access
NR New Radio
OMA Orthogonal Multiple Access
PA Power Allocation
PRBs Physical Resource Blocks
PSNR Peak to Signal Noise Ratio
QoE Quality of Experience
QoS Quality of Service
RA Resource Allocation
RAAs Radio Resource Algorithms
RAN Radio Access Network
RRM Radio Resource Management
RSS Received Signal Strength
SE Spectrum Efficiency
SON Self-Organizing Network
SSIM Structural Similarity Identity Matrix
UA User Association
UL Up-Link
VMAF Visual multi-Method Assessment Fusion
VR Virtual Reality
XR Extended Reality

I. INTRODUCTION

TODAY’S world has become increasingly linked, digi-
tized, distributed, and diverse, powered by the exponen-

tial growth in technology performance. With every “thing”
possessing the power to process, store or exchange data, the
current and future systems are poised to become dramatically
more distributed and interconnected. Networked technologies
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Fig. 1. Global business and technology trends shape the network [3].

continue to be fuelled by digital enterprise. International Data
Cooperation predicts that 48.9 billion connected devices will
be in use across the world by 2023 [1], and Cisco esti-
mates that the average amount of data consumed across a
network will be approximately 60 GB per month per personal
computing device [2].

Fig. 1 illustrates how Cisco sees the manner the global busi-
ness and technology trends are shaping the new network in its
2020 Networking trends report [3]. According to this report,
there will be around: 1) 1B edge-hosted containers at the end
of 2023, 2) 80% of workloads outside the enterprise data
centers by 2023, 3) 14.6B Internet of Things (IoT) devices
by 2022, 4) 42% annual growth in business mobile traffic,
2017 to 2022, 5) 53% of cyber-security attacks cause over
US $500,000 in damage, 6) 12 times increase in Augmented
Reality (AR)/Virtual Reality (VR) traffic by 2022.

Business mobile users will continue to expect immediate
and high-performance connectivity anywhere, anytime, and
on any device over Wi-Fi and public 4G and 5G networks.
Increasing video usage along with the emergence of VR and
AR for improved collaboration, training, productivity, and
remote working experiences will place greater demands on
any organization’s network. By 2022, Internet video will rep-
resent 82% of all business Internet traffic, VR/AR traffic will
increase twelvefold, and Internet video surveillance traffic will
increase sevenfold [4]. Networks will need to provide end-
to-end bandwidth, low latency communications, and dynamic
performance controls required to enable high quality of such
immersive experiences.

The 2020 Ericsson Mobility Report highlights the impor-
tance of communication in time of crisis. The first months
of 2020 saw the coronavirus (COVID-19) spread across the
world. Subsequent behavioral changes have triggered measur-
able changes in the usage of both fixed and mobile networks
because of lockdown constraints in many countries [5]. In
times of crisis, when connectivity is necessary for consumers
to exercise work-related tasks and leisure activities, hopes for
better network experiences are becoming greater. Six out of
ten smartphone users have a clear positive outlook toward 5G’s
position during the crisis, and about half of them strongly
agree that 5G should have provided both greater network
capacity and faster speeds compared to 4G. They agree that
5G could significantly improve society [5].

In this context, there is a need for the network to be updated
to encourage emerging market and technological developments

and support traffic associated with extra peak hours that occur
during the day, particularly due to workplace shifts from office
to home. When digital trends evolve (as shown in Fig. 2),
communications service providers have a vital role to play in
supporting a good quality communications ecosystem [5].

One of the most promising approaches to fulfil this role
is the consideration of Heterogeneous Network (HetNet) envi-
ronments in 5G networks. It involves enriching current cellular
networks with a number of smaller and simpler base stations
(BS) with broadly varying transmission capacities, coverage
areas, carrier frequencies, types of back-haul connections, and
communication protocols. For instance, in highly populated
areas, femtocell BSs (FBS), picocell BSs (PBS), microcell
BSs and/or relay nodes are typically deployed with macro-cell
base stations (MBS). This enables HetNets to support good
quality of service (QoS) when serving diverse users [6]. The
main objective of the HetNets is the: 1) Cell Densification for
increasing network capacity, 2) Bringing BSs close to the UEs,
3) Deployment of small-cells under-laying with the traditional
macro-cellular networks, 4) Several options for UEs to have
an association with a BS that can boost the QoS. The HetNets
brings a lot of advantages like 1) Improve coverage quality,
2) Enhance the cell-edge UEs performance, 3) Boost spectral
efficiency (SE) and energy efficiency (EE), and 4) reducing
network operational and capital expenditures, but they also
bring a lot of challenges like 1) how to select the best BS for
UEs, 2) extending the network infrastructure would compound
the power consumption usage.

A. Challenges in 5G HetNets

The introduction of small cells benefits the 5G networks in
several aspects, including the reduction of costs and energy
consumption in comparison to alternative approaches (e.g.,
deploying additional MBSs) [7], [8], [9], though there are
several challenges to be focused on. Fig. 3 summarizes
these major challenges and problems under two headings:
interference management (IM) and user association resource
and power allocation (UA-RA-PA). Significant efforts are
being put to address these challenges and design optimized
solutions to ensure high QoS and user quality of experience
(QoE), as well as good and fair resource utilization and user
equipment (UE ) association with the network infrastructure.

1) Interference Management (IM): IM refers to the process
of interference avoidance or mitigation. In a HetNet, the over-
laid small cells1 could either produce interference or affected
by interference with an MBS or with other nearby small cells.
There are two types of interference in a two-tier 5G HetNets
cross-tier interference and co-tier interference [10], as shown
in Fig. 5. Cross-tier interference is the co-channel interference
generated between FBSs and MBSs. This interference occurs
when both the FBSs and MBSs share the same set of physical
resource blocks (PRBs). On the other hand, co-tier interference
refers to the co-channel interference that occurs between FBSs.
This appears when the FBSs are tightly deployed within cov-
erage areas of MBSs, allowing the cells to overlap in terms
of their coverage. The same set of PRBs may be reused by

1The term small cell will refer to femtocells only from this point on.
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Fig. 2. The impact of lockdown limitations on fixed and mobile networks [5].

Fig. 3. Major challenges in 5G HetNets.

some overlapping FBSs, causing interference in both uplink
(UL) and downlink (DL).

In 5G, each PRB has 12 frequency-domain sub-carriers,
similar to LTE. While the RB bandwidth in LTE is fixed at 180
KHz, it is variable in 5G and is dependent on the sub-carrier
spacing, as indicated in the Fig. 4.

2) User Association - Resource and Power Allocation (UA-
RA-PA): UA refers to the process of pairing between each UE
and BS, which takes place before the data transmission starts.
Once the transmissions between the BS and the UE have begun
in support of a service, RA refers to the allocation of PRBs,
and PA refers to the allocation of power for supporting that ser-
vice. UA-RA-PA solutions play a critical role in improving
networks’ load balancing, spectral performance, and energy
efficiency. The received power based UA rule is the most
prevalent one in existing systems [11], where a user device
can be associated with the BS, which provides the maximum
received signal strength (RSS). The aforementioned new 5G
network technologies and goals eventually make such a rudi-
mentary rule of UA-RA-PA inefficient. More sophisticated UA
algorithms are required to address the specific features of the
evolving 5G networks. The right-hand side of Fig. 5 shows
how there are multiple BSs available, so UEs have diverse

association options. The desire is that each UE should have
an association only with that BS, which can offer good chan-
nel conditions and satisfies UE’s other performance demands
e.g., energy-related. In order to solve the UA-RA problem,
max-RSS cannot be the only goal for solving the problem.
Other factors, such as channel station information (CSI),
BS capacity, UE demands, demand priority, should also be
considered.

This paper provides a detailed review of UA, RA, PA and
IM schemes proposed recently for 5G HetNets for over the
period of 2017-2021. This survey focuses in particular on
an in-depth technical analysis of the problems and current
UA, RA, PA, IM, and combined solutions proposed for 5G
HetNets. The combined solution corresponds to the solution
or algorithms which intend to solve UA-RA-PA along with
IM. There are many survey papers for UA-RA-PA or IM
schemes in 5G HetNets, but there is no paper that surveys
schemes that jointly address UA-RA-PA and IM. This analysis,
including the way the different approaches are discussed and
compared, makes this paper original. A comprehensive quali-
tative assessment is carried out to compare existing approaches
in terms of QoS, QoE, fairness, spectrum efficiency (SE),
energy efficiency (EE), and outage/coverage probability. This
assessment enables identifification of the strengths and weak-
nesses of existing schemes. This assessment also ultimately
leads to a discussion of open issues and potential research
directions for future focus. The contributions of this survey are
five-fold.

1) Major challenges pertaining to Radio Resource
Management (RRM) for 5G HetNets (IM, UA-RA-PA)
are highlighted and discussed.

2) A comprehensive survey of recently proposed RRM
schemes in the context of IM for 5G HetNets is
presented. The surveyed schemes are classified accord-
ing to their approaches for handling cross-tier, co-tier,
or cross-co-tier interference management and how each
approach’s mechanism helps improve the different met-
rics for 5G HetNets to enhance the users’ experience
while saving CAPEX for operators. The RRM schemes
are qualitatively analyzed and compared. aspects.
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Fig. 4. Resource Block Structure in 5G for different numerologies.

Fig. 5. The various use cases made possible by the adoption of 5G HetNets. URLLC for vehicle-to-vehicle communication, eMBB for device-to-device
communication, and mMTC for massive communication. The deployment of 5G HetNets aids in the deployment of various 5G verticals, however, it is fraught
with issues such as UA-RA-PA and interference mitigation.

3) A comprehensive survey of recently proposed RRM
schemes in the context of UA-RA-PA for 5G HetNets
is provided. Classifications and qualitative comparisons
are also made across the surveyed schemes.

4) A detailed survey of recently proposed RRM schemes
is given for 5G HetNets in the context of combined
approaches. There are also classifications, and qualita-
tive distinctions around the schemes studied.

5) Several potential RRM problems and possible solutions
are identified for further development and enhancement
of RRM in 5G HetNets.

B. Paper Organisation and Reading Map

The rest of the paper is organized as shown in Fig. 6.
The vision and motivation of HetNets in 5G are discussed
in Section II. Existing surveys are reviewed in Section III.
Section IV presents the taxonomy used to conduct this sur-
vey. The latest 5G HetNets RRM schemes for UA-RA are
covered in detail in Section V. Novel RRM schemes for IM
in 5G HetNets are discussed in Section VI. Section VII looks

Fig. 6. Organization of the paper.

at RRM schemes for both IM and UA-RA. Simulators and
Hardware involved in simulations or experimental setups are
discussed in Section VIII. Section IX discusses the lessons
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learned from the papers surveyed. In Section X, some poten-
tial future challenges and approaches are presented. Finally,
Section XI concludes this survey paper.

II. HETNETS IN 5G: VISION AND MOTIVATION

In 5G wireless communications, wireless data speeds, band-
width, coverage, and connectivity increase and a round trip
latency and energy consumption decrease. For the different
5G releases Release 16 (Rel-16) [12] focuses on support-
ing Ultra-Reliable low latency communications (URLLC)
for mission-critical services. From a business angle, Rel-16
enables applications to be ready for new vertical indus-
tries, and deployment scenarios [13]. The study items for
Release 17 (Rel-17) [14] are 1) a New Radio (NR) up to
71 GHz 2) a NR Narrow-Band IoT 3) Extended reality (XR)
support in order to evaluate and adopt improvements that
make 5G even better suited for AR, VR, and mixed real-
ity (MR). As per 3GPP, all releases are categorized in three
stages [15]. Stage 1 is the “Service requirements” level. Stage
2 is more about taking the service requirements and decid-
ing what kind of functionality needs support. The solution
is implemented in the network to support its requirements in
Stage 3.

Different forms of communications will have to be enabled
by 5G networks, and diverse specifications coming from a
wide range of use cases will have to be addressed. There
have been many opinions in recent years about the ultimate
shape that 5G technology can take. In particular, two views
on what 5G wireless technology should be [16] include: 1)
Hyper Connected Vision, in which to build a world where
unrestricted connectivity enhances people’s lives, redefines
business, and ushers in a more sustainable future and 2) Radio-
Access Technology of the Next Decade, based on greater
peak data speeds in the multi-gigabit per second range, ultra-
low latency, increased dependability, huge network capacity,
increased availability, and a more consistent user experience
for a larger number of users. For a concentrated progress to
be made, it is important that a definition of the targeted tech-
nology is to be agreed on first. In order to satisfy the needs
of both the market and the customer, all criteria within the
definition process must be met, ensuring that the final defini-
tion matches the needs of the majority of users without being
overly demanding as in such a case no framework will func-
tion. The following collection of 5G specifications (Fig. 7) is
gaining market recognition by accounting for the majority of
current and near future needs [17], [18]:

1) 1-10 Gbps data rates in real networks: 10x to 100x
speed improvement over 4G and 4.5G networks [19].

2) 1 millisecond (ms) latency: very low latency (the delay
between information transmission and reception. This is
down from 200 ms in 4G [19].

3) 1000x bandwidth per unit area: Large numbers of
connected devices with higher bandwidth requirements
need to be supported for longer duration in any particular
region [17].

4) Up to 100x number of devices connected per unit
area (compared with 4G LTE): In order to realize the

Fig. 7. Diverse needs and a wide range of use cases.

IoT vision, the evolving 5G networks need to provide
thousands of devices with connectivity [17].

5) 99.999% availability: 5G envisages that the network
should be practically always available [17].

6) 100% coverage: 5G networks need to provide maxi-
mum coverage, regardless of the users’ location [17].

7) 90% reduction in network energy usage: Standard
bodies are now contemplating the advancement of green
technologies, so this along with EE becomes very
important [19].

8) Up to 10-year battery life for low power IoT
devices: Reducing IoT devices’ power usage is essential
[17], [19].

Following these eight requirements, wireless and mobile
network industr y players, academia and diverse research
organizations have started collaborating in order to focus on
different aspects of 5G wireless systems. To address the critical
5G requirements, the European Commission and big European
ICT industry representatives established the 5G Infrastructure
Public Private Partnership (5G PPP). The 5G PPP will deliver
solutions, architectures, technologies, and standards for the
coming decade’s ubiquitous next-generation communication
infrastructures. 5G PPP cooperates with global 5G organisa-
tions in order to further advance 5G towards social adoption
and promote local use, industrial employment, and new usage
avenues to solve social problems.

A. 5G Advanced and 6G Vision

5G Advanced is the next step in the evolution of 5G tech-
nology. It will enable a broader set of advanced use cases
for verticals and provide a new level of enhanced capabil-
ities beyond connectivity. It is expected to support advanced
applications with increased mobility and dependability, as well
as artificial intelligence (AI) and machine learning (ML) to
improve network performance. It will also introduce addi-
tional SE and energy saving mechanisms. Release 18 marks
another significant advancement in 5G technology, ushering
the industry into the 5G-Advanced era. 5G-Advanced will
bring 5G to its fullest, and richest capabilities. A truly immer-
sive user experience based on extended reality (XR) features
will lay the groundwork for more demanding applications and
a broader range of use cases than ever before. In addition, it
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Fig. 8. HetNets in 6G.

will implement AI and machine learning enhancements across
the RAN, Core, and network management layers to improve
performance, network optimization, and energy efficiency. It
is foreseen to be fully backward compatible, allowing it to
coexist with current 5G NR Releases 15-17 and serve legacy
5G devices.

5G Advanced is expected to serve as a stepping stone for
some of the use case capabilities which the industry hopes
to enable on a larger scale in the 6G era. One of the most
notable features of 6G will be its ability to sense its surround-
ings (as shown in Fig. 8). The network will become a source
of situational information, collecting signals that bounced off
objects and determining their type and shape, relative location,
velocity, and possibly even material properties. This sensing
network would pave the way for a slew of new services. In
open areas, the network could detect the location, speed, and
trajectory of all vehicles and pedestrians in a specific area,
issuing warnings if any paths are about to intersect. One of
the goals of the 6G Internet is to support communications with
a latency of one microsecond. This is 1,000 times faster than
one-millisecond throughput (1/1000th the latency).

III. EXISTING SURVEYS AND TUTORIALS ON HETNETS

Several tutorials have been published, to formally introduce
5G, HetNets and their related challenges. Zahir et al. [20]
provide an overview of femtocells, advantages that this tech-
nology can provide, and related key challenges. According to
the authors, the femtocells’ main challenge is IM because of
their ad-hoc deployment. They also summarized the essential
techniques that can be used to avoid and mitigate interference
regarding femtocells. Although the paper was good, it is not

recent and it does not address emerging 5G technologies.
The survey by Lee et al. [21] mainly focuses on an in-
depth technical review of the current challenges and existing
RRM schemes proposed in recent years for LTE/LTE-A fem-
tocell and relay networks. Out of three primary challenges
in HetNets, this survey focuses on only two, i.e., cross-tier
and co-tier interferences. Moreover, this survey was also not
recently published and lacks discussions of the latest 5G
technologies.

Maallawi et al. [22] survey comprehensively the offload-
ing techniques and their management in HetNets. Offloading
is one of the popular techniques ado pted for interference
mitigation. Though the authors’ work was good, it covers a
tiny section of the challenges that are being solved by this
particular technique. It also lacks the latest 5G technologies
for offloading. Peng et al. [23] present a comprehensive sur-
vey framework for interference mitigation technologies across
different layers over the air interface to improve SE and
EE. Although this survey is not closely related to our sur-
vey, it still provides a good explanation of HetNets and the
use of interference mitigation techniques at different layers,
including employment of interference coordination and cancel-
lation at the PHY layer along with radio resource allocation
optimization and self-organizing network (SON) approaches
at upper layers. The survey by Agiwal et al. [24] dis-
cusses the new architectural changes associated with the radio
access network design, including air interfaces, smart anten-
nas, cloud, and heterogeneous radio access networks (RAN).
The authors also present a survey on novel mmWave physical
layer technologies, encompassing new channel model esti-
mation, directional antenna design, beam-forming algorithms,
and Multi-Input-Multi-Output (MIMO) technologies. This
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survey does not explicitly talk about the challenges in 5G
HetNets.

Liu et al. [25] presents a comprehensive survey on the
advances in UA algorithms designed for HetNets. The chal-
lenges imposed by the inherent nature of HetNets were also
identified. This survey’s work considers HetNets and other 5G
technologies like mmWave and massive MIMO and presents
approaches adopted for UA employing these technologies. The
survey helped a lot in terms of categorization, informing our
survey work. However, it does not survey other important
challenges in HetNets like cross-tier and co-tier interference
as well as the combined approaches that are used for solv-
ing jointly the UA and interference mitigation challenges.
The survey by Luong et al. [26] cites economic and pric-
ing approaches in 5G and considers resource management for
UA, spectrum allocation, interference and power management,
wireless caching, and mobile data offloading. Unfortunately,
this survey does not discuss combined approaches for resource
management and does not include any qualitative comparison
of various works related to different approaches.

Luong et al. [27] present a systematic literature review on
applications of deep reinforcement learning (DRL) in com-
munications and networking. Modern networks are becoming
more decentralized and autonomous, such as the IoT and
unmanned aerial vehicle networks. In these networks, under
the network context’s complexity, network entities need to
make decisions locally to optimize network performance.
Reinforcement learning has been used effectively to allow
network entities, given their states to avail from optimal deci-
sions or actions. First, the authors include a DRL tutorial from
basic concepts to advanced models. Then, they study DRL
methods proposed to tackle emerging communications and
networking problems. The survey does not directly describe
the challenges in HetNets; however, DRL is an interesting
avenue to address combined approaches for solving HetNet
challenges. Xu et al. in [28] discussed network structures
and RA models, as well as resource allocation algorithms
(RAA) in HetNets. This survey includes a summary of the
most recent progress on RAAs in HetNets for IM. In addition
to the basic principle and theoretical analysis, both potential
research issues and new network scenarios were also included.

Recent RRM problems in HetNets were reviewed by Manap
et al. in [29], including mitigation of interference, allocation
of bandwidth, allocation of power, user association, complex-
ity, and future research topics. Though this paper surveyed
schemes for UA-RA-PA, the analysis lacks several aspects
such as the targeted communication link (UL, DL), control
(centralized, distributed), performance metrics, and complex-
ity. The work also lacks taxonomy, and even though it is the
latest from all the survey papers discussed, it still does not
talk about combined approaches.

A cyclic-prefix (CP) free OFDM design, which does away
with the necessity for unnecessary CPs between OFDM sig-
nals, was described by Hamamreh et al. in [192]. The design
was demonstrated to boost SE, improve power efficiency, cut
latency, boost physical layer security, and retain low receiver
complexity while maintaining low receiver complexity, mak-
ing it a good contender for fulfilling the needs of future 5G

and beyond services and applications. The impact of timing
and carrier synchronization concerns and how they should be
handled in the suggested CP-free scheme are two additional
significant features of CP-less OFDM with alignment signal
that still need to be thoroughly examined. Networks support-
ing ultra-low latency (ULL) applications were well addressed
in the survey by Nasrallah et al. in [193]. Specialized network
protocol methods have been established for the network layer
in the IETF Deterministic Networking (DetNet) specifications
and for the link layer in the IEEE Time-Sensitive Networking
(TSN) set of standards in order to provide ULL support.
Wang et al. in [194], survey a variety of different client-
centric approaches in localizing Radio Access Technology
(RAT) selection and association for HetNets, and how they
may be extended to be used with next-generation wireless
technologies, i.e., 5G. There are few other surveys [30],
[31], [32], [33], [34], [35] which have small sections on
HetNets. The main goal of these surveys was not to present
current research on HetNet challenges. However, they include
relevant avenues such as Sun et al. [31] who survey the
role of machine learning (ML) in wireless communications,
Tabassum et al. [32] who survey the mobility-based schemes
in HetNets and Yaqoob et al. [35] who present a com-
prehensive survey on 3600 video streaming techniques in
HetNets.

Unfortunately, unlike this survey (see Table I), the afore-
mentioned tutorials and surveys do not include a critical
assessment of each evaluated contribution based on well-
defined and well-motivated criteria. They also do not perform
an in-depth analysis of the literature. In particular, combined
approaches are not considered in any of these papers. In con-
trast, this paper comprehensively reviews the work performed
to date in terms of approach, metrics, model, complexity,
and control. We also focus on concerns that have not been
addressed yet and both identify obstacles that exist and pro-
vide solutions. Moreover, based on our current literature study,
we indicate lessons learned related to 5G HetNets, useful for
our readers. Furthermore, the prospects of HetNets in terms
of emerging technologies are also sketched.

IV. RRM TAXONOMY

This survey presents a taxonomy of the latest RRM schemes
for 5G networks, which could serve as a fundamental refer-
ence point for major design aspects and analysis of proposed
algorithms, including their advantages and shortcomings. The
literature on 5G HetNets is diverse; systematically structur-
ing the relevant works is not a trivial task. The outline of the
proposed taxonomy, which consists of five non-overlapping
branches, is illustrated in Fig. 9. On the left side, we iden-
tify five main categories; (1) Approach, (2) Metrics, (3)
Model, (4) Complexity, and (5) Control. A literature review
from these five perspectives is a natural choice because
most researchers in the area tackle the issues from one of
these perspectives. Within the first category, referred to as
approach for addressing challenges in 5G HetNets, three
sub-categories have been proposed: UA-RA-PA, IM (further
sub-divided in cross-tier interference and co-tier interference),
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TABLE I
MAJOR SURVEYS ON RRM FOR 5G HETNETS

Fig. 9. Overview of the surveyed research works classified according to the proposed classification criteria.

and combined approaches. Performance evaluation from the
perspective of the proposed algorithm can be defined as a
formal and productive procedure to measure the proposed

algorithm results based on their proposed working procedure.
There are many metrics that can be used to evaluate efficien-
cies. Some of the important metrics that have been widely used
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by researchers for performance evaluation of their proposed
schemes are: Energy Efficiency, Spectrum Efficiency, QoS,
Outage/Coverage Probability, Fairness, and QoE. In the sec-
ond category, focused on different evaluation metrics for the
proposed schemes, six avenues have been identified:

• Energy Efficiency: Green communications have attracted
a lot of interest from both industry and academia mostly
because of environmental concerns [42], [43]. In the lit-
erature, many EE metrics have been used to provide a
quantitative assessment of a given algorithm’s power sav-
ing potential. EE measurements include: the ratio of
overall data rate to total energy consumption (bits/joule)
for all users [44], [46] and the direct representation of
the power/energy savings obtained by a certain algorithm
(e.g., the difference in power/energy consumption before
and after the implementation of a particular algorithm,
the percentage of power savings) [45], [47], [48].

• Spectrum Efficiency: It refers to the highest information
rate that may be conveyed over a given communication
infrastructure in existing conditions [43].

• QoS: QoS measures the networks’ transport performance
related to a service. QoS is generally not linked to a
client, but to content delivery or network support [49].
QoS can be quantitatively measured in terms of met-
rics such as delay, throughput, jitter and packet loss ratio
(PLR).

• Outage/Coverage Probability: refers to the probability
that the transmission rate is higher than the channel
capacity. The outage/coverage probability is critical, as
it serves as one of the core indicators for network
performance research and optimization [25].

• Fairness: In HetNets, the fairness issue emerges not only
in regular cell scheduling, but also in the user association
decision between cells in different tiers. Jain’s fairness
index [50] has been frequently used to assess fairness,
and it is described in the context of throughput as:

γ(r1, . . . , rn , . . . , rN ) =

(∑N
n=1 rn

)2

N
∑N

n=1 r
2
n

(1)

where N is the number of users and rn is the throughput
of the nth user.

• QoE: QoE is a measure of the pleasure or frustration
associated with the experience a customer has with a
service. QoE is a strictly subjective indicator from the
point of view of the consumer [49]. QoE provision can
be qualitatively measured in terms of metrics that include
peak-to-signal-noise-ratio (PSNR) [49], structural simi-
larity identity matrix (SSIM) [49], visual multi-method
opinion score (VMAF) [51] and mean opinion score
(MoS) [49].

The third category of the proposed ontology includes
different models adopted by various schemes to address
open challenges. Four major sub-categories have been
identified:

• Combinatorial Optimization (CO): CO refers to the
technique of searching for maxima (or minima) of an
objective function, whose domain is a discrete but vast

configuration space. [25]. In most cases, the space of
viable answers is too large to be explored thoroughly by
brute force. In some circumstances, branch and bound-
like approaches can be used to solve problems precisely.
In most circumstances, however, exact algorithms are not
possible to be employed and, hence randomized search
methods must be used, such as simulated annealing (SA)
and genetic algorithm (GA).

• Game Theory (GAT): GAT is a type of mathematical
modeling that can be used to investigate the interactions
of numerous players. Equilibrium is a set of strategies
that incorporates the optimum plan for each player. In
particular, the game’s solution achieves Nash Equilibrium
if none of the players can raise their value without
diminishing the utility of the others by changing their
approaches [52].

• Graph Theory (GRT): The interference interactions can
be represented as a graph, and the resource allocation
problem can be solved using GRT [23]. A vertex can
represent a BS in a graph, whereas an edge can reflect
the level of interference [53].

• Reinforcement Learning (RL): In a RL process, an agent
can learn its optimal policy through interaction with its
environment. In particular, the agent first observes its
current state, takes an action, and receives its immedi-
ate results. Deep Reinforcement Learning (DRL) is an
advanced version of RL in which deep learning is uti-
lized as an effective tool to improve learning rate for RL
algorithms [26].

Future communication systems are becoming more sophis-
ticated as they must meet a growing number of user needs,
such as increased data rates, many connections, and low
latencies [28], [54]. However, apart from these, resource man-
agement strategies should also focus on communication and
computational complexity, as indicated by the fourth category.

• Communications Complexity: The amount of information
exchanged between the system and users.

• Computational Complexity: The amount of processing
required to acquire information, decide on resource allo-
cation, and relay the results back to their intended users.
It includes the difficulty of calculations involved when
executing the resource allocation algorithms.

Finally, in terms of the placement of the control scheme,
three sub-categories have been identified:

• Centralized: This approach assumes that each HetNet has
a single central entity that performs RRM functions. The
decision is taken based on data such as channel quality
and resource demand collected from both macrocell UEs
(MUE) and femtocell UEs (FUE), presumably via the
serving BSs. In general, small networks can benefit from
centralized strategies.

• De-centralized: Decentralized RRM methods eliminate
the need for a central entity, allowing MBSs and FBSs
to allocate resources among related MUEs and FUEs.
Because of its reduced communications and computa-
tional complexity, this strategy is appealing, although
achieving efficient RA among the UEs is difficult. This
strategy is better suited to large-scale networks.
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• Hybrid: The centralized and decentralized techniques
have both advantages and downsides, and trade-offs can
be made as part of RRM schemes which are referred to as
“hybrid,” “semi-centralized,” or “partially decentralized”.
Certain global RRM activities, such as channel and traf-
fic information collection, are decentralized to MBSs and
FBSs while local RRM functions, such as packet schedul-
ing, are centralized to MBSs and FBSs. Such techniques
may be appropriate for networks of intermediate size.

Note that aspects related to security, confidentiality, and data
protection (authentication) were not focused on in this survey.
Interested readers can find related research in [36], [37], [38],
[39], [40], [41]. Critical infrastructure support requires a high
level of security from the innovative 5G network solutions.
For society wellbeing, the following are basic security require-
ments of such approaches: 1) authentication, 2) integrity, 3)
availability, 4) confidentiality, 5) secure trans-border data flow,
6) privacy, and 7) appropriate traffic and infrastructure man-
agement [37]. The advantages of 5G much outweigh the risks
posed by security breaches. However, it is crucial to be aware
of the potential issues in order to take precautions before they
develop into serious concerns. Eavesdropping and traffic anal-
ysis, distributed denial of service attacks, man-in-the-middle
assaults, jamming, and hacking are a few non-exhaustive
security threats on 5G HetNets [37].

V. RRM FOR UA-RA-PA IN HETNETS

This section examines the major approaches proposed to
address the UA-RA-PA issues in 5G HetNets. It discusses the
schemes in terms of which metrics they use for evaluation,
which model they employ along with their complexity, imple-
mentation and deployment aspects, in line with the entries
from Fig. 9.

A. UA-RA-PA Schemes Based on Combinatorial Optimization

A general modeling technique for UA-RA-PA combinato-
rial optimization in 5G HetNets is utility maximization under
resource limitations, defined as follows:

U
x
=

M∑
m=1

N∑
n=1

xmnμmn , (2)

subject to

fi (x ) ≤ ci , i = 1, . . . , p, (3)

where x = [xmn ] is the UA matrix, in which xmn = 1 in case
user n is associated with BS m or 0 otherwise; U is the total
network utility; μmn is the utility of user n when associated
with BS m and, fi (x ) ≤ ci represents the resource constraints,
power constraints, QoS constraints, and so on. Since normally
it is assumed that a specific user can only be associated with a
single BS at any time, i.e., xmn = {0, 1}, the resultant problem
is a combinatorial optimization problem, which is in general
NP-hard. This means that even for medium-sized networks,
completing an exhaustive search for the best solution is com-
putationally very expensive. A popular method of overcoming
this issue is to make the problem convex by relaxing the UA
matrix from xmn = {0, 1} to xmn = [0, 1].

Fig. 10. A two-tier NOMA HetNet powered by solar panels and the
conventional grid as an example of energy collaboration [55].

The authors of [55] focused on RA in energy cooperation-
enabled two-tier HetNets with non-orthogonal multiple access
(NOMA), where BSs are fueled by renewable energy sources
and conventional grid. The authors suggested NOMA, a dis-
tributed approach to offer the optimal UA for the fixed transmit
power to discover the best UA and PA strategy for optimiz-
ing the overall network’s EE under QoS limitations. For the
network under consideration, illustrated in Fig. 10, simulation
results demonstrate that NOMA can achieve greater EE than
orthogonal multiple access (OMA). This study, however, only
looked at HetNets, with just pico-cell BSs and MBSs and no
FBSs. The complexity was high, as the scheme incurred a
significant overhead, making its use unrealistic in large scale
networks. On the other hand, the distribution algorithm out-
performed a conventional counterpart, but at the cost of high
computational complexity.

The authors of [56] studied two kinds of fairness criteria
(i.e., proportional fairness and max-min fairness2) for energy
efficient RA by jointly considering the UA and PA in UL
MIMO-enabled HetNets. To optimize the log utility of EE
with QoS and transmit power restrictions of UE, the pro-
portional fairness optimization problem, dual decomposition,
and Newton methods were used. In addition, the UA and
PA sub-problems were solved using the dual decomposition
and sequential convex approximation methods for the max-
min fairness optimization issue. The suggested sub-optimal
algorithm outperformed previous schemes in terms of EE.
However, the proposed centralized allocation mechanism may
result in considerable signalling overhead, increasing commu-
nication complexity. The authors of [57] concentrated on EE
maximization for DL HetNets. Energy-efficient UA and PA in
two-tier HetNets was formulated as an optimization problem,
with maximum transmit power limits on each BS cell and min-
imum data rate for each user were considered to offer reliable

2Maximize the allocation for the most poorly treated UEs, i.e., maximize
the minimum, according to max-min fairness. On the other hand, proportional
fairness is defined as: maximizes the overall utility of rate allocations using
a logarithmic utility function.
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and energy-efficient DL transmission. The proposed solutions
were assessed in terms of convergence and effectiveness by
simulations and were compared with reference schemes using
fixed PA and fixed UA. The biggest disadvantage of the work
is that RA was not considered. Due to the iterative nature of
the proposed scheme, its computational complexity was high.

In [58], authors looked at energy-efficient joint RA and UA
for HetNet with multi-homed UEs. The joint UA-RA was for-
mulated initially as a long-term energy-efficient maximization
problem, which was then converted into a throughput-minus-
energy optimization problem. The associated mixed-integer
non-linear optimization issue was solved using continuity
relaxation and the Lagrange dual approach. Finally, a dynamic
energy-efficient-based approach for getting the optimum RA
was proposed. Simulation findings revealed that the proposed
approach outperforms other general algorithms in terms of EE
performance. PA, on the other hand, was not taken into account
in the suggested design, and the authors did not specify the
type of small-cells used in the considered HetNet. Overall,
the suggested approach exchanged a large number of over-
head signals, resulting in high communication complexity. The
authors of [59] formulated the challenge of EE maximization
in the context of a three-tier HetNet with macrocells and pic-
ocells layers operating in the sub-3 GHz frequency ranges
and attocells layers operating in the visible light spectrum. A
novel iterative approach was developed to solve the UA-PA
joint problem and provide a near-global optimal solution. In
terms of throughput, power consumption, and EE, simulation
results showed that the proposed method deployed in a three-
tier HetNet outperformed a baseline UA scheme operated in
a two-tier HetNet.

The authors of [60] focused on device-to-device (D2D)
communications in HetNets and looked at system’s EE. First,
they designed a solution for UA for HetNets-supported D2D
communications by maximizing received power to users of
MBS, FBSs, or D2D communications. Secondly, the D2D
communications used a novel RA method known as sequen-
tial max search (SMS). SMS algorithm minimizes interference
from D2D users to cellular users and maximizes overall
network throughput. Simulation results show benefits in terms
of throughput and EE, but there are numerous disadvantages:
1) only one MBS and one FBS were considered in the eval-
uation; 2) simulation results were not compared to other
state-of-the-art algorithms; and 3) there was a high commu-
nication complexity due to a large number of input variables
required to be exchanged, which also increases as the num-
ber of UEs grows. The authors of [61] proposed to use a
cache-enabled energy-cooperative HetNet made up of MBSs
and PBSs, in which each BS is equipped with a cache to store
content files. These caches are powered by both conventional
grid and renewable energy sources, with energy being shared
between BSs via the smart grid. The researchers proposed a
joint UA-PA algorithm which significantly improves both the
data rate and EE of the entire network. The suggested scheme
has a minimal computational and communications complex-
ity. However, the suggested method was not compared to other
state-of-the-art schemes, and the authors used a fixed number
of UEs in the simulation. The authors of [62] focused on UA

Fig. 11. The macro and pico BS in the HetNet [62].

(i.e., BS selection, channel allocation, and mode selection) and
PA to maximize the UL EE of secondary users and BS com-
munication. They considered the HetNet illustrated in Fig. 11
with primary users (PUs) and secondary users (SUs). Ordinary
users are PUs whereas unlicensed users, sensors, or other IoT
devices are referred to as SUs. To improve the UL EE of
the communication between the SU and the BS, the sum-of-
ratios programming algorithm (i.e., the parametric Dinkelbach
algorithm) along with convex optimization were used to solve
the three sub-problems. However, there are several pitfalls of
the proposed system like it has a significant implementation
complexity as a large amount of network information was nec-
essary at the start of the suggested iteration-based method.
Besides, the three sub-problems considered were addressed
sequentially and not in parallel, resulting in a high latency.

In [63], authors achieved good QoS while improving EE
by combining loss tolerance and bandwidth growth. They
presented a distributed UL combined UA-RA technique for
UL energy bit minimization. When compared to the state-of-
the-art maximum signal received power (RSRP) and channel
individual offset (CIO) systems, the suggested scheme delivers
a considerable improvement in UL energy per bit consump-
tion. However, the scheme had a significant overhead, which
resulted in a high level of implementation complexity. In [64],
authors provided a simple and successful strategy for optimiz-
ing SE of two-tier HetNets. The combined optimization of UA
and PA was formulated as a mixed-integer programming issue.
To deal with the non-convexity of the optimization issue, the
Lagrange duality theory is used to divide the original problem
into two sub-problems, each of which is solved in turn.
The extensive simulation results demonstrated the suggested
algorithm’s fast convergence rate (i.e., low computational com-
plexity) and considerable performance advantages. In addition,
other traditional UA techniques such as minimal path loss,
range expansion (RE), and RSRP were compared to the sug-
gested scheme. However, to tackle the problem at hand, a large
number of overhead signals were required, resulting in a high
level of implementation complexity. A trade-off between SE
and EE while ensuring fairness among users was proposed by
the authors of [65] by taking into account the back-haul capac-
ity constraint in the HetNet. First, the problem was formulated
as a multi-objective optimization (MOO) problem maximiz-
ing the sum log-utility and simultaneously minimizing the
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total power consumption. Then, MOO is transferred to the
single-objective optimization problem to get Pareto optimal
solution using the weighted Tchebycheff method. Finally, the
proposed scheme was compared with four different schemes:
1) fixed antenna where the number of antennas of MBS is pre-
defined as the number of maximum available antennas; 2) fixed
antenna and power where number of activated antennas and
transmit power are fixed as maximum values; 3) max SINR
fixed antenna and power where user chooses the BS with the
highest SINR); and 4) max SINR algorithm with optimization
of power coordination and antenna number. Nonetheless, they
only considered the back-haul capacity as a constraint; other
context factors like UEs demands, channel quality should also
be considered for a more realistic scenario.

The authors of [66] sought to achieve a trade-off between
user QoS and EE in a HetNet when dealing with mobile
UEs. To showcase this trade-off, the authors suggested a new
metric, Green Topological Potential Approach, which com-
bines EE and SE when selecting the target cell. The proposed
heuristic-based approach Green Heuristic User Association
was compared to other two schemes based on path-loss and
received power while maintaining an acceptable SE. Yet, the
proposed scheme involves many overhead signals, yielding
high implementation complexity. The computational complex-
ity was O(MN ), where M is the number of BSs and N is
the number of UEs. As the number of UEs increases, the
complexity grows exponentially. Furthermore, there were no
constraints on power and resource allocation, making it an
ineffective solution in realistic scenarios. Finally, SINR was
calculated as per Eq. 4 without considering the channel gain
between UE and its associated BS.

SINRij =
Pij∑

k∈BSs Pik + σ
(4)

To minimize the power consumption and to satisfy the
UEs QoS requirements, a low-complex distributed UA and
RA scheme was proposed by the authors of [67]. Firstly,
a non-convex joint UA and RA problem was split into two
sub-problems using a cost-based approach that estimates the
power use effectively. To reduce the computational complex-
ity, relaxation and decomposition techniques were applied to
the UA-RA scheduling problems. Besides, the authors intro-
duced a low-complex iterative algorithm for PA based on the
decomposition theory that converges quickly to the optimal
solution. Simulation results were presented in terms of QoS
satisfaction ratio, defined as the ratio of the number of UEs
with their QoS satisfied to the total number of active UEs in the
network. No other QoS metrics were examined. The proposed
scheme was evaluated in small-scale (3 MBSs, 4 SBSs and
20 UEs) and large-scale (30 MBSs, 4 SBSs and 20 UEs)
networks and was compared with the Strongest Signal Strength
First scheme. Still, the proposed scheme was implemented in
MATLAB rather than a proper network simulator.

In [68], the author investigated the problem of optimal
UA in a HetNet with QoS flows, as shown in Fig. 12. To
assess average packet delay performance (APDP), a vari-
ety of QoS-aware Association (QoSA) methods were used,
including QoSA via block-coordinate descent, QoSA via

Fig. 12. HetNet with QoS traffic, where MS denotes mobile stations and
λk denotes the rate at which QoS packets arrive for MS-k [68].

alternating-direction method of multipliers, and QoSA with
multi-flow algorithm (QoSA-MF). On one hand, the sug-
gested QoSA algorithms can reduce APDP over the entire
network while ensuring performance. Furthermore, the QoSA-
MF can optimize best-effort throughput while ensuring QoS
flow delay requirement. All of these unique QoSA methods,
on the other hand, have low complexity and can be dis-
tributed, which is the most desirable aspect in HetNets with
a large number of unplanned wireless nodes. Maximum-DL-
SINR and proportional fairness (PF) were used to compare
the proposed schemes. The author demonstrated that the
proposed QoSA algorithms: 1) converge towards the global
optimum; 2) significantly reduce packet delays when com-
pared to existing conventional association strategies; 3) able
to optimize multiple flows in a distributed fashion; and 4) can
be applied to scenarios with mobility when the channel gains
are time-varying using extensive simulations.

In [69], the impact of the dual-slope path loss model on the
performance of a DL HetNet was investigated for maximizing
the weighted total rate of joint UA-RA-PA while taking UE
QoS requirements and maximum transmission power limits
into account. The goal was to develop and study a QoS-
aware resource optimization framework using a multi-slope
path loss model in a multi-tier HetNet, in contrast to recent
works such as [70], [71], [72], [73], which highlight the
importance of multi-slope model and analyze coverage proba-
bility. Results showed that it can enhance the network sum
rate and EE by offloading UEs to the closest BSs due to
minimal attenuation, as opposed to the single-slope model.
However, the proposed effort had the following shortcomings:
1) the channel quality was not considered; 2) there was no
power constraint; and 3) there was no pseudo-code for the
proposed technique. By jointly optimizing transmit power and
UA, the authors of [74] proposed a resilient EE maximization
technique for a DL NOMA-based multi-cell HetNet with con-
strained channel uncertainty. Due to the complexity of the
investigated non-convex problem, the authors used the worst-
case approach and Dinkelbach’s method to convert it into a
deterministic and convex optimization problem and then used
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Karush–Kuhn–Tucker conditions along with the Lagrange
dual approach to derive the closed-form solutions of PA-
UA. The suggested technique has strong robustness and can
lower macrocell users (MU) outage probabilities, according
to simulation findings. “Non-robust NOMA” (NOMA-based
EE maximization strategy under perfect CSI) and “Non-robust
OFDMA” (orthogonal frequency division multiple access
(OFDMA) based rate maximization algorithm under perfect
CSI) were compared to the proposed scheme. Still, only a
small number of MUs (5) and SUs (2) were simulated. As a
result, the proposed system may not appropriate for large-scale
networks.

Caching has been a promising way to relieve the back-
haul bandwidth burden in the HetNets. However, PA and
UA are neglected in conventional caching strategies, result-
ing in insufficient power for users and cache waste in an
SBS. Keeping these constraints in mind, the authors of [75]
jointly optimized caching, PA and UA to maximize UEs aver-
age QoE for video services in software defined HetNets. A
mixed-integer non-linear programming (MINLP) problem is
formulated under the constraints of caching capacity, lim-
ited power and UA. The formulated problem is NP-hard and
the authors proposed a Joint Caching-Power-and-Association
(JCPA) algorithm to obtain the optimal global solution based
on the hidden monotonicity. A lower bound of JCPA was
obtained through a heuristic-based algorithm. The proposed
scheme was compared with the pro-active based approach,
Most Popular Video, and the reactive based approach named
least recently used. Simulation results were presented in terms
of the cache hit ratio3 and MOS. However, the solution has
several drawbacks: 1) it was not mentioned how MOS was
obtained and whether it was mapped to PSNR, SSIM or
VMAF; 2) variation among the number of UEs and BSs was
not considered in simulation; hence the proposed scheme may
only be effective in small-sized networks; and 3) high imple-
mentation and computational complexity. The authors of [76]
went a step further and calculated QoE in CR-based HetNets
with cognitive D2D couples as SUs and cellular users as
PUs. They first defined the cross-layer optimization issue to
maximize the average QoE of D2D pairs while meeting the
QoE requirements of cellular UEs. To solve the non-convex
optimization problem, a centralized and semi-distributed RA
system based on GA and stackelberg game was presented.
Simulation results showed that the centralized GA algorithm
outperformed the semi-distributed Stackelberg Game algo-
rithm. Both achieved significant improvements over random
allocation and were very close to the optima, demonstrat-
ing the effectiveness of the proposed algorithms. However,
in both suggested schemes, the core network was built on
EPC-based design rather than 5G service-based architecture,
and like in [75], the authors did not explain how MoS was
mapped.

The authors of [77] discussed joint UA-RA backhaul
for hybrid-energy-powered HetNets (shown in Fig. 13). To
balance network-wide performance with user fairness, they

3A measurement of how many content requests a cache can fill successfully,
compared to how many requests it receives.

Fig. 13. Network model [77].

proposed an online network utility maximization problem
reflecting PF having tightly tied variables in the constraints of
resources, energy, and backhaul. The proposed problem was
solved in a distributed fashion using decomposition methods.
A primal decomposition method was used to decompose the
original problem into a lower level RA problem for each BS
and a higher level UA problem. A Lagrange dual decompo-
sition method was then deployed to solve the UA problem.
Testing results showed that the proposed approach significantly
improves network utility, load balancing, and user fairness
compared to max-SINR and RE solutions. The work in [78]
focused on solving the joint UA-PA optimization problem for
massive MIMO-enabled HetNets under proportional fairness
with load and transmit power constraints. First, the authors
derived a closed-form expression for ergodic capacity under
imperfect CSI. They then proposed an effective algorithm to
maximize spectral efficiency’s log utility. Simulation results
showed the proposed algorithm outperforming max RSRP and
min RSRP algorithms in terms of SE and load balancing.

The authors of [79] suggested a small-cell deployment
methodology for network capacity increase and high load
balancing. The framework handles the UA and bandwidth allo-
cation using a greedy based approach. Two greedy algorithms,
Greedy Small Cell First Received Signal Based and Greedy
Small Cell First Throughput Based User Association were uti-
lized to reduce the load on the macrocell while increasing the
load on the small cell for the UA problem. Following selecting
the best deployment architecture, a Branch and Bound based
algorithm was deployed to solve the UA in the HetNet for
capacity maximization. Data offloading from the macrocell to
the small cell is accomplished using the Branch and Bound
Throughput Based UA algorithm. Still, there are several lim-
itations of the proposed framework. First, UEs demands, BS
power and resource capacity were not considered. Second,
the proposed scheme was not compared to any other base-
line algorithm. Third, due to the use of branch and bound
algorithm, the proposed scheme suffers high computational
complexity. Hence, it might not be suitable for dynamic envi-
ronments and large-sized HetNets. The authors of [80] solved
the same problem as in [79] using particle swarm optimization
(PSO) to balance and control the load per BS in 5G HetNets.
The proposed approach was compared against the conventional
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TABLE II
QUALITATIVE COMPARISON OF UA-RA-PA ALGORITHMS BASED ON COMBINATORIAL OPTIMIZATION FOR 5G HETNETS

static biasing approach and simulation results showed that PSO
outperformed the static biasing method as it can balance and
control the load while maintaining the cell SE. Yet, besides
the low computational complexity compared to greedy-based
approaches, PSO has the same limitations as of [79].

In [81], two statistical optimization frameworks for multi-
antenna HetNets were described. The first maximizes UA
coverage whereas the second optimizes a rate utility func-
tion by combining UA and RA. The aim is to maximize two
major performance indicators, i.e., coverage and rate, using
a stochastic geometry technique. The results of Monte Carlo
simulations showed that the proposed coverage-maximizing
and rate-maximizing strategies outperformed the usual max-
power and small-cell RE schemes in terms of coverage
and rate. The authors of [82] used a different approach to
solve the same problem. With transmission powers, antenna
tilts, and CIOs as optimization parameters, they proposed a
framework for combining Conflicting Coverage and Capacity
Optimization (CCO) and Load Balancing (LB) SON func-
tions. The suggested CCO-LB approach outperformed existing
algorithms for all KPIs (e.g., maximum RSRP and maximum
SINR user association methods). Results also showed that the
proposed solution can yield a significant gain in throughput,
spectral efficiency, and load distribution.

Finally, we proposed a Performance-Improved Reduced
Search Space Simulated Annealing (PIRS3A) in [83], an
algorithm for solving UA-RA problems in HetNets (as shown
in Fig. 14). First, the UA-RA problem is formulated as a
multiple 0/1 knapsack problem (MKP) with constraints on the
maximum capacity of the BS along with the transport block
size index. Second, the proposed PIRS3A is used to solve the
formulated MKP. Simulation results show that PIRS3A out-
performed existing schemes in terms of variability and QoS,

Fig. 14. An example of a two-tier HetNet including one MBS: M1, and
10 FBSs: M2,M3, . . . ,M11. The FBSs are usually located at commercial
and residential buildings that constitute hotspots for wireless traffic. The UEs
UE1,UE2, . . . ,UEN in a region G are either served by either MBS or
FBSs selected by Information Service Server (ISS)[83].

including throughput, PLR, delay, and jitter. Simulation results
also showed that PIRS3A generated solutions that are very
close to the optimal solution compared to the default simulated
annealing (DSA) algorithm.

Summary: This section reviews applications of CO for the
UA-RA-PA. The reviewed approaches are summarized along
with the references in Table II. We observe that the prob-
lems are mostly modeled for DL. Moreover, metrics EE and
QoS receive more attentions than the other metrics for CO
approaches. In the next section, we review the GAT for the
UA-RA-PA.

B. UA-RA-PA Approaches Based on GAT

GAT is a mathematical modelling technique consisting of
studying the interactions of numerous players. For example,
equilibrium is defined as a set of strategies that include each
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player’s optimum strategy [25]. In particular, the game’s solu-
tion achieves Nash Equilibrium if none of the players can
raise their value by changing their approach without wors-
ening the utility of the others [25]. As a result, GAT is a
powerful instrument that can be used to solve UA-RA-PA
problems. The actors in this scenario can be the BSs, the users,
or both. GAT can be divided into two types based on different
modelling strategies: non-cooperative and cooperative. In non-
cooperative modelling [84], players seek to maximize their
utility and compete against one another by using various strate-
gies such as adjusting their transmit powers or placing bids
representing willingness to pay. On the other hand, cooperative
schemes simulate a bargaining game in which players bargain
with one another to achieve mutual benefits. Despite having a
low communication overhead, GAT is deemed appropriate for
building distributed algorithms with flexible self-configuration
features. However, it is worth noting that GAT is based on the
assumption of rationality, which assumes that all players are
rational individuals working in their own best interests. Yet,
in 5G networks, players—BSs or UEs—cannot be expected to
operate rationally at all time. For example, various BSs par-
ticipating in the game may have different optimization aims;
optimizing energy efficiency may be viewed as irrational by
BSs maximizing transmission rate, and vice versa.

The authors of [84] introduced a bi-level negotiating
paradigm for distributed UA and RA. UE competition occurs
in a non-cooperative manner at the follower level game.
In the leader-level game, however, perfect coordination was
assumed among the BSs. To balance the loads on small
BSs with varying capacities, congestion factors are added.
In the proposed algorithm, BS access prices are modified
based on incomes and load circumstances in the leader-
level game. In the follower-level game, each UE picks the
BS that maximizes its payoff (or minimizes its payment)
individually. As result, the technique achieves a distributed
optimization. A PSO-based pricing technique was presented
for price design to optimize the BS revenue. Finally, they
obtained a stable single-BS association using a resident-
oriented Gale-Shapley approach. Still, the suggested approach
does not ensure user fairness and does not incorporate PA
for IM. Also, it does not consider UE demands for differ-
ent types of traffic. The authors of [85] presented a fair UA
method in HetNets based on cooperative GAT that focuses
on maximizing the utility of users. The proposed solution
was designed to simplify the coalition generation using a
novel SINR-based Coalition Generation Algorithm called the
Nash Bargaining Solution scheme (SCGA-NBS). SCGA-NBS
uses the two-band partition method to accomplish the bargain-
ing solution. Simulation results demonstrated that SCGA-NBS
outperformed a throughput-oriented approach in terms of
fairness, data rate, load distribution, and convergence while
ensuring a substantially faster convergence time.

In [86], the authors presented a PA allocation based on non-
cooperative GAT in a heterogeneous ultra-dense relay network
to ensure QoS requirements and throughput balance between
the access and backhaul links while predicting the number
of linked UEs. The proposed non-cooperative game was sep-
arated into the backhaul game and access game. Back-haul

Fig. 15. NOMA-based MEC network [87].

game players are the leaders while access game players are
the followers. Experiment findings showed that the proposed
strategy effectively balances throughput between the two lines
and meets the specified minimum rate. A novel NOMA-
based Mobile Edge Computing (MEC) network (as shown
in Fig. 15) with multiple access points, where each access
points was equipped with a MEC server to supply comput-
ing resources, was presented by the authors of [87]. In the
proposed network, the problem was formulated to minimize
the total energy consumption of all users by jointly consid-
ering UA-RA-PA. The formulated optimization problem was
modelled as a many-to-one matching game with externality
due to co-channel interference along with resource competi-
tion among users occupying the same sub-channel. The authors
employed the Gale-Shapley algorithm to solve the UA problem
and used a heuristics algorithm to solve RA. The PA problem
was solved by the convex optimization method. Simulation
results show that the proposed approach can achieve lower
energy consumption of the system within fewer iterations than
other simplified schemes. However, it is unclear whether the
proposed scheme offloads the tasks to MEC servers or execute
them locally.

The same NOMA network was considered by the authors
in [88] but with integrated D2D rather than MEC. They set
a target of accomplishing the joint RA of uplink NOMA-
based D2D groups and cellular users (CUs). A two-stage
game approach was put forward to deal with the joint PA and
RA problem. Computations were performed in D2D groups
and CUs separately, where the available energy of UEs is
considered during the game. An approximation method was
introduced to formulate the first stage as a non-cooperative
game instead of a coalitional game with high computational
overhead. With this approach, the computational complexity
and signalling overhead was significantly reduced.

The weighted majority cooperative game (WMCG) was
proposed in [89] for 5G massive MIMO HetNets to provide
services to FBS users and MIMO users. The proposed WMCG
allocated antennas to FBSs users based on user loads. In order
to reduce power consumption, the proposed scheme monitored
the state of FBSs. If an FBS was in a sleep mode, the MIMO
antennas allocated to that FBS were allocated to MIMO users
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Fig. 16. Scenario: A HetNet powered by hybrid energy sources [91].

or other FBSs. The authors of [89] proposed another approach,
E2beam, based on the cooperative game in [90]. E2beam
assigns the beam cooperatively in a way that the interference
was minimized. A utility function was proposed to select the
minimum power consumption for connecting UEs to BS.

The authors of [91] investigated a distributed GAT-based
mechanism for controlling the user-BS association process
in a HetNets powered by renewable energy (as depicted
in Fig. 16) to lower grid demand and increase EE. The
proposed technique was based on a population-like game with
atomicity and non-anonymity properties. Three alternatives to
the proposed game-theory-based scheme are presented and
compared. Simulation results showed that the suggested game-
theory-based technique increases the EE of HetNets powered
by hybrid energy sources in real-world settings compared to
the benchmarks. Yet, the proposed scheme has three major
flaws. First, RA was not considered to improve transmission
rate. Second, there is no provision for continuous green energy,
which can be achieved through storage systems or by using
more stable renewable sources. Finally, while the computa-
tional time of the proposed scheme was lower than some
benchmarks (e.g., greedy algorithm and discrete optimization),
but it was high in comparison to best-signal-level-policy.

In [92], a spectrum-sharing-based HetNet was proposed,
in which an FBS can combine multiple macro-cell operators
(MCO) sub-bands and allocate the aggregated sub-bands to
allow high-speed wide-band data transmission for each unli-
censed user (UU). The main goals of this project were to solve
the following issues:

1) Power control problem: how MCO manages interference
by constantly modifying the interference pricing to
protect licensed users.

2) Sub-band allocation problem: how UUs choose which
sub-bands to access based on channel information,
interference pricing, and other UUs’ actions.

3) Overlapping coalition formation problem: how UUs
form overlapping alliances to increase their data rate.

To jointly consider the solutions to these three challenges,
a hierarchical game framework was developed (as shown in
Fig. 17). Simulation results showed that the proposed approach
always converges to the hierarchical game’s SE. At the same
time, the resulting transmit power and sub-band allocation
were stable and no player could increase their reward further
by acting alone and unilaterally deviating from the plan.

Fig. 17. Hierarchical game structure [92].

The authors of [93] investigated the EE performance of
users in a DL NOMA-based HetNet. To decrease the complex-
ity of MUE and FUE, they formulated the EE maximization
problem as a non-cooperative game. Furthermore, they pro-
vided a centralized approach for realizing the energy-efficient
power control algorithm (EPCA), which reduces information
exchange for each game iteration and ultimately obtains the
unique Nash equilibrium. Simulation findings suggested that
EPCA can converge to equilibrium with higher system-level
EE and SE compared to the benchmark. However, EPCA suf-
fers high overhead, i.e., amount of data transferred, resulting
in significant implementation complexity. The authors of [94]
developed a GAT framework based on fuzzy logic for EE
improvements in HetNets. Multiple user context parameters
such as velocity, SINR, throughput, and BS load were consid-
ered for the handover decision. Simulation results showed that
the proposed framework improved energy usage dramatically,
especially for small active users, when high user velocities are
combined with managing ping-pong handovers and cell loads.
However, the proposed schemes have several significant flaws:
1) it was not compared to any other state-of-the-art schemes;
and 2) it was only evaluated for 20 UEs. Hence, it might not
be suitable for large-scale HetNets.

The researchers in [95] suggested an effective multi-flow
carrier aggregation (MCA) control solution to maximize
system throughput while taking into account the utility of each
mobile device (MD). The proposed approach was built as a
two-level game model to achieve an optimum performance
balance between network operators and mobile users. A
multiple-leaders multiple-followers Stackelberg game model
was used for the upper-level game, in which COs are leaders
and MDs are followers. The lower-level game is modelled
as a negotiating game in which each MD and traffic flow
are game players. The authors demonstrated the superiority
of the two-level game method in terms of user payoff, MCA
system performance, and CO fairness via numerical analy-
sis. Further improvements could consider: 1) congestion while
making traffic aggregation decisions; 2) control issues, includ-
ing convergence time, service latency, and system-level EE;
and 3) MD mobility.

The authors of [96] studied the dynamics of radio access
technology (RAT) selection games by clients in HetNets.
They investigated the convergence properties of these games
and introduced a hysteresis that can guarantee convergence.
Measurement-driven simulations showed that RAT selection
games converge to Nash equilibria in few switches. The pitfall
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QUALITATIVE COMPARISONS OF UA-RA-PA ALGORITHMS BASED ON GAME THEORY FOR 5G HETNETS

of the proposed scheme is that it was not compared with any
other state-of-the art scheme and it is not clear how promising
is the proposed solution to prospective operators. In the con-
text of 5G multi-tier HetNets, the authors of [97] addressed the
problem of cognitive users admission and channel distribution
over cognitive base stations. The users’ admission challenge
was specifically modelled using a college admission matching.
Each small-cell BSs uses a modified English auction following
the matching game to request the principal channels to serve
its connected users. Results showed that the applied match-
ing method for user admission is simple and that the channels
allocation problem has a Walrasian equilibrium point. Still, the
proposed approach has the same shortcomings as in [96].

The research reported in [98] looked at how matching
theory can be used for UA in mmWave-enabled cellular
HetNets. First, they introduced early acceptance (EA), an effi-
cient distributed matching technique suited for UA in 5G
HetNets. The suggested EA uses a centralized worst connec-
tion swapping (WCS) algorithm and a deferred acceptance
(DA) matching algorithm. Simulation results showed that EA
delivered network throughput close to the centralized WCS
technique while substantially reducing complexity and over-
heads due to its distributed nature. Furthermore, EA was more
power-efficient and resulted in a significantly faster associa-
tion process than the well-known DA algorithm. However, this
work does not consider RA-PA.

The authors of [99] presented an elastic cellular network
structure capable of adapting to individual UE QoE require-
ments. Virtual interference-free service zones centred around
planned UEs provide QoE flexibility. To simulate acceptable
service-zone formations surrounding UEs, a distributed utility
reduction problem was presented. They conducted a complete
comparative analysis employing evolutionary and auction-
based game implementations at a centralized control BS to
evaluate the optimization of S-Zone allotment to UEs. The
game strategy demonstrates superior performance for network
efficiency, with fluctuations in data BS density and priority
allocation between a fair UE throughput network and a ser-
vice necessity-driven throughput network. This study could
be expanded by evaluating the suggested model at mmWave

frequencies and incorporating the corresponding signalling
costs into the optimization framework.

Summary: This section reviews applications of GRT for the
UA-RA-PA. The reviewed approaches are summarized along
with the references in Table III. Tables IV and V indicate
the novel contributions of this survey paper. The tables for
each scheme detail which game was utilized, who the players
were, what strategy was used, what payoffs were examined,
and how many resources were impacted. We observe that the
problems are mostly modelled for DL. Moreover, metrics EE,
SE, and QoS receive more attention than the other metrics.
No considered approaches have presented results in terms of
QoE and coverage probability. In the next section, we review
the GRT for the UA-RA-PA.

C. UA-RA-PA Approaches Based on GRT

Considering a scenario where many small cells are deployed
randomly and located in a 5G network, the UA-RA-PA
becomes very complicated. Therefore, it is essential to effi-
ciently handle these complex issues between small cells for
optimal UA-RA-PA. In such circumstances, a graph can repre-
sent the relationships between UEs and BSs, and the optimal
UA-RA-PA can be solved using GRT. GRT aims to create
a directed graph G = (V, E) with nodes V and edges E.
The nodes here refer to various UEs or BSs. The edge set
E, on the other hand, corresponds to the set of node mobil-
ity linkages. In general, GRT is primarily concerned with the
analysis of relationships. GRT is a valuable tool for quan-
tifying and reducing the many aspects of dynamic systems
given a set of nodes and connections that can abstract anything
from city plans to computer data. When considering graphs,
the type of graph employed is most relevant. Undirected
graphs have no directions associated with the edges between
nodes whereas directed graphs have orientations for all edges.
Weighted graphs assign a weight (e.g., importance, cost) to
each edge.

To tackle the optimization problem, broken into two sub-
problems, the authors in [100] developed a joint RA approach
using UA and PA. The first sub-problem was addressed by
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combining GRT and a Hungarian method to fix the PA, UA,
and RA. The authors used the difference convex function
approximation method to solve the PA and fix the UA and
RA in the second sub-problem. Compared to the belief propa-
gation algorithm, statistical channel state information, iterative
water-filling, and static complete spectral reuse, results showed
that this technique could significantly improve the overall
system throughput. This method, on the other hand, pro-
vided no services to UEs with poor channel conditions. The
authors of [101] presented a combined RA and PA in a HetNet
with a macrocell and a picocell that used spectrum sharing
in the underlay transmission mode by employing the QoE
utility function. They used a weighted bipartite network and an

advanced Kuhn-Munkres algorithm to perfectly match the sub-
carrier allocation technique. The first-order derivative of the
network utility function was used to solve the optimal power
problem for PA. Results showed that the proposed scheme out-
performed the average PA and PF algorithms. However, RA
was only considered at the pico cell, and as cell size increased,
the QoE performance deteriorated.

The researchers in [102] suggested a graph and matrix
theory-based network selection technique for overlapping
wireless networks that include WiFi, WiMAX, and LTE
technologies. The data rate, service cost, delay, and power
consumption aspects have all been considered. The above
factors and their relative importance for a particular application
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create a graph and related matrix. The permanence of the
matrix is then computed to determine a “network satisfaction
value”, used to choose the best access point. The suggested
graph-based selection mechanism outperformed traditionally
RSSI-based approaches. Results also showed that the proposed
scheme can select the most appropriate network, based on
user preferences, while reducing the number of handoffs com-
pared to TOPSIS (techniques for order preference by similarity
to ideal solution). As a result. the scheme can be applied to
the next generation of wireless networks, where deployment
is extremely dense and numerous networks having various
characteristics are to be considered.

The authors of [103] have considered a user-centric
network-level coordination architecture for 5G Heterogeneous
Radio Access Networks (RANs), based on RAN softwariza-
tion and a centralized coordination framework. They con-
structed the network graph to abstract the RA and cell
offloading problem with the network function seeking an
optimal solution. Simulations were run in a HetNet scenario
using the Tabu Search Algorithm, and results were expressed
in SE. Using cluster-based GRT, the authors of [104] sug-
gested a quick sub-band allocation technique to minimize
interference in an ultra dense dynamic HetNet. When the
network interference state meets specific circumstances, a new
sub-band allocation technique, called The fast sub-band alloca-
tion scheme (FAS), proposed in this study allows static UEs to
keep their allotted sub-bands. Compared to existing frequency
reuse methods, FAS is more efficient, provides a higher SE,
and has an advantage in terms of sub-band hand-off rate and
latency with a suitable trade-off in terms of UE throughput.

The research in [105] introduced a network selection strat-
egy based on bipartite graph matching, i.e., the BGMNS
algorithm, to address the challenge of multi-service network
selection in 5G ultra-dense HetNets systems. BGMNS com-
bines the Analytic Hierarchy Process and Grey Relation
Analysis to efficiently satisfy individualized service require-
ments and obtain the QoE of edge users seeking various

Fig. 18. The system architecture model for group-based collaborative D2D
caching scheme over edge-computing networks [106].

services across several networks. Simultaneously, to assure
system fairness, BGMNS efficiently determines the fairness
index by considering both service priority and user QoE and
skilfully models the matching degree as the weight of a bipar-
tite graph edge between user and network. On this foundation,
BGMNS maximizes the total QoE of edge users while main-
taining system fairness. This results in a vastly improved user
experience and a more efficient allocation of network resources
in the system. Simulation results showed that BGMNS can not
only ensure stable access and user QoE when network status
varies, but also effectively meet the requirements of requested
services, significantly reduce user blocking probability and
total PLR, and significantly improve average EE.

The authors of [106] presented collaborative D2D caching
systems over edge-computing mobile networks using het-
erogeneous statistical delay-bounded QoS provisioning, as
depicted in Fig. 18. They designed and solved QoS-driven
effective-capacity optimization issues for collaborative D2D
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caching schemes. They also created centralized and decen-
tralized D2D-caching matching algorithms that use a bipartite
graph to solve challenges like effective-capacity optimization.
Simulation results showed that the proposed collaborative
D2D caching techniques outperformed existing schemes under
heterogeneous statistical delay-bounded QoS constraints on
edge-computing mobile networks. The authors of [107] sug-
gested a new network selection technique based on GRT.
Using Dijkstra’s algorithm and a novel cost function for each
edge, the proposed system allows users to choose the optimum
path. The proposed mechanism for selecting the best path pro-
vides higher throughput, exhibits low packet loss, decreases
the delay, and the jitter better than handover based RSS, han-
dover based bandwidth, and handover based cost function,
according to experiments conducted on a test-bed using the
mininet emulator. Additionally, the handover-based cost func-
tion outperformed the standard algorithms in terms of QoS.
Furthermore, the authors proved the effect of using numerous
criteria to estimate each edge’s cost. Finally, network selec-
tion based on a single parameter, such as RSS or bandwidth, is
ineffective in determining the best path for network selection.

In [102], a pragmatic solution for a network selection
scheme in wireless HetNets using GRT was proposed. The
interdependence of network properties was used to create
a network appropriateness index. Comparing the suggested
scheme to earlier selection schemes demonstrated that the
proposed system adequately captures the user’s individual
preferences in determining the optimum network, making it
suitable to next-generation wireless networks with ultra-dense
deployment.

The authors of [108] focused on embedding multi-domain
virtual networks in a 5G HetNet infrastructure, as illustrated
in Fig. 19. They provided a mathematical model for this
problem, a unique heuristic technique for virtual 5G network
embedding based on the layered-substrate-resource auxiliary
graph, and a compelling 5G demand categorization method.
Compared to the benchmark, simulation results showed that
the proposed Layered V-FiNE Algorithm could achieve a
lower average blocking rate, less average latency, and higher
substrate resource efficiency.

Summary: This section reviews applications of GAT for the
UA-RA-PA. The surveyed approaches are summarized along
with their references in Table VI. Table VII summarizes the
type of graphs in existing approaches along with the values
associated with vertices and edges in case of weighted graphs.

Fig. 19. A heterogeneous multi-domain 5G infrastructure [108].

Most approaches are only modelled for DL and focus on QoS
metrics. In the next section, we review DRL approaches for
the UA-RA-PA.

D. UA-RA-PA Approaches Based On Deep Reinforcement
Learning (DRL)

RL, a subset of ML, is a useful method for dealing with
Markov Decision Processes (MDPs) [27]. An agent can learn
its best strategy by interaction with its environment in an RL
process. In particular, as depicted in Fig. 20(a), the agent first
observes its present condition, then takes action, and finally
receives an immediate reward along with its new state. The
agent’s policy is adjusted based on the observed information
and this process continues until the agent’s policy approaches
the ideal policy. In Table XIII, we have provided a comparison
among RL, DL and DRL for a better understanding of each
branch.

A tuple (S,A,p,r) defines an MDP, where S is a finite set
of states, A is a finite set of actions, p is a transition prob-
ability from state s to state s ′ after an action is performed,
and r is the immediate reward obtained after an action is per-
formed. We denote policy π as a “policy” which is mapping
from a state to an action. The goal of an MDP is to find
an optimal policy to maximize the reward function. An MDP
can be finite or infinite time horizon. For the finite time hori-
zon MDP, an optimal policy π∗ to maximize the expected
total reward is defined by maxπ[

∑T
t=0 rt (stπ(st ))], where

at = π(st ). For the infinite time horizon MDP, the objec-
tive can be to maximize the expected discounted total reward
or to maximize the average reward. The former is defined by
maxπ[

∑T
t=0 γrt (stπ(st ))], while the latter is expressed by
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Fig. 20. (a) Reinforcement Learning, (b) Artificial neural network, (c) Deep Q-learning [27].

limT−→inf maxπ[
∑T

t=0 rt (stπ(st ))], where γ ∈ [0, 1] is the
discount factor that determines the relative relevance of future
rewards to the current reward. If γ = 0, the agent is “myopic,”
meaning it solely examines how to maximize its immediate
benefit. If γ approaches one, the agent will seek a longer-term
larger reward.

1) Q-Learning Algorithms: In an MDP, we aim to find an
optimal policy π∗ : S −→ A for the agent to maximize
the expected long-term reward function for the system.
Accordingly, we first define a value function V π : S −→ A
that represents the expected value obtained by following pol-
icy π from each state s ∈ S. Through an infinite horizon and
discounted MDP, the value function V for policy π measures
the goodness of the policy as follows:

V π(s) = Eπ

[
inf∑
t=0

γrt (st , at )|s0 = s

]

= Eπ[rt (st , at ) + γV π(st+1)|s0 = s ]. (5)

Since we aim to find the optimal policy π∗, an
optimal action at each state can be found through
the optimal value function expressed by V ∗(s) =
max
at

Eπ[rt (st , at ) + γ ∗V π(st+1)].

If we denote Q∗(s , a) � rt (st , at )+γEπ[V
π(st+1)] as the

optimal Q-function for all state-action pairs, then the optimal
value function can be written by V ∗(s) = max

a
Q∗(s , a). Now,

the problem is reduced to find optimal values of Q-function,
i.e., Q∗(s , a) for all state-action pairs, and this can be done
through iterative processes. In particular, the Q-function is
updated according to the following rule:

Qt+1(s , a) = Qt (s , a) + αt

×
[
rt (s , a) + γmax

a ′ Qt (s , a′)−Qt (s , a)

]
(6)

The core idea behind this update is to find the tempo-
ral difference between the predicted Q-value, i.e., rt (s , a) +
γmax

a ′ Qt (s , a
′) and its current value, i.e., Qt (s , a). In (6),
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the learning rate αt is used to determine the impact of new
information to the existing Q-value. The learning rate can be
chosen to be a constant, or it can be adjusted dynamically
during the learning process.

2) Deep Learning: Deep learning (DL) [110] is a collec-
tion of methods and approaches aimed at identifying important
features in data and modeling their high-level abstractions. The
major purpose of DL is to avoid having to manually describe
a data structure (such as handwritten features) by automati-
cally learning from the data. It refers to any neural network
with two or more hidden layers, which is commonly referred
to as a Deep Neural Network (DNN). Although they can also
include propositional formulations or latent variables struc-
tured layer-wise in deep generative models such as the nodes
in Deep Belief Networks and Deep Boltzmann Machines, most
deep learning models are built on an Artificial Neural Network
(ANN). An ANN is a computational nonlinear model based on
the neural structure of the brain that is able to learn to perform
tasks such as classification, prediction, decision-making, and
visualization. As shown in Fig. 20 (b), an ANN is made up of
artificial neurons that are structured into three interconnected
layers: input, hidden, and output. Input neurons in the input
layer transfer information to the buried layer. The output layer
receives data from the hidden layer. Weighted inputs, an acti-
vation function, and one output are all present in every neuron.
The modifiable parameters that turn a neural network into
a parameterized system are called synapses. The activation
function of a node determines the node’s outputs based on its
inputs.

Backpropagation is a powerful learning method that ANNs
employ during the training phase to swiftly compute a gradient
descent with respect to the weights. Automatic differentiation
is a specific case of backpropagation. The gradient descent
optimization approach frequently employs backpropagation in
the context of learning to modify the weights of neurons by
determining the gradient of the loss function. Due to the fact
that the error is calculated at the output and sent back across
the network layers, this technique is occasionally referred to
as backward propagation of mistakes.

An ANN with numerous hidden layers is referred to as
a DNN. Feedforward Neural Network (FNN) and Recurrent
Neural Network are the two common DNN models (RNN).
There are no cycles or loops in the FNN since information

only flows in one direction, from the input nodes to the output
nodes via the hidden nodes. Convolutional Neural Networks
(CNN) are the most popular model in FNNs and have a wide
range of uses, particularly in speech and picture recognition.
The CNN uses a variant of the multilayer perceptrons outlined
above and includes one or more convolutional layers, either
pooling or fully connected. A convolution operation is applied
to the input by convolutional layers, which then send the out-
put to the following layer. This operation allows the network
to be deeper with much fewer parameters.

3) Deep Q-Learning (DQL): When the state space and
action space are small, the Q-learning technique can efficiently
find an optimal policy. In practice, however, with complex
system models, these spaces are frequently quite big. As a
result, it is possible that the Q-learning algorithm won’t be
able to determine the best policy. To address this problem,
the DQL technique was developed. As shown in Fig. 20 (c),
DQL uses a Deep Q-Network (DQN) instead of a Q-table to
calculate an estimated value of Q∗(s , a).

When a nonlinear function approximator is utilized, the
average reward obtained by reinforcement learning algorithms
may not be stable or even diverge. This is due to the fact that
a little change in the Q-values can have a significant impact
on the policy. Thus, the data distribution and the correlations
between the Q-values and the target values R+γmax

a ′ Q(s ′a ′)
are varied. Two approaches, namely experience replay and
target Q-network, can be applied to solve this problem.

The surveyed approaches are summarized along with their
references in Table IX. In Table X, we present the considered
state space, action space and reward. We also mention which
entity is acting as an agent in the considered problem from
the standpoint of UA-RA-PA in HetNets.

In [110], the authors proposed a distributed DRL archi-
tecture for obtaining the best UA-RA strategy in HetNets.
The optimization problem was created to obtain the high-
est long-term return while maintaining UE QoS standards. A
Multi-agent Reinforcement Learning (MARL) technique was
suggested by jointly associating UEs to BSs and allocating
channels to UEs considering the non-convex and combinato-
rial properties of this joint optimization problem. A Double
DQN was proposed to efficiently offer a near-optimal solu-
tion with minimal iterations using the double-Q method.
Simulation results demonstrated the high convergence and
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superior performance of the proposed solution compared to
other reinforcement learning methods such as Q-Learning and
DQN. MARL was also considered by the authors of [111]
to handle the UA-PA problem in HetNets. The proposed work
investigates the joint optimization of UA-PA in OFDMA-based
HetNets. The UA-PA problem was modelled as the maximum
long-term UL EE of all UEs under the limits of maximum
transmit power and UE QoS criteria. Furthermore, the conver-
gence of the multi-agent DQN method was investigated, and
results showed that the multi-agent DQN has a faster con-
vergence speed than the conventional Q-learning technique.
Results also showed that the multi-agent DQN outperformed
the benchmarks as it can successfully increase EE of all UEs.
In [112], the authors investigated the joint problem of UA-
PA in the DL of a two-tier HetNet without knowledge of
the environment transition probability using a parameterized
deep Q-network (P-DQN). The authors constructed the reward
function based on EE with a QoS constraint per user and
a backhaul capacity limitation, taking into account realistic
scenarios. When the limitation was broken, a penalty mecha-
nism was triggered. Simulation results showed that P-DQN
outperformed other traditional methods in terms of overall
EE while meeting QoS requirements and backhaul constraints.
Yet, P-DQN may not work well in situations with large action
space.

In [113], a DRL approach was used to tackle the joint
optimization problem for UA-RA-PA in HetNets. The hetero-
geneous network-deep-Q-network framework (HetDQN) was
proposed to solve the problem. It consists of 6-layer deep
neural networks based on maximum SE. Results showed that
HetDQN can attain a greater SE when compared to the
present solutions and has a better convergence. The authors
of [114] considered a HetNet in which users must connect
to the best BS to get the most out of the network. The
proposed DRL-based association architecture uses continu-
ous channel state information as an input. An efficient online
DRL-based approach was proposed to address the NP-hard
utility maximization problem. The system was computation-
ally efficient and does not require any external labelled data
as a training data set. It may quantize the output of DNNs
as UA solutions. These association solutions are saved in a
shared memory structure then used to train all DNNs using a
sub-gradient method. The authors showed that the suggested
approach outperformed the maximum signal-to-interference-
plus-noise-ratio (max-SINR) UA scheme numerically. The

authors of [115] looked at the handover and PA problem
in a HetNet system with numerous UEs. They identified the
ideal policy between UE actions and local observations (e.g.,
signal measurement report, current connection, and public
information) to improve overall throughput while reducing
handover. They considered inter-dependencies across UEs and
represented the problem as a fully cooperative multi-agent job.
The ideal cooperative policy for each UE was then learned
using a MARL technique. They also introduced a centralized
training with a decentralized execution framework to propose
a multi-agent proximal policy optimization (MAPPO) algo-
rithm for the multiple UEs system. The global data was used to
teach policies for each UE. Once the training was completed,
each UE received a decentralized policy that made decisions
based on the UE’s local observations. MAPPO outperformed
the benchmarks in terms of high throughput, the suggested
technique can obtain higher results.

The authors of [116] introduced MBS as a new type agent
in HetNets to perform PA with FBS for all users, and used
DQN to optimize PA in wireless dense HetNets. The joint
PA based on multi-type agents outperformed a single-type
agent in substantial interference circumstances. The neural
network also improved the system’s ability to process massive
volumes of agent state information. In comparison to Q-
learning and Q-learning averaged allocation, simulation results
showed that the suggested strategy enhanced system capacity
and improved energy efficiency. Still, to reduce complex-
ity, different incentive functions and techniques of sharing
knowledge among agents should be examined. In [117], the
authors looked at the joint UA-RA problem for virtualized
small cell (VSC) aided HetNets using UE mobility prediction.
The user mobility prediction model was exhibited, and the
VSC was assessed using the user mobility prediction model.
Since the problem is non-convex, decoupling and coupling
solutions based on Multi-Agent Q-Learning were proposed.
Simulation results showed that the introduction of VSC can
significantly improve system capacity and SE. However, there
is a tradeoff between performance and algorithm complexity.
In addition, other performance measures such as delay and
energy cost were not examined. A DQN with padding for
optimal PA in HetNets was proposed in [118] where padding
was employed to maximize the system’s sum rate when the
number of users changed dynamically. To estimate the Q-
function and discover the best PA method, a Convolutional
Neural Network was used. Simulation results revealed that
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DQN outperformed the Weighted Minimum Mean Square
Error algorithm in system capacity and adequately manageed
active and idle users. However, under the suggested framework
with inadequate CSI, dynamic user changes, without knowing
the maximum number of users in the cell, should be addressed.

The study in [119] examined traffic offloading and the PA
problem in green HetNets to increase long-term EE by com-
bining decentralized and centralized techniques. The problem
was treated as a Markov game using MARL for decentral-
ized optimization while in centralized optimization, a DNN
was employed for value estimation with DQL due to its
large state space. Simulation results revealed that the DQL-
based approach outperformed MARL and greedy algorithms,
with MARL incurring the lowest communication overhead.
In high mobility 5G HetNet, the authors of [120] investi-
gated using DRL to adaptively assign TDD UL/DL resources.
DNN was used to extract features from complex network
information in the suggested approach, and a dynamic Q-value
iteration based RL with experience replay memory mecha-
nism was proposed to adjust TDD UL/DL ratio by evaluated
rewards. The suggested algorithm was compared to various
methods such as the conventional technique and the Q-learning
based method in terms of throughput and PLR. In [121],
a DRL-based general optimization framework was presented
as a unified solution for the UA-PA problem that can adapt
to OMA-enabled and NOMA-enabled HetNet scenarios with
minor alterations. A hybrid UA-PA algorithm based on the
Deep Deterministic Policy Gradient Algorithm (DDPG) was
proposed that achieves load balancing and improves EE by
interacting with the environment. In terms of aggregate rate
and EE, the suggested strategy outperformed SA, Max-SINR,
DDPG with fixed power, and DDPG with max-SINR. Yet, the
proposed framework is not general enough to suit all networks.

To address the challenge of DL sum-rate maximization in
multi-RAT multi-connectivity HetNets, the authors of [122]
suggested a hierarchical multi-agent DRL-based system called
Deep Radio Access Technologies (DeepRAT) which gets the
RAT-Edge Devices (EDs) assignment and PA to maximize
HetNet’s constrained sum rate. To study system dynamics and
solve the problem, DeepRAT incorporates DQN and DDPG
models. DeepRAT solves it hierarchically by breaking it into
a multi-RAT assignment stage and a PA stage. The DQN
method is used in the first step to learning the best RAT
assignment policy for EDs. The second stage uses the DDPG
method to solve the PA problem for the RATs’ allocated
EDs. Yet, DeepRAT does not handle the multi-RAT HetNet’s
joint optimization of both PA and RA. To maximize SE and
EE, the authors of [123] presented a distributed multi-agent
deep reinforcement learning (MADRL) for joint RA. The
suggested distributed MADRL-Multi Optimization Problem
(MOP) framework can deliver an optimal solution in few iter-
ations. Furthermore, this centralized training and distributed
execution approach can choose a policy strategy to achieve dis-
tinct optimal objectives for different agents thanks to reward-
ing functions. Simulation results showed that the suggested
approach could effectively deal with RA and outperform the
benchmarks. In [124], the authors suggested a Mobility-aware
Centralized Reinforcement Learning (MCRL) strategy for

UA-RA in HetNets. The action space is dimensionally reduced
using an existing method that approaches the upper bound-
aries, ensuring that MCRL can solve the joint optimization
issue. Additionally, the state-of-the-art Actor-Critic technique
was used in the RL agent’s training. Simulation results showed
that MCRL is both feasible and effective and can converge
quickly during the training phase, considerably improving
throughput and user fairness.

The authors of [125] developed a conventional DQN
approach to address the RA problem in HetNet to optimize
the EE. The algorithm encourages the usage of green energy
to power BSs as much as possible, reducing their reliance on
the power grid and maximizing EE. Simulation results showed
that this method is capable of efficient learning, can effec-
tively enhance the network’s EE, and can achieve excellent
resource management. In [126], the authors examined a UA
and RA scheme for HetNets with hybrid energy supply to
exploit the harvested energy across small-cells. The EE cri-
terion was defined as the ratio of total information rate to
the conventional power grid energy, and the objective was
to maximize the EE of the overall network. The model-free
RL framework, similar to trial-and-error learning, was used
to design the sequential decision making problem in HetNets.
The RL agent learns from its interactions with the environment
and develops its policy. A policy-gradient-based actor-critic
RL algorithm is suggested to find the best policy for a problem
with continuous-valued state and action variables. When esti-
mating the policy gradient, the actor portion typically has
a high variance. In contrast, the critic part assists the actor
in estimating the gradient, and the advantage function is uti-
lized to minimise the policy gradient’s variance further. Results
showed that the suggested algorithm can increase the network
EE when more renewable energy was gathered.

The research in [127] reported an intelligent model selection
technique in D2D aided 5G HetNets to increase VR broadcast-
ing performance. Three transmission modes were used to serve
VR users: macro cell broadcasting, mmWave small cell unicas-
ting, and D2D multicasting. The authors employed RL to find
the best selection among the three transmission modes for each
user. To begin, the multi-agent learning theoretic framework
was used to represent this creative mode selection problem as
a general-sum stochastic game to maximize total throughput
for VR broadband service. Then, keeping the network scale in
mind, two RL policies, Nash-Q-learning and Wolf-PHC, were
presented. Simulation results demonstrated that the suggested
method outperforms the benchmarks in terms of convergence
and VR broadcasting throughput gain. Still, this approach does
only suit VR applications. A more generic approach should be
proposed.

The authors of [128] sought to maximize the overall network
EE where many FBSs are dispersed randomly and densely
in the MBS coverage. They began by creating an EE model
and formulating the optimization problem and suggested DQN
technique in DRL to solve it using power discretization.
Simulation results showed that the proposed Nature DQN out-
performed Q-learning and water-filling schemes in terms of EE
with accelerated convergence. The optimal UA-RA algorithm
for D2D pairs in UDNs was designed in [129]. To optimize
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the sum data rate, they collaboratively devised UA, subcarrier
assignment, and PA of D2D pairs located in the overlap-
ping area between adjacent cells. They proposed a DRL-based
approach for solving the joint optimization problem. Extensive
tests showed that the suggested method achieved near-optimal
performance and outperformed competing systems such as
random policy, only optimize power, and only optimize associ-
ation. To maximize joint bandwidth slicing ratios and BS-UA,
a two-step DRL-based technique was suggested in [130]. First,
a distributed agent was deployed at each BS for the slice
resource ratio in a single BS level. Meanwhile, to ensure
the service level agreement (SLA) of slices, a centralized
agent was in charge of RA and UA among heterogeneous
BSs. Simulation results of eMBB and URLCC slices hav-
ing different QoS requirements (e.g., minimum throughput,
maximum transmission error probability and maximum trans-
mission delay) showed that near-optimal performance in terms
of SLA satisfaction and spectrum multiplexing was achieved
using the suggested slicing method.

Summary: This section reviews applications of DRL for
the UA-RA-PA. The reviewed approaches are summarized
along with their references in Table IX and X while Table XI
and XI represents the mapping of DRL components to network
environment.

The many UA-RA-PA techniques based on CO, GAT, GRT,
and DRL have been shown to have good performance in simu-
lations. However, there have been concerns with the proposed
schemes’ complexity and control in several deployment trials.
To better illustrate all the studied schemes, we have compared

them using different metrics and in several tables, something
that has never been presented in previous relevant survey
publications. We have also enriched our survey by providing
Table XIII which includes a comparison between the RRM
schemes and IM schemes used at the Radio Frequency (RF)
transceivers.

VI. RRM FOR CROSS-CO-TIER INTERFERENCE

MITIGATION IN 5G HETNETS

In 5G HetNets, the overlaying small cells could cause
interference with the MBS or FBSs of other small cells located
nearby. There are two types of interference in a two-tier FBSs:
cross-tier interference and co-tier interference. The co-channel
interference between FBSs and MBSs is known as cross-tier
interference and appears when both FBSs and MBSs use the
same set of RBs. Co-tier interference refers to the co-channel
interference between different FBSs. This occurs when FBSs
are densely deployed, causing coverage overlaps. In such a
situation, some closely-located FBSs may use the same set of
RBs, resulting in UL and DL interference [21].

To increase QoS and inter-user RA fairness, the authors
of this work designed a new RA algorithm for IM based on
graph coloring techniques [131]. The proposed Weighted Edge
Weighted Vertex Interference Mitigation (WEWVIM) algo-
rithm assigns a weight to each directed edge corresponding
to the interference strength from nearby BSs and a weight to
each vertex, indicating the color with the least interference
or the highest transmission rate. To find the interfering BSs,
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TABLE XIII
COMPARISON BETWEEN RRM SCHEMES AND IM SCHEMES AT RF TRANSCEIVERS

a region of interest was created. According to simulation
data, WEWVIM outperforms existing systems in terms of
fairness and QoS, including throughput, PLR, latency, and
jitter. The authors of [132] investigated the interference for
D2D applications in 5G mobile networks. Different meth-
ods were introduced in the paper to reduce the effects of
various interference types (i.e., cross-tier interference, co-
tier interference) such as the New Hybrid Frequency Reuse
(NHFR) with Almost Blank Sub-frame (ABS) method, the
closed mode D2D method and the combined method which is
a hybrid of the previous two methods. System performance for
all three methods considered was assessed based on a SINR-
based expression. A detailed comparison between the three
considered methods is performed in Table XIV.

A novel IM technique called Reverse Frequency Allocation
(RFA) was proposed in [133]. RFA achieves intercell orthog-
onality by partitioning the cell into spatial regions and allo-
cating frequency resources optimally. By removing cross-tier
interference from MBS, RFA improves the data DL speeds of
the femto users. To further limit the impact of interference
to nearby cells, the scientists extended RFA to a multi-
cellular network. They also created a hybrid RFA scheme that
combines the advantages of other RFA systems in terms of
broad bandwidth and low interference to obtain better data
rates. Simulation studies showed how the hybrid RFA scheme

outperform the traditional RFA schemes in terms of user fair-
ness and increased overall network capacity. However, when
designing this scheme improving the hand-off process when
users travel from one location to another and introducing sec-
tors inside the cell to reduce the density of interferences were
not taken into account. To address the multi-tier interference
issue, the authors of [134] suggested a prioritized radio-access
system based on a frequency hopping (FH) technique. The
radio-access priorities are endowed to users at different lev-
els using a new FH pattern (FH sequence set) with multi-level
Hamming correlations. In a multi-tier HetNets UL, a low peak-
to-average-power-ratio (PAPR) FH-based OFDM system using
the proposed FH sequence set was considered. The numerical
and simulation findings showed that the proposed FH sequence
set may decrease multi-tier interference in HetNet ULs while
still supporting high transmission quality and SE for multi-tier
UEs, even at the cell-edge of HetNets. The proposed approach
investigated FH with two-level access priorities applied to
HetNet ULs, but a general case of flexible multi-level was not
examined. To alleviate the impact of both cross-tier and co-tier
interference, the authors of [135] developed an Edge-Aware
RRH-Cooperation (EARC) method for Cell Edge Devices
(CED) and Non-cell Edge Devices (NED). These two device
classes, CEDs and NEDs, are operated in dual-association and
single-association modes, respectively. On one hand, NEDs



AGARWAL et al.: COMPREHENSIVE SURVEY ON RADIO RESOURCE MANAGEMENT IN 5G HetNets 2521

TABLE XIV
COMPARISON BETWEEN THREE DIFFERENT METHODS PROPOSED IN [132]

associate with the Remote Radio Head that gives the best-
received signal in single association mode. On the other hand,
in a dual association mode, CEDs associate with the two
strongest RRHs, which may or may not be from the same
tier. The researchers quantify the performance improvements
of the proposed EARC method in terms of outage probability
and ergodic rate using stochastic geometry tools. The proposed
method was compared to four other schemes developed in the
literature to demonstrate its efficacy.

In [136], a Modified Region Splitting based Resource
Partitioning (MRRP) method was presented to reduce cross-
tier interference in two-tier HetNets. This scheme divides
the entire macrocell coverage area into three regions: inner,
middle, and outside. The complete accessible spectrum was
divided into four sub-bands. Both the inner and outer areas
share the first three sub-bands. The fourth sub-band was
further subdivided into three sub-bands, each used by the cen-
tre region. In the MRRP scheme, the unused sub-bands of
each macrocell were assigned to femtocells in one of three
ways: static, order, or random. The effects of these methods
on femtocell overall throughput, average per-user through-
put, and total system throughput were studied. Furthermore,
Monte Carlo simulations were used to optimize the sug-
gested MRRP system. Finally, the proposed scheme may
be extended to (1) investigate the frequency reuse planning
technique used to the femtocell to improve the cell’s total
throughput, (2) The cellular environment’s irregular geom-
etry. For downlink NOMA HetNets, [137] investigated a
cross-tier IM framework based on interference alignment and
coordinated beamforming (IA-CB). The suggested technique,
dubbed cross-tier IA-CB (CrIA-CB), minimizes cross-tier
interference between the macro cell and other small cells in
HetNets. The proposed CrIA-CB makes use of the massive
MIMO technology’s degrees of freedom to construct trans-
mit and receive beamforming vectors that eliminate cross-tier
interference at the user side while lowering the need for shar-
ing CSI between small cells and macrocells. Simulation data
shows how the proposed technique outperforms other cur-
rent strategies in terms of system aggregate rate. To minimize

interference in femtocell networks, an increased fractional
frequency reuse technique was proposed in [138]. The tech-
nique involves segmenting the service area and frequency into
three regions and three sets, each with its own frequency
set. After the femtocell location is determined, a frequency
is assigned according to its region. The proposed method
reduces interference, increases SINR, and improves through-
put. However, the proposed scheme was only tested with a
small number of users, and no localization procedures were
utilized to test system performance when localization problems
occur.

The authors of [139] proposed a joint strategy for hybrid-
access small cells that combined the Walsh–Hadamard trans-
form with NOMA and interference rejection combining con-
cept to achieve high-performance gains and mitigate inter-cell
interference. The Walsh–Hadamard transform was used as
an orthogonal variable spreading factor to achieve variety
in communication networks. It ensures superior performance
increases than traditional NOMA when used in conjunction
with it. In addition, it lowers the bit error rate and improves
the system’s throughput performance. At the receiver end,
interference rejection combining was employed to manage
cross-tier interference created by MUEs that could not con-
nect to the SBS for hybrid access. The research looks at both
ideal and non-ideal NOMA consecutive interference cancella-
tion circumstances. However, several aspects could be further
considered: (1) include interference cancellation techniques
such as iterative successive interference cancellation and par-
allel interference cancellation, (2) consider scalability in a
multiuser context, and (3) use various transmit and receive
diversity strategies, such as MIMO NOMA. The authors
of [140] presented three innovative hybrid RFA versions to
limit the impact of interference while balancing network load
in non-uniform HetNets. They employ load balancing and
IM, which are critical for improving network performance,
while also maximize network resources in a multi-tier
network. Simulation results showed how the hybrid RFA solu-
tions outperformed conventional frequency allocation in non-
uniform HetNets, in terms of several performance indicators,
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including network coverage, coverage per tier, and rate
coverage.

Summary: This section reviews RRM schemes for cross-
co-tier IM in 5G HetNets. The reviewed approaches are
summarized along with the references in Table XV. We
observe that the problems are mostly modelled to solve cross-
tier interference. Moreover, most of the approaches considered
have a high communication and computational complexity.
Additionally, none of the approaches proposed present results
in terms of user QoE.

VII. COMBINED APPROACHES FOR RRM IN 5G HETNETS

Combined solutions in this survey paper refer to approaches
or algorithms that jointly address IM and a subset or all of UA-
RA-PA challenges in 5G HetNets. This section complements
the discussions in previous sections.

The authors of [141] developed a unique real-time dynamic
UA method for multi-tier cooperative systems called Real-
Time Load Balance (RTLB). RTLB focused on UE mobility
and traffic dynamics while considering both overall network
load and received SINR. Even though the proposed UA algo-
rithm does not rely on an IM algorithm to improve its
performance, the authors designed a location-based IM algo-
rithm, the Modified Dummy Interesting Circle, to mitigate
cross-co-tier interferences in the worst-case scenario of spec-
trum sharing among various tier BSs in order to overcome
some of the shortcomings of spectrum partitioning algorithms.
The proposed approaches were compared to state-of-the-art
algorithms such as cell range extension, Rate Biased, Greedy,
Best Response Algorithm and Max SINR [65]. In [142], a
novel IM and PA technique for DL NOMA using MIMO tech-
nology in HetNets was proposed. The PA-based interference
alignment and coordinated beamforming (PA-IA-CB), the two-
stage technique proposed by the authors. The first stage used
two IA-CB steps: one for cancelling inter-cluster and co-tier
interference among small cells and the other for the inter-
cluster interference inside macrocells. Cross-tier interference
was addressed in the second stage by adequately managing
the allocated power to the MBS and SBSs. Finally, the PA
problem was modelled as a non-cooperative game between
MBS and SBS to improve the total system rate. Simulations
results showed that the new PA-IA-CB approach outper-
formed traditional MIMO-OMA and MIMO-NOMA based

HetNets in terms of outage probability and system overall
rate. Additionally, as small cells and macrocells share CSI,
PA-IA-CB has an important advantage of lowering signalling
overhead.

In [143], a new Q-Learning adaptive RA strategy for small
cell-based ultra-dense HetNets was presented and assessed.
This Q-Learning technique provided optimal power to the
SBS for MUEs and SUEs to support QoS provisioning at
the necessary level. When compared to previous studies, this
Q-Learning scheme demonstrated a significant improvement
of the capabilities of MUEs and SUEs in high interference
scenarios. Furthermore, when state-of-the-art methods failed
to maintain the MUE’s minimum necessary capacity due
to significant co-tier and cross-tier interference, the sug-
gested technique provided a minimum MUE capacity of 2
b/s/Hz, which is double the minimum required QoS thresh-
old. In [144], the authors looked into energy-efficient UA and
IM in 5G HetNets. They considered SINR, power usage, and
user distance at the same time for UA and proposed a new
algorithm which associated UEs with BSs based on their cost
values. The algorithm improved EE and IM while eliminat-
ing repetitive switching between users and SBSs. According
to the simulation results, the proposed method can improve
network performance in HetNets. However, the solution only
maximizes EE in DL, not in UL.

A group of researchers in [145] focused on UL coverage
in multi-tier HetNets in the presence of inter-cell interference
and jammer interference (as shown in Fig. 21). MBSs, SBSs,
users, and wideband jammers were uniformly deployed uti-
lizing independent homogeneous Different network factors
such as wideband jammer transmit power, wideband jam-
mer density, SIR threshold, and wideband jammer distribution
area, with and without RFA, were evaluated. Due to supe-
rior inter-cell interference and jammer interference avoidance,
RFA leads to higher UL coverage when compared to a no-
reverse frequency allocation scenario. Furthermore, due to
superior IM, RFA employment resulted in a 5% increase in
UL coverage compared to soft frequency reuse. On the other
hand, wideband jammers have a consistent transmit power.
Therefore, wideband jammers with variable transmit strengths
should be utilized to minimize coverage probability.

In [146], the authors described an improved ML strategy
for energy-efficient RA in a 5G heterogeneous cloud radio
access network. MBSs and Remote Radio Heads were used
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Fig. 21. A two-tier HetNet with wideband jammers and reverse frequency
allocation. The MBS, SBSs, users, and wideband jammers follow independent
homogeneous Poisson point processes [145].

in the network model, which served two groups of users,
one with high QoS requirements and the other with low QoS
requirements. The Q-learning methodology used low-power
Remote Radio Heads for IM between the macro and remote
radio head tiers while supporting cellular users’ QoS needs
and maximizing EE. This centralized online learning approach
achieved significant performance benefits in EE, SE, and data
rates. However, the drawback of this approach is that if the
central controller goes down, the entire network goes down
and stops working. The creators of [147] have expanded on
their previous work in [146] by incorporating decentralized
RA into the network. Because they know all channel state
information and path losses from the users and remote radio
heads operating under their coverage, MBSs allocate resources
to remote radio heads and cellular users in decentralized RA.
The learning is dispersed among all MBS, with each learning
a common approach Π for allocating RBs and power levels
to users in order to maximize system EE, while still main-
taining QoS requirements. Numerical and practical findings
showed very good results in terms of system’s EE and SE,
higher data rates and reduced Bit Error Rates. RA and IM
were examined for HetNets in which the lowest tier com-
prises of (D2D) cells in [148]. They first explore DL/UL
decoupling UA and estimate its capability on IM and network-
wide D2D performance increase to address the dead-zone
problem. Second, they present a UL fractional frequency reuse
strategy in which subband (SB) bandwidths are adaptively
selected depending on the following factors: 1) UE density,
2) MBS density, and 3) small cell on/off switching frequency.
According to the findings, the adaptive strategy dramatically
minimizes the number of people affected by outages. Third,
a novel concatenated bi-partite matching (CBM) method was
presented for combined SB and RA of cellular UEs. Numerical
findings reveal that the CBM performs similarly to a complete
solution while taking significantly less time to operate. The
CBM is then enhanced for D2D cells to include centralized

mode selection, SB allocation, and RA. Alternatively, a D2D-
cell can reuse white-list RBs that are not filled by the nearby
small cells in an offline and online semi-distributed way. As
a result, D2D-cell members are unaware of intra-cell and
inter-cell interference in the former and uniformly distribute
their maximum allowable power to v in the latter. Finally,
they used the proximity advantage of D2D UEs to convert
D2D sum-rate maximization into a convex form in the latter.
Following a cross-layer design and based on GAT, the authors
of [149] investigated energy-efficient RA and IM for DL com-
munication in HetNets. First, they designed a hybrid physical
and MAC layer optimization strategy using a pricing mecha-
nism based on GAT to maximize network efficiency. Then the
researchers considered a two-stage Stackelberg game, in which
the macrocell chooses the transmission policy in the MAC
layer first, and then the small cells perform energy-efficient
PA in the physical layer. Simulation test results showed that
the suggested approach was more effective than alternative
solutions such as channel-aware Aloha and classic Aloha.

An interference graph-based dynamics small cells cluster-
ing strategy to reduce interference among small cells was
proposed in [150]. The strategy relies on clustering the small
cells into various clusters based on the intensity of their
interference. The authors formulated the problem of design-
ing precoding weights at MBS and clustered small cells to
maximize the downlink sum-rate of small-cell UEs while keep-
ing per-SBS power constraints in mind. Precoding weights
at MBS are intended to eliminate multi-MUEs and inter-tier
interference, and precoding weights at clustered small cells
are intended to cancel intra-cluster interference while mitigat-
ing intercluster interference. To obtain a suboptimal solution, a
non-cooperative game-based distributed method was proposed.
According to simulation results, the proposed approaches
effectively increase the downlink sum-rate of small-cell UEs
in comparison to conventional zero forcing pre-coding. The
authors of [151] used a Markov approximation and game-
theoretic approach to address the problem of traffic offload
from MBSs to SBSs. The maximization of sum rate with
price has constructed three joint sub-problems for UA, RA,
and IM. First, they created a problem-specific Markov chain
with adequate transition probabilities that ensure convergence
to a close-to-optimal solution in most cases. They developed
a Markov chain guided algorithm (MIDA) that allows the
network to self-organize to offload traffic from MBSs to SBSs
after reducing the assumptions provided in the Markov approx-
imation framework. Furthermore, they turned the problem into
a non-cooperative game and devised a payoff-based log-linear
learning technique (POLA) to solve it. After examining the
designs of the MIDA and the POLA, they discovered that
randomness could improve the mixing characteristics of the
underlying Markov chain, leading to the development of a
highly randomized self-organizing algorithm (ROSA) that can
converge to a pure-strategy mixed strategy. The MIDA and the
POLA converge probability. According to simulation results,
the ROSA converges in real-time, and traffic is offloaded
from MBSs to SBSs. The findings of simulations also show
that more randomized algorithms outperform deterministic
algorithms.
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Joint UA and inter-cell IM in HetNets in the presence
of an accurate global CSI were investigated in [152]. The
performance improvement problem was approached using a
contract theoretic perspective model. The suggested model
viewed the network as a labour market, with MBSs acting as
employers providing UEs with contracts. A scenario was con-
sidered in which wireless channels were classified into distinct
categories based on their link gains and power consumption
costs. The MBSs build the optimal contract given by a set of
contract items in the presence of asymmetric knowledge and
passes them to the users, who subsequently select the best
contract items based on their channel types. The suggested
contracts with complete and asymmetric information were
compared to the performance of three previously proposed RA
approaches in a Rayleigh fading environment: joint UA-RA,
overlapping coalition-based (which uses exact CSI estima-
tion), and contract-based interference coordination (which is
based on statistical CSI). The suggested contract-based meth-
ods outperforms the existing solutions in terms of average
service rate, SINR for UEs and total service rate. A recent
paper [153] proposes a combined frequency allocation and
power control optimization approach to increase user com-
munication quality. First, a multiple area frequency allocation
technique was proposed for non-uniform user distribution to
reduce user interference and allot spectrum resources evenly
to dense users. The problem was modelled as a maximum
sum-rate sub-region partition issue that can disperse densely
distributed consumers to separate sub-bands for transmission.
Secondly, a convergent power control method was proposed
to increase each user’s transmission performance. Simulation
results showed how the proposed combined scheme achieves
higher system throughput and better user performance than
existing frequency allocation or power control schemes such
as region frequency allocation and universal frequency reuse.
However, the proposed research does not consider bandwidth
allocation problem and does not examine multi-cell scenarios.
The authors of [154] proposed a viable technique to maximize
UA and coordinate inter-cell interference among several cells
in HetNets based on a potential game configuration. The
proposed algorithm can deliver optimal individual offsets and
power savings over frequency and temporal resources for
each cell to enhance network utility. The suggested algorithm
surpassed the frequency reuse-1 technique, achieving a 50%
increase in cell-edge throughput and significant improvements
in average throughput and energy efficiency. Furthermore,
according to simulations, the approach converged to a Nash
equilibrium point and only required a modest number of iter-
ations. However, the proposed solution ignored UEs’ traffic
profiles and did not assess QoS and QoE.

In [155], an effective interference mitigation strategy was
presented to support high throughput, as required in 5G and
future HetNets. This paper describes novel coordinate multi-
point-based transmission and reception algorithms for effective
RA and IM in HetNets. Simulation-based results showed that
the SE and cell throughput of a coordinate multi-point based
network rise as the number of UEs increases because inter-cell
interference is significantly decreased compared to a non-
coordinate multi-point network. The authors of the research

Fig. 22. Infrastructure of HetNets [156].

reported in [156] proposed a distributed multi-agent learning-
based spectrum allocation strategy in which D2D users learn
about the wireless environment and autonomously select spec-
trum resources to maximize their throughput and SE while
causing minimal disturbance to cellular users. To validate
the performance of the proposed approach, the researchers
used distributed learning in a stochastic geometry-based real-
istic multi-tier HetNet (as shown in Fig. 22). Compared to
distance-based resource criterion, joint-RA, and link adapta-
tion schemes, the proposed scheme allowed D2D users to
achieve higher throughput and SE, higher SINR and lower
outage ratio for cellular users, and better computational time
efficiency. It also performed well in dense multi-tier HetNets
without affecting network coverage. To reduce the impact of
interference, the developers of [157] looked at a frequency
allocation technique that allocates complementary sub-bands
to different portions of a macrocell. The effectiveness of
several reverse frequency allocation (RFA) techniques has
been evaluated. Simultaneously, they designed a hybrid M-
4-RFA scheme that combines the best features of several
RFA schemes. As a result, coverage and throughput have sig-
nificantly improved. Two strategies are employed to create
approximate closed-form formulas for coverage probability
and rate coverage. The network’s performance is evaluated
using several parameters, indicating that the suggested M-
4-RFA scheme delivers considerable performance benefits
despite being slightly more complex than the baseline 2-RFA
and single frequency reuse methods. The authors of [158]
discussed a practical approach for handling the problems
of admission control, cell association, PA, and throughput
maximization in MBS alone coupled and decoupled HetNet.
An outer approximation approach was used to find a near-
optimal solution to the formulated MINLP problem. In terms
of users associated, minimizing interference, addressing traf-
fic imbalances, and sum-rate maximization, simulation results
reveal that the proposed unique decoupled cell association
method outperforms the standard coupled cell association
scheme.

Summary: This section reviews combined approaches for
RRM schemes in 5G HetNets which are summarized in
Table XVI. We observe that the problems are mostly modelled
to solve UA or RA along with cross-co-tier interference and
do not focus on addressing user QoE or fairness.
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TABLE XVI
QUALITATIVE COMPARISON OF COMBINED APPROACHES ALGORITHMS FOR 5G HETNETS

VIII. SIMULATORS AND HARDWARE FOR 5G HETNETS

The expansion of 5G HetNets research necessitates efficient
algorithm implementation and analysis. Because of UE mobil-
ity, variable channel conditions, dynamic traffic needs, and
frequent network disconnections, 5G HetNets implementation
and analysis are difficult. There are a number of open-
source and proprietary simulators available to examine the
performance of 5G HetNets. The majority of them include
a user-friendly interface and a lot of features. NS2 [159],
NS3 [160], OPNET [161], and OMNET++ [162] are some
of the open-source simulators. In 2011, NS2 ceased develop-
ment and maintenance (the most recent version NS-2.35 was
released on November 4, 2011). As a result, NS3 has become
widely used. OPNET and OMNET++ are also very popular
and both include device and protocol models. NETsim is a pro-
prietary simulator with a lot of features and an appealing and
user-friendly interface. Given the large user base, open-source
simulators (i.e., OMNET++, NS3) provide several extensions
to meet the needs and requirements of the research commu-
nity. Note that NS3 has a faster development rate than the
other alternative simulators.

Software Defined Radios (SDR) and Software Defined
Networking (SDN) are at the heart of the hardware utilized in
5G HetNets. SDRs, such as Universal Serial Radio Peripheral
(USRP), provide flexibility at the baseband level. The con-
trol and processing software, which runs on either the Field
Programmable Gate Arrays (FPGAs) or the host computer,
enables the testbed’s physical infrastructure to be reconfigured.

IX. LESSONS LEARNED

A. Avenues and Approaches

Various solutions that address RRM concerns in terms of
UA, RA, PA, and IM were discussed in this survey. These
solutions have mostly employed CO, DRL, GAT, and GRT-
based methodologies in order to fulfill RRM requirements of
the emerging 5G HetNets. The comparative ratios of the differ-
ent methodologies employed by the related works studies are

Fig. 23. Ratios of related works focusing on different approaches.

Fig. 24. Ratios of related works focusing on different metrics.

shown in Fig. 23. Most of the schemes are based on CO, and
only a few deployed GRT. Fig. 24, on the other hand, depicts
the ratios of various metrics used by the surveyed approaches.
The majority of them present findings in terms of throughput,
whereas just a handful presented the performance in terms of
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QoE. Other very popular metrics employed include EE, SE,
and fairness.

B. Risks and Pitfalls

When designing RRM for UA-RA-PA, there is a risk that
the proposed scheme has a high implementation complexity or
requires a large amount of network information to be harvested
to achieve an optimal solution. Other risks include address-
ing potential sub-problems sequentially and not in parallel,
resulting in high latency. Finally, the amount of data stored
and exchanged by different solution components can easily
increase to such a level that the solution itself affects the
performance of the system it is meant to support.

On the other hand, in designing RRM for IM, apart from the
risks already mentioned, there is also a risk that the proposed
scheme does not consider a planned network which presents a
high chance for inter-cell interference, as the users commonly
install the nodes. For the combined approaches, along with the
general aspects previously discussed, there is a high risk of the
slow convergence time of the proposed scheme as the majority
of the proposed solutions are offline based, which does not
help, especially in the context of self-organizing networks.

X. FUTURE CHALLENGES AND OPPORTUNITIES

This section discusses existing challenges, open issues, and
new research directions relevant to this survey.

A. Challenges

QoS Prediction in Highly Mobile Environments: In regu-
lated settings, the 5G New Radio QoS framework, together
with capabilities like URLLC, is successful in offering a min-
imum guaranteed performance. Highly mobile UEs, on the
other hand, frequently face time-varying network performance,
partly because actual QoS frequently surpasses the minimal
or guaranteed level, and partly because the system is occa-
sionally unable to meet QoS requirements. Surprisingly, in
many circumstances, such as specific vehicle driving assistance
systems or telematics applications, performance fluctuations
are not a concern if they can be forecast ahead of time. For
instance, the automotive sector is very interested in having
real-time QoS predictions. It would allow service providers,
mobile network users, and automotive apps to dynamically
adapt their behaviours to the current or imminent QoS level.

Massive Number of Connected Devices: Existing 4G
networks have been widely employed in IoT applications, and
they are constantly evolving to meet the needs of future IoT
applications. The 5G networks are predicted to significantly
expand today’s IoT support, boosting cellular operations, IoT
security, and network difficulties, as well as moving the
Internet’s future to the edge. However, existing IoT solutions
are up against several obstacles, including node connections,
security, and new standards. In addition, massive connection
networks are required for IoT mMTC applications in smart
cities, healthcare systems, and other areas, creating significant
heterogeneity of IoT and many implementation issues.

Mobility Management for RRM in 5G HetNets: HetNets,
created by combining macrocells and a large number of

densely deployed small cells, are an essential solution for
meeting the increasing network capacity demands and provid-
ing high coverage to wireless users in 5G networks. Mobility
management in 5G architecture faces many challenges due to
the increasing complexity of network topology in 5G HetNets
with the integration of many different base station types.
Intense deployment of small cells, while providing many ben-
efits, introduces significant mobility management issues such
as frequent handover (HO), HO failure, HO delays, ping-pong
HO, and high energy consumption, resulting in a poor user
experience and heavy signal loads [163].

1) Use of mm-Wave Bands: With the increased demand for
mobile traffic, mmWave offers a significant opportunity
to resolve the conflict between capacity requirements
and spectrum scarcity. mmWave does, however, come
with a number of disadvantages, for example, precipi-
tation can cause radio waves to be absorbed, scattered,
and diffracted, increasing transmission losses and signal
levels. This may have a significant impact on mmWave
signal propagation and result in considerable signal
attenuation along the propagation path [164], [165],
[166], [167].

2) Load Balancing: Because of the random positioning
of cells and the mobility of the UEs in highly dense
HetNets, there is a load imbalance between the cells.
Load imbalance within the network accelerates HOF and
reduces network performance efficiency [168], [169],
[170], [171].

3) HO Problems: The extensive deployment of small cells
in the network also brings new challenges that negatively
impact QoS, such as interference, frequent and unnec-
essary HO, HO Failure, and Ping Pong HO. As a result,
the signalling load increases, causing the network’s
resources to be used inefficiently and consumes energy
for a faulty procedure [172], [173], [174], [175].

4) Security: Malevolent users use mutual authentication
between UEs and BS to protect themselves from network
effects such as Man-in-the-Middle attacks, Denial
of Service attacks, impersonation attacks, and repeat
attacks. Secure transport authentication is required
to protect against these attacks and to provide reli-
able communication when moving between networks
[41], [176], [177].

B. Open Issues

5G and AR/VR: Raising the Bar for Immersive Experience:
Not only is the new 5G cellular standard changing mobile
Internet use with tablets, smartphones, and other mobile
devices, but it is also setting new standards in VR/AR. This is
as with these technologies, it is critical to have a large amount
of data available in a short period. 5G provides the ideal foun-
dation for this because of its reduced latency. Data can be
delivered swiftly and in real-time because the time difference
is only a few milliseconds. Information can be sent in millisec-
onds using the 5G mobile communications standard; therefore,
the two technologies are becoming more widely used in the
workplace. In addition, the low latency of 5G enables a set
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of novel innovative AR and VR avenues, making many tasks
more efficient and straightforward. Application scenarios for
AR/VR include:

1) VR/AR in Medicine: The 5G mobile radio standard
expands medical options, including surgical interven-
tions for instance. Difficult operations can be trained for
easily by using VR/AR. Haptic-visual learning is possi-
ble with VR glasses. Surgeons see, feel, and practice on
the patient’s digital twin - as many times as they need
to, without putting the patient at risk.

2) VR/AR in Architecture and Constructions: Construction
machines may be controlled remotely using the latest 5G
cellular standards. The devices can be managed remotely
from thousands of kilometres away and the network
needs to support high quality real-time video streaming
at all times.

3) AR for Device Maintenance: If an issue arises during
repairs, a technician can use a voice command to contact
a colleague for assistance. Through the camera embed-
ded in data glasses, the colleague called in sees the same
thing as the technician on the job. The answer can then
be worked out together. Device maintenance as a ser-
vice is made more accessible and more efficient using
5G-enabled AR/VR.

Distributed DRL Framework in Wireless Networks: The
DRL framework requires considerable training for DNNs. This
might be accomplished at a centralized network controller with
adequate computational power and data collection capabilities.
However, designing a distributed implementation for the DRL
framework that decomposes resource-demanding basic func-
tionalities, such as information collection, sharing, and DNN
training, from RL algorithms at individual devices becomes
a meaningful task for massive end-users with limited capa-
bilities. The network controller can be used to integrate the
fundamental functions. The network infrastructure architecture
that supports these common functionalities for distributed DRL
is still a work in progress.

Network Architecture for Time-Critical Communications:
Time-critical communications is a new 5G concept for sup-
porting services with low latency needs, such as XR (a term
that encompasses immersive technologies such as VR, MR,
AR). The goal is to ensure data transmission within speci-
fied latency boundaries (X ms) while maintaining the desired
level of reliability (Y percent). X can range from tens of mil-
liseconds to one millisecond delay, and Y can range from 99
percent to 99.999 percent reliability, depending on the user’s
needs. The end-to-end dependability and latency are aided by
the 5G RAN, 5G Core (5GC), and transport network, as well
as the device.

RRM with IM Techniques Used at the Radio Frequency
Transceivers: Self-interference cancellation debunks the long-
held concept in wireless network architecture that radios can
only communicate in half-duplex mode on the same channel.
Self-interference cancellation simplifies things immensely, in
addition to providing real in-band full-duplex, which practi-
cally doubles SE. Self-interference cancellation [179] has the
potential to complement and sustain the evolution of 5G tech-
nologies toward denser HetNets, and it can be used in wireless

communication systems in a variety of ways, such as increased
link capacity, spectrum virtualization, any-division duplex-
ing (ADD), novel relay solutions, and improved interference
coordination. Self-interference cancellation simplifies the RF
front-end for applications like carrier aggregation and allows
for smaller, lighter, and more efficient filters in radios. Because
cancellation is frequency agnostic, a single cancellation cir-
cuit can be dynamically tweaked to isolate different ranges
of frequencies, effectively serving as a software-configured
duplexer, software-defined radio’s “Holy Grail.” Not only
would such a solution allow handset manufacturers to save
money by replacing multiple chipsets with a single integrated
solution, but it would also enable global roaming and allow
consumers to switch network operators more easily, potentially
leading to improved service quality as a result of increased
competition between service providers [178].

C. Future Research Directions

Some very interesting potential avenues for future research
are discussed next.

Open-RAN: Virtualized and disaggregated RANs are pro-
moted by Open-RAN, in which disaggregated components
are connected via open interfaces and optimized by intelli-
gent controllers (as demonstrated in Fig. 25). Subsequently,
a new RAN design, deployment, and operating paradigm has
emerged. Using a centralized abstraction layer and data-driven
closed-loop control, Open-RAN networks can be constructed
by multiple vendors, using interoperable components that
can be programmatically optimized. Therefore, knowing O-
RAN, its architecture, interfaces, and workflows is critical for
wireless researchers and practitioners.

The Distributed Unit and Centralized Unit concepts were
introduced by the 3GPP as part of the evolution path towards
disaggregated RAN. The introduction of mid-haul allows for
more transport possibilities. The Open-RAN Alliance [180]
defines the RAN Intelligent Controller (RIC) as a logi-
cal function in the RAN that controls and delivers intelli-
gence to optimize radio RA, implement handovers, manage
interference, and balance load between cells. RIC consists
of a non-real-time (RT) controller for tasks that require >
1 second of latency and a near-real-time (RT) controller for
tasks that require 1 second of latency. The management and
automation capabilities of a network are under the watch-
ful eye of closed-loop automation. Closed-loop automation
monitors and analyzes network occurrences like failures and
congestion using data and analytics, and then takes appropri-
ate action to resolve any issues. The phrase “loop” refers to
the feedback loop of communication between the network’s
performance being tracked, identified, adjusted, and optimized
to allow for self-optimization. In essence, it is the answer that
opens the door for self-driving networks. Mobile operators can
use RIC (near-RT and non-RT) to install and manage their
Open-RAN with: 1) interoperability and vendor variety, 2)
predictive and intelligence resource management, and 3) sub-
scriber QoS. The Open-RAN Alliance has proposed a logical
function called Near RT RIC to help intelligently control and
organize the RAN. Handover management, real-time traffic
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Fig. 25. Architecture for RT-RIC and Non-RT RIC with different loops.

and radio conditions monitoring, RAN slicing, QoS control,
enhanced Radio Resource Administration, per UE controlled
load balancing, radio database management, and interference
detection and mitigation are some of the important functions of
near RT RIC. The management and automation capabilities of
a network are under the watchful eye of closed-loop automa-
tion. Closed-loop automation monitors and analyzes network
aspects like failures and congestion using data analytics, and
then takes appropriate action to resolve any issues. The phrase
“loop” refers to the feedback loop of communication between
the network’s performance being tracked, identified, adjusted,
and optimized to allow for self-optimization. In essence, it is
the answer that opens the door for self-driving networks.

Graphical Processing Units (GPU) are the default standard
for model training and inference in 5G and 6G systems where
big data meets wireless and AI/ML is employed to improve
network performance. Training, inference, and signal process-
ing can all be supported by a GPU-based hardware platform. It
isn’t only about GPU hardware, though. Software for program-
ming GPUs, as well as Software Defined Kits and libraries
for application development, are also important. CUDA, the
world’s only commercially viable C/C++–based parallel pro-
gramming framework, is used to program GPUs. One of the
services that the Service Management Orchestration/Non-RT
RIC uses to update and fine-tune inference models running
under the Near-RT RIC might be the data analytics pipeline.

5G Core Network: In order to support the innovative
5G technologies and accommodate emerging services in 5G
HetNets, the 3GPP has proposed the 5G Reference Point
System Architecture (RPSA) [181]. In RPSA, the 5G control
plane operations and common data repositories are offered by
a collection of interconnected NFs, each having permissions
to access one another’s services. In RPSA, the Policy Control
Function (PCF) plays a critical role, as through it operators
can manage the network behaviour. PCF provides transparency

and control over the utilisation of network resources, espe-
cially important during real-time service delivery. Although
PCF supports QoS control along with traffic steering/routing,
it lacks the dynamic network selection based on the status of
network resources or based on the level of the service to be
delivered. As a result, there is an evident need to enhance the
PCF functionality to focus on transmission performance, while
also supporting power efficiency.

DRL for Cryptocurrency Management in Wireless Networks:
Wireless networks have been associated with diverse pricing
and economic models [182], [183]. Wireless consumers, for
example, pay to access radio resources or mobile services.
Users can also receive money if they contribute to the networks
by acting as a relay or cache. Using real money and cash
in such circumstances, on the other hand, raises a slew of
accounting, security, and privacy concerns. The notion of cryp-
tocurrency based on blockchain technology has recently been
proposed and deployed in wireless networks, such as [184],
and has shown to be a secure and effective solution. However,
the value of cryptocurrencies, whether in a token or a coin,
can be highly volatile, depending on various market condi-
tions. The tokens can be kept or spent by wireless customers,
for example, for radio resource access and service usage, or
they can be exchanged for actual money. DRL can be used to
achieve the maximum long-term value of bitcoin management
for wireless users in a random cryptocurrency market setting,
as shown in [185].

Data-driven RRM in 6G: 6G will benefit from speedier and
real-time RRM solutions without explicit mathematical mod-
els, thanks to the use of ML techniques and enormous amounts
of data [186]. Indeed, data-driven RRM with artificial intelli-
gence (AI) has the potential to dynamically allocate resources
based on requirements. This will enable operators to make
real-time informed decisions on how to provide resources to
various users and services based on the knowledge extracted
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through big data algorithms. Finally, 6G performance metrics
such as latency, jitter, reliability, EE, SE, connectivity, mobil-
ity, and AI performance metrics such as prediction accuracy
and convergence should be studied combined.

D. Ongoing 5G Projects

Among many 5G network-related ongoing projects world-
wide, some interesting ones with large research potential are
presented next.

5G Brasil4: is an independent private project under the
umbrella of Telebrasil. 5G Brasil’s key objective is to facili-
tate the growth of the 5G ecosystem in Brazil by promoting
and establishing cooperation between the Information and
Communication Technology (ICT) sector and all areas of the
Brazilian government and regulatory agencies; seek financial
support for the promotion and usage of 5G technology; repre-
sent members’ common interests in national and international
5G forums.

5GMF5: The 5th Generation Mobile Promotion Forum
(5GMF) was set up to further advance 5G social adoption,
encourage local and industrial use, and identify new use cases
to solve social problems. It supports research and development
related to 5G and standardization, as well as collaboration with
related organizations, collection of information, organisation
of dissemination activities, etc.

5G Forum Korea6: was established by the Korean Ministry
of Research, ICT and Future Planning, and Mobile Industries
to help develop 5G networks and 5G services and contribute to
their globalization. These include social networking services,
3D mobile imaging, AI, high-speed services and ultra- and
high-definition resolution and holographic media technologies.

5G Americas7: is an industry trade association consisting
of leading distributors and suppliers of 5G telecommunica-
tions services. The organization’s mission is to support and
encourage the growth of LTE wireless technology and its evo-
lution beyond 5G across the networks, facilities, applications,
and wirelessly connected devices of the Americas’ ecosystem.

5G IA’s8: key objective is to encourage and support
European leadership in 5G, its growth, implementation, and
evolution and to ensure a strong European 5G voice world-
wide. In strategic areas, 5G IA carries out a broad range of
activities, including standardization, R&D initiatives, technical
skills improvement activities, international cooperation, etc.

XI. CONCLUSION

The upcoming 5G networks will support various devices
and a wide range of innovative applications, adding other
aspects to the original requirements of increased data rates
and near-zero latency. Among others, 5G is also expected
to support Internet of Things (IoT) and Industrial Internet of
Things (IIoT), Internet of Vehicles (IoV), and smart electricity
grids. Radio resource allocations must be done efficiently and

4https://5gbrasil.telebrasil.org.br/
5https://5gmf.jp/en/
6http://www.5gforum.org/html/
7https://www.5gamericas.org/
8https://6g-ia.eu/

effectively to provide excellent support. This study surveyed a
wide range of radio resource management techniques based on
CO, DRL GAT, GRT in 5G HetNets, proposed between 2017-
2021. The survey started with an overview of 5G HetNets,
their importance in the context of COVID-19. Next, a thor-
ough discussion was carried out about the challenges that
persist in 5G HetNets, with focus on UA, RA, PA and IM.
A highly relevant taxonomy was then introduced useful for
interested researchers. According to this taxonomy, existing
RRM schemes were reviewed and classified. The discussion
used six classic metrics, namely coverage probability, fairness,
QoE, QoS, EE and SE. The paper was concluded with a dis-
cussion of current challenges, open issues and potential novel
research directions, as well as a sample of very important
worldwide 5G projects.
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