
2590 IEEE COMMUNICATIONS SURVEYS & TUTORIALS, VOL. 23, NO. 4, FOURTH QUARTER 2021

Survey on Placement Methods in the
Edge and Beyond

Balázs Sonkoly , János Czentye , Márk Szalay , Balázs Németh , and László Toka , Member, IEEE

Abstract—Edge computing is a (r)evolutionary extension of
traditional cloud computing. It expands central cloud infrastruc-
ture with execution environments close to the users in terms of
latency in order to enable a new generation of cloud applications.
This paradigm shift has opened the door for telecommunica-
tions operators, mobile and fixed network vendors: they have
joined the cloud ecosystem as essential stakeholders considerably
influencing the future success of the technology. A key problem
in edge computing is the optimal placement of computational
units (virtual machines, containers, tasks or functions) of novel
distributed applications. These components are deployed to a
geographically distributed virtualized infrastructure and hetero-
geneous networking technologies are invoked to connect them
while respecting quality requirements. The optimal hosting envi-
ronment should be selected based on multiple criteria by novel
scheduler algorithms which can cope with the new challenges of
distributed cloud architecture where networking aspects cannot
be ignored. The research community has dedicated significant
efforts to this topic during recent years and a vast number
of theoretical results have been published addressing different
variants of the related mathematical problems. However, a com-
prehensive survey focusing on the technical and analytical aspects
of the placement problem in various edge architectures is still
missing. This survey provides a comprehensive summary and a
structured taxonomy of the vast research on placement of compu-
tational entities in emerging edge infrastructures. Following the
given taxonomy, the research papers are analyzed and catego-
rized according to several dimensions, such as the capabilities of
the underlying platforms, the structure of the supported services,
the problem formulation, the applied mathematical methods, the
objectives and constraints incorporated in the optimization prob-
lems, and the complexity of the proposed methods. We summarize
the gained insights and important lessons learned, and finally, we
reveal some important research gaps in the current literature.

Index Terms—Edge/fog computing, MEC, cloudlets, resource
orchestration, function placement optimization, offloading.

I. INTRODUCTION

CLOUD computing has written a plenty of success sto-
ries for the last two decades. The amazing technological
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evolution together with the solid theoretical background estab-
lished by the research community enabled several new appli-
cations and services to run in extremely large scale on
top of different cloud platforms. Either public cloud plat-
forms, such as Amazon Web Services [1], Google Cloud
Platform [2], Microsoft Azure [3], or private ones based on
open-source technologies, such as OpenStack [4], Docker [5]
or Kubernetes [6], are capable of providing an “arbitrary”
amount of virtual resources on demand by using recent vir-
tualization techniques and resource management mechanisms.
Well designed data centers encompass all the necessary phys-
ical assets, including thousands of blade servers and network
devices, while the burden of operational tasks is delegated to
the cloud providers.

However, during the last decade, the centrally placed phys-
ical resources started to move closer to the users in order to
enable the operation of novel types of applications, such as
latency sensitive ones. This paradigm shift has opened the door
for telecommunications operators, mobile and fixed network
vendors: they have joined the ecosystem to be part of the
success story. Various concepts and paradigms appeared to
designate the proper way how to leverage computing resources
deployed in the vicinity of customers and end devices. Edge
computing, fog computing, Multi-Access (formerly called as
Mobile) Edge Computing, cloudlets are distinct concepts,
nevertheless they share several common objectives and fea-
tures [7]–[13]. Different technological and business use cases
are addressed by these concepts but the telecommunications
stakeholders are crucial players in all scenarios as standalone
entities or federated with cloud providers. This paper does
not attempt to excavate the precise distinction among these
approaches, rather we focus on a key aspect central to all
paradigms, i.e., placement methods.

We assume that the central cloud is extended with edge
resources providing execution environments close to the users
in terms of latency, e.g., in mobile base stations. By these
means, customers’ devices can offload computational tasks to
this environment instead of consuming their local resources.
Latency critical functions can also be offloaded from central
clouds to the edge, enabling, e.g., critical machine type com-
munication or real-time applications with strict delay bounds.
As a result, novel types of services and distributed applica-
tions can be realized on top of a novel platform which tightly
integrates network and cloud domains. Tactile Internet, remote
surgery, augmented/virtual/mixed reality (AR/VR/MR) appli-
cations, future manufacturing based on Industry 4.0 are just
highlighted examples which can reshape our digital society.
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In addition, the emerging cloud platforms and the exposed
capabilities have transformed the software running atop and
also changed the corresponding software development tech-
niques. Starting from monolithic applications running in ded-
icated virtual machines (VMs), microservices have emerged:
consisting of loosely coupled, inter-communicating software
modules running in separate containers or as distinct func-
tions managed by the underlying cloud system. At the end of
the day, developers and service providers can obviously ben-
efit from this shift, however, several new challenges arise on
the platform side.

A key problem, i.e., the optimal placement of computa-
tional units, stems from the geographically distributed nature
of the virtualized infrastructure. Computational units can be
VMs, software containers, tasks or functions as well, and
the optimal hosting environment for them should be selected
based on multiple criteria. The scheduler or the resource
orchestrator is in charge of making that decision. Traditional
cloud infrastructures are based on carefully designed data
centers where the resources (compute, storage, network) are
accommodated close to each other at central premises. The
customized network topology of data centers provides extreme
high bisection bandwidth. To put it simply, we have virtu-
ally zero delay and infinite throughput between the servers.
Therefore the scheduler algorithms widely used in data cen-
ters cannot be invoked for novel edge systems as they do
not take the wide-area network characteristics into consid-
eration. Hence, novel mechanisms are required to cope with
the new challenges of distributed cloud architectures where
delays cannot be ignored. Similar techniques can be invoked
by telecommunications operators to construct their own com-
pound network services on demand over distributed edge
environments.

The mathematical problem under the hood is generally
a multi-criteria decision problem, where the optimal place-
ment option must be selected for each computational unit.
Specifically, multiple virtual compute infrastructures with dif-
ferent capacities and characteristics are available for hosting
the computational units, and those entities should be able to
communicate with each other with predefined quality dictated
by the applications. The selection criteria include, but are not
limited to the operating cost of the VM, the available com-
puting and network capacity, hardware specific requirements
(e.g., GPU is needed by the VM), the network delay and the
available bandwidth between the VM and the end device, the
battery status of the end device, the latency and the avail-
able bandwidth between the VM and another already deployed
service component. Obviously, VMs, software containers or
functions have to be instantiated differently and the network
configuration also requires various methods, however, the for-
mal mathematical problem of placement is similar in all cases.
The careful placement of the computational building blocks
may result in significant benefits in terms of application QoS,
resource provisioning costs, or both.

Therefore, the research community has dedicated signif-
icant efforts to this topic during recent years and a large
number of theoretical results have been published address-
ing different aspects and variants of the related mathematical

problems. Various techniques of several scientific fields were
applied from mathematical programming across graph theory
to machine learning. In this paper, we provide a comprehen-
sive survey focusing on the placement problem in the edge,
which helps to categorize the proposed solutions and defines
an adequate taxonomy to get a better understanding on the
current status and on remaining research gaps.

A. Scope of This Survey

The scope of the survey involves all research results on the
optimal placement of any type of computational units over
multiple options of virtual compute infrastructure that differ in
the provided resources and/or in attributes that affect the QoS
of the deployed application. The emphasis is on the three terms
in italic: optimal placement over multiple options that affect
the QoS. Our focus is on the main technical and mathematical
aspects of placement of computational units. We consider this
architecture agnostic task as a core problem with significant
importance affecting both the user experience and the related
operation costs.

There are closely related and pertinent works that are worth
mentioning in order to clearly define what falls out of the scope
of our survey. Research results on deploying infrastructure
elements instead of placing services on existing infrastruc-
ture are considered off-topic. Therefore, papers proposing
analytical approaches for identifying the most attractive loca-
tions to install edge nodes [14], [15], fog nodes [16], [17]
or data centers [18] based on impacting factors and key
challenges to reduce the costs associated with their deploy-
ment and maintenance, or to support the requirements of
mobile and latency-sensitive applications are not in our focus.
Furthermore, papers that describe and solve cloud scheduling
problems within a single data center, e.g., [19], are also omit-
ted from this survey. Even if the scope of the research involves
multiple data centers or edge clouds, we do not cover those
papers that do not devise any optimization problem out of the
placement challenge over edge and/or cloud resources. Hence,
papers that focus on a framework description without in-depth
algorithmic analysis [20]–[23] are not included.

Research studies that propose placement solutions of com-
putational units whose effectiveness depend on the result
of another prior allocation scheme are also considered off-
topic. Hence, e.g., papers from the field of Coded Distributed
Computing (CDC) [23] are not included, since the compu-
tation function allocation is impracticable without the prior
placement of the files to be processed.

We have found related works that comply with the con-
dition of containing a formal optimization problem, tackling
it with an algorithmic approach, although they do not for-
mulate a placement decision involving more than one edge
node [24]–[28], or do not interpret the offloading problem in
its widely understood form [29]–[31]. We argue that offloading
problems that are defined as binary decisions [32]–[35], i.e., to
offload or not to offload, should not be compared to research
results that face a significantly larger decision space, therefore
we exclude those research efforts as well. These optimization
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Fig. 1. Illustration of the optimization problem considered in this survey,
and the problems considered in out-of-scope research areas.

problems and their comparison to our considered scope are
illustrated in Figure 1.

The decision of omitting these related papers serves the
goal of making this survey comprehensive in the selected
topic. First, by adding the excluded cloud scheduling and
binary offloading papers, a comprehensive survey would be
intractable due to the sheer amount of related papers. Second,
although those work that fall in the aforementioned domains
and contain algorithmic solutions might seem, at a first glance,
similar to the selected papers, their optimization goals and con-
straints are inherently and significantly different. Therefore,
the insightful comparison we provide in the next sections could
have been impossible for such research results. Third, although
we consider the practical implications and outcomes of aca-
demic research very important, we place the primary focus
on mathematical modeling and problem solving in this sur-
vey, rather than on architectural design and implementation
achievements.

B. Contribution

This survey provides a comprehensive summary on the
mathematical problem of placement of computational units in
emerging edge infrastructures operated by either mobile/fixed
network operators or cloud providers or a federation of them.
This article surveys the related literature over the period
2015-2020. The main contributions are the following.

• First, we define a hierarchical taxonomy suitable for
the classification, categorization and understanding of
placement methods proposed by researchers in the revo-
lutionary age of edge computing.

• Second, the surveyed papers are analyzed and catego-
rized according to the dimensions of our taxonomy. The

Fig. 2. Our proposed taxonomy.

main features, capabilities and limitations of different
approaches and mathematical tool sets are gathered and
summarized, which might be useful in product develop-
ment by mobile or fixed network vendors, operators or
cloud providers.

• Third, important research gaps and future research
directions are revealed. Those that formulate theoreti-
cal problems are relevant to academic researchers, others
raise practical issues for network vendors, operators and
cloud providers.

• Finally, the gained insights and important lessons learned
are summarized as a result of a thorough comparison and
investigation.

The structure of our proposed taxonomy is shown in
Figure 2. We have identified three top level dimensions
that determine the placement problem and the methods that
can be applied to solve the problem. Namely, i) the plat-
form capabilities including the cloud-edge architecture, the
placement controller policy and the placement request types
(offline vs. online processing), ii) the application character-
istics encompassing the types of supported applications, the
structure of the services (single vs. multiple components, iso-
lated vs. interconnected components), and the supported level
of security & privacy, and finally iii) the mathematical aspects
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covering the problem formulation, the applied optimization
methods, the objectives and constraints of the optimization
models and the complexity of the proposed solutions.

The outcomes of the analysis and the detailed insights can
be beneficial to researchers in multiple ways. First, the col-
lected and summarized mathematical tool set provides a good
starting point for related problems in other research fields. The
pros/cons of different approaches can be identified in advance
based on the lessons learned and suitable methods can be
selected from a restricted search space for further investiga-
tion. By these means, the design time of the algorithms for
emerging but related problems are shortened and the pointers
to the technical details of promising, exploitable solutions are
available. Second, this survey delivers a comprehensive cata-
log on the mathematical apparatus for the placement problem,
which can be beneficial for applied research and product devel-
opment. For example, this catalog can foster the design and
implementation of an orchestrator software of an arbitrary
edge cloud platform. For relevant solutions, the complexity
characteristics are also revealed which helps to assess the fea-
sibility of the approach in the targeted environment. Third, the
revealed research gaps outline promising future research direc-
tions which could trigger dedicated activities on challenging
topics.

C. Outline

The rest of the paper is organized as follows. In Section II,
the background is introduced via the state-of-the-art of edge
computing. In Section III, we provide a detailed description on
the taxonomy that we follow in the paper. Section IV presents
our analysis according to the first dimension of our taxonomy,
focusing on the characteristics of the cloud platform. Section V
is devoted to the second dimension addressing the application
related features and properties. The third dimension target-
ing the mathematical aspects is investigated in Section VI: in
Section VI-A, the papers are grouped according to the problem
formulation, while in Section VI-B we analyze the papers in
terms of the applied mathematical methods; in Section VI-C
and Section VI-D, we review the optimization goals and con-
straints used in the collected papers, respectively; Section VI-E
describes the complexity aspects of the proposed algorithms
in the reviewed papers. Section VII highlights the revealed
research gaps and potential future research directions, while
Section VIII provides a summary on the lessons learned and
concludes the paper.

II. STATE-OF-THE-ART OF EDGE COMPUTING

We devote this section to describing the background of the
domain that our survey covers. To this end, we briefly present
other surveys that have partly touched upon the topic in our
focus. Together with the descriptions, we make a clear sep-
aration from those works to clarify the exact scope of the
present survey. For easier tractability, we provide a summary
of acronyms used throughout the paper in Table I.

Traditional Mobile Cloud Computing (MCC) combines
cloud computing and mobile computing. As a result, the
computational capacity of the mobile devices is augmented

TABLE I
SUMMARY OF IMPORTANT ACRONYMS USED IN THIS PAPER

making use of different types of cloud resources. The original
MCC concept assumes distant data centers enriching available
mobile services, however, its generalized form encompasses



2594 IEEE COMMUNICATIONS SURVEYS & TUTORIALS, VOL. 23, NO. 4, FOURTH QUARTER 2021

TABLE II
CATEGORIES OF THE REFERRED SURVEY PAPERS IN TERMS OF THE COVERED COMPUTING PARADIGM

other types of cloud elements, such as proximate data centers
(e.g., cloudlets) and mobile computing entities with shared
resources. The surveys in [39], [40] summarize and catego-
rize the efforts of executing mobile applications external to the
mobile device in the concept of MCC. Although, the papers
focus on leveraging cloud resources for single computation
offloading, they also shed light on complex offloading decision
problems over heterogeneous resources including proximate
cloudlets and multi-tenant clouds.

Multi-Access Edge Computing (MEC), originally known
as Mobile Edge Computing, is an evolved version of MCC
and it is also a well-studied computing paradigm where the
focus is on providing computation capabilities within the radio
access network (RAN) in close proximity to mobile users.
In the literature, the borders are not sharp and sometimes
MEC features are also implied in the MCC concept. One of
the most recent and extensive study on leveraging distributed
resources at the mobile network edge is the work in [7]. The
survey covers a comparison of recently emerged computation
paradigms for delay sensitive and context-aware Internet-of-
Things (IoT) services, as well as a state-of-the-art research
related to “end-edge-cloud” orchestrated networks with spe-
cial attention to computation offloading, caching, security,
and privacy. Another recent study [36] provides a holistic
overview of the MEC technology and its potential use cases in
terms of integration with 5G enabler technologies. The authors
also discuss the applicability of many leading-edge technolo-
gies with MEC, such as wireless power transfer (WPT) and
energy harvesting (EH), Unmanned Aerial Vehicles (UAVs)
and machine learning (ML), in great details. Another review
on the exploitation of the MEC paradigm by the realization of
IoT applications is presented in [37], in which the emphasis
is placed on the technical aspects of MEC-IoT synergy and
on other integration technologies for 5G, mentioning service
deployment/resource allocation in coarse details. The survey
in [38] also presents a holistic overview on the MEC-IoT
interaction with increased focus on the performance of the
different edge network architectures and IoT reference applica-
tions in terms of latency, bandwidth and energy consumption,
along with the potential security challenges. Other compre-
hensive surveys summarizing and categorizing the efforts on
MEC from an overarching point of view are published in [8]
and [9], where the main focus is on the research issues related
to the joint radio and computation resource allocation, includ-
ing different computation offloading and mobility management
scenarios. Both papers discuss the advancements in the process
of MEC standardization, as well as defining and examining
reference applications and their major use cases.

Similarly to MEC, fog computing has also gained significant
attention over the recent years as an alternative approach to
the centralized cloud computing model, leveraging fog node

resources at the edge of the network along with the man-
agement of connected communication resources. The authors
in [10] compile a comprehensive survey of recent efforts about
fog-enabled architectures in the context of IoT applications,
including the major similarities and differences compared to
other computing paradigms. They provide a large-scale and
thorough overlook on the state-of-the-art publications, as well
as designating the open research challenges and future direc-
tions, partially reviewing placement-oriented articles. There
are other surveys [11]–[13] that also discuss the concept
of fog computing in the light of infrastructural, Quality of
Service (QoS), Quality of Experience (QoE), resource man-
agement and allocation challenges, mostly about architectural
and non-placement decision problems.

Compared to these aforementioned surveys, in our work we
cover all architectural solutions that have been proposed in the
literature for deploying services in the Cloud Continuum, and
we steer our focus to the technical and analytical aspects of
function placement. In this sense, the current survey is broader
in scope regarding the architectures than any of the related sur-
veys, and digs deeper in the analysis of service orchestration,
which we consider to be one the main technical challenges of
such platforms.

Besides the aforementioned holistic surveys of edge-related
computing paradigms, there are several publications which
investigate and review optimization problems related to edge
resource utilization in more details, typically from the per-
spective of either the end devices or that of the central/remote
cloud. Based on recent works in edge computing, the authors
of [48] examine and classify the existing solutions for vir-
tual machine and Virtual Network Function (VNF) placement
based on their static/dynamic nature and performance metrics.
Although, the survey thoroughly analyzes the recent algo-
rithmic approaches of cloud-based multi-component service
placement, the research challenges related to edge resource
management and their solution techniques are only addressed
partially. The recent study of [46] defines a taxonomy for the
categorization of architectures related to edge resource man-
agement in terms of resource type, management objective,
location and utilization purposes. While the study discusses
many articles in a wide range from edge resource discov-
ery through resource allocation up to resource sharing, it
leaves out several important placement-specific aspects includ-
ing, e.g., cloud-to-edge offloading scenarios. Comparably, the
related survey of [43] presents a comprehensive review on
MEC-related orchestration complemented with the analysis of
the MEC reference architecture, standardization activities and
open research challenges. The paper provides an overview on
specific orchestration scenarios considering individual services
and an edge-cloud platform network, but other edge-related
service deployment approaches are not addressed.
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A few surveys summarize the field of MEC-related resource
optimization from a different perspective. The authors of [44]
state the importance of machine learning algorithms in MEC
scenarios, where the massive number of end devices, varying
characteristics of applications and user mobility exceedingly
increase the dimensionality of task offloading and resource
allocation problems. The survey offers an insight into machine
learning solutions for MEC systems, excluding other relevant
optimization techniques. In [45], the authors investigate the
application of game theory techniques on the major chal-
lenges imposed by MEC services, in which several game
models are considered for resource constrained optimization
problems. The survey in [47] explores the challenges and algo-
rithmic methods of multi-objective decision-making for time-,
and energy-aware task offloading, however, it mainly takes the
MCC paradigm into account and refers to MEC only in the
context of hybrid decision-making.

Away from the edge, the authors of [41] provide a com-
prehensive survey on the advancements of Network Function
Virtualization (NFV) with an extensive and in-depth discus-
sion on VNF algorithms. They examine relevant use cases,
including VNF placement, scheduling, and migration, but
omit the analysis of VNF-based service placement problem
considering resources at the edge. In their extensive survey
of [42], researchers analyze and classify resource provision-
ing algorithms based on their mathematical formalization,
optimization objectives, constraints and efficiency. They dis-
cuss topics related to our focus, such as VM migration and
multi-cloud scenarios, however, the survey focuses only on the
long-established cloud computing (CC) paradigm.

Many of the aforementioned surveys, which are categorized
in Table II, investigate algorithmic problems and their litera-
ture in connection with edge resource allocation, such as task
offloading, content-caching, VM migration and server parti-
tioning, but none of them address explicitly the challenges
regarding placement problems in the edge, in which a number
of computation nodes are available at the edge of the network.
This is one of the distinguishing features that characterizes our
survey.

III. TAXONOMY

We provide a taxonomy concerning the most important
aspects of research on placement in clouds. We create three
main groups of dimensions that we later use to character-
ize the body of work. The groups of dimensions determine
the structure of the comprehensive view that we provide:
in Sections IV, V and VI, the presented analysis of the
related work follows the same grouping. The dimension groups
touch upon the following aspects in this order: i) cloud/edge
platform features, ii) application-specific details, iii) mathe-
matical modeling of the placement problem. In this section we
summarize the dimensions that constitute the three groups.

A. Platform characteristics

Within the group of cloud/edge platform-related character-
istics, we define the following three dimensions: i) platform
components, i.e., what type of infrastructure elements are

assumed, ii) the entity responsible for placement logic, i.e.,
which platform element decides where to place the service
components, iii) placement request processing, i.e., either
batch or online processing. We provide an in-depth discus-
sion of the options of all these dimensions in Section IV with
the respective classification of the collected papers.

Platform components: The collected research papers differ
in the set of layers they focus on in terms of potential platforms
for the placement of computational units. We illustrate the
whole set of layers in Figure 3. Some components and features
are related to the cloud providers while others are under the
control of the network operators (either mobile or fixed ones).

In the top layer we consider the clouds, in plural to account
for the multi-cloud setting, i.e., a number of data centers.
In general, those are public clouds, assuming quasi-infinite
compute resources, to be leased for a relatively low price,
while a high level of availability is guaranteed by strict service
level agreements (SLAs). Besides the three giants providing
the leading public platforms, i.e., Amazon Web Services [1],
Google Cloud Platform [2], Microsoft Azure [3], other stake-
holders have also entered the market. Typically, these plat-
forms expose only restricted APIs to control the placement
decisions. For example, the larger geographic regions or
availability zones can be defined for the applications to be
deployed. However, the connections between the regions are
typically out-of-scope for the cloud providers which is a severe
limitation regarding the supported applications. A straightfor-
ward solution is to establish a dedicated business collaboration
among the cloud providers and the involved network oper-
ators. In multi-cloud scenarios, a higher level orchestrator
makes the placement decisions, selects the appropriate cloud
domains from the available ones and triggers the deploy-
ment via the corresponding APIs. In this case, the business
relations among the participating stakeholders can be quite
complex and new business models and pricing schemes are
required. On the other hand, private cloud platforms built from
open source components, such as OpenStack [4], Docker [5]
or Kubernetes [6], enable finer granularity in the placement
control. Moreover, the available APIs and the underlying
capabilities can easily be extended and tailor-made features,
policies and custom algorithms can be implemented. In addi-
tion, public and private solutions are mixed in hybrid platforms
posing new challenges to the placement, especially in terms
of security and privacy.

In the middle layer there is the edge, generally either at
base stations (BS) and central offices of mobile networks, i.e.,
mobile edge, or at dispersed locations of a wired network’s
infrastructure. In any case, the edge nodes are assumed to
be limited in compute power, expensive to operate and main-
tain, prone to errors and downtimes. On the other hand, the
edge computing infrastructure offers low latency for the end
users due to its physical proximity. The “edge realm” is the
key area for network operators to enter the ecosystem because
they have the physical footprint close to the potential cus-
tomers. The ownership of the edge infrastructure has important
impact on the placement control, as well. The edge resources
can be owned either by the cloud provider (managing the cen-
tral cloud resources as well) or by other operators (e.g., mobile
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Fig. 3. Architecture and the features of a distributed computing system.

network operators) or even by the customers. Furthermore,
the concerned network infrastructure plays a crucial role in
the quality of the provisioned services. It can either belong to
the network operator owning the edge resources or dedicated
connectivity services with configurable quality parameters are
provided for the edge provider in order to be able to control the
quality of the connections. When all resources are managed
from a single administration domain, a central entity can be in
charge of orchestrating both central cloud and edge resources,
and also the networks. For example, in case of OpenStack,
edge servers can be added as distinct compute nodes, how-
ever, the default orchestration service has to be extended in
order to be aware of the underlying network topology and
network characteristics. If the cloud and edge resources are
owned and managed by different stakeholders and network
operators are also involved, more complex mechanisms and
workflows are required. For example, a dedicated orchestrator
is needed on the top to calculate the optimal placement and to
enforce the appropriate deployment of service components and
network configuration making use of lower level orchestrators
and exposed APIs. As these interfaces are mainly technology
dependent ones, it is worth noting that the implementation
could be cumbersome, especially when different technologies
have to be integrated.

At the bottom layer we have the myriad of terminals that
include mobile user equipment (UE), i.e., cellphones, indus-
trial robots, self-driving cars, smart buildings, IoT devices, etc.
These terminals are considered to be the targeted users of the
applications, of which the operations are optimized with the
placement methods proposed in the collected research papers.
Terminals are assumed to have limited power, usually running

on battery, and they are considered to be poor in terms of
computation capacity. The access network type is out-of-scope
in this survey, although the collected papers predominantly
assume wireless access to the applications deployed in the
cloud/edge platforms, e.g., MEC applications. While telco
NFV use cases operate over wired networks, the end users of
those are in the end accessing the service via mobile networks.

Location of placement logic: When the overall computing
infrastructure contains only cloud and edge layers, then the
question of authority does not arise: the silent assumption is
made that the cloud (or edge) operator orchestrates its own
technological domain and also manages the involved network
infrastructure. However, if a research work considers the pos-
sibility of running computation on terminals as well, then the
task placement policy may be dictated by one of two parties:
either by the cloud (or edge) operator, or by the owner of
the terminal. This ambiguity is also reflected in the term of
offloading that is used sometimes in terms of delegating tasks
from terminals to the edge, sometimes vice versa.

Processing placement requests: Similarly to data process-
ing big data engines, in the field of placement methods we can
make a differentiation in regard to the way placement requests
are processed. There are solutions proposed for the batch pro-
cessing of all the requests at once, called offline methods.
The other large group of approaches is that of the streaming-
like methods, which process each and every incoming request
individually. We call this group as online methods, and we
distinguish those that apply migration of computation units
that have been already placed if the placement of the actual
request deems it necessary, e.g., in order to free up resources.
The online placement algorithms are aware of the current (and
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past) state of the system in terms of resources, but they have no
certain knowledge of the future, e.g., future service requests or
failures. Therefore, in most cases allocations are made without
any assumption of resource requests that arrive in the future. In
the intersection of the two groups, there are the hybrid meth-
ods, which are adaptive solutions that place the components,
i.e., tasks, VMs, containers, etc., into the edge and/or the cloud
infrastructure in an offline manner, but migrate them dynami-
cally if required. The continuously changing conditions, e.g.,
the mobility of end devices or edge nodes, trigger the online
changes in the placement for achieving various goals, e.g., to
follow mobile users, to maximize the coverage, or to minimize
the processing time of the offloaded tasks.

B. Application Related Aspects

The second group of distinctive dimensions contains appli-
cation related aspects. Our taxonomy defines three dimensions
here: i) the use case of the application, ii) application structure,
i.e., how many computation entities are built from the applica-
tion’s code implementation, iii) security and privacy features.
These dimensions seem to be independent from one another
(and also from those in the other dimension groups), but as
we delve into the details in Section V, we show that certain
patterns can be observed.

Application type: The emergence of edge and fog comput-
ing has been partially driven by specific use cases, along with
the appearance of novel applications. In the research papers
related to our survey scope these applications are often specifi-
cally determined. If the application type is not emphasized, the
researchers assume general applications and the proposed solu-
tions are application agnostic to some extent. We argue that
the application type for which service components must be
appropriately placed in a cloud/edge infrastructure bears great
importance. Consequently, we make a separation of the pro-
cessed research papers along this dimension later in Section V.
The main application types are Internet of Things, Industry
4.0, big data analytics, and telco (or telco-related) NFV.

Internet of Things (IoT) applications encompass a vast num-
ber of IoT devices, such as various sensors generating a
massive amount of data or smart devices taking part in bidirec-
tional communications, and different types of processing units
capturing, pre-processing the data and also implementing the
main business logic. In a typical setup, the IoT sensors pro-
vide continuous data streams which are eventually processed
by remote applications in a consistent way. Usually a dedi-
cated IoT gateway bridges the communication gap between
the devices and the cloud/edge domain: it is in charge of
pre-processing, aggregating and filtering the data, and also
routing the traffic towards the next level processing entities.
The gateway can include hardware related elements managing
the communication, but the other aforementioned functional-
ities can be implemented in software and the corresponding
components could be orchestrated similarly to other processing
functions. Typically, the gateway modules need to be placed
in proximate hosting nodes with limited processing, storage,
battery and bandwidth capacity which should be taken into
account in the placement decision. In addition, the IoT devices

and the characteristics of the generated data vary over a wide
range. For example, a data stream from an environmental mon-
itoring system or from a smart plant application significantly
differs from a video stream which is used by, e.g., an online
face recognition or object detection application. Both the send-
ing (or retrieving) frequency and the amount of the transferred
data vary yielding different requirements on the underlying
network and compute resources. The application itself also
implies specific requirements. For example, critical IoT appli-
cations, such as autonomous vehicles, require strict and low
response latency which affects the placement of the process-
ing units. In general, the placement algorithms are expected to
be capable of i) resolving arbitrary latency constraints defined
between given components of the IoT application or end-to-
end latency bounds, ii) taking different bandwidth/throughput
profiles into account, iii) optimizing energy consumption to
prolong battery life of the devices and the IoT gateway (by
these means optimizing operational costs as well), and finally,
iv) dynamic mapping and placement which is required in case
of mobility support (e.g., intelligent transportation) when the
IoT nodes are in constant motion.

Industry 4.0 is a name for the current trend of automation
and data exchange in manufacturing technologies and it also
includes a special subset of IoT, referred to as Industrial IoT
(IIoT). Industry 4.0 applications pose strict QoS requirements
in order to guarantee real-time operation and to ensure time-
optimized service delivery. The placement task is challenging
due to the diversified data sensing frequency of different indus-
trial IoT devices and their reported data size. For example,
robot or UAV navigation applications are essential components
of future manufacturing environments which require sophis-
ticated image processing based on live video streams. The
control commands must arrive with strict timing at the robots
therefore the careful selection of the execution environments
(running the controller codes) and the network paths (convey-
ing the commands) is crucial. These mission and safety-critical
applications require additional features to be offered by the
orchestration system. For example, dependability and relia-
bility can be guaranteed by duplicated controller instances
(replicas) deployed to physically different servers which are
connected to the controlled plant via disjoint paths. The the-
oretical constraints under the hood are generally referred to
as anti-affinity rules which are respected by the embedding
algorithms.

Big data analytics is another relevant application type. As
the amount of data collected in various IT systems has grown
exponentially in the recent years, capturing, storing, process-
ing, querying, updating and analyzing data while fulfilling
strict time criteria and effective resource consumption are chal-
lenging tasks. Big data platforms provide versatile solutions
typically designed for single data centers. However, big data
applications can also benefit from recent edge/fog comput-
ing technologies. For example, data processing performed at
the edge can provide faster actuation and can also reduce the
network load. In a hybrid edge/cloud environment, where
the application components consume compute and storage
resources from the central cloud and edge infrastructures, the
task (and data) placement algorithms have significant impact
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on the performance. On the one hand, generally a large amount
of data is moved among the task executors which requires care-
ful network path selection and proactive bandwidth allocation.
On the other hand, sophisticated placement of the executors
can largely reduce the overall network load and the end-to-end
processing latency which is crucial for time-critical stream
analytics often demanding real-time responses (e.g., within
100 ms in case of computer vision applications).

NFV based telco (and telco-related) services have been
important drivers of the evolution of the MCC and MEC
paradigms. Telco services (e.g., mobile multimedia applica-
tions) are generally provisioned for a very large costumer
base while respecting strict SLAs, including availability, reli-
ability, bandwidth, delay and mobility requirements. These
network services are described and deployed in the form
of Service Function Chains (SFCs), each consisting of an
ordered set of VNFs. Certain requirements can be defined
for the overall service (e.g., availability, reliability) while
other ones target specific scopes (e.g., delay bound between
two VNFs, minimum bandwidth for a given path including
multiple VNFs). Other constraints related to dependability,
such as anti-affinity and link anti-affinity rules, pose addi-
tional challenges to the orchestration system and the placement
algorithms. Moreover, as telco VNFs serve thousands of cus-
tomers, these VNFs are usually shared among multiple SFCs
in order to save resources, improve utilization and reduce
operational costs. The underlying infrastructures follow multi-
tier hierarchy and encompass heterogeneous resources from
different cloud and network domains. In order to enable
the dynamic and flexible provisioning of compound telco
services consisting of multiple constituent VNFs, telecom-
munications operators need sophisticated placement methods.
These mechanisms are implemented (or more precisely, will be
implemented) in the orchestrator products of different vendors.
The ultimate optimization objectives from the operators’ per-
spective are the operational cost and the revenue which drive
the design (or the configuration) of the placement methods
and the orchestration mechanisms. In case of telco services,
the consumers are typically human end users whose behavior
(e.g., mobility, daily profile) can be predicted and used as an
input in the placement algorithms.

Service structure: After the dimensions that characterize the
compute infrastructure and the placement logic, we define a
dimension to describe the application to be placed, as well.
From the perspective of placement, we argue that it is essential
whether the application is monolithic, or it can be divided into
components for which placement decisions might be made
separately. In addition to those two categories, we make the
distinction of the latter’s sophisticated variants, which consider
some type of dependence between the components, should it
be latency budget, affinity (collocation), anti-affinity (requiring
physically different underlying resources), or the like. Telco
services typically fall into this latter group. In Section V we
give a survey of the collected research works following these
categories.

Security and privacy: For certain applications it is inevitable
to consider security and privacy aspects as early as in the
design phase of the orchestration platform. Several researchers

have done so, and we decided to emphasize and acknowl-
edge their effort, so we define the third dimension of this
group based on the security and/or privacy aspects taken into
account in the related papers. Unfortunately, only a small frac-
tion of the related papers give these important aspects any
consideration.

C. Mathematical Modeling

As stated in Section I-A, only those papers are considered in
the scope of this survey that provide a mathematical model and
an in-depth algorithmic analysis of the placement challenge.
The third group therefore constitutes the evaluation criteria
of the papers in terms of analysis and algorithmic design.
Respectively, the dimensions in this group cover the i) formal-
ized model, ii) approach to the problem, iii) optimization goal,
iv) constraints that are taken into account, and v) complexity
of the proposed algorithms. Detailed explanation, evaluation,
and summarizing tables are given in Section VI on the covered
papers along these dimensions.

Placement problem formalization: Beside the dimensions
that characterize the infrastructure and the application com-
position, we also account for the mathematical tool set the
researchers propose to apply. First and foremost, the formal
model of the optimization problem is what characterizes the
theoretical contribution of a research paper. We therefore dis-
cuss all the applied modeling frameworks in Section VI-A.
As a foreword, we can state that the prevalent formalization
technique is the family of linear programming, as the clear
majority of papers apply some kind of variant of those for
transforming the quest for optimal placement into the words
of mathematics.

Problem solving approach: In addition, perhaps as the most
interesting part for fellow researchers, we also describe the
content of the collected papers by listing the approaches they
chose to solve the optimization problems. This is the dimen-
sion that shows the largest heterogeneity over the related work,
demonstrating that researchers have considered the placement
problem interesting and thus made the effort to tackle it in
innovative ways. In Section VI-B we present all the algorithms
that we have seen in the related work.

Optimization objective(s): Essentially all the collected
research papers strive to optimize some kind of notion with
the careful placement decisions. Therefore, it is obvious that a
categorization based on the optimization goal is of paramount
importance. In Section VI-C we introduce those goals in
details, here we just briefly list the most widely applied ones:
delay, energy, revenue, resource utilization.

Optimization constraint(s): Along with the optimization
come the constraints. Throughout the papers we studied, the
variety of constraints considered is much richer than that of
the optimization goals. We devote Section VI-D to discussing
those; in general, many researchers take into account network
and compute limitations, e.g., delay and bandwidth capacity
for the former, available CPU cores and memory for the lat-
ter. Papers addressing MEC tend to form constraints on radio
resources, e.g., radio channels, carriers, signal-to-noise ratio
(SNR), and user mobility.
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Fig. 4. The taxonomy angle analyzed in Section IV.

Complexity analysis: Finally, we summarize the complexity
characteristics of the proposed solutions in the corresponding
papers. Several research works provide detailed complexity
analysis on the presented algorithms and explicit formulas are
derived. In Section VI-E, we introduce a common notation
to make those results comparable to each other. In addition,
some papers conclude only textual characterization and specify
the final complexity to be polynomial or exponential, while
only sub-problems or sub-steps of the proposed solutions are
analyzed in details. Other works define the complexity of their
heuristics in terms of the complexity of external algorithms,
such as LP solvers.

IV. THE CLOUD ARCHITECTURE

In this section, we start the characterization and categoriza-
tion of the collected research papers along the first group of
dimensions defined in Section III. Specifically, we draw the
high level system architecture of edge cloud and fog systems
in order to roughly position each of the collected papers
regarding the type of infrastructure they address, and how the
placement decisions are made therein. As a reminder, we indi-
cate the taxonomical aspects studied in this section by bold
fonts in Figure 4.

A. Platform Components

We first characterize each research paper by the position
the published solution takes in the cloud-edge architecture that
exhibits three major layers in our understanding. We depict an
illustration of the overall infrastructure of virtual computation
in Figure 3 with these layers. On top, we model the datacenters
in the core of the Internet as the cloud layer. At the edge of the
Internet, there are various types of edge computation nodes.
Edge servers deployed at mobile base stations or any other
wireless access points, edge servers close to the last mile of
wired networks, even compute resources mounted on vehicles,
like the movable servers built on UAVs. At the bottom, we find
the end-user devices and terminals: mobile/cell phones, tablets,
smart watches, laptops, sensors, IoT devices, industrial robots,
connected or autonomous vehicles, etc. One common attribute
of these devices is that they have a demand for computation

resources: either by generating important data, or by requiring
the results of some computation to actuate upon or just visu-
alizing those. The other characteristic these devices share is
that in most cases they are connected by wireless technology
to the cloud-edge infrastructure.

We make five distinct categories for the catalogue of col-
lected papers on the combination of the three layers. These
are the following: i) central cloud and edge nodes are consid-
ered for task placement, ii) only the cloud, but numerous data
centers offer placement options, iii) similarly, only edge sites
are assumed, but many of them, iv) edge nodes are available
for offloading some of the tasks from devices, v) both cen-
tral cloud and edge servers can be selected for offloading. We
briefly discuss all these options.

1) Cloud-Edge: When papers consider the two-layer infras-
tructure of central cloud, i.e., a data center with abundant
resources but at a remote location from the perspective of the
users, and edge computing nodes at the edge of the network
close to the users, although low on computational resources
and expensive to operate, then the primary question is usually
to move delay-sensitive operations from the cloud to the edge.
Vice versa, papers might approach the same placement option
by moving computation from the edge to the cheaper cloud
for tasks that are indifferent to the latency this step adds to the
application’s quality of experience. The opposing effects that
create the optimization problem are often costs and delay, i.e.,
it is considered to be less costly to operate a remote data center
than to operate the same amount of computational capacities
in edge nodes, however this comes at the price of increased
end-to-end latency between the end user and the cloud.

2) Multi-Cloud: Although, intra-cloud scheduling is out-
of-scope, we argue that inter-cloud task placement, possibly
in a multi-operator setting, leads to algorithmic problems that
are similar and thus comparable with those in the cloud-edge
setting. Therefore, we decided to keep those papers that attack
multi-cloud placement problems in scope. We list the papers
into this category that primarily do not leverage on any infras-
tructure options in the edge and/or on the devices. In case they
do, the distinctive characteristics being edge nodes and end
devices are not taken into account in the problem statement.
In this category, usually the research problem is induced by the
difference in cloud service offerings: price, SLA, VM flavors.

3) Multi-Edge: We list the papers into this category that
address placement options solely on edge nodes, i.e., no cloud
or end devices are assumed to be available. Similar to the
multi-cloud category in the sense that all placement options
fall in one layer in our architecture view, this category how-
ever inherently differs in the reasons that lead to the placement
problem. The most frequent reason is the heterogeneity of
application latency requirements: edge nodes are dispersed
geographically, therefore provide different delay characteris-
tics from a given user. On the other hand, applications’ delay
requirements are also heterogeneous, which creates a complex
setting when tasks are to be mapped to edge servers, exacer-
bated by the often made assumption on limited resources in
edge nodes.

4) Edge-Terminal: We create a category for the tradi-
tional MEC offloading papers in which user devices delegate
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TABLE III
CATEGORIES IN TERMS OF PLATFORM COMPONENTS, OWNER OF PLACEMENT LOGIC AND TEMPORAL PLACEMENT DECISION-MAKING

processing tasks to the edge computing infrastructure, usu-
ally for battery conserving purposes. In the papers that belong
to this class there is no cloud option to offload tasks to.
On the other hand, there are multiple options of edge nodes
in the collected papers, because we omit research results on
binary offloading decisions. Usually the challenges addressed
in these papers stem from the choice of edge nodes, the latency
requirements, and compute capabilities.

5) Cloud-Edge-Terminal: Finally, the last category might
be considered as an extension of the previous one by adding
remote clouds as options to the offloading decision. Naturally,
only those computational tasks can be offloaded to the central
cloud that are less sensitive to delay, so it is beneficial to
offload them to the cloud, instead of consuming precious edge
resources.

B. Location of Placement Logic

In Table III, we sort the collected papers into the aforemen-
tioned five categories, represented in columns of the table.
Within those columns, for the MEC offloading categories
we further distinguish papers based on the placement deci-
sion maker the papers assume: whether the policy logic is
performed by the cloud-edge platform provider, or the user
terminal. In the former case, the application running in the
bottom two or all three layers of the architecture of Figure 3
is marshalled by the cloud-edge service provider and the end
device is assumed to be under its control. An illustrative
example for this is the case of industrial robots, where a
robot control application is deployed in the infrastructure slice
overarching all layers. The latter case is best represented by
an autonomous mobile/cell phone user that buys cloud-edge
resources in order to prolong the battery life of its device.

C. Processing Placement Requests

In the rows of Table III, we further divide the set of papers
along the dimension of the temporal aspect of placement deci-
sions, as introduced in Section III. In the “Offline” row those
papers are depicted that assume a one-shot batch placement
of all the tasks in hand. In the “Online” row, on the other
hand, those solutions are gathered that solve the placement
of each task one-by-one, preparing for a sequential arrival
of requests for placement. The third category in this dimen-
sion, the row “Online with migration”, groups those papers
that apply task migrations while placing new tasks separately.
This feature resembles to a re-optimization attempt, partially
offline optimizing the already deployed tasks. Finally, mak-
ing a complete step in this direction, “Hybrid” solutions fully

Fig. 5. The taxonomy angle analyzed in Section V.

re-optimize the placement status periodically, during which
periods they operate as online methods.

One can find the same paper in multiple columns or multiple
rows in Table III. The reason for that is the multi-facet results
those papers contain. In a few cases, for example, researchers
propose both an online and an offline method to address the
placement challenge, without integrating them into a hybrid
solution. The most usual reason for multi-column papers is
that placement policy logic can be tied to both the cloud-edge
provider and to the user device.

V. DEPLOYED APPLICATIONS

We present several collected papers in detail, and we under-
line the interesting specifics of the work published there. For
tractability, we split the body of work into categories based
on the second dimension group introduced in our taxonomy
in Section III, i.e., service-related aspects, such as service
composition the research papers assume, application type and
security. As a reminder, we indicate the taxonomical aspects
studied in this section by bold fonts in Figure 5.

We use the dimension Service structure as major cat-
egorization. The subsections are named respective to the
possible compositions: most of the researchers consider single-
component monolithic services, and there are research papers
that address the placement of services that can be decom-
posed into sub-tasks, or must be replicated. We call these latter
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Fig. 6. Categories in terms of components and relations between them.

multi-component services. Recent works consider such multi-
component services that also involve some notion of relations
between the components: either network requirements are
imposed, or data movement characteristics are modeled. The
addressed service structures are illustrated in Figure 6 and all
papers are listed in Table IV within their respective category.
Listing the references within Table IV is meant to illustrate the
balanced cut of the related papers via this choice of catego-
rization, and helps the reader to query the respective category
of any cited paper. Moreover, the distribution of the presented
papers are presented graphically in Figure 7 as a section map
with relevant statistics. In addition, a chronological overview
of the surveyed papers is also given in Figure 9 highlighting
the trends how the hot topics changed during the last six years.
Within each subsection we further group the selected papers
according to the Application type in focus, and pinpoint those
that touch upon any Security and privacy aspects, following
the other two dimensions in the second characteristic group
defined in Section III. Papers addressing specific application
types or security and privacy aspects are also highlighted and
categorized in Tables V and VI, respectively.

A. Single Component

We split the papers targeting the placement of single com-
ponent services in two classes. First, we group classic MEC
offloading use cases together, second, we classify general edge
or fog computing platforms’ methods in one large group.

1) Offloading in MEC: In terms of Platform components,
the papers that tackle offloading decisions always involve ter-
minals, e.g., IoT devices, mobile user equipment. However, we
can make a distinction among the collected papers, whether
they focus only on edge servers in MEC, e.g., [81], [85], [94],
[112], [113], [115], [117], [154], [157]–[160], [173], [183],
or they also consider the possibility to offload computational
tasks to a central cloud, e.g., [101]–[104], [148], [151], [152].
Furthermore, one can find papers in the related literature that
apply moving devices, e.g., UAVs [84], or robots [173], as
edge nodes in order to position them to optimal locations
anytime the terminals change their location. In these latter
the optimization usually involves finding those optimal loca-
tions, besides the offloading decisions. For example, in [84]
the authors formulate a computational offloading problem
among a swarm of UAVs acting as small flying cloudlets
that receive compute-intensive tasks from IoT devices via the

FDMA technique. UAVs, as MEC resources, aim to optimize
their energy consumption while satisfying the requirements
of the IoT tasks under execution. Similarly, related to the
notion of cloudlet [79], [84], [173], a few papers aim at
optimizing the location of edge nodes, hence performing the
connected network design [79], [173]. The authors of [79] find
the near-optimal places of the network elements and offloaded
VMs for minimizing the overall network element installation
costs and cloudlet access latency. Also in [173] a cloudlet
placement problem is tackled in which mobile cloudlet robots
are positioned such that they cover as many devices as pos-
sible to minimize the task processing time. The proposed
model takes devices’ mobility into account, so it determines
the new locations for cloudlets and the shortest paths to get
there. Not to confuse with the UAV-mounted edge servers,
in [85] the authors propose cooperative computation offload-
ing for UAVs into a heterogeneous edge platform, and they
solve a latency constrained optimization problem by lever-
aging simulated annealing based particle swarm optimization
approach.

In terms of subjects to optimization, the offload-
ing decisions are often complemented with addi-
tional aspects, other than the aforementioned position-
ing of mobile edge nodes. Therefore, next to the
research results about offloading decision optimization,
e.g., [84], [94], [115], [148], [157], [160], [183], there are
several works that propose to jointly optimize offloading
and compute resource allocation in the edge infrastructure,
e.g., [101], [102], [112], [113]. In these papers the authors
strive to optimize the operation of the overall MEC system
while end users and/or terminals aim at minimizing their
own battery usage or the processing time that constitutes
the service latency. In several papers network resources are
also taken into consideration as subject of the optimization.
In [144] the authors model the wireless channel, where the
heterogeneous access points’ capacities are derived from the
dynamically allocated width of the spectrum and the signal
strength. Similarly, radio transmit power [81], transmission
data rate [85], momentary SINR [158], [159], wireless back-
haul bandwidth partitioning [154], wireless link capacity [143]
can be included in the optimization objective, or constraints
when tackling the offloading decision making from the holistic
system perspective.

The third dimension group of our taxonomy in Section III
stands for the mathematical apparatus and formal modeling of
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TABLE IV
CATEGORIES IN TERMS OF SERVICE STRUCTURE

TABLE V
CATEGORIES IN TERMS OF APPLICATION TYPE

the collected body of research. The Optimization objective(s)
therein is one of the most important characteristics that define
a research effort. In the MEC offloading papers the goal is
selected from a rather limited set of inherent choices: energy
and processing time. One can find papers in which one of these
two goals are set out, e.g., energy in [84], [85], [102], process-
ing time in [94], [104], [115], [148], [152], [157], [173], and
there are also related works in which the goals are targeted
jointly, e.g., in [81], [103], [112], [113], [117], [183]. While
the former goal aims at preserving the limited battery capacity
of terminals, e.g., IoT sensors, mobile phones, the latter strives
to reach a desired QoS level in terms of service response
latency leveraging the compute capabilities of edge nodes
in the proximity of the terminals. A few papers formulate
general optimization goals as well, e.g., cost in [101], [148],
revenue in [113], [158] where the authors propose to prior-
itize users with maximum utility to maximize the provider’s
revenue. In [148], the authors propose to optimize both the
perceived latency and the service migration cost based on the
computation demand and current position, assuming unavail-
able future system information and unknown system dynamics.
They apply a contextual multi-armed bandit problem and
a Thompson-sampling based online learning algorithm to
explore the dynamic system environment. Also focusing on
the experienced delay caused by invoking the migration of
a VM, in [159] a VM placement with path selection and
a migration scheduling using user mobility information are
proposed. User mobility is modeled by the evolving SINR
maps therein. Being an unusual optimization goal, in [160] the
authors strive to solve the aggregating IoT gateway’s capacity
fragmentation issue caused by binary decisions of offloading
the whole task or computing the whole task on the device.
Instead of losing capacity due to this coarse-grained allocation,
their optimization makes fine-grained offloading decisions at
any stage of the process, also considering the energy required
to send the data for processing on a nearby server. In [144] the
optimization of resource allocation and computation offload-
ing is extended with that of content caching for maximizing
the profit of MEC system operators facing the end users, rent-
ing communication resources from mobile network operators.
Inspired by a similar idea, in [94], [115] a cache-enabled fog

computing network is proposed where fog nodes own storage
capacities to proactively cache the popular tasks’ results to
minimize the computation time of the future task requests by
returning the cached value. Further developing the potential of
caching in the edge, the authors of [158] combine MEC and
information-centric network architectures for optimizing the
profit of a mobile virtual network operator by effective video
transcoding, caching and multicast optimization.

When optimization affects multiple parts of the ecosystem,
the researchers have to deal with even higher complexity than
what is reached with a single objective optimization problem.
The authors of [81] therefore split the main optimization
task into the offloading decision and resource allocation
sub-problems and sequentially solve them by leveraging one-
to-many and one-to-one matching techniques. In [112] a
centralized controller entity is suggested which decides about
the tasks that should be offloaded and about the amount of
resources to be assigned to them individually. The authors
also decompose the original problem into a resource allo-
cation problem with fixed task offloading decisions and a
task offloading problem that optimizes the optimal-value func-
tion corresponding to the resource allocation problem. As the
wide-area MEC architecture’ backhaul link is assumed to be
wireless in rural areas by the authors of [154], they pro-
pose an iterative algorithm to the offloading as a matching
problem, the node capacity allocation as a linear program-
ming problem, and finally, the bandwidth allocation as a
univariate function minimization. As a great example for a
distributed algorithmic solution, in [143] a distributed trading
game is proposed in which the wireless devices are interacting
with the network operator through a Stackelberg game for
network and computing resources. Resource allocation and
offloading decisions are made in the devices and the opera-
tor, while ensuring the preservation of the required wireless
link capacity. The distributed offloading and resource allo-
cation is proven to be efficient in the paper, which is used
for the design of an approximation algorithm for the decision
making.

In terms of Application type, IoT use cases,
e.g., [84], [160], are over-represented in this MEC offloading
collection of papers due to the low power nature of IoT
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TABLE VI
PAPERS CONSIDERING SECURITY OR PRIVACY ASPECTS

devices in general. Accordingly, some papers assume static
users, e.g., [81], but those research results that target mobile
terminals naturally take into account mobility as well,
e.g., [157], [159], [173].

The remaining dimension of the second group in our tax-
onomy, Security and privacy appear in [102], [151], [183].
The authors of [183] points out that two potential privacy
issues are induced by the wireless task offloading feature of
MEC: location privacy and usage pattern privacy. Hence they
propose a privacy-aware offloading mechanism to avoid the
chance of being detected. Their solution decides where to run
the tasks to achieve the best possible delay and energy con-
sumption performance while maintaining the prespecified level
of privacy. Somewhat different idea is investigated in [151]:
the authors introduce a distributed auctioning model for the
capacities, where low-latency applications are deployed with
privacy constraints. The edge devices buy resources from their
immediate neighbors, if their tasks are to be considered pri-
vate. In [102] the authors consider different user-defined QoS
requirements in terms of delay, compatibility and security.
They apply Bender decomposition techniques to decompose
the original offloading problem into a master problem and
sub-problems that can be solved in parallel at fog nodes.

2) Resource Allocation in Edge and Fog Computing
Systems: In this section we overview the research papers that
focus on edge systems without considering the terminals’ com-
pute capabilities. In these papers the underlying infrastructure
assumes a multi-cloud [49], a cloud-edge [54]–[57], [60], [63],
[69], [74], [98], [165], [166], [177], [184], or a multi-edge
scenario [78], [82], [86], [87], [90], [93], [130], [168], [181].
These choices belong to the Platform components dimension,
and highly determine the optimization intention the researchers
set out. When both a central cloud and edge computing are
considered, in many cases the researchers assume that the
workload is initially placed in the cloud, and the edge system
needs to determine where to replicate and how to distribute
the user load among them [55], [82]. Therefore they propose
a framework to push the resource-intensive applications to the
edge, to minimize average data traffic in the edge network
among the base stations by replicating services from the cloud
to a subset of the edge servers. The workload allocation over
heterogeneous computing systems must take into account dif-
ferent resource availability [56], and when distributing the
workload between fog and cloud, the goal might be to mini-
mize the energy consumption of both of them, such that delay
demands of the services are fulfilled [60]. If a given research
work does not suppose the usage of a central cloud, i.e., tack-
les multi-edge scenarios, the challenge may stem from the
joint optimization of device-to-base station association, task
distribution, VM placement and resource allocation [57], [93].
The authors of [69] go further: they strive to minimize the
user traffic load by addressing the joint service placement

and user association, the joint allocation of computing and
radio resources and the correlation of adjacent base stations’
placement decisions.

While, in terms of Optimization objective(s), most of the
papers that fall into this category share the same target, i.e.,
latency of service completion [57], [60], [74], [78], [93],
[166], [168], [181], [184], several research initiatives have
been made to tackle the trade-off between power consump-
tion and transmission delay as well, e.g., [56], [60]. Besides
providing fast service completion to the users, researchers
also try to cover as many users with the edge system as
possible; the challenge is exacerbated by the fact that users
move [49], [130], [181]. In order to do so, the authors of [130]
formalize a time-variant and mobility-related optimization
problem that accounts for varying position of the users
leading to user re-allocations among different base stations
to sustain user-perceived QoS. Their migration-enabled and
mobility-aware approach, in which user migration is consid-
ered between adjacent base stations, aims to maximize the
user coverage rate, to minimize the number of re-allocations
and to yield refined dynamic allocations. A containers place-
ment and migration strategy is proposed in [168] to maximize
the number of satisfied users requests, with respect to delay
QoS requirements and resources limits. Also recognizing the
challenge caused by migrations, in [181] an energy-aware
optimization scheme is proposed that minimizes the latency
and the involved reallocation costs due to the limited edge
server budget and user mobility. In general, cost minimization
is a widely applied formalization in the research on edge com-
puting platforms, and the cost can stand for different aspects,
either resource consumption or service quality and its related
revenue: in [93] the total deployment cost takes into account
the wireless communication cost (link delay parameters are
derived from the amount of data to be sent and the allocated
wireless channel capacity) and the computation cost of func-
tion placement, in [63], [177] the cost is due to hiring edge
servers that can ensure the required QoS for a maximized num-
ber of allocated users or requests, in [87], [98], [165] the cost
is predicted for future service migration related to the mobile
users within a look-ahead time window, and in [57] the ser-
vice provisioning cost includes the number of VNF instances
in the network (VNF sharing is enabled to lower the costs),
and the transport bandwidth consumption as well.

The authors of [55] propose a placement and load dis-
tribution scheme for edge systems serving as many appli-
cation requests as possible before their respective pro-
cessing deadlines, minimizing the cost of task running,
and maximizing the reliability of the provided applica-
tions. Reliability is emphasized in many other research
papers [55], [74], [90], [166], [184] in this domain: edge
nodes are, in general, prone to failures and it is considered
to be slow and expensive to maintain them due their scat-
tered geographic locations. Therefore authors of [166], [184]
prepare for probable edge node failures by reserving backup
placeholders for VNFs. The authors search the minimum
amount of edge resources to be reserved in order to provide
the necessary redundancy in the system for high reliability of
services. In [184] they offer a Kubernetes-based solution for
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edge infrastructure, in which delay-sensitive applications can
be deployed by the custom Kubernetes scheduler that makes its
decisions with applications’ delay constraints and edge relia-
bility in mind. In [90] the authors maximize the total revenue
collected by the service provider applying user ranking and
admission control policy, and taking reliability requirements
into consideration.

A recurring pattern specific to this category of the papers
is the placement of gateways [49], [54], [78] within the edge
platform. The trade-off between the insurance of QoS via the
placement of VNFs of data anchor gateways closer to user
devices and the avoidance of the relocation of mobility anchor
gateways via the placement of their VNFs far enough from
user devices is analyzed in [49]. The authors of [78] place fog
nodes to the possible sites in a way that the overall latency
between user gateways to fog nodes is minimized.

In terms of Application type, IoT [55], [78], [86], [177],
Industry 4.0 [54], telco [74] and e-health [93] use cases revolve
around the body of research in this domain. In the collected
papers that fall into this category, only one tackles Security
and privacy: in [86] the utilized bandwidth, required stor-
age and the specified task security parameters are taken into
consideration as constraints in the optimization.

B. Multiple Components

In this section we discuss those items of the related work
that consider such edge applications that comprise multiple
components. Those components can be, in general, deployed
separately to different nodes, even in different layers, i.e., end
device, edge, cloud. Similarly to Section V-A, we divide the
papers targeting the placement of multi-component services
in two classes. We group MEC offloading use cases in the
first, and we classify general edge or fog computing platforms’
methods in the second group.

1) Offloading: A relatively low number of published papers
fall into this category. In each of the papers cited in this
section, the resource allocation on edge servers is the main
element of the study, and an optimal decision is sought for
offloading some parts of the software from the end user device
to the edge, so a centralized placement logic is designed for
a cross-edge orchestration.

We divide the papers into two groups depending on how
the authors model the application components to be placed.

In the first group, instead of directly placing VNFs, the
workloads are modeled as individual tasks [71], [108], [114],
[136], [155]. Within these models the service requests are
single entities to be placed onto a heterogeneous edge computing
network. The edge node’s capacity can be segmented into slots,
which is used to allocate the services [114]. Alternatively, the
set of distributed task queues are matched to sparsely distributed
cloudlets in a standard MCC architecture [71], or to execution
nodes of a hybrid MCC environment consisting of a local
cloudlet and other feasible mobile devices [136], or to UAV-
mounted cloudlets [108], where the authors optimize not only
task partitioning, task-to-UAV associations, and the allocated
resources, but also the UAVs’ positions. In all these related
work the ultimate goal of the authors is to maximize the number

of admitted tasks in the system. In [108], the optimization is
performed subject to their required latency and reliability: the
latency requirements are ensured by the locations of the UAVs,
by the parallel computation of the split parts of the tasks,
and by the radio and computational resources allocated for
subtasks; reliability is provided by the number and size of the
diverse subtasks and their associations to the UAV cloudlets.
The authors in [136] consider the dynamic characteristics of
both the incoming tasks and the computation providers, where
the collaborating mobile devices with limited resources can
join and leave the system arbitrary.

In the second group, the papers consider partitioned appli-
cations to be placed in the edge system [105], [110]: at the
same time, multiple edge sites are able to work in parallel
to get the result of the offloaded computational tasks. While
the software is partitioned into unit blocks, the coordination
to deploy and run those induces some edge site coordination
cost. Moreover, mobile users may connect to various edge sites
during their movement [110]. In terms of optimization goals,
in [105] the authors strive to find the most energy efficient
deployment of tasks, with the respective allocation of radio
parameters, as the transmission costs of wireless end devices
are mainly characterized by their energy consumption.

2) Resource Allocation in Edge and Fog Computing Systems:
This section is devoted to the research works addressing services
consisting of multiple components, such as VMs, containers
or tasks, but there is no relation among the constituent ele-
ments taken into account. Following our Platform components
dimension, the underlying infrastructure, where the service
components are mapped to, can be multi-edge [80], [95], [129],
[131]–[133], [135], [137], [140], [169], [180], [182], cloud-
edge [59], [64], [68], [70], [75], [127], [161], [170], [174],
[176], [178] or multi-cloud [51] but the core problem to be
tackled, i.e., component placement, is similar.

Some research works deal with the optimization of the
virtual infrastructure itself including, e.g., the placement of
service-hosting VMs, or clustering of the fog resources. At a
first glance, some parts of this problem are related to the task
of network planning (which is out-of-scope of this survey),
however, if the optimization happens on a shorter time scale
assuming highly dynamic environments, that moves those
research papers into the focus of this survey due to the sim-
ilar characteristics of the underlying mathematical problem.
For example, in [137], [180], the authors target the problem
of dynamic placement of service-hosting nodes over a SDN-
based, NFV-enabled MEC architecture in order to minimize
operational costs. Authors of [137] focus on VNF replication
capabilities, while [180] focuses on satisfying the service-
level response time requirements. The latter paper presents
an online adaptive greedy heuristic algorithm, which is also
capable of managing the service elasticity overhead that comes
from auto-scaling and load balancing with a proposed capac-
ity violation detection mechanism. A similar infrastructure-
related approach is followed in [174]. That study focuses
on the medium-term planning of an edge cloud network in
a MEC environment. The authors define a link-path formal-
ization along with a heuristic approach for the placement of
virtualization infrastructure resources and user assignments,
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Fig. 7. Distribution of the presented papers in the sections and some corresponding keywords.

i.e., determining where to install cloudlet facilities among
sites, and assign access points, such as base stations, to
them. In a similar vein, researchers in [75] suggest game-
theoretic techniques for VM placement to ensure application’s
performance while they aim to jointly minimize infrastruc-
ture energy consumption and cost. Dedicated telco use cases
are addressed with similar objectives, where the manage-
ment cost of Telecom infrastructure vendors’ network [170]
and the 5G infrastructure [95] is to be optimized. In [95],
researchers propose to formulate the edge device placement
problem as a VNF placement task for reliable broadcasting
in 5G RAN. The problem is formulated as a multi-objective
optimization problem constraining bandwidth, service latency
and processing capacity and minimizing the composite objec-
tive function for reliability, deployment cost and service
response time. The particle swarm optimization and genetic
algorithmic meta-heuristic approaches are used to solve the
optimization problem.

The majority of the research works categorized into this
section focus on service placement. However, some papers
combine the optimization of the virtual infrastructure with the
placement of service components. For example, the authors
of [51] focus on the reliability aspects of placing VMs
and their backup duplicates in a distributed cloud comput-
ing network. After the VM placement, as a second step, the
service processing tasks are allocated to the reliably placed
VMs using a maximum weight matching algorithm for bipar-
tite graphs. The graph matching also takes into account the
possible failure recovery strategies to assign tasks to VMs.
In [135], the authors consider a coordinated planning of edge
node location and VNF placement based on modeling the spa-
tial and temporal mobile network usage over a geographic
area. The proposed network slice planning framework has a
modular structure, responsible for user mobility, service usage
and edge cloud location. The predictive algorithm uses the
spatio-temporal model for QoS-aware and load efficient VNF
placement. A different approach is presented in [80]. The
researchers propose a balanced clustering and joint resource
allocation algorithm to achieve minimized response delay and
energy consumption. They assume that the tasks are par-
titionable, and as such, they can be processed in parallel.
The studied model contains multiple fog nodes communi-
cating with each other via wireless channel. The proposed
algorithm firstly clusters the fog nodes according to their

wireless and computational resource and workloads to create
balanced groups of servers. Secondly, it determines how to
split the tasks into partitions and jointly allocates the wire-
less and computational resources in each cluster in parallel.
The objective of their proposed method is to minimize the
weighted latency and energy consumption cost of the worst
offloaded task partition.

The surveyed research papers dealing with the placement of
multi-component services take different aspects into consider-
ation. A large part of the research efforts target applications
realized by a configured number of replicas of given ser-
vice components [51], [64], [70], [77], [132], [133], [137].
Replicas can increase the reliability, availability, dependabil-
ity, and coverage of a service. However, in this context, the
main goal of using replicas is to provide latency constrained
service access for customers. For example, in [64] the authors
assume that initially all the applications run in the cloud as
VMs and the issue is how to deploy VM replica copies sup-
porting multiple applications among numerous MEC servers
in edge networks. Their objective is minimizing the aver-
age response time with various request demand and limited
capacity of MEC servers in mobile edge networks by plac-
ing the VM replicas close to the users. Due to the edge
environment, customers are generally connected via mobile
networks, therefore, considering user mobility can also be
essential. In several research papers [75], [131]–[133] [135],
[140], [174], [180], [182], mobility patterns are incorpo-
rated in the models and the service deployment and/or
resource allocation are optimized either proactively based
on predictions or reactively based on measurements. For
example, utilizing user mobility to meet the extreme low
service latency requirements is studied in [132], where the
trade-off of resource footprint versus application delay is for-
malized. Taking the user mobility pattern information and
prediction as input, the most useful neighboring base sta-
tions are used as VM replication locations. The authors pro-
pose two algorithms, which reactively and proactively deter-
mine the replication locations, minimizing the service quality
degradation due to on-demand VNF relocation. The authors
in [131], [140] formulate both the offline and online versions
of the corresponding optimization problem. The online algo-
rithm determines the best matching between application com-
ponents and edge/core servers using the Hungarian method,
and then applies a local search procedure to consider the
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communication requirements along with the users’ movements
and the previous placement result to improve their solution.
Another related aspect is migration which is considered by var-
ious models [133], [161], [169], [174]. The authors in [161]
formalize the placement problem for microservices con-
structed from smaller containerized components. Their main
objective is to minimize the total response time, considering
eventual migration times of the microservice containers. The
applied method is a Bayesian optimization-based reinforce-
ment learning algorithm, which requires minimal monitoring
and it is robust to noise. Combination of the aforementioned
aspects is in the focus of [182], where the authors discuss
the proactive deployment of service instance replicas among
multiple edge nodes for managing the cost-efficient service
migration based on the mobile users’ movement trajectories.

The vast of the research works assume a dedicated
central entity which is in charge of calculating the effi-
cient placement of the service components. However,
researchers in [127], [129] propose distributed algorithms.
Authors of [129] provide a distributed resource assignment and
orchestration algorithm which runs an agent on each involved
computation node, and the application placement is deter-
mined as a result of a voting and election procedure. In [127],
researchers propose a set of practical, uncoordinated strate-
gies for service placement in edge-clouds and demonstrate
that these techniques can perform well compared to optimal
solutions in terms of response latency. The authors invoke the
well-investigated problem area of resource storage allocation
and the principles of different cache management techniques
are applied advantageously to edge-computing environments.

In terms of Application type, a telco use case is addressed
in [95], more specifically, reliable broadcasting services in
5G RAN are investigated. Another telco-related application is
targeted in [180] and the proposed system supports mobile
multimedia applications with low latency requirement. The
authors of [170] also assume telco services and examine
the problem of dynamic application placement considering
variable user mobility patterns and a multi-tier cloud infras-
tructure incorporating cloud augmented Telecom nodes. A
locally optimal algorithm is also proposed to reduce the oper-
ational cost by placing or moving the resident applications
between different datacenters. The authors of [68] study the
orchestration of IoT applications in cloud-fog computing envi-
ronment. They assume a simple two-container cascade model
which can cover a large set of IoT applications. The fog appli-
cation is a cascade of a cloud module and a fog module.
Research presented in [59] focuses on the service placement
problem with data-intensive applications. To address this, the
authors consider the data required for a latency-sensitive task
as part of the service components to be placed.

The papers in this category, focusing on resource alloca-
tion in edge and fog computing systems, mainly consider
revenue, utilization and/or delay as Optimization objec-
tive(s). From the operators’ perspective, optimizing for rev-
enue, e.g., in [59], [68], [174], [180], or for utilization,
e.g., in [127], [170], [176], [178], or for both revenue and
utilization, e.g., in [129], [131], [140], is a straightforward
decision. Some research works, such as [64], [132], [161],

take the delay as the main subject of the optimization, which
is also a reasonable choice as the quality of experience of
the targeted edge applications are mainly determined by the
perceived latency. Other researchers combine the delay with
energy [80], with utilization [51], [70], [169] or with load
balancing [135]. Alternatively, in [137] VNF replication is
considered as the most characteristic operational cost. In [95],
which is driven by a telco use case, reliability is also taken
into account besides revenue and delay, which stems from the
special requirements of such services. Not a usual objective
is used in [133]. More exactly, the authors strive to minimize
the overall backhaul traffic for wireless fog networks using
strategies like VM migration and replication, focusing on the
long term operation of the network. Another unique aspect
of the optimization problem is emphasized in [176], [178].
Researchers argue that non-trivial amounts of data need to be
stored in storage constrained edge servers to enable service
execution, and that many emerging services exhibit asymmet-
ric bandwidth requirements. To fill this gap, they study the
joint service placement and request routing in MEC-enabled
multi-cell networks with overlapping coverage regions of BSs
and multi-dimensional (storage, computation and communi-
cation) constraints. The special needs are formalized in the
optimization constraints.

C. Multiple Components With Connection

In recent years more and more researchers turned towards
complex application models, in which the application is com-
posed of multiple components, e.g., services, tasks, sub-tasks,
and there is a relation to be modelled among them. This trend
is also confirmed by the increasing number of references in the
top right cells of Figure 9. The connection between compo-
nents is generally tied to network resources, it can be, e.g.,
maximum allowed delay, average amount of network traf-
fic, etc. Here we list those papers that fall into this category
of application modeling. We observe the trend that by the
time researches started to build such models, the hype of task
offloading diminished, hence the lower number of papers in
the next Section V-C1. On the other hand, the first wave of
such models appeared in context of multi-cloud, either with a
single-, or in a multi-operator setting. This is the reason why
we dedicate the separate Section V-C2 even though we have
not done the same for single-, and multi-component applica-
tions in Sections V-A and V-B. The chronological distribution
of these papers is visualized in the top three rows in Figure 9.

1) Offloading: In this section, we overview the research
papers addressing the offloading of distributed applications
constructed by multiple connected (or more generally, related)
components. Two types of underlying infrastructure are
assumed by these papers. According to our Platform com-
ponents dimension, the majority of the works focus on
the more complex cloud-edge-terminal scenario, [99], [100],
[106], [107], [142], [145], [147], [149], [150], [153], some oth-
ers target the edge-terminal setup, [109], [111], [116], [156],
while [139] presents a multi-edge scenario.

In the papers, two important aspects are considered: from
the user’s perspective, the experience is to be “maximized” by,
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e.g., minimizing the perceived latency or respecting a delay
constraint; from the operator’s point of view, the efficient uti-
lization of resources (compute and network resources) is the
main target. The research works presented in [100], [106],
[111], [142], [145], [147], [153], [156] focus on the customers’
aspects and optimize the user experience. For example, the
authors of [142] propose a fine-grained computation offload-
ing model, where parts of a computation task are considered
for delegating to nearby computation nodes. An adaptation of
the convex optimization, the alternating direction method of
multipliers, is designed and detailed, which optimizes for user
perceived QoS. The overall average service response delay of
all users are minimized over the cooperative fog computing
infrastructure model. Strategies of the cooperating nodes are
also analyzed and the authors propose a solution based on their
optimization. Other research works [99], [107], [109], [116],
[139], [149], [150] jointly handle both the users’ and oper-
ators’ aspects and besides offloading decisions, the resource
allocation is also considered. For example, in [149] researchers
consider to integrate optimization of multi-tier offloading with
resource allocation. In their first scenario, a two-tier offload-
ing mechanism is assumed where the end devices’ workload
can only be processed either locally or in the cloud. The sec-
ond scenario introduces the option to offload to the nearby
edge computation nodes, making the offloading optimization
three-tiered. In both scenarios the selection of the VNF deploy-
ment site is also chosen together with the offloading decisions.
Multiple users’ service requests are optimized simultaneously,
where the wireless access capacity is divided among the
tenants. In [150] the work of [149] is extended to support
user requirements with strict delay constraints. The authors
in [139] besides placement constraints, consider precedence
constraints among the offloaded tasks for describing inter-task
data communication in a multi-edge environment.

In terms of Optimization objective(s), usually delay or uti-
lization is targeted. In [100], [142], [156], the authors optimize
solely for the delay, while in [149], [150] delay and energy
are jointly controlled. The authors of [107], [109](online algo-
rithm), [139], [153] optimize the utilization in their models
while the delay is considered in the constraints. Of course, the
two parameters can be combined, for example, in [99], [147],
the delay and the utilization are jointly optimized. Moreover, in
[99], [106], the revenue is also part of the optimization objec-
tive. Besides the delay, some works [99], [100], [106], [107],
[111], [149], [150], [153] also take the bandwidth into consid-
eration in the optimization problem as a constraint. In [109]
(offline algorithm), [111], the authors’ goal is to maximize the
revenue.

In terms of Application type, performance-sensitive IoT
applications [106], [111], [145], [153] and delay sensitive
online games [107] are explicitly addressed by the surveyed
papers, while most of the works assume general application
models. An interesting use case is given in [147], the authors
propose a cooperative artificial intelligence (AI) platform,
where the tasks are deep neural networks, and the proposed
solution calculates for all neural network layers the edge node
where it should run, in order to provide the task’s result as
soon as possible.

Fig. 8. Service Graph Embedding (SGE): a generalized variant of the Virtual
Network Embedding (VNE) problem [123]. The goal is to find the optimal
mapping of the service graph to the underlying resource graph.

2) Multi-Cloud: This section is devoted to the research
papers falling into the multi-cloud category according to
our Platform components dimension, while addressing com-
plex services composed by connected/related elements. The
typical problem to be solved is illustrated in Figure 8 (bor-
rowed from [123]). The problem is referred to as Service
Graph Embedding (SGE) or Service Function Chain (SFC)
Embedding which is a generalized variant of the Virtual
Network Embedding (VNE) problem.

Services or applications are modeled as graphs (service
graph), where the network functions are the nodes of the graph
and the connections/relations between the network functions
are described by edges. A service graph (SG) is shown in
the upper part of Figure 8 which consists of three network
functions (nf 1, nf 2 and nf 3) indicated by blue boxes. The
attributes of these nodes describe the compute resource needs
(e.g., cpu, memory, storage) of the corresponding computa-
tional units. The traffic flow between adjacent functions is
represented by directed edges with unique IDs which can
describe network related requirements, such as delay and band-
width constraints. A request can optionally include Service
Chains (SC), which define QoS requirements, such as maximal
allowed latency or minimal bandwidth, on specific end-to-end
paths of the service graphs. In Figure 8, SCs are denoted by
red continuous lines and yellow dashed lines. The compute
and network resources and related attributes are modeled by
another graph, namely the resource graph (RG). An example
RG consisting of five hosting nodes is depicted in the lower
part of Figure 8. Users or other domains are connected by
Service Access Points (SAPs). These SAPs indicate physical
attachment points which are also referred to in the SG by
special purpose nodes (sap1, sap2 and sap3 in the example).
The overall goal is to find a mapping of the (virtual) nodes
and edges of service graphs onto the shared physical sub-
strate network, such that the cumulative resource allocations
on any physical node or edge does obey capacity (and other)
requirements. In Figure 8, an example mapping of the SG to
the RG is shown, e.g., nf 1 and nf 2 are collocated on host2,
while nf 3 is mapped to host5, and the virtual links of the SG
are assigned to indicated paths in the RG (the same link IDs
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are used as in the SG illustrating how given logical links are
mapped to physical paths).

The vast of the papers [50], [52], [53], [72], [120]–[123]
[171], [172] assume single-operator scenarios, i.e., the
resources are owned and managed by a single provider, but
some works [118], [119], [124] address the more complex
and more challenging multi-operator setups. Of course, the
later environments require business related questions as well
to be investigated. Moreover, in order to enable multi-provider
scenarios, Security and privacy aspects should also be con-
sidered. More exactly, the frameworks and data models should
support hiding internal resource information between cooper-
ating operators, for example, the internal network topology
of a provider is not shared with the others and only abstract,
high level resource information is exchanged. The surveyed
research papers deal with general applications and service
structures and they do not define limitations with respect to
the Application type.

The majority of the proposed algorithms are online meth-
ods and only the authors of [50], [52], [53], [72] provide an
offline mechanism. In addition, the researchers in [171], [172]
propose an online-offline (hybrid) orchestration system, which
receives and processes the incoming request in an online
manner, and occasionally re-optimizes the total accumulated
service deployment. The SGE problem is formalized as a
mixed-integer linear program, solved using a greedy back-
tracking heuristic (online) and as an integer program (offline).
For interleaving the simultaneous operation of the two algo-
rithms, a framework is proposed where the strategic decision
points are identified.

In terms of Optimization objective(s), usually delay, rev-
enue and utilization or some combination of them is targeted.
In [120], [121], [172] only the revenue, in [118] only the delay,
in [119] both delay and revenue are considered. In [171] delay
and utilization, while in [123], [124] delay, utilization and
revenue are taken into account in the optimization objective.
Interestingly, in [50] the authors optimize for the bandwidth
and in [72] the device power consumption is also included in
the objectives. Authors in [52] study bandwidth optimization
from multiple perspectives by minimizing aggregate band-
width and minimizing the maximal link capacity utilization.
Furthermore, the paper [53] studies cost minimization provid-
ing performance guarantees in relation to the optimal solution.
In all papers, the constraints describe the capacity limits of the
compute and network resources.

3) Resource Allocation in Edge and Fog Computing
Systems: A similar embedding problem has to be addressed
when the underlying infrastructure includes dedicated edge
resources. Following our Platform components dimension,
we distinguish the cloud-edge and the multi-edge sce-
narios depending on the placement options. The authors
of [58], [61], [62], [65]–[67], [73], [76], [125], [126], [128],
[162]–[164], [167], [175], [179] consider the cloud-edge sce-
nario where the service components can be run either in the
available edge domains or in the central cloud. Other research
papers [83], [88], [89], [91], [92], [96], [134], [97], [138]
investigate the multi-edge option where the central cloud
cannot be used as a runtime environment.

Most of the papers assume single-operator scenarios where
all resources, operated in central clouds or deployed to edge
domains, are owned, managed and maintained by a single
provider. This seems to be a realistic assumption and the
first generation of edge and fog computing infrastructures fol-
low (or will follow) this model. However, envisioned large
scale, e.g., global scale, service deployments require compute
and network resources from multiple providers and only a
federation of operators can provision these services and appli-
cations. For example, in [58], [167], novel mechanisms for
multi-provider scenarios are proposed and investigated.

There are several theoretical solutions proposed by the
collected research papers, but some of them also provide
prototypes or extensions to available cloud platforms. These
extensions typically enable taking the network related aspects
also into consideration, which is crucial in edge/fog comput-
ing systems. For example, the authors of [162]–[164], [167]
(first architecture option) extend the widely used open source
cloud management system, namely OpenStack, with network-
awareness. More specifically, a novel online service placement
solution is proposed that merges all the necessary function-
alities for geographically distributed cloud-edge computing
system under one common OpenStack domain. Their solution
is capable of i) measuring the bandwidth and delay characteris-
tics of the underlying physical network among compute nodes,
ii) creating a topology model that contains both compute-,
and network-related features, iii) mapping the incoming ser-
vice requests, and re-mapping already deployed services to
the underlying resources with their novel orchestration algo-
rithm, iv) deploying and migrating services via OpenStack API
calls. In an analogous manner, network-awareness has been
added to different big data platforms. For example, the authors
of [125] propose solving the resource allocation in the hetero-
geneous cloud-edge computing environment by extending the
open source Apache Storm real-time computation system with
delay-aware task placement. The paper details the correspon-
dence of the request topology to a directed acyclic graph, built
of Apache Storm platform components. It provides a good
example of how theoretical results on service placement can be
deployed on top of an adopted architecture. Similar extensions
to HDFS and Spark are proposed in [66] and [67], respectively.

In terms of Application type, the previously high-
lighted papers describing extensions to big data
platforms [66], [67], [125] can enable novel big data
analytics applications. Other papers [73], [76], [88], [146],
[163], [167], [175] focus on IoT or Industrial IoT applications.
For example, the authors of [88] aim to jointly place the data
processing IoT application and its subsidiary VNFs over a
set of cloudlets and gateway nodes in a cost efficient way.
Authors of [146] consider a cloud robotics warehousing use
case, falling in the Industry 4.0 application type. Coverage
and battery consumption constraints are modeled and taken
as input to the optimization, so the usage of excess mobile
computation capacity is enabled. However, most research
works target general applications and service structures.
The work in [65] focuses on modeling the characteristics
of application-specific network slices for 5G use cases, and
applying it to VNF placement optimization. They model VNF
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Fig. 9. Chronological overview of the surveyed research papers categorized according to the structure of the service (followed in Section V). The references
in corresponding cells are randomly distributed and the exact publication dates within the given year are not reflected by the placement of the identifiers.

interference as the negative effect of collocated VNFs to their
individually provided services. The performance degradation
is studied in terms of increasing number of collocated VNFs,
and a heuristic algorithm is proposed, which exploits this
knowledge for VNF placement optimization. Evaluation
scenarios of video streaming and autonomous driving are
considered over a virtualized, software-controlled 5G network.
Researchers in [97] investigate another telco use case and
devise an energy-saving and resource-efficient VNF place-
ment algorithm for network operators’ architectures based on
the ETSI MANO framework. Their proposed solution strives
for saving energy and satisfying the placement demands by
adjusting the scale of the substrate network and powering on
or off the servers according to real-time load.

The Optimization objective(s) in the surveyed papers
addressing cloud-edge and multi-edge platforms are slightly
different from the ones applied for multi-cloud systems. As
edge resources are scarce and expensive, therefore the main
objective terms are utilization and revenue, while delay is con-
sidered mainly as a constraint. Interestingly, in [62], [73], [76],
[91], [125], [138], the target of the optimization is solely the
delay. For example, the authors of [91] focus on delay-critical
services, while in [125] big data applications are addressed,
where delay is the most important factor explaining the special
role of that in the optimization problem. (The authors of [67],
also dealing with big data use cases, combine delay, utilization
and bandwidth in their optimization objective.) Researchers
in [73] examine the optimal joint placement of data process-
ing operators and pub/sub brokers in an IoT use case, where
the sum of the end-to-end delays perceived by the subscribers
is to be minimized. The authors of the paper [62] targeting
the delay as the optimization objective follow a different way

than other works. They propose using constraint programming
to address the service placement problem in fog comput-
ing infrastructures, instead of integer linear programming and
heuristic solutions. They argue that constraint programming
is more generic and easy-to-upgrade model for an adaptive
system, where constraints and objectives can change dynami-
cally. They assume that the services can be written as a service
graph and between the service components exist network con-
straints, like the minimum bandwidth or maximum latency that
the application tolerates. The authors show that their proposed
implementation provides a good trade-off between resolution
times and solutions quality.

VI. ALGORITHMIC MODELS AND SOLUTIONS

In this section, we present the mathematical achievements
of the collected papers, somewhat abstracted from their actual
use cases, in terms of architecture and service choices. We
first list the formalization tool sets of problem statements the
researchers opted for. Second, partly related to the problem
formulation, we set out the types of methods researchers
applied to solve those problems. Third, again related both
to the problem formulation and the targeted use case, we
specify the exact optimization goals, and fourth, we briefly
present the considered constraints, as well. Finally, for those
collected papers in which the authors disclose algorithmic
complexity along the presented methods, we show their high
level summary for comparison. As a reminder, we indicate
the taxonomical aspects studied in this section by bold fonts
in Figure 10.
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Fig. 10. The taxonomy angle analyzed in Section VI.

A. Problem Formulation

The problem formulation leads to abstract models that turn
the applications or services, or even functions and tasks of
those, into entities that need placement. In some papers, these
entities are VMs, containers, or for example, pods in the realm
of Kubernetes [6]. Nevertheless, the models are the abstract
translations of the actual entities into, most often, combinato-
rial problems, in which the placement decision is to be made
on possibly multiple layers of our architecture of Figure 3,
and from a number of nodes/hosts within those layers. The
placement options to select from range from devices, across
edge nodes to cloud data centers.

Usually the combinatorial placement problem, i.e., match-
ing entities to places, is coupled with and/or triggers deci-
sions about offloading, resource provisioning, and scheduling.
Therefore, in general, the addressed problems are multi-
faceted, and therefore they inspire researchers to apply various
tool sets for mathematical formalization. In Table VII and VIII,
we list the formalization approaches we have encountered in
the collected papers, and we assign each paper to its respec-
tive specific model type. The left-most two columns in both
Tables VII and VIII depict the large categories and the specific
models of problem formalization, respectively.

As it is reflected by the number of papers in those cate-
gories linear and nonlinear programming are the most widely
used formalizing frameworks. Both categories are considered
special cases of mathematical programming (also known as
mathematical optimization), particularly linear programming,
in which the goal is the optimization of a linear objective
function, subject to linear equality and linear inequality con-
straints. In nonlinear programming some of the constraints or
the objective function itself are nonlinear. By looking further
into the specific models in the second left-most column of
Table VII, one can learn that combinatorial optimization is the
most prominent formalization researchers choose to define the
placement problem. This choice is straightforward given the
nature of the problem in focus, i.e., how discrete structures,
the tasks and the infrastructure hosts, can be arranged together.
All the integer programming models listed in the table, i.e.,
ILP, MILP, INLP, MINLP, MIQCP, are some sort of combina-
torial problems: mathematical optimizations in which some or
all of the variables are restricted to be integers. An illustrative
MILP formalization example is highlighted at the end of this
section.

In the papers that we classify into the General mathemat-
ical programming category in Table VII, the authors do not
state whether their formalization falls into linear or nonlinear
programming, instead, the formalization is described in a gen-
eral form of mathematical optimization. Contrary to those, in
Table VIII we group those papers that explicitly name the
chosen formalization category. Among the selected mathe-
matical frameworks, we find constraint programming, graph
theory, game theory, stochastic optimization, optimal control
and matching theory. The paper using a formalization of any of
these categories constitute the minority of the body of related
work. Many of those are combinatorial in nature, e.g., graph
and matching theory, constraint programming. For example,
in [62], the authors propose constraint programming instead
of ILP and related heuristics and they argue that constraint pro-
gramming yields a more generic and easy-to-upgrade model
for an adaptive system, where constraints and objectives can
change dynamically. Furthermore, there are several papers that
involve stochastic components in their model, e.g., a randomly
defined process of job arrivals, mobile users’ movements, etc.,
and hence they turn to some sort of stochastic optimization
approach. The variety of the specific models is rich, among
those Optimal stopping, Markov decision process and Multi-
stage stochastic programming are all concerned about making
the optimal decision at a time or state or stage, respectively,
of the process with the goal of optimizing the expected value
of the reward, i.e., target function, in the future. For example,
the authors of [157] apply optimal stopping theory to min-
imize the execution delay in a sequential decision manner.
The other two models, i.e., Multi-armed bandit and Stochastic
knapsack problem, tackle the stochastic nature of imperfect
information about the model parameters. In the former, the
reward, i.e., the target function, is only partially known at the
time of allocation, in the latter the rewards are deterministic
but the sizes are random, therefore the uncertainty is modelled
on the constraints’ side. Also tackling the temporal aspect of
placement decisions, authors of a few papers apply optimal
control theory for finding a control law for the dynamical
system over a period of time such that an objective function
is optimized. Specific models include Lyapunov optimization
and Job shop scheduling, the latter being one of the best known
combinatorial optimization problems. As a few examples for
the former, Lyapunov optimization techniques are proposed
to obtain asymptotic optimum with battery capacity of mobile
devices stabilizing around a positive constant in [110], to min-
imize the upper bound of a queuing system in [155], for
location prediction combined with the deep learning method
of long short-term memory (LSTM) in [87], [98].

Besides these traditional problem formulating frameworks,
several papers include game theory in their modeling sec-
tion, a rarely seen model in placement problems. In those
papers, placement decisions are made as a result of a strategic
interaction among rational decision-makers, e.g., task owners
and computing host providers. When the interaction involves
sequential decision making from the participating players, then
a Stackelberg game is applied for the model. For illustrative
examples, we list a few of those papers. In [84] a poten-
tial game is formulated, and solved by an iterative algorithm,
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TABLE VII
CATEGORIES IN TERMS OF MATHEMATICAL PROBLEM FORMULATION AND APPLIED TECHNIQUES (PART 1: MATHEMATICAL PROGRAMMING)

resulting in a pure-strategy Nash equilibrium, at which no par-
ticipating player can reduce its cost by unilaterally changing its
strategy. The authors of [94], [115] propose a matching game,
in which a cost function of computing delay is minimized
under latency and reliability constraints. The study in [152]

comprises a two-tier trading game, in which data service sub-
scribers pay for the resources of massive data center operators,
while disclosing their QoS requirements, in turn, the latter
purchase resources from the fog nodes if needed, which can
provide data services with low delays to the former. For the
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TABLE VIII
CATEGORIES IN TERMS OF MATHEMATICAL PROBLEM FORMULATION AND APPLIED TECHNIQUES (PART 2)

TABLE IX
HARMONIZED NOTATIONS USED IN [124] AND [171]

resulting Stackelberg games a distributed price setting and pur-
chasing strategy is designed for each actor, which is proven
to reach Nash equilibrium, realizing an efficient resource allo-
cation. Reference [49] two solutions favor one objective over
the other, whereas the third one aims at finding a fair trade-
off between the two objectives by the use of bargaining Nash
theory.

1) An Illustrative Mathematical Programming Example: As
an illustration, the MILP formalization proposed in [171] is

TABLE X
MATHEMATICAL NOTATIONS USED IN FORMULATION 1 [171]

summarized here briefly, which is the offline part of a hybrid
optimization method. The general notations and the MILP
variables are introduced by Tables IX and X, respectively,
while the MILP is described by Formulation 1.

Resource and Service Graphs are denoted by R = (VR,ER)
and S = (VS ,ES ) which describe the substrate infrastructure
and the incoming request, respectively. It is worth noting that
the model used in [171] assumes that service nodes (or func-
tions) have types which can be hosted by only resource nodes
supporting the given types. Available types are given by set T
while the set of resources (available or requested cpu, memory
or storage) is indicated by R. For the power set of set S, we
use the regular P(S ) notation. cR and cS denote the resource
capacity of a node in R and the resource requirement of a VNF
in S , respectively. The functional type of a VNF is given by
τS , while the supported types of a hosting node is indicated
by τR . The network characteristics (link delay and bandwidth)
are described by edge attributes dR and bR in the substrate
graph. The counterparts are the delay (dS ) and bandwidth (bS )
requirements in the request graph. Delay requirements can also
be defined for arbitrary paths in S , which are collected by CS .
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Each node of a path is referred to as N . The mapping result
is defined by μ and λ describing the hosting nodes for VNFs
and the hosting paths for logical links. ej , j are explained in
Section VI-B.

As we have illustrated in Section V-C2, the general task
of SGE/VNE is to find a mapping of the service graph
S = (VS ,ES ) to the resource graph R = (VR,ER). In
the MILP formulation of [171], the node and link map-
pings are represented by binary variables x iu ∈ 0, 1 and
y i ,ju,v ∈ 0, 1, i.e., x iu = 1 indicates that service node i is
mapped on resource node u and y

i ,j
u,v = 1 indicates that the

resource link (u, v) ∈ ER is used to establish the service link
(i , j ) ∈ ES . The objective function is defined by Equation (1)
in Formulation 1, where the first two summands describe the
costs for resource allocations on edges and nodes respectively,
while the third one is used for load balancing. A specific scal-
ing factor is used for each summands (α, β, γ ≥ 0) in order
to (i) normalize and (ii) weight the different components of
the objective. The first summand expresses costs for using
bandwidth by employing prices p(u, v) ≥ 0 which can be set
by the provider according to the importance of the respec-
tive links. The second summand expresses costs for mapping
a service node i ∈ VS onto a resource node u ∈ VR using
prices p(i , u) ≥ 0. For the last term, controlling the load
balancing, an additional variable Umin

VR
≥ 0 is used, which

denotes the minimum (node) resource load among all resource
nodes and resource types. Constraint (7) upper bounds this
variable by the allocations au,r of resource r ∈ R on node
u ∈ VR divided by the respective capacity. Hence, Umin

VR
must be less than the (relative) load with respect to any node
and resource. Hence, by minimizing (1 − Umin

VR
), the mini-

mum load shall be increased, leading to distributing load more
evenly.

Typical constraints are formalized in Equations (2)-(10).
Constraints (2) and (3) enforce that each service graph node
is mapped onto a suitable resource graph node while forbid-
ding mappings to nodes that do not support the respective
function type. Constraint (4) induces a unit-flow for each ser-
vice link (i , j ) ∈ ES using the flow variables y i ,ju,v ∈ {0, 1}
for all resource edges (u, v) ∈ ER . The left-hand side of
the constraint states flow preservation, while the right-hand
side enforces the sending of a unit flow from the node onto
which the tail node i is mapped while the node onto which the
head j is mapped must receive a unit of flow. Note that, when
both i and j are mapped to the same node u ∈ VR , then no
network path needs to be established in the resource graph.
Constraints (5) and (6) compute the allocations induced by
the node and link mapping, respectively, and Constraints (8)
and (9) enforce that these allocations are upper bounded by the
capacities of the respective resource graph elements. Assigned
nodes consume computation resources (e.g., CPU, memory,
storage), while embedded links result in assigned bandwidth
on respective substrate links. To enforce latency constraints
for the set of chains CS , Constraint (10) is used. For each
tuple (p,Dp) ∈ CS , the sum of delays of all resource edges
used by any of the service links is computed (left-hand side)
and is upper bounded by the maximum allowed latency Dp

(right-hand side).

Formulation 1 Service Embedding MILP From [171]

min

⎛
⎜⎝

α ·∑(u,v)∈ER
au,v · p(u, v) +

β ·∑i∈VS ,u∈VR
x iu · p(i , u) +

γ · (1−Umin
VR

)

⎞
⎟⎠ (1)

∑

u∈VR,τS (i)∈τR(u)

x iu = 1 ∀i ∈ VS (2)

∑

u∈VR,τS (i)/∈τR(u)

x iu = 0 ∀i ∈ VS (3)

∑

(u,v)∈δ+u

y
i,j
u,v−

∑

(v ,u)∈δ−u

y
i,j
u,v = x iu−x

j
u ∀(i , j ) ∈ ES , u ∈ VR (4)

∑
i∈VS

x iu · cS (i , r) = au,r ∀u ∈ VR, r ∈ R (5)

∑

(i,j )∈ES

y
i,j
u,v · bS (i , j ) = au,v ∀(u, v) ∈ ER (6)

au,r/cR(u, r)≥Umin
VR

∀u ∈ VR, r ∈ R (7)

au,r≤cR(u, r) ∀u ∈ VR, r ∈ R (8)
au,v≤bR(u, v) ∀(u, v) ∈ ER (9)∑

(i,j )∈p,(u,v)∈ER

y
i,j
u,v · dR(u, v)≤Dp ∀(p,Dp) ∈ CS (10)

2) An Illustrative VNE Example: Besides mathematical
programming, invoking graph theory is reasonable especially
for services consisting of multiple components with connec-
tions (and, e.g., latency requirements) among them. When the
underlying infrastructure also exhibits specific delay and band-
width characteristics, then the mathematical problem is to find
the mapping / embedding between two graphs, namely, the
service graph and the resource graph. Generally, the formal
models considering all practical aspects and constraints yield
quite complex optimization problems, thus, a great variety
of heuristic algorithms have been proposed by the research
community to approximate the optimal solutions. Here, we
highlight the main ideas from [124]. The paper proposes
an efficient online embedding algorithm which operates in a
multi-layer orchestration hierarchy and supports several types
of constraints, such as end-to-end QoS characteristics, cost
limits and reliability requirements. The mathematical problem
is formulated as a variant of VNE, where the underlying topol-
ogy, resources and capabilities are modeled by a resource
graph R = (VR,ER), while the service deployment requests,
encompassing multiple constituent components with connec-
tions and constraints among them, are modeled by service
graphs S = (VS ,ES ). Formulation 2 presents the online
VNE problem from [124], where only a single service graph
is considered and some requirements (e.g., node and link
(anti-)affinity) are omitted. The notations are summarized in
Table IX.

The mapping structures μ, λ describe a mapping solution,
where each service graph node VS is mapped to a node in
the resource graph VR . The link mappings must be valid, i.e.,
their hosting paths must start and end at the hosts of their
ends as described by Equation (11). The node mapping must
respect the functional requirements of the VNFs i ∈ VS as
required by Equation (12). The constraints are quite similar to
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Formulation 2 Optimization Problem From [124]

∀(i , j ) ∈ ES : μ(i) = λ(i , j ).first and (11)
μ(j ) = λ(i , j ).last

∀i ∈ VS : τS (i) ∈ τR(μ(i)) (12)
∀u ∈ VR,∀r ∈ R: (13)∑

{i|μ(i)=u,i∈VS}
cS (i , r) ≤ cR(u, r)

∀(i , j ) ∈ ES :
∑

(u,v)∈λ(i,j )

dR(u, v) ≤ dS (i , j ) (14)

∀(u, v) ∈ ER, M (u, v) := {(i , j )|(u, v) ∈ λ(i , j ) (15)
and (i , j ) ∈ VS } :

∑

(i,j )∈M (u,v)

bS (i , j ) ≤ bR(u, v)

∀(p,Dp) ∈ CS :
∑

(i,j )∈p

∑

(u,v)∈λ(i,j )

dR(u, v) ≤ Dp (16)

minμ,λ
∑

ej ,j∈ΨS

CALCOBJECTIVEVALUE
(
λ(ej , j ), (17)

μ(ej , j ), ej , j
)

the ones used in Formulation 1. More exactly, Constraint (13)
ensures that node capacity requirements mapped to a resource
node u ∈ VR do not exceed the total capacity of the
node for each resource type R. Link-wise delay requirements
must be respected by the link mapping function λ for each
VNF connection (i , j ) ∈ ES as stated by Constraint (14).
Constraint (15) defines the set of all VNF connections using a
substrate network connection as M (u, v). This set is used to
summarize all the bandwidth capacity requirements bS (i , j ),
which must be upper bounded by the resource link’s bandwidth
capacity bR(u, v). Besides the link-wise delays, path delay
requirements CS are also added which define maximal allowed
latency on multiple consecutive VNF connections of ES (see
Constraint 16). The general objective function, which mini-
mizes the sum of the objective value of each VNF j ∈ VS and
the adjacent service graph connection ej ∈ ES , is formulated
by Equation (17) and will be discussed later. Most of the prac-
tically interesting variants of the VNE problem are known to
be NP-hard and strongly inapproximable [185]. This variant
introduces more constraints, such as the path delay require-
ment, so the same observations about complexity apply to that
VNE formulation, therefore, heuristic solutions are needed.

B. Applied Methods

A myriad of methods are proposed to solve the formu-
lated problems in the related papers. In the middle column of
Tables VII and VIII, we specify the large group of the applied
method for each paper, and if available, we denote the specific
technique in the rightmost column of both tables. Generally
speaking, most of the papers either use solvers or authors
propose their own heuristics to solve the modeled problem.
Similarly frequently seen, various well-known assignment,
e.g., Hungarian, and search, e.g., Branch and bound, meth-
ods are applied either on their own, or as a basis for custom
heuristics. The third most often used group of methodologies
includes linear, e.g., Benders decomposition, and convex, e.g.,

Algorithm 1 Overview of the Embedding Algorithm [124]
Returns a Set of Complete Mapping Structures of Service
Graph S to Resource Graph R

1: procedure MAP (S ,R) → μ, λ
2: ΨS ← ORDERLEGSFORMAPPING(VS ,ES )
3: while ∃ej , j ∈ ΨS where �μ(ej , j ) or �λ(ej , j ) do
4: while MAPONENF(ej , j ) not successful do
5: ej ′ , j

′ ← GETBACKTRACKOPTION(ej , j )

6: UNDOGREEDYMAPPING(ej ′ , j
′)

7: ej , j ← ej ′ , j
′

8: end while
9: end while

10: return μ, λ
11: end procedure

Interior-point method, optimization approaches. There are also
paper in which the mixture of such method types is applied.
For example, in [56] the delay constrained primal problem
is decomposed based on the levels of the cloud-fog archi-
tecture, and then the authors propose convex optimization,
mixed-integer nonlinear programming and Hungarian method
for the corresponding sub-problems.

We grouped the rest of the applied techniques into the
following method categories: Graph theory, Stochastic con-
trol, Machine learning, Evolutionary algorithms, Game the-
ory, Matching theory, Linear algebra and Approximation.
Interestingly, many of such techniques are applied to linear
programming models, e.g., Shortest path and Best response
search, Cache replacement strategies. For solving nonlin-
ear and general programming problems such methods are
proposed as Sine cosine algorithm, Constrained graph par-
titioning, Deep Reinforcement Learning and Genetic algo-
rithms.

Naturally, the game theoretical and matching theoretical
solving methods are also applied to problems defined in the
respective framework, in Table VIII. Moreover, unconventional
technique to problem pairings are also available in the related
literature, such as using Eigendecomposition for Graph the-
ory models, and Shortest path search to solve Optimal control
problems.

For example, the MILP problem introduced by
Formulation 1 is part of a hybrid, online-offline optimization
framework in [171] and the offline optimization task
(addressed by the MILP) is solved by Gurobi Mixed Integer
Programming solver, whereas the online part is realized by a
custom heuristic. Similarly, our other optimization example
presented by Formulation 2 is solved by a dedicated heuristic
algorithm in [124]. More specifically, the proposed orches-
tration engine runs a heuristic-guided greedy backtracking
search on the resource graph structure. An overview on the
formal description of this approach is shown in Algorithm 1.
Refer to Table IX for a summary of the notations. An
elementary mapping step of the algorithm is the greedy
allocation of a VNF and an adjacent service graph link, called
“leg” (ej , j ), onto a hosting (virtual) substrate node and path.
An embedding order among these elementary steps is calcu-
lated by the function ORDERLEGSFORMAPPING(VS ,ES ).
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In case a greedy step is not able to find a suitable host,
while respecting all service graph requirements, the most
recent greedy step is undone by freeing the temporarily
reserved resources. MAPONENF(ej , j ) is the core function
realizing the greedy mapping of the leg while taking all
the constraints into consideration. In each greedy step, the
hosting substrate path and node pair with the lowest objective
function value is chosen for mapping, and the next couple
of best ones are stored for possible later exploration. The
algorithm yields an embedding (μ, λ giving the hosting node
of each VNF and the hosting path of each service graph
link respectively), when all elements of the service graph
have been successfully mapped respecting each aspect of
the requirements or refuses the entire request. The search
space size of the greedy backtracking can be tuned by the
backtracking parameters (i) defining how many hosting
alternatives of an elementary step shall be stored (branching
factor), and (ii) how many consecutive greedy steps can be
undone in the search tree (backtracking depth). The overall
complexity of the embedding algorithm proposed in [124]
including advanced features, such as end-to-end delay, node
and link (anti-)affinity requirements is

O
(
max

{
|VR|2|ER|+ |ER|2 + |VS |, b log b

} bk+1

b − 1

⌈ |VS |
k

⌉)
,

where b is the branching factor of the greedy backtrack search,
while k is the backtracking limit, which shows the polynomial
runtime in the input sizes R = (VR,ER),S = (VS ,ES ) with
low exponents.

We name a few examples here with the application field of
the mathematical method. The authors of [69] define and solve
a matching problem between BSs and UE. In [108], to solve
the presented complex problem in polynomial time, the authors
transform it into a more tractable form and then solve it by
a sine cosine iterative algorithm. In [78] the applied k-means
clustering not just determines the locations of, but also decides
the number of fog nodes to be placed into the network. In [68],
two-container cascade models are assumed, where the fog
application is a cascade of a cloud and a fog module and the
formulated mixed-integer nonlinear program is solved by an
iterative greedy heuristic algorithm which is implemented and
tested in the FogAtlas platform [186]. Another iterative heuris-
tic is used in [146], where the fractional solution is rounded
to a violating integer solution, which is gradually improved
to find a good feasible solution. The scheduling is formalized
as a shortest path problem in the graph of possible time slot
configurations in [165], and it is solved by applying a dynamic
programming approach. Evolutionary meta-heuristics are pop-
ular applied methods to solve placement problems [99], [119],
[137], [138]. In [99], genetic algorithms are combined with
Monte Carlo simulations for QoS optimizing, cost minimizing
and utilization maximizing. Similarly, evolutionary algorithms
are invoked in [119] to solve the VM placement problem in
a federated cloud environment. The optimization problem is
stated in a general format, consisting of embedding solutions,
and the fitness function calculation is devised accordingly,
defining all the necessary components of the genetic meta-
heuristic. In [137], [138], the chromosome representation is a

binary matrix, encoding the VNF to MEC node placements,
while the fitness function is defined by the reciprocal of the
solution costs [137], or a simulated annealing-based function
of average end-to-end delay. The column generation method is
used in [52], [53] to generate partial solutions, which improves
the execution times of the large ILP and MILP formulations
of the placement problems. Column generation requires close
interaction with the ILP solver’s logic, resulting in approxima-
tion algorithms with lower optimization times and performance
guarantees. For more details, please consult Table VII.

C. Optimization Goals

Besides the modeling frameworks and the applied solving
techniques, we also collect the optimization goals that show a
heterogeneous picture. We depict the optimization goal(s) of
each paper in the left-hand side of Tables XI and XII.

The end-to-end delay of the application to be deployed is
the most widespread optimization goal, which is plausible, as
decreasing the latency is the foremost purpose of edge com-
puting platforms. Therefore the number of checkmarks is the
highest in the leftmost column among the objective columns
of Tables XI and XII.

The other three main objectives that occur among the
optimization goals are energy, revenue and utilization, i.e.,
of resources of the system, are all intertwined optimization
targets. Lower energy consumption in the fog infrastructure
leads to less operational cost, hence higher revenue; similarly,
if resource utilization is high, then larger revenue is generated
from the hosted services, while the extent of capital expen-
diture, i.e., investment, in cloud infrastructure remains the
same. Interestingly, there are papers that strive to minimize
resource utilization, doing that with the ultimate goal of being
capable of accommodating more future applications to come,
hence higher revenue again on the long term. Nevertheless, we
make the distinction between these three optimization objec-
tives, and mark the ones addressed by each paper separately
in Tables XI and XII. The energy target is predominantly
set in mobile use cases, while the other objectives are gen-
eral to both mobile and fixed communication infrastructure
scenarios.

Other goals that are less frequently set and do not belong to
any of the aforementioned four categories can be roughly clas-
sified in three groups. In the first group, networking aspects,
other than latency, are optimized: either the throughput is
maximized, or the bandwidth used by the placed tasks is min-
imized. In the second group, i.e., number of tasks and number
of users, the goals are directly related to the utilization of the
system, and directly or indirectly related to the revenue. Since
both compute and network resources are relatively scarce and
expensive in the edge, a few research papers handle the latter,
e.g., network traffic, as optimization goals, rather than con-
straints. At last, there are the optimization goals related to
some QoS aspects other than delay. Such an aspect is reliabil-
ity, and the number of backups, that is strongly related to the
resilience of the deployed service. Similar QoS consideration
is availability, and all the related features and characteristics,
such as load balancing, number of migrations and location.
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TABLE XI
OBJECTIVES AND CONSTRAINTS OF THE OPTIMIZATION PROBLEMS ADDRESSED BY THE SURVEYED RESEARCH PAPERS (PART 1)

It is important to emphasize that there are no primary and
secondary objectives in the target functions of the related
papers. Tables XI and XII depict tickmarks in multiple

objective columns for cited papers that propose multi-variate
optimization: usually a weighting factor is applied in the
multi-variate function involved in the optimization.
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TABLE XII
OBJECTIVES AND CONSTRAINTS OF THE OPTIMIZATION PROBLEMS ADDRESSED BY THE SURVEYED RESEARCH PAPERS (PART 2)

For example, in the presented MILP problem
(Formulation 1), the objective function is defined by
Equation (1). As we have seen, the first term represents

the costs for allocating bandwidth on given links, while the
second term describes the costs for mapping a service node
onto a resource node, and finally the last term expresses
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Algorithm 2 Details of the Objective Value Calculation for
Greedily Choosing the Locally Most Preferred Resource Node
and Hosting Path for a Leg. Reference [124] Returns a Real
Value, Which Is Used to Sort the Hosting Options of a Leg

• Ωx , ρx are the value and weights of the bandwidth,
resource, latency, cost components, denoted by x ∈ {bw,
res, lat, cost} respectively.

• ωr are the weights of node resource component r.
• ξ1, ξ2 are the weights of the latency components.

1: procedure CALCOBJECTIVEVALUE(ej , j , pu�v , v )
2: Ωbw ← GETAVERAGEPATHBWUTIL(pu�v )
3: Ωres ←∑

r∈R ωr GETNODERESUTIL(v , r)
4: Ωlat ← ξ1DISTANCEFROMLASTHOST(pu�v ) +

ξ2DIRECTTOWARDSENDOFPATHLATENCY(ej , j , v , μ)
5: Ωcost ← GETCOSTOFLEGHOST(pu�v , v , ej , j )
6: return

∑
x∈{bw ,res,lat ,cost} ρxΩx

7: end procedure

the extent of load balancing in the substrate network. The
goal is to find the allocation with the minimal cost assuming
predefined weighting factors for the constituent terms. (It
is worth noting that the delay is not part of this objective
function, however, the online part of the hybrid optimization
framework proposed in [171] optimizes for the delay as
well in its heuristic. That is the reason for the corresponding
checkmark in Table XI.)

The optimization problem from [124], which is summa-
rized by Formulation 2, includes the general objective function
formulated in Equation (17), which minimizes the sum of
the objective value of each VNF j ∈ VS and the adjacent
service graph connection ej ∈ ES . This objective function
is invoked in each greedy step by Algorithm 1 in order to
find the hosting substrate path and node pair with the lowest
objective function value. The details of how the embedding
possibilities are sorted is shown in Algorithm 2. Besides the
resource availability and greedy search directing objective
function components, GETCOSTOFLEGHOST(pu�v , v , ej , j )
calculates the cost of using a hosting resource graph path
pu�v ∈ P(ER) and host v ∈ VR for (ej , j ). A given setting
for the weights of latency subcomponents ξi , resource type
subcomponents ωr and objective components ρx provide a
fully specified optimization goal for the mathematical problem
statement in Equation (17). By tuning these weights, opera-
tors can adapt the algorithm to multiple application scenarios.
By these means, a versatile multi-domain orchestrator can be
implemented which is capable of: (i) optimizing for band-
width utilization on infrastructure connections, (ii) distributing
node resource utilization among operators, (iii) providing high
service acceptance for delay critical applications, (iv) mini-
mizing administrative costs of routing and VNF hosting, or
(v) arbitrary superposition of multiple operating policies from
the various involved entities.

D. Optimization Constraints

Analogue to the duality in optimization forms, the set of
constraints assumed in the papers is more or less the same as
the set of objectives. We list the five major groups of con-
straints in the right-hand side half of Tables XI and XII, and

we sign with a checkmark if the given paper considers the
constraint in its optimization formula. In case other types of
constraints are also included in the paper, we denote them in
the rightmost column of said tables.

The delay is not the mostly seen constraint throughout the
collected papers, because in the majority of them, the delay is
(a part of) the objective to minimize. In those papers where it is
not, delay is usually considered as a constraint. The most fre-
quently applied constraint, observed in almost all the collected
papers, is on computation resources. Moreover, besides the
delay, which is required by latency-sensitive applications, and
the computation, e.g., CPU, memory, which is dictated by the
capacity of the underlying infrastructure, there are constraints
formalized on network resources, i.e., network bandwidth,
denoted by BW in Tables XI and XII. This latter belongs
to these three most important constraints, because particularly
in edge networks, bandwidth is often assumed to be a scarce
resource.

As the emergence of MEC induced an important body of
research effort in efficiently handling wireless networks, radio
spectrum resources are also considered as constraints in a num-
ber of papers. Again, due to the field of MEC, user mobility
can also be taken into account in the optimization as guiding
constraints. Surprisingly, there are papers in which researchers
formulate constraints not only on the mobility of users, but
also on the mobility of edge nodes, e.g., that are mounted
on UAVs. Therefore the radio and mobility constraints are
predominantly dictated in mobile use cases, while the other
constraint dimensions are general to both mobile and fixed
communication infrastructure scenarios.

Other, less frequently seen constraints, just like in the case
of objectives, include cost and reliability, but other types of
constraints are applied as well. We identify four groups into
which these occasionally seen constraints can be classified.
One can come across most frequently with research works
that build constraints for sustaining the reliability aspect of
service QoS. We denoted those constraints in this group with
tags of reliability, number of replicas and number of nodes.
The second most prevalent type is about location: either the
location constraints given by the infrastructure, e.g., tags of
location and coverage, or the location of deployed service
components, e.g., tags of migration and affinity. We assign
constraints about costs into the third category: those papers
that define cost-related constraints are tagged with cost or
energy labels in Tables XI and XII. Somewhat connected to the
computation resources, we identify more explicit constraints,
such as processing rate and storage with these tags in the right-
most column. Finally, a category of constraints that is never
considered as optimization objective revolves around security:
the tags security, privacy, and user class are applied to those
papers that take into account user and data security aspects.

Similarly to our note for optimization targets, we underline
the fact that there is no priority distinction between constraints,
i.e., there are no primary and secondary constraints in the
related work. However, the predominant majority of cited work
in Tables XI and XII introduce multi-constrained optimization
problems, hence multiple tickmarks in each row within the
Constraints part of the tables.
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TABLE XIII
GENERAL NOTATION USED TO UNIFORMLY DESCRIBE THE COMPLEXITY

ANALYSIS RESULTS OF THE SURVEYED PAPERS

As an example, the MILP problem from [171],
presented in Formulation 1, formulates the constraints
in equations (2)-(10). As we have discussed in Section VI-A,
Constraints (2), (3), (5), (8) define the constraints related
to computation resources, while Constraints (4), (6), (9)
control bandwidth allocations on substrate links. The end-
to-end latency constraints are formulated by Constraint (10)
for respective service function chains. Our other example
from [124], highlighted by Formulation 2, includes similar
constraints formulated by Constraints (13)-(16). The only
difference is the distinction between link-wise delay require-
ments, described by Constraint 14, and end-to-end latency
constraints, formulated by Constraint 16.

E. Complexity Analysis

In this section, we analyze the algorithmic complexity of
the proposed methods within the collected research papers.
From the set of the articles, we selected those that explic-
itly addressed complexity or made a clear statement about the
complexity of the published optimization method therein. For
the sake of comparability, we introduce a common, unified
notation summarized in Table XIII. The overview of these
selected papers is depicted in Table XIV. The contents of the
table reflect the exact and final complexity analysis results of
the cited papers: we have not extended their statements in any
way, e.g., we do not combine their partial results if the authors
did not do so in their article.

After careful evaluation of the heterogeneity of complexity
analysis approaches within the selected papers, we group the
papers into three formalization categories and depict each cat-
egory in the Form column of Table XIV. The categories are
the following.
O: the final complexity of the algorithmic solution proposed

for the placement problem is given in closed form by an
explicitly defined asymptotic notation;

T: the analysis is provided in a textual formalization, e.g.,
the algorithm’s total complexity is specified typically to

be polynomial or exponential, while only the complexity
of sub-steps is given by asymptotic notations;

E: the complexity is indirectly derived from other external
algorithm’s complexity, e.g., that of an LP solver.

In all categories, we use a unified notation for ease of com-
parison; the unified notation is introduced in Table XIII. The
majority of formulas contain the number of servers or nodes
(depicted by N), the number of service components (depicted
by S), and the number of users (denoted by U) as inputs. We
grouped the references in Table XIV based on their proposed
Service structure types, given in the two leftmost columns.
Within each group, the articles are sorted based on the com-
plexity (in terms of N) in the rightmost column from the
simplest to the most complex.

For the papers that fall into the category Form O, all the
parameters included in the complexity formula are given either
in Table XIII (common parameters) or in Table XIV (spe-
cial parameters). All these papers provide a formal description
of their proposed algorithms’ complexity, therefore the com-
parison of their expected runtime is straightforward. Among
the papers that fall in the category Form T, authors typi-
cally propose iterative solutions. Several papers provide the
complexity of only one iteration step, either for simplicity
and brevity [89] or because the number of iterations in the
algorithm required to arrive at a solution depends on the objec-
tive function’s curvature that is difficult to quantify [101].
Alternatively, other papers do reveal the number of iterations,
but not the complexity of all steps [54]; or only certain sub-
steps are analyzed [75], [81], [111]. In the third category
denoted by Form E, one sub-step is typically a linear program-
ming method: [93] builds on the polynomial-time solvability
of LP problems, whereas [126], [128], [133] explicitly rely on
the complexity of the Simplex method. Furthermore, the total
complexity shown in [178] is based solely on an LP solver.

We have taken into account the selected papers’
optimization objectives and constraints from Tables XI and XII
in order to distill meaningful observations on their effect on
the complexities of the proposed algorithms. To sum up the
relation between the optimization tasks and their complexities,
we conclude the following. In case of offloading problems
and problems addressing single component type applications,
the more the terms that are considered in the objective func-
tion and in the constraints, the more complex algorithms
with a larger number of steps are required. Similar conclu-
sion cannot be drawn for other types of tasks. In general,
when the utilization is included in the objective function,
the proposed algorithms become more complex; this sug-
gests that the approximation of the underlying problem, i.e.,
optimizing the utilization, requires more sophisticated heuris-
tics. In addition, taking the bandwidth, throughput or load
balancing into account in the objective function, the algo-
rithms usually result in longer runtime. And finally, according
to the surveyed results, there is no direct relation between
the exact constraints and the complexity of the proposed
algorithms.

Unfortunately, the accuracy of the proposed heuristic algo-
rithms are rarely touched upon, therefore we are not able to
draw a comprehensive analysis in this aspect. However, it
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TABLE XIV
COMPLEXITY OF THE PROPOSED ALGORITHMS. O: CLOSED FORM; T: DESCRIBED IN A HIGH LEVEL, WHILE ONLY SUB-COMPONENTS OF THE

PROPOSED SOLUTION ARE CHARACTERIZED BY ASYMPTOTIC NOTATION; E: DERIVED FROM EXTERNAL ALGORITHM’S COMPLEXITY, E.G., AN LP
SOLVER’S

would be interesting to see how the approximation bound of
the proposed heuristics relate to their algorithmic complexities.

In order to illustrate the applicability of the surveyed meth-
ods, we present two experimental results corresponding to our

explanatory examples (MILP and VNE) presented in this sec-
tion. In Figure 11(a), a preliminary version of the MILP-based
solution (from [123]) is compared to the basic variant of the
heuristic VNE algorithm proposed in [124]. (Here, the basic
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Fig. 11. Illustrative results of selected control plane experiments on emulated edge/cloud infrastructures published in [123] and [124].

operation means that the advanced features related to service
reliability are not used.)

Both placement methods have been evaluated on a real
world topology taken from SNDlib [187], which has 42
nodes and 157 edges, representing access, aggregation and
core network parts, equipped with computation resources.
The dfn-gwin topology was used with additional network
parts and computing resources. All computation nodes had
the same available resources, i.e., 400 units of CPU each.
Service requests were service chains (SCs) consisting of 1 to
8 VNFs with different resource requests generated following
a uniform distribution. In order to compare the capabilities of
the two approaches, we grouped a sequence of service chains
together into one batch request and that was given as input
for both algorithms. It is worth noting, that the heuristic VNE
algorithm can operate either in online mode (when the input
sequence is received and processed step-by-step) or in offline
mode (when the overall request is known in advance). The
simulation was conducted on computers with Intel Core i5 pro-
cessors and 8 GB RAM. The results are shown in Figure 11(a),
where the error bars represent the minimal and maximal run-
times among the 100 independent service chain sequences.
On the one hand, the heuristic algorithm exhibits polyno-
mial scaling with the number of input service chains, while
the MILP-based approach imposes impractical runtimes and
exhibits worse scaling behavior. On the other hand, according
to [123], the heuristic algorithm can embed around the (2/3)
(varying between 59-75%) of the optimal, offline calculated
number of requests. When we are close to a saturated state,
the heuristic method cannot map the overall request, this is
the reason why we do not have samples above 172 chains
regarding the heuristic solution.

The advanced version of the VNE algorithm provided
in [124] was also evaluated on different edge/cloud scenar-
ios. Selected results are shown in Figure 11(b). Here, a core
full-mesh network was used to connect 4 cloud servers pro-
viding the majority of the available computational resources
and the distant edge nodes that were capable of running a
limited number of VNFs. A dedicated orchestrator instance
was in charge of managing all involved domains. By these

means, a single flat control plane hierarchy was established.
Figure 11(b) illustrates the impact of the number of simulta-
neously controlled edge domains tested with different size of
5G-aware services. Two types of service requests were eval-
uated: one with end-to-end delay requirements comparable to
the diameter of the topology and another one containing anti-
affinity constraints between dedicated VNF pairs. The overall
runtimes of these services are comparable to each other and
show that services with anti-affinity relations require slightly
more time for the orchestrator to deploy. According to [124],
the evaluation confirmed the polynomial scaling properties of
the orchestration system in terms of both the infrastructure size
and the complexity of the service requests. Assuming a rea-
sonable number of edge sites and service requests including
less than 100 VNFs, the placement calculation takes only a
few seconds. When we have more than 1000 service elements
in the request (which is not typical today), the orchestration
time takes a few minutes. And finally, when the number of
edge domains is also large (e.g., around 100), the orchestra-
tion time can take almost half an hour. However, in terms of
management time scale, it is not considered as an extreme
long duration and it can be acceptable in certain scenarios.

VII. RESEARCH GAPS

After careful evaluation of the spectrum of research results
in cloud-edge placement, we consider the following interesting
topics yet to be investigated. We argue that all the listed aspects
are of utmost importance for an edge computing platform to
fully serve the edge applications’ and their users’ needs, fur-
thermore all of those greatly affect the placement logic that
must be deployed in the system.

A. Awareness to User Mobility in Edge Placement Decisions

Combining classical user mobility models, of which the
investigation started in the previous millennium, e.g., [188],
and modern AI-based predictions, e.g., [189], locality-aware,
proactive hybrid service placement techniques might be a
promising area for further improving service QoS and effec-
tiveness of resource provisioning. We have seen several
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papers taking user (or host) mobility into account in their
optimization problems’ constraints (see the second rightmost
column of Tables XI and XII), but using AI models for accu-
rate prediction of user movements (if patterns can be found)
could significantly enhance the reachable optimization tar-
get in dynamic systems that allow for migration of service
components and/or complete re-optimization of placements
periodically. Closely related to mobility aspects, interestingly
no related work has considered, to the best of our knowl-
edge, using smart cars as edge nodes. We argue that with
the user mobility patterns in hand, the driving habits could
be exploited: the predicted paths and locations of electric cars
could serve as an input to the dynamic planning of edge infras-
tructure if one assumes that the computing power of those cars
can be utilized, especially during charging, e.g., at a shopping
mall.

B. Cross-Layer Optimization With Edge Application Design

We have found that although sophisticated placement deci-
sion making is often implemented in cloud-edge management
frameworks, an API is rarely exposed to the application owner
or software developer about the placement policy in operation.
This could be however beneficial, beyond an API functional-
ity that merely supports stating the application requirements,
in order to develop the applications against it with a larger
extent. An obvious example would be the disclosure of the
optimization target function and a query possibility for the
overall system status, in order to adapt the application-level
parameters according to the expected placement decisions.
In general, a deeper integration of cloud-native applications’
behavior with the cloud platform’s management policy might
lead to a more efficient operation.

C. Joint Placement of Functions and Their Corresponding
Data

The computational entities that are placed in the cloud-edge
infrastructure often belong to heavy or light virtualization tech-
nologies: VMs and containers, respectively. In several papers
big data processing tasks are also orchestrated, but in general,
the latest trend of Function-as-a-Service (FaaS), also called as
serverless, platforms are rarely addressed. As those systems
usually accommodate ephemeral functions, their load is hec-
tic, and hence the placement logic to be applied must be fast
and efficient. Function requests arrive frequently, demand vari-
ous resource amounts and a great level of elasticity. Therefore,
by its nature the FaaS service platform must apply an online
placement method, probably with affinity constraints to con-
sider in order to collocate functions that may invoke each
other [190]. Inherent to the FaaS concept, input data or internal
function state are often externalized, hence the stateless oper-
ation. As network delay might cause serious QoS degradation
when remote data must be accessed by the functions invoked
in the FaaS platform, the placement of those is of paramount
importance too [190]–[192]. We advocate the emergence of
joint placement policies of functions and their respective states
in edge systems in the near future.

Coded Distributed Computation [23] is a new research field
that has emerged in recent years, where the function place-
ment is strongly related to the input data allocation. CDC
is a mixture of coding techniques and distributed computing
to reduce the communication costs of the large-scale com-
putation of tasks and to mitigate the straggler effects in a
distributed environment. Although both data and function allo-
cations are essential elements of the CDC scheme, most of the
studies focus on only one of them. E.g., the work presented
in [193] about optimal file allocation considers uniformly
distributed processing functions among the cluster nodes. In
contrast, authors of [194] present a Reduce function placement
while they assume equally split input files among the nodes.
Since data reallocation could easily result in high communi-
cation load in the cluster, we argue that the joint placement
optimization of both functions and their input data is essential.

D. Temporal Placement Policies for Auto-Scaling Edge
Applications

The integration of placement methods with the auto-
scaling capabilities of widely used platforms, e.g.,
Kubernetes [195], [196], or with reliability measures [166]
necessary in an edge infrastructure that is prone to errors and
downtimes, might be a challenging research avenue. Indeed,
the optimization problem is rendered to be highly complex
by integrating the dynamics of the deployed services and
the actions the platform takes in turn. As many targeted use
cases require end-to-end latency guarantees, the emergence
of real-time cloud, and particularly, that of the real-time edge
is imperative.

E. Security-Aware Edge Placement Challenges

Unfortunately security aspects receive little attention in the
body of research on edge platforms and placement techniques.
The authors of [197] argue that it is the hasty design and
development of these systems that has led to the neglect of
security threats in the edge computing platforms themselves
and in their enabled applications. The rare appearance of secu-
rity and privacy in the rightmost column of Tables XI and XII
proves their point. In recent surveys [197], [198] one may
learn about basic attacks, as well as the corresponding defense
mechanisms, furthermore about the latest research advance of
data security and privacy-preserving protection technologies,
specifically tailored to the field of edge computing.

A stellar example of research results in the area of pri-
vacy [199] has tackled the challenge of improving the overall
execution performance of edge computing nodes, i.e., the
resource usage, the load balance levels, and the power con-
sumption, while preventing privacy leakage of the IoT devices
for service placement. The authors propose a trust-oriented IoT
service placement method for smart cities in edge computing
that provides balanced placement strategies for the trade-
offs among the execution performance metrics with privacy
preservation. Their example urges the research community to
consider such security and privacy requirements when design-
ing the placement engines in the core of edge platforms, as we
see that by the commoditization of edge computing services
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such features will be mandatory in order to maintain the trust
of users. E.g., the authors of [200] and [201] assume that edge
nodes are not trustworthy so they propose to apply differential
privacy manipulations on user data before sending those to the
cloud; we argue that their assumption holds even stronger in
a public edge multi-provider setup, however advanced orches-
tration techniques might mitigate the problem, e.g., by data
obfuscation over multiple edge nodes of multiple edge service
providers.

F. Economic Aspects of Edge Placement

The economics of placement decisions in edge platforms are
often incorporated into the orchestration logic in related work.
The collected papers associated with tick marks in the Revenue
optimization goal column of Tables XI and XII explicitly
account for the maximization of profit generated by edge com-
puting service. Revenue maximization may be performed by
effective resource usage and by admitting more customers to
the service, alternatively the applied pricing scheme can be tai-
lored to find the sweet spot in the income and cost trade-off.
Specifically, the interaction between users and an edge cloud
provider through the pricing of the computation offloading
service has been targeted by many research endeavors. E.g.,
in [202] the authors consider two important metrics: latency
and fee, and they formulate a stochastic game to model the
interaction between users and the provider. In this game, the
provider sets prices to maximize its profit, while users devise
the offloading strategy to reduce both the latency and charge.

Nevertheless, the emerging technology of serverless com-
puting has recently inspired researchers to consider the edge
placement problem from a novel perspective. In a serverless
platform users are able to deploy individual functions and pay
only for the time that their code is actually executing. The pric-
ing model usually depends on the memory, duration, and the
number of executions of a sequence/workflow of functions.
The authors of [203] adapt the cloud native approach and
related operating techniques for latency sensitive IoT appli-
cations operated on public serverless platforms. They argue
that solely adding cloud resources to the edge is not enough
and other mechanisms and operation layers are required to
achieve the desired level of quality. Therefore they propose a
novel system on top of a public serverless edge cloud platform,
which can dynamically optimize and deploy the microservice
based software layout based on live performance measure-
ments. They apply their concepts to one of today’s most widely
used and versatile public cloud platforms, Amazon’s AWS,
and its edge extension for IoT applications, called Greengrass.
Also considering Amazon’s serverless offering, AWS Lambda,
the authors of [204] present an algorithm that optimizes the
price of serverless applications by, among other methods, split-
ting functions across edge and cloud resources, and allocating
the memory for each function. They present an efficient algo-
rithm to explore different function placement solutions and
find the solution that optimizes the application’s price while
keeping the latency under a certain threshold. In general,
we still see a research gap in the area of cost optimization

of application owners. The complex optimization we envi-
sion overarches the cloud application’s whole lifetime: starting
from the application design, e.g., monolith or microservice-
type implementation, through the choice of cloud services,
e.g., VM or container or function as a service, to the selec-
tion of the ideal public cloud provider, both in terms of
pricing and service quality, e.g., locality and performance, to
deploy the application. The placement of computational units
is in the focal point of this complex challenge, raising hard
computational problems to solve.

G. Multi-Operator Setting

We identify the lack of the multi-operator scenario as the
most common shortcoming in the related work results. The
vast of the research works assume a dedicated central entity
which is in charge of calculating the efficient placement of
the service components. Those researchers assume single-
operator scenarios, i.e., the resources operated in central clouds
or deployed to edge domains are owned and managed by
a single provider. This seems to be a realistic assumption
and the first generation of edge and fog computing infras-
tructures comply with this model. However, envisioned large
scale, e.g., global scale, service deployments require com-
pute and network resources from multiple providers and only
a federation of operators can provision these services and
applications. Unfortunately, only a few works [124], [167]
address the more complex and more challenging multi-
operator setups. Modeling such a scenario, and combining the
optimization problem with the economical aspects described
in Section VII-F would create exciting research problems and
valuable results.

VIII. SUMMARY

Recent cloud architectures, proposing the deployment of
computation resources to the edge of the network, enable a
new generation of network services and applications. However,
simply extending the cloud per se is not enough and novel
features, capabilities and workflows should be added. As we
have seen, a key component which significantly affects the
application’s performance, especially if it is constructed from
multiple communicating modules, is the algorithm responsible
for calculating the optimal placement of computational units
(varying from VMs to fine-granular software functions). As
an answer, the research community has dedicated significant
efforts to this challenging topic and a vast number of theo-
retical papers have been published during the recent years.
This survey paper aimed at categorizing the current results
related to the placement problem in the edge. A structured
taxonomy has been defined and the surveyed solutions have
been presented according to the identified dimensions con-
sidered relevant. Starting from the aspects of the underlying
cloud architecture and the structure of the supported services,
across the dimensions of the mathematical tool set and the
applied methods, we arrived at the detailed characterization
of the explored optimization problems including the targeted
goals and considered constraints, which of course determine
the family of supported use cases, as well.
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The vast body of literature on the placement of edge appli-
cations offers a colorful combination of use cases, problem for-
mulation and selected methods applied to solve the problem.
An imaginary paper that we would place in the focal point of
the multi-dimensional space of the categorization characteris-
tics we identified in this survey would propose a framework
to push the resource-intensive applications from end devices
to the edge, and delay critical components from the cloud to
the edge. This average paper would propose an online algo-
rithm to do so with the goals of minimizing average data traffic
in the edge in order to save battery in the end devices. The
authors would decompose the original problem into a resource
allocation problem with fixed task offloading decisions, and
a task offloading problem that optimizes the value function
corresponding to the resource allocation problem; separate
sub-problems would then be formulated as ILP, and solved by
proposed heuristics. One distinctive feature of the edge system
would be added, e.g., to provide latency constrained service
access for customers, services would be replicated from the
cloud to a selected subset of the edge servers.

Of course, each and every paper we collected for this survey
is special on its own. However, as a general summary, we argue
that the goals of the researchers are similar. In MEC offloading
papers the goal is selected from a rather limited set of inherent
choices: energy and processing time. End users and/or termi-
nals aim at minimizing their own battery usage (induced by
the low power nature of IoT devices in general) or the pro-
cessing time that constitutes the service latency. Extending
this goal concept, several research initiatives have been made
to tackle the trade-off between power consumption and trans-
mission delay. Others focus on resource allocation in edge and
fog computing systems, mainly considering cost and/or delay
as optimization objective(s). In general, cost minimization is
a widely applied formalization in the research on edge com-
puting platforms, and the cost can stand for different aspects,
either resource consumption (i.e., efficient utilization) or ser-
vice quality and its related revenue. Minimizing the perceived
latency or respecting a delay constraint is linked to the revenue
from the operator’s point of view.

We find the objects to be placed are the second main point
in most of the collected papers: usually those are application
instances, or the components thereof. However, some papers
combine the optimization of the virtual infrastructure elements
with the placement of service components. A few others,
instead of directly placing applications, model the workload as
individual tasks: within these models the service requests are
single entities to be placed onto a heterogeneous edge com-
puting network. Naturally, the infrastructure itself is closely
related to the objects to be placed: when the application con-
tains non time-critical components, then central cloud is an
available choice, otherwise the alternatives are edge nodes and
end devices.

The third common aspect in the related work is mobil-
ity. One can find papers in the related literature that apply
moving devices, e.g., UAVs, robots, as edge nodes in order to
position them to optimal locations anytime the user terminals
change their location. Migration-enabled and mobility-aware
approaches, in which user migration is considered between

adjacent base stations, aim to maximize the user coverage
rate, to minimize the number of re-allocations and to yield
refinable dynamic allocations. Therefore in several research
papers mobility patterns are incorporated in the models and the
service deployment and/or resource allocation are optimized
either proactively based on predictions or reactively based on
measurements.

Overall we find this survey to be extremely useful for
researchers, engineers, system designers, and developers for
several reasons. First, the summarized mathematical tool set
of the collected papers empowers the reader with a good
understanding of potential formal approaches to related future
problems from other research fields. The pros/cons of differ-
ent modeling and problem solving frameworks thus can be
identified in advance based on the lessons learned this survey
conveys. The suitable methods a scholar can select from for
their respective research agenda is offered as a comprehensive,
but bounded search space. Therefore, the design of algorithms
for related problems will be easier with all the pointers to the
technical details of promising solutions. Second, as a more
use case oriented fruit of this work, this survey delivers a
comprehensive catalog on the mathematical apparatus for the
placement problem, which is essentially a tutorial guide for
applied research and product development. For example, the
design and implementation of an orchestrator software of an
arbitrary edge cloud platform or service can be driven by
selecting the most suitable solutions presented in the easily
searchable taxonomy structure. As an addition, the algorithmic
complexity characteristics are also provided, so the practical
feasibility of the selected approaches can be instantly evalu-
ated. Third, the disclosed research gaps list promising future
research directions for those scholars that are active in the topic
of edge cloud scheduling and orchestration in challenging
setups.
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