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Abstract—The trade-off between more user bandwidth and
quality of service requirements introduces unprecedented chal-
lenges to the next generation smart optical networks. In this
regard, the use of optical performance monitoring (OPM) and
modulation format identification (MFI) techniques becomes a
common need to enable the development of next-generation
autonomous optical networks, with ultra-low latency and self-
adaptability. Recently, machine learning (ML)-based techniques
have emerged as a vital solution to many challenging aspects
of OPM and MFI in terms of reliability, quality, and imple-
mentation efficiency. This article surveys ML-based OPM and
MFI techniques proposed in the literature. First, we address the
key advantages of employing ML algorithms in optical networks.
Then, we review the main optical impairments and modulation
formats being monitored and classified, respectively, using ML
algorithms. Additionally, we discuss the current status of optical
networks in terms of MFI and OPM. This includes standards,
monitoring parameters, and the available commercial products
with their limitations. Second, we provide a comprehensive review
of the available ML-based techniques for MFI, OPM, and joint
MFI/OPM, describing their performance, advantages, and lim-
itations. Third, we give an overview of the exiting ML-based
OPM and MFI techniques for the emerging optical networks
such as the new fiber-based networks that use future space divi-
sion multiplexing techniques (e.g., few-mode fiber), the hybrid
radio-over-fiber networks, and the free space optical networks.
Finally, we discuss the open issues, potential future research
directions, and recommendations for the potential implemen-
tation of ML-based OPM and MFI techniques. Some lessons
learned are presented after each section throughout the paper to
help the reader identifying the gaps, weaknesses, and strengths
in this field.
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I. INTRODUCTION

OPTICAL networks are evolving to provide candidate
solutions that can cope with the required data traf-

fic. The capacity of such networks outperforms the radio
frequency (RF) and copper cable networks. Therefore, fiber
optics are key drivers for future emerging technologies and
networks such as smart cities, Internet of Things (IoT), data
centers, and 5G [1], [2]. However, the rapid advances in
information technology and large data usage creat new chal-
lenges and limitations on optical networks in terms of band-
width, latency, and reliability. To deal with such challenges,
there has been an evolution/revolution in network transmission
systems and architectures such as the utilization of advanced
modulation formats, new multiplexing techniques, flex-grid
transmission, and reconfigurable optical add-drop multiplexer
(OADM). Nonetheless, these advances come at the cost of
increased network complexity and create more challenges to
the operation and management of optical networks.

On the other side, the current optical networks are static,
where the physical channel path from the transmitter to
the receiver is fixed. This network architecture reduces the
complexity and requirements of the network nodes and ter-
minals. However, the future optical networks, such as the
elastic [3] and cognitive networks [4]–[6] are expected to
be dynamic, spectrum grid-free, modulation format-free, and
reconfigurable [3], [7], [8]. These features improve the over-
all network performance, flexibility, and efficiency, requiring
the upgrade of the current optical nodes to be intelligent. Part
of this intelligence is monitoring the signal performance and
identifying its type to enable the network to determine the
degradation source and initiate precautionary procedures to
improve network reliability. Moreover, the ability of signal
receivers to identify the signal type known as modulation for-
mat identification (MFI) enables building adaptive, efficient,
and flexible networks where the signal type and bandwidth is
determined based on the network conditions. Additionally, the
ability to monitor the signal quality, i.e., optical performance
monitoring (OPM), at network nodes enables the network
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operator to make a tradeoff between spectral efficiency, signal
quality, and reach distance. In such a case, higher-order modu-
lation formats will be transmitted over good condition optical
channels while lower-order modulation formats will be used
in bad condition optical channels.

Machine learning (ML) techniques are promising solutions to
add intelligence to nodes in the optical network. ML techniques
can help the network nodes to learn from the conditions of
the network and use this knowledge in future to optimize
the network resources. Recently, there has been extensive
research on the use of ML in optical networks such as fiber
nonlinearity compensation [9], [10], nonlinear phase noise com-
pensation [11], [12], and nonlinear equalizers design [13]–[15],
and that by learning the behavior of the impairment or channel
from the observed data. Then, a model can be built to mitigate
the channel or the impairment effect. In addition, ML can be
utilized for optical channel modeling [16], [17], especially for
cases where theoretical modeling is not feasible. Recently, ML
is proposed in the literature for performing OPM and MFI.
This enables the use of adaptive modulation formats according
to the transmission conditions, which in turn requires the uti-
lization of suitable MFI techniques to identify the modulation
format type at the receiver. Table I presents the definitions of
the used acronyms in this article.

Figure 1 illustrates the architecture of future optical
networks that include access, metro, and core networks. Over
the past two decades, new technologies have been introduced
to improve the network capacity, such as free space opti-
cal (FSO) communication in data centers and mobile access
networks, in addition to the integration between space and
wavelength division multiplexing (SDM and WDM) fiber
networks in the metro segment. These new advances in fiber
networks introduce tremendous challenges, in terms of latency,
reliability, availability, adaptability, and heterogeneity. ML
technologies can play an important role in network man-
agement, organization, and optimization. However, to achieve
these benefits, a suitable training dataset, collected from the
network elements, is required to reach an acceptable level of
generalization that will perform well when deployed. Then,
the resultant model can be used to control and optimize the
network resources by performing remote OPM, MFI, and
routing.

A. Advantages of Using ML in OPM and MFI for Optical
Networks

MFI and OPM can be performed using two main
approaches: classical and ML approaches. In classical
approaches, we mainly have the Likelihood-based (LB) and
features-based (FB) methods. The LB methods are optimum
with respect to parameters estimation and classification accu-
racy. However, this optimality comes at the cost of requiring
a prior knowledge of channel parameters and/or a compre-
hensible mathematical model describing the channel under
consideration [18], [19]. In FB methods, MFI and OPM are
performed by making use of hand-crafted features. These
features are selected in an ad-hoc manner involving a long
trial and error process to decide which features best describe

TABLE I
MAIN ACRONYMS

different channel impairments and/or modulation formats.
Furthermore, the actual implementation of a FB classifier often
requires manual construction of a decision tree with a set of
pre-determined thresholds. These thresholds are often com-
puted using a theoretical noise-free signal or optimized with
given channel conditions.
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TABLE I
MAIN ACRONYMS (CONTINUED)

ML algorithms, on the other hand, can build predictive and
classification models in an automated manner and without
a prior knowledge of channel model or channel parameters.
Indeed, ML algorithms based on the concept of end-to-end

learning replace extracting hand-crafted features by iterating
through deep learning architectures to automatically learn rich
features directly from raw data; see Section II. For this rea-
son, recently, ML-based algorithms have been used extensively
in diverse fields of optical communication systems [20]–[24].
The use of ML techniques to perform OPM and MFI can
provide many benefits either to the current optical networks
or for the future adaptive and autonomous optical networks.
Here, we discuss the main benefits of using ML for OPM
and MFI.

1) Real-Time Adaptability Using Online Learning
Procedures: Using ML in OPM of optical networks
helps in utilizing information about the network status in
real time [25]–[27]. OPM based on ML helps in building
proactive networks by relying on constantly-adapting models.
These models can predict the possibility of fault occurrence
and recommend suitable solutions even when operation
parameters are changing, thereby guaranteeing stable and
reliable network operation. Hence, the optical network
becomes able to monitor its functions, detect performance
changes, and provide feedback to the network management
to improve the operational performance. Improving network
performance in an automatic manner requires ML-based
MFI techniques to adapt the transmission speed based on
OPM feedback. ML-based OPM and MFI techniques ensure
reducing downtime and increase network availability [26].
Note that network reliability is very important for some
applications as in medicine, where short diagnosis and
treatment times are highly required.

2) Superior Flexibility and Reconfigurability: Future opti-
cal networks will be dynamic, flexible, and adaptive, where
data rate and modulation formats can change according to
the customer needs and physical link status. Leaning-based
models can help in this regard by building OPM and MFI
techniques that are data-driven and adaptable to the variety of
operation conditions [25], [28]. This can be achieved using
unified learning algorithm that works across the spectrum.

3) Improved Network Security: Similar to other data trans-
mission networks, optical networks are vulnerable to unpre-
dictable and detrimental attacks targeting service disruption,
or unauthorized acquiring of transmitted data. As OPM
provides continuous information about the optical parame-
ters, any attack causes changes in the relationship between
these parameters [29]. Since accurate models of physical-
layer impairments under attacks do not exist, ML greatly
helps for recognizing and detecting these security breaches.
Furthermore, ML for OPM and MFI helps in securing the
network by utilizing techniques such as incremental learn-
ing [30], [31]. This technique improves in-use models or
reinforce their ability, by continually adapting the models
based on a constantly arriving data stream, to detect the
presence of an unauthorized data acquirement.

4) Advanced Network Operation Features at Reduced Cost:
OPM and MFI techniques introduce some cost when built and
integrated in the network. However, their ability to re-learning
OPM and MFI models improves their cost-effectiveness com-
pared to non-ML learning techniques. Additionally, an ML-
based technique can be adapted to a variety of conditions to
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Fig. 1. Next generation heterogeneous optical network.

satisfy multi-tasks objectives leading to more efficient usage,
as non-ML-based techniques are typically designed to tackle
each task objective separately [32]. Therefore, ML adds to the
reduction of the overall network operational costs by provid-
ing proactive monitoring of the network impairments. This,
in turn, improves the quality of service (QoS) to respect the
service level agreement (SLA) of customers.

5) Improved Network Efficiency: Building intelligent nodes
with OPM and MFI functions helps the usage of network
resources in an efficient way [25]. However, unless the moni-
toring functions can improve their performance and efficiency
over time, as in ML-based OPM and MFI, there will be
a gap between maximum efficiency of network resources
and deployed solutions to achieve said efficiency. ML-based
OPM and MFI functions can minimize waste in the network
resources especially in the next generation optical networks;
e.g., elastic optical networks. These networks are expected to
handle large number of tunable parameters such as modula-
tion format, signal power, symbol rate, adaptive coding rate,
and adaptive channel bandwidth, etc. In such situations, it
is very difficult to model a system through non-ML closed-
form formulas that relies on approximations and sacrifices
resource utilization. In contrast, ML algorithms can easily
handle complex non-linear behavior, which leads to better
resources utilization [33].

B. Review of Relevant Survey Articles

For many decades, MFI has been a hot topic of research in
RF digital communication systems, where many approaches
have been proposed in literature [18]. Similarly, optical
networks are gaining more attention owing to the advances
in photonics technologies and the interest in MFI and OPM
for these networks is increasing dramatically. In the litera-
ture, few technical reviews have discussed the importance
of MFI and OPM for current and future optical networks.

The work in [34]–[36] addressed the development of differ-
ent OPM techniques in optical communication networks such
as the optical filtering, interpolation, and polarization nulling.
Although many of these techniques are proposed to monitor
different performance and impairment parameters, they did not
address ML techniques that are considered effective solutions
for OPM. In [37], the authors discussed the application of ML
techniques in software defined network (SDN). Their contribu-
tion is focused on traffic classification, routing optimization,
resource management, QoS and security. However, ML for
OPM and MFI of optical networks is not covered. Recently, a
review work pertaining to ML and its applications in optical
communication networks is reported in [25]. In this work, the
authors mainly focused on the issues related to the physical
layer. Specifically, the aim was to describe the mathemati-
cal foundations of basic ML techniques and the benefits of
using ML for optical networks. In that context, this work
reviewed briefly ML-based OPM techniques proposed for opti-
cal networks. Similarly, the authors in [33], [38] reviewed ML
techniques when applied to different areas in optical networks.
One of these areas is the utilization of ML in OPM and MFI,
which was covered briefly.

C. Summary of Paper’s Contributions

In this work, our goal is to conduct an extensive review
that covers ML-based OPM and MFI techniques in optical
networks. Our contributions are summarized as follows:

• Review and discuss the current situation of optical
networks in terms of MFI and OPM: standards, monitor-
ing parameters, availability of commercial products and
their limitations.

• Review, extensively the proposed ML techniques for MFI,
OPM, and joint MFI/OPM for direct and coherent optical
networks during the last two decades.



SAIF et al.: ML TECHNIQUES FOR OPM AND MFI: A SURVEY 2843

Fig. 2. Paper organization.

• Evaluate and compare the different proposed techniques
in a tabular manner according to different algorithmic
aspects.

• Review the available ML-based OPM and MFI tech-
niques for other types of optical networks such as the
hybrid radio-over-fiber (RoF) networks, the orbital angu-
lar momentum (OAM), or other fiber-based networks that
use future SDM multiplexing techniques such as the few
mode fiber (FMF).

D. Paper Organization

The rest of this survey is organized as illustrated in Fig. 2.
In Section II, we describe the different ML algorithms used to
build OPM and MFI functions, which include supervised ML,
un-supervised ML, and reinforcement learning. Section III dis-
cusses the different types of modulation formats and optical
impairments that are classified and monitored, respectively, in
the proposed MFI and OPM techniques for optical networks.
Moreover, it discusses the available OPM commercial prod-
ucts and their limitations. In Section IV, we first address
some conventional techniques for OPM and MFI that are not
ML-based. Then, we comprehensively discuss the ML-based
techniques for OPM, MFI, and joint OPM/MFI in traditional
fiber-based optical network. OPM and MFI for multiplexed
signals are presented in Section V. In Section VI, we discuss
the OPM and MFI for RoF and FSO networks. Further dis-
cussions and guidelines are presented in Section VII. Open
issues in current proposed OPM and MFI techniques and rec-
ommended research directions are discussed in Section VIII.
Finally, concluding remarks are shown in Section IX. For each
section in the paper, some lessons learned are given in order
to deepen the readers’ understanding of the discussed topics
in this survey.

II. MACHINE LEARNING ALGORITHMS

ML is a branch of artificial intelligence that focuses on
developing algorithms that, when given access to adequate
amount of training data, can learn the relationship between

inputs and outputs, without explicitly articulating the rela-
tionship. ML has been used extensively in image processing,
medical applications and recently exploited in optical networks
for MFI and OPM.

In general, ML algorithms aim to estimate an unknown
function that maps inputs, representing the parameters of
a given problem, to outputs representing solutions to said
problem. When both input-output pairs are available for the
learning algorithm, such a learning task is called “Supervised
Learning.” However, when only the inputs (or outputs) are
available for the learning algorithm, the learning process is
called “Unsupervised Learning.” A special class of prob-
lems that requires a series of decisions or functions, to reach
the final solution, can be learned using methods fall under
“Reinforcement Learning (RL).” Additionally, the output type
can affect the learning process. For instance, when the out-
puts represent a generic description of the class of data, e.g.,
“tree” versus “bird,” the problem is known to be a classifi-
cation problem. MFI in optical networks is a classification
problem where supervised and unsupervised learning are uti-
lized to identify the different modulation formats. On the
other hand, when the outputs represent a precise numeri-
cal value for each given input, the problem is known as a
regression problem. It is worth noting that the majority of the
reported learning-based OPM techniques fall under supervised
learning because OPM estimation problems typically require
some form of regression. Furthermore, joint OPM and MFI is
proposed but with individual training [39]. This kind of learn-
ing is called single task learning. Recently multi-task learning
(MTL) [40], [41] is proposed to perform classification and
regression simultaneously with joint training.

In this section, we review the commonly used learning-
based algorithms and focus exclusively on the ones used for
OPM and MFI in optical networks. The different types of ML
algorithms are illustrated in Fig. 3.

A. Supervised Learning

Supervised learning is achieved by analyzing input-output
pairs of examples (instances) of an unknown function that
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Fig. 3. Different types of ML algorithms used for MFI and OPM in optical
networks.

Fig. 4. A typical pipeline for learning a supervised model.

maps inputs to outputs. The learned model will approximate
the function based on few assumptions, which gives rise to
multiple supervised learning algorithms each is suited for a
specific set of assumptions. To learn a model, supervised learn-
ing algorithms are fed a large number of training examples
containing the input data and their corresponding labeled out-
puts (ground truth) to estimate the parameters of the learned
model. The output during training phase is iteratively com-
pared with the ground truth to minimize the error, known as the
training error. Once a model is found, the model is tested using
unknown examples during the training phase, typically called
testing instances. The performance of the model is estimated
by calculating the accuracy precision of the model when esti-
mating the output of testing instances. A typical pipeline for
learning a supervised model is illustrated in Fig. 4. Supervised
ML algorithms can provide accurate results because the out-
puts are known during training phase and the parameters of
the learning model are tweaked to minimize the error in esti-
mating (predicting) such outputs. In the following discussion
we list a few supervised learning algorithms that are widely
used in learning-based OPM and MFI techniques.

1) K-Nearest Neighbor (K-NN): k-nearest neighbor (k-NN)
is one of the simplest supervised ML algorithm that belongs
to a subclass called nonparametric models. The idea behind
k-NN is to estimate (predict) an unknown output from a given
input by using “close; input-output pairs that are known dur-
ing training. The closeness notion is dictated by the problem

Fig. 5. Illustration of ML classification using k-NN algorithm with k = 5.

settings and the characteristics of the input data, neverthe-
less, Euclidean, Manhattan, and Hamming distance metrics
are commonly used [42]. In the training phase, the dataset
is sorted and indexed for easy and fast future retrieval. During
testing, a majority vote of the k-nearest neighbors is used
to estimate (predict) the unknown output of a given input.
Figure 5 illustrates an example of classification problem using
k-NN algorithm. The dashed-green and solid-blue circles rep-
resent class 1 and 2, respectively, while the filled-black circle
represents the unknown (unlabeled) point. For k = 5, among
the five closest neighbors shown in Fig. 5, three belong to
class 1 and two belong to class 2. Thus, the unknown circle
belongs to class 1. k-NN algorithm can also be used to solve
regression problems by calculating the average of numerical
target of the k-nearest neighbor. There are numerous propos-
als to estimate the optimum value of k, where cross validation
is commonly used. The cross validation is performed by test-
ing independent data at different values of k and select the
value that provides the best accuracy. The k-NN algorithm
is easy to implement and well suited for large datasets and
highly non-linear mapping functions, however, storage require-
ments and retrieval time can limit its applications in real-time
systems [43].

2) Support Vector Machine (SVM): This is a widely used
supervised learning algorithm, which can be interpreted in
the so-called kernel methods framework. This framework is
based on mapping a low dimensional input feature space into
a higher dimensional kernel feature space, and then solving
a linear problem in that kernel feature space [44]. SVM is
an extension of support vector classifier; however, its fam-
ily of algorithms can tackle both classification and regression
problems. The SVM algorithm seeks finding a hyperplane (a
plane in the n-dimensional kernel feature space) that maxi-
mizes the margin, i.e., the separation distance between two
classes within a dataset, as shown in Fig. 6; thus, SVM is
a maximal margin classifier. Therefore, when data points of
two classes are non-linearly intertwined, the data points are,
first, linearized by projecting them into a high dimensional
space using kernel functions such as the sigmoid, polynomial,
and radial basis functions. In Fig. 6, the support vectors are
simply the vectors defined in terms of the co-ordinates of indi-
vidual observations (mapped data points), which are closest to
the boundary between the classes. These vectors are used to
estimate the parameters of the hyperplane. Their importance



SAIF et al.: ML TECHNIQUES FOR OPM AND MFI: A SURVEY 2845

Fig. 6. Classification of a dataset consists of two classes using SVM.

comes from their influence on the cost minimization procedure
to identify the hyperplane parameters.

The SVM algorithms can be extended to classify between
more than two classes by utilizing either “1-against-1” or
“1-against the rest” methods. In 1-against-1 technique, multiple
SVMs are used on parallel where each classifies between two
classes and the final decision is based on majority vote. On the
other hand, 1-against the rest technique redefines the problem as
multiple independent problems where each classifies between
a class and the rest of the classes combined in a “Super” class,
and the final decision is taken based on majority vote [45]. The
SVM algorithm can be modified to solve regression problems
by utilizing the hyperplane as the estimated function with the
addition of tolerance range. This ensures the existence of global
minima in the optimization of loss function [43]. In practice,
SVM can provide superior performance compared to k-NN and
artificial neural networks (ANN) algorithms both in accuracy
and training speed, however, its meta-parameters such as the
kernel function, tolerance margin, soft margin, etc. can be
difficult to optimize and depend on the data topology as well
as domain knowledge [46].

3) Artificial Neural Networks (ANNs): Inspired by the bio-
logical structure of the neural cells in human brains, artificial
neural networks present a computational model for the learn-
ing and decision making in biological entities [47]. However,
state-of-the-art neural networks have diverged significantly
from biological models. The most basic building block of
an ANN is called a neuron [47]. In ANN, layers of neurons
are connected in cascade and information propagates through
the network where it goes under various transformation until
it reaches the end and produces outputs. The goal of ANN
algorithm is to change the parameters of each neuron in the
network so that the output yields the desired values. Each neu-
ron is modeled as a non-linear activation function whose inputs
(coming from proceeding layers) are multiplied by weights
(wk ) and shifted by bias coefficients (bk ) giving the overall
ANN algorithm non-linear properties and making it possible to
learn virtually any function. The basic ANN algorithm archi-
tecture contains three layers of neurons; an input layer (x),
one hidden layer (z) and an output layer (y); this architec-
ture is called multi-layer perceptron 3 (MLP3), as shown in
Fig. 7. The input layer accepts an input vector, then trans-
fers the vector samples to all neurons of the hidden layer.

Fig. 7. ANN algorithm architecture (MLP3).

The connection between the layers is done by the network
weights. In the training phase, the weight and bias coefficients
are optimized. The training phase stops when it reaches its
specified margin, i.e., the error between the output and the
target [48]. The advantage of the ANN algorithm is that the
testing phase is fast once training is completed. However, it is
hard to interpret the trained ANN model. Additionally, during
training, the optimization process may fail to reach a global
minimum especially when the number of layers and/or neurons
cannot model the complexity of the learning task.

There are many types of ANN, which have the same concept
but differ in the architecture. For example, Probabilistic Neural
Network (PNN) is a kind of feed-forward artificial neural
network, which can approach a Bayes-optimal solution [49].
This solution chooses the class that has the maximum a pos-
teriori probability of occurrence. PNN consists of input layer,
pattern layer, summation layer, and output layer. Similar to
ANN, the input layer accepts an input vector, which gets trans-
ferred to the pattern layer. This second layer calculates the
Euclidean distance between the input vector and the vectors
of all classes in a reference dataset. Therefore, the number of
nodes in this layer is equal to the number of patterns in the
reference dataset, with each node has a radial basis activa-
tion function. This nonlinear function accepts at its input the
measured distance between the input vector and a reference
pattern, and produces at its output a probability value. The
reference dataset contains certain number of patterns for each
class. Therefore, the summation layer performs an averaging
over the outputs of the pattern layer. The averaging is per-
formed for each class alone to produce a vector whose entries
are of values ≤ 1, representing the probabilities of classes.
Finally, the class with the maximum probability is identified
as the true class.

When ANN algorithm contains a large number of hidden
layers (typically 2 or more hidden layers), it is called deep
neural network (DNN). DNN helps in complex non-linear
modeling problems. However, it requires a large dataset for
training, which is more time consuming than training an ANN.

4) Convolutional Neural Networks (CNN): Similar to
multi-layer ANN, convolutional neural network (CNN) algo-
rithm is a kind of DNN algorithms where multi-hidden
layers are used, however, in CNN inputs are typically
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Fig. 8. Schematic diagram of CNN algorithm, where n × n is kernel filter
size and m × m is down-sampling ratio.

Fig. 9. RNN algorithm’s schematic diagram. xt : input at time step t. ht :
hidden state at time step t, yt : output at time step t , Wxh : weights between
input layer and hidden layer, Whh : weights between hidden layers, Why :
weights between hidden layer and output layer.

multidimensional such as images, i.e., inputs are highly corre-
lated. Architecturally, CNN consists of three types of layers;
convolutional layer, pooling layer, and fully connected layer,
as shown in Fig. 8. In the convolutional layer, each point in
the original multidimensional input is convolved with kernel
filters that are initialized randomly to produce some feature
maps. Then, the pooling layer reduces the dimension of each
feature map using a filter such as average and max filters.
The output of the previous layers is flattened and feeds into
a fully connected neural network which perform the classi-
fication or regression tasks [50]. CNN algorithms are useful
for both classification and regression problems, however, its
training computational time and cost are high compared with
other ML algorithms.

5) Recurrent Neural Network (RNN): Recurrent neural
networks (RNNs) are a special class of DNNs, where the
output of the network is fed back to the input making it espe-
cially useful when handling sequential input data, i.e., data
with time-dependency, by utilizing internal state (memory).
A commonly-used simple structure of RNN is an MLP with
hidden layers that contain feedback loop to provide some
information about the previous states, as shown in Fig. 9. The
hidden layer is sharing the same weights (i.e., Wxh , Whh
and Why , which has the advantage of reducing the training
parameters compared to other NNs [51]. RNN algorithm pro-
vides better performance by taking advantage of ability to

Fig. 10. Random forest schematic diagram.

memorize information and build complexity through recur-
sive processing. However, their advantage can be limitation
at the same time since optimization algorithms can be vul-
nerable to exploding or vanishing gradients in training phase,
consequently, training might fail for long term sequential data.
This problem is tackled in long-short term memory (LSTM)
RNN, where the hidden layers are controlled using gates that
pass information to the hidden layers and maintain extracted
features from previous time steps [52].

6) Decision Tree (DT): This algorithm uses a tree-like
graph to adopt both classification and regression. The tree
structure includes a root node (the root of a tree) that connects
to internal nodes, through links (branches), which in turn con-
nect to leaf nodes (leaves of a tree). Each node represents a
feature (attribute) and each leaf represents an outcome (target
value). A DT model consists of an ensemble of (binary) deci-
sions arranged in a hierarchical manner [53]. Each pathway
from the root node through internal nodes to a leaf node
represents a decision rule. Decision rules can be constructed
from a training dataset using different algorithms such as the
iterative dichotomiser 3 (ID3) and classification and regression
tree (CART). The collection of all such rules is the correspond-
ing DT model. Once a decision tree model is constructed, it
can be utilized for classification or prediction of a new case.
This algorithm is simple and fast, however, it is also critically
sensitive to the features and thresholds used in making rout-
ing decisions. To combat such a disadvantage, multiple trees
are trained and processed on parallel in what is known as the
random forest algorithm.

7) Random Forest: This algorithm consists of multiple DTs
which provide diversity across feature space. Each DT is con-
structed randomly from the original dataset during the training
phase giving rise to a different subset of features for each tree.
The output of random forest is determined by plurality voting
for classification problems. In regression problems, the out-
put will be the mean for all the decision tree’s results [54].
Figure 10 shows an illustration of using a decision forest in
classification problems. In comparison with single decision
tree, random forest provides accurate results because it relies
on majority voting of multiple decision trees. Additionally,



SAIF et al.: ML TECHNIQUES FOR OPM AND MFI: A SURVEY 2847

Fig. 11. Flow chart of k-means clustering algorithm.

they are less prone to overfitting that plagues most other ML
algorithms.

B. Unsupervised Learning

Unlike supervised learning, unsupervised learning can pro-
cess and extract information from data without a clear input-
output pairs. Unsupervised models are developed by analyzing
patterns common between dataset points in order to recog-
nize (cluster) similar data points into classes, as the case in
clustering and dimensionality reduction (DR) algorithms.

1) Clustering Algorithms: Dataset clustering aims to parti-
tion a dataset points into several groups or clusters according
to their similarity. Clustering algorithms are divided into three
types based on partition, distribution, and density.

a) Clustering algorithm based on partition: In parti-
tioned clustering, the dataset points are initially partitioned
into a set of clusters. Then, the cluster algorithm uses iterative
procedures to update the partitioning by moving objects from
one cluster to another. k-means [55] and k-medoids [56] are
the two most prominent examples of partitioning algorithms.
The principle of k-means algorithm is relying on selecting
randomly k points as initial centroids (a center of a clus-
ter). Then, each data point is assigned to the nearest centroid
based on a distance metric. By iteratively updating centroids
and moving points from one cluster to another, the clustering
algorithm can reach equilibrium. The flow chart in Fig. 11
illustrates the procedure followed by the k-means clustering
algorithm to perform dataset partitioning. k-means algorithm
is easy to implement and fast, however, choosing the distance
metric and the number of clusters k can be tricky. Additionally,
equilibrium is not guaranteed for all partitioning problems.

b) Clustering algorithm based on distribution: Distri-
bution-based clustering, such as Gaussian mixture model
(GMM), is based on the assumption that points within a clus-
ter are likely to be drawn from the same distribution [57].
GMM algorithm groups observations into k multi-dimensional

Gaussian distribution and compute an initial estimate of dis-
tribution parameters such as the mean, or the covariance,
and mixing coefficient (mixture weights) for each distribu-
tion. These parameters are then updated for each iteration.
The limitation of GMM algorithm is its sensitivity to the ini-
tial estimates which sometimes leads to solution divergence.
To overcome this problem, expectation-maximization (EM)
techniques [58] are used, which iteratively find the maximum-
likelihood estimates for model parameters. Because EM algo-
rithm is complex and cannot be implemented directly, an
approximation is often invoked by using, e.g., the variational
Bayesian expectation maximization (VBEM) algorithm [59] to
estimate the model parameters.

c) Clustering algorithm based on density: Density-based
spatial clustering establishes a cluster of data points, in a high-
density region, and regards neighbors that belong to a lower
density region as outliers. By differentiating between core data
points in a cluster and its outliers, density-based clustering can
successfully partition challenging datasets where other cluster-
ing algorithms cannot achieve. Density-based spatial clustering
of applications with noise (DBSCAN) algorithm [60] and
ordering points to identify the clustering structure (OPTICS)
algorithm [61] are examples of this type of clustering.
DBSCAN applies threshold to decide on noisy points (out-
liers), which makes the algorithm sensitive to threshold setting.
This is overcome using OPTICS algorithm which takes into
consideration both the density and spatial closeness of data
points within a cluster. More recently, clustering by fast search
and find of density peaks (CFSFDP) algorithm, which is an
updated version of DBSCAN algorithm, clusters data points
by detecting 1) density peaks (representing cluster centroids),
and 2) nearest neighbor for each cluster [62].

2) Dimensionality Reduction (DR): DR aims to transform a
high dimensional dataset into a lower dimensional space while
trying to preserve the overall structure and properties of the
original dataset. There is a lot of research related to this area
in literature. Some are concerned with preserving the global
structure, i.e., the distance between the dataset points in higher
and lower dimensions [63]. Other algorithms are concerned
with preserving the local structure, i.e., dataset topology and
continuity [64]. Recently, researchers showed interest in devel-
oping algorithms that preserve the global and local structures
at the same time [65]. In general, DR algorithms can be cate-
gorized into linear and nonlinear. In this subsection, we discuss
some algorithms that were used in OPM and MFI of optical
networks.

a) Linear dimensionality reduction: In linear DR, the
transformation from a higher dimension into a lower dimen-
sion is performed as linear mapping. This means the lower
dimension data can be obtained by a linear combination of the
original dataset points, for instance, by applying some weights
or finding the projections of the original dataset points. Several
algorithms that depend on linear transformation have been
studied in literature such as the principal component analysis
(PCA) [66]. PCA transforms a high dimensional correlated
data into a lower dimensional uncorrelated data, which can
be obtained by finding the orthogonal linear combination of
the dataset points (PCA space). To find the PCA space, we
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Fig. 12. Illustration of DR using PCA.

evaluate the direction of the largest variance, i.e., the largest
eigenvalue of a covariance matrix. Figure 12 illustrates how
PCA can transform a dataset from 3D to 2D. Since the PCA
is based on finding the maximum deviation, it eliminates the
noise effect. However, it is hard to evaluate the covariance
matrix accurately [67].

Another linear DR technique, closely related to PCA, is the
independent component analysis (ICA) [68]. It is based on
extracting the linear independent components of high dimen-
sional data. Both PCA and ICA techniques preserve the global
structure. These techniques are simple in implementation but
their performance degrades when used on nonlinear datasets.

b) Non-linear dimensionality reduction: The nonlinear
algorithms accomplish the reduction by applying a kernel
function to the original data, where some can maintain the
global structure such as the multidimensional scaling (MDS)
algorithm [69] and stochastic proximity embedding (SPE)
algorithm [70], while others attempt to preserve local struc-
ture such as the auto-encoder [71]. MDS performs a nonlinear
transformation while maintaining the pairwise distance. The
quality of transformation is evaluated by stress function, such
as Kruskal’s stress function, which calculates the error between
the data in high and low dimensions. Similar to MDS, SPE
maintains pairwise distances but it utilizes an iterative pro-
cess to minimize the stress function which improves the
performance. On the other hand, an auto-encoder is similar to
an ANN algorithm, with the number of input and output layers
are equal, as shown in Fig. 13. The auto-encoder is trained in a
way such that its output matches the input. Hence, the hidden
layers represent the input and are used as features extractor or
data compressor.

Preserving both global and local structure can be achieved
using the t-distribution stochastic neighbor embedding (t-SNE)
algorithm [65]. In an SNE algorithm, the similarities of pair-
wise Euclidean distances in high and low dimensional spaces
are expressed as joint probabilities. The initial values of lower
dimensional space are chosen randomly, from a Gaussian dis-
tribution. Figure 14 illustrates reducing a dataset from 2D to
1D using SNE algorithm. Both data in lower and higher dimen-
sions are projected into a Gaussian distribution. The similarity
between high and low dimensional spaces is optimized using

Fig. 13. Schematic diagram of auto-encoder.

Fig. 14. Illustration of DR using SNE algorithm.

an optimization algorithm such as the gradient descent. In
SNE, dataset points in the lower dimension are crowded.
This makes it difficult to maintain the overall structure. An
improved SNE algorithm (t-SNE) has solved this problem by
projecting the data in lower dimensional onto t-distribution.

C. Reinforcement Learning (RL)

RL is a part of ML that is concerned with a sequence of
actions. In applications where it is not feasible to obtain an
accurate model or the complexity of the problem is signifi-
cant, RL, also known as approximate dynamic programming,
can produce an autonomous agent that can navigate the search
space and provide solutions. This is achieved by iteratively
taking actions, assessing state, and computing reward func-
tion whose value increases as it gets closer to the desired
solution. While such a learning approach has produced impres-
sive results [72], RL is critically sensitive to all three aspects
of the algorithm (action, state, reward) making its training a
challenging task. Recently, RL is applied in some applications
in optical networks such as solving decision making prob-
lems where RL provides potential solutions regarding routing
tables optimization. Moreover, it can be used for dynamic
resources allocation [73], [74]. To the best or our knowledge,
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TABLE II
HIGHLIGHTS ON MACHINE LEARNING TECHNIQUES

RL has not been applied to OPM and MFI problems in opti-
cal networks. Nevertheless, it has been suggested that RL can
be applied to real and complex optical networks because it
can achieve fast convergence, meanwhile minimize the influ-
ence of non-optimal actions taken during the pre-trained-based
algorithms [25].

Table II summarizes the different types of ML techniques
that are used for OPM and MFI in optical networks. Also,
it provides highlights on their advantages and disadvantages,
which may help facilitating the selection of appropriate ML
algorithm for a particular application.

D. Lessons Learned

In this section, we discussed several common ML tech-
niques used in OPM and MFI for optical networks. Few
lessons are to follow.

• The ML techniques that are proposed for OPM and MFI
in optical networks are mainly of two types: supervised
and un-supervised ML algorithms. In OPM, ML regres-
sors are used because the impairment is a continuous
parameter that has infinite number of values within a
range. On the other hand, for MFI, classifiers are used

to select one among different modulation formats. DR
techniques are also of value in both OPM/MFI as they
provide the tools to obtain features of reduced dimen-
sionality and facilitate dataset visualization by reducing
dataset dimensionality into order 2 or 3.

• Each ML technique has its own benefits and drawbacks.
Some have high accuracy while others have lower com-
putational complexity. Therefore, ML algorithm selection
is subject to the problem at hand. For example, the k-
NN algorithm is the simplest algorithm in the supervised
category and few parameters are required for its imple-
mentation. However, it is not recommended for high
dimensional data. The SVM is more appropriate for high
dimensional space and linear separable problems. It is
worth noting that the usage of kernel in SVMs made
them non-linear learning algorithms but selecting the suit-
able kernel function is not a trivial task. DT algorithm is
preferred when the examined dataset is small. However,
it is susceptible to overfitting, especially when the tree
is particularly deep. On the other side, the random for-
est algorithm aggregates many DTs to limit overfitting at
the expense of its computational complexity. Deep learn-
ing algorithms are performing outstanding capabilities in
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complex and nonlinear models. In addition, they deal
directly with raw data; that is, there is no need for hand-
crafted features extraction. However, they require a large
dataset for training which may not be always available.
Also, the training phase is often time-consuming. CNN is
well-suited for two-dimensional input data. For sequential
(i.e., time dependent) datasets, RNN is more appropriate
than other supervised algorithms. Moreover, MTL algo-
rithms are recommended in simultaneous classification
and regression problems.

• Unsupervised ML-based algorithms are preferably used
for clustering and DR purposes. For clustering, the k-
means algorithm is fast and easy to implement. However,
it employs hard-decision clustering with the requirement
of a pre-selection of the number of clusters. The GMM-
EM technique performs a more flexible (soft-decision)
clustering, where it relies on the posterior probabilities.
However, the requirement of optimizing many parame-
ters makes its implementation costly. Other clustering
algorithms such as OPTICS, DBSCAN, and CFSFDP
are recommended for noisy datasets, as the clustering is
established based on local densities. On the other hand,
DR techniques are commonly used as a preprocessing
step to improve learning and avoid curse of dimen-
sionality. PCA and auto-encoders are examples of DR
techniques. PCA finds the main components of the dataset
that corresponds to the direction of maximum variance,
while the auto-encoder is trained in a way such that its
output matches the input. It is worth noting that some DR
techniques can be used within the context of learning a
model in a supervised manner, but their main original
formulation is to be unsupervised.

III. OPTICAL MODULATION FORMATS GENERATION

AND OPTICAL IMPAIRMENTS

In this section, we review different types of modulation
formats where ML-based MFI techniques are proposed for
their classification. This includes common modulation formats
used in direct and coherent detection optical systems. Also,
we show the representations of optical modulation schemes in
different domains so that the readers can have better under-
standing of features extracted from each domain. Additionally,
we discuss the general types of linear and nonlinear impair-
ments that affect the OPM and MFI algorithms. Then, we
address the current OPM and MFI in the deployed opti-
cal networks where international standards and commercial
products are discussed.

A. Optical Modulation Formats

Many techniques have been proposed to classify differ-
ent types of modulation formats [75]–[77]. In particular,
some modulation formats are sensitive to specific impair-
ments while others are more tolerant to the same impairments.
Understanding the properties and techniques of the generation
and detection of various modulation formats helps in identi-
fying the challenges and selecting the appropriate algorithms
for MFI and OPM. In this subsection, we review the various

modulation formats where ML-based MFI techniques play an
important role in their classification.

1) Intensity Modulation–Direct Detection (IM-DD):
a) On-off keying (OOK): On-Off keying (OOK) modu-

lation format has dominated optical communication field for
long period due to its simple transmitter and receiver struc-
tures. However, the advances in communication technology
and the requirement for high spectral efficiency (SE) networks
make OOK not a favored option for ultra-high data transmis-
sion. It provides acceptable performance for data rates up to 10
Gbps. However, it becomes more susceptible to noise distor-
tions and channel impairments at higher network speeds. OOK
can be generated as non-return-to-zero (NRZ) and return-to-
zero (RZ) formats. In NRZ-OOK, the bit “1” is represented by
a light pulse and no light for a bit “0.” The RZ-OOK scheme is
similar to the NRZ-OOK with a difference in the optical pulse
width. The “1” bit has a different pulse width, compared to
the NRZ-OOK, according to the required optical pulse duty
cycle (defined as the ratio of the optical pulse width to the
total signal period), such as 33% RZ, 50% RZ, and 67% RZ.
Either direct modulated lasers (DMLs) or external modula-
tors, such as Mach-Zehnder modulators (MZMs), are exploited
to generate NRZ-OOK and RZ-OOK formats, while the later
requires an additional modulator called pulse carver (PC) to
control the laser pulse width. At the receiver side, a photodi-
ode (PD) is used to convert the optical power into an electrical
current. In general, RZ formats require more transmitter com-
plexity and wider transmission bandwidth (i.e., less tolerant
to channel dispersion) than NRZ formats. However, they are
more tolerant to optical noise (i.e., require less optical signal to
noise ratio (OSNR) for a given bit error rate (BER)) than NRZ
schemes owing to the less impact of inter-symbol-interference
(ISI) on RZ formats. Figure 15 (a) and (b) show simulated
optical intensity time domain, optical intensity eye diagram,
phase constellation, and optical spectrum at 10 Gbps NRZ-
OOK and RZ-OOK, respectively. Besides, Table III shows and
compares the transmitter and receiver hardware complexity of
various modulation formats.

b) Optical duobinary (ODB): This modulation is similar
to OOK in varying the light source amplitude based on the
data, and using a simple direct detection at the receiver (i.e.,
similar hardware complexity as NRZ-OOK, see Table III).
However, it requires a pre-defined phase relation between suc-
cessive bits to reduce the effect of fiber channel dispersion. A
pre-encoder generates three signal levels (i.e., “−1,” “0” and
“1”) to represent data bits. Bit “1” is represented by either
“1” or “−1” level while bit “0” is represented by “0” level.
If two successive “1” bits are separated by an odd number of
zeros, then the corresponding pre-coded signals will be 180◦
out of phase. This has the effect of reducing transmitted sig-
nal bandwidth and increasing the tolerance to fiber channel
dispersion compared to OOK schemes. Figure 15 (c) shows
the Optical duobinary (ODB) simulated optical intensity time
domain, optical intensity eye diagram, phase constellation, and
optical spectrum at 10 Gbps data rate.

2) Phase Modulation–Direct Detection (PM-DD):
a) Differential binary phase shift keying (DBPSK):

Differential binary phase shift keying (DBPSK) or simply
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Fig. 15. Intensity time domain, intensity eye diagram, phase constellation, and optical spectrum of different modulation formats. The code word “11101100” is
used to generate the intensity time domain signal for NRZ-OOK, RZ-OOK, Duobinary, NRZ-DPSK, RZ-DPSK, NRZ-DQPSK, and RZ-DQPSK modulations.
For DP-BPSK modulation, the code words “11101100” and “00110111” are used for Pol. X and Pol. Y, respectively.

TABLE III
HARDWARE COMPLEXITY OF VARIOUS MODULATION FORMATS

DPSK systems that employing delay-demodulation or differ-
ential detection, at the receiver side, are known as DPSK
systems. DPSK formats encode the data using the difference
in optical carrier phase between adjacent bits, such that a π
phase change in the carrier’s phase, between the successive
bits, represents the bit “1” and absence of phase change repre-
sents the bit “0.” Hence, signal power is almost constant over
the transmitted data. This makes DPSK less prone to non-
linear and dispersion effects [78]. Besides, the π phase shift

between transmitted symbols improves the receiver sensitivity
with respect to OOK formats; see DPSK constellation diagram
in Fig. 15 (d) and (e). DPSK can be generated as NRZ or RZ
formats with the later requires more hardware complexity in
signal generation, see Table III. Figure 15 (d) and (e) show the
NRZ- and RZ-DPSK simulated optical intensity time domain,
optical intensity eye diagram, phase constellation, and optical
spectrum at 10 Gbps data rate.

b) Differential quadrature phase shift keying (DQPSK):
In differential quadrature phase shift keying (DQPSK), each
transmitted symbol carries two bits where the phase of the
optical carrier hops between 0, +π/2, −π/2, and π. Hence,
for the same data rate, information can be transmitted over
less signal bandwidth (i.e., more SE) than single bit per sym-
bol formats (i.e., OOK and PSK). This increases the tolerance
to channel dispersion. The DQPSK spectrum shape is similar
to DPSK scheme, however, its transmitter is more complex
than DPSK, as it is implemented using two parallel MZMs
and a phase modulator to generate the quadrature signals; see
Table III. Figure 15 (f) and (g) shows the optical intensity
time domain, optical intensity eye diagram, phase constella-
tion, and optical spectrum for NRZ-DQPSK and RZ-DQPSK,
respectively, at 10 Gbps data rate.

3) Advanced Modulation Formats With Coherent Optical
Detection: Unlike the previously discussed modulation for-
mats which use the direct detection techniques to recover the
transmitted information, coherent-based modulation formats
use the so-called coherent detectors for data recovery. Starting
from 1980s, coherent optical communication has gained much
attention owing to its advantages over traditional direct detec-
tion systems. Modulation formats that implement phase and
amplitude modulation reduce the system cost and devices
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Fig. 16. Recovered DP-QPSK signal using (a) direct and (b) coherent
detection.

requirements in high-speed applications. The generated sym-
bols may differ in phase only such as M-ary phase shift keying
(M-PSK) or in combinations of amplitude and phase as in
M-QAM. In this technique, a local oscillator laser is beaten
with the modulated signal to improve the receiver sensitivity
and allow the detection of both signal’s intensity and phase.
Besides, two orthogonal polarizations of the optical signal can
be generated and detected in a dual polarization (DP) system
to duplicate the SE. Moreover, the progress in digital sig-
nal processing (DSP) algorithms opens the door to build a
digital coherent receiver where channel impairments can be
digitally mitigated using post and pre-processing algorithms.
On the other hand, coherent detection suffers from the high
receiver cost that is at least 10 times that of direct detection
system, for the same bandwidth. In Table III, we show the
complexity of single polarization (SP) and DP coherent opti-
cal systems. Also, the simulated optical intensity time domain,
optical intensity eye diagram, phase constellation, and opti-
cal spectrum for DP-BPSK signal at 10 Gbps data rate are
illustrated in Fig. 15 (h).

So far, we show the various optical signatures, of common
modulation formats, at different domains (i.e., time, eye, spec-
trum, and constellation). However, for the purpose of MFI, the
optical signals are converted to the electrical domain with new
signatures according to the type of optical receiver (i.e., simple
PD or complex coherent detector). In Fig. 16 (a) and (b), we
show the recovered DP-QPSK signal using direct detection and
the coherent detection (for the real part of one polarization),
respectively. It is clear that each detection method produces its
own signature which affects the corresponding MFI process.
Hence, an adaptive modulation format identifier will be of a
potential value in heterogeneous optical networks.

B. Optical Impairments

As any communication medium, fiber cable introduces
impairments that affect either the amplitude, phase, and/or the

Fig. 17. Optical impairments classification. The blue shaded boxes indi-
cate the optical signal parameter affected by the impairment. The yellow
shaded boxes show the dependence of impairment’s mitigation algorithm on
the modulation format.

polarization of the optical signal. These propagation impair-
ments can be divided into linear and nonlinear types. Such
impairments degrade the system capacity to a limit that no
useful data can be obtained at the receiver. In this subsec-
tion, among many impairments that affect the optical signal,
we focus on the common impairments where ML-based tech-
niques are reported in literature either to predict their levels
or to identify the modulation format type in their presence.
In specific, our focus here is on the linear impairments which
are more dominant in current optical networks. The different
types of optical impairments (gray shaded boxes), the effect
on optical signal parameters (blue shaded boxes), and the
dependency of impairment’s mitigation algorithm on modu-
lation type (yellow shaded boxes) are summarized in Fig. 17.
Moreover, Fig. 18 illustrates the individual effect of the com-
mon impairments using different signal representations. The
illustrated diagrams (ideal in red and impaired in blue) are
generated using a 10 Gbps DP-QPSK optical system with a
roll-off factor of 0.18.

1) Linear Impairments:
a) Signal attenuation: Attenuation causes decay in the

power of light signal as it propagates through fiber chan-
nel. Thus, it affects the amplitude of the optical signal. The
loss in optical power is owing to fiber-based intrinsic factors
including scattering and absorption or extrinsic factors includ-
ing environment, physical bending, and installation process
stress. It has been shown that the light’s power is decreas-
ing exponentially with distance. Current standard single mode
fiber (SSMF) cable introduces ∼ 0.2 dB/km attenuation factor
at 1550 nm window, according to ITU-T G.652.B standard-
ization [79]. It is worth to note that fiber attenuation can be
mitigated using inline optical amplifiers (OAs).

b) Amplified spontaneous emission (ASE) noise: To
extend the reach distance of a transmitted signal in fiber,
optical amplifiers (OAs) are widely used. These amplifiers
enhance the optical signal power at the expense of introducing
some undesirable signal called amplified spontaneous emission
(ASE) noise. The amount of ASE noise in the optical signal
is defined by the OSNR parameter, which is the ratio of the
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Fig. 18. The effect of the different impairments on the phase constellation, eye diagram, and time-domain for 10 Gbps DP-QPSK signal (ideal in red and
impaired in blue). Note that the subfigures are only for Pol. X to avoid redundancy, where the eye-diagrams and time-domain pulses are plotted for the
real-part of the signal.

optical signal power to noise power. OSNR is an important
quality metric in optical networks, similar to SNR in wireless
communications. In Fig. 18 (a), we show the effect of ASE
with OSNR of value 14 dB on the phase constellation, eye dia-
gram, and time-domain of 10 Gbps QPSK signal. This effect
degrades the recognition accuracy of different classifiers and
calls for the implementation of robust monitoring algorithms.

c) Chromatic dispersion (CD): Chromatic dispersion
(CD) is a linear impairment that affects the optical signal
phase. CD results from both waveguide and material dis-
persions which cause optical pulse broadening. Waveguide
dispersion depends on the fabrication process; however, mate-
rial dispersion arises from the frequency dependent of the
propagated signal on the refractive index of the fiber. In
high-speed transmission systems, this causes different spectral
components of optical signal to travel through fiber channel
with different speeds which leads to broadening the transmit-
ted pulses. Hence, it introduces ISI between adjacent pulses
and its severity depends on the fiber channel length and system
bitrate. This phenomenon is commonly referred to as group
velocity dispersion (GVD) or simply fiber dispersion. CD is a
static dispersion as it changes very slowly with time and with
small amount due to variation in fiber temperature. CD can be
mitigated either optically using dispersion compensating fiber
(DCF) modules or electronically using digital filters [80]. Note
that the mitigation techniques of CD do not depend on the
modulation format. Hence, the MFI algorithms can be applied
after removing this effect from the received data. In Fig. 18 (b),
we show the effect of CD with fiber dispersion of 600 ps/nm
on the phase constellation, eye diagram, and time-domain
for 10Gbps QPSK signal. This impairment affirms the need
for building intelligent nodes in the future self-reconfigurable

heterogeneous optical networks, where signal routing depends
on network conditions. This stimulates the development of fast
and reliable OPM algorithms that can cope with the dramatic
changes in CD amount.

d) Polarization mode dispersion (PMD): Polarization
mode dispersion (PMD) affects both the phase and polar-
ization of optical signals. PMD has its origin from optical
birefringence. In ideal cases, fiber has cylindrical geometry,
so the two orthogonal polarizations of the optical signal travel
with the same group delay. However, in real systems, the
two-polarization components travel through the fiber with dif-
ferent group delays, due to manufacturing imperfection or
fiber tension. The fiber asymmetry breaks the degeneracy of
the orthogonal polarized modes resulting in birefringence, in
addition to a difference in the group velocity of the two orthog-
onal modes, known as the differential group delay (DGD). The
instantaneous value of DGD varies along the fiber and follows
Maxwellian distribution [80]. The mean DGD value is known
as the fiber PMD and measured in ps/

√
km. In modern optical

systems, the mean DGD value is in the range of 0.2 ps/
√
km.

This value has a major effect on optical systems operating at
data rates greater than 40 Gbps because it can be a significant
fraction from the symbol period. Associated with fiber’s DGD,
fiber’s principle state of polarization (PSP) rotates along fiber
channel [81]. These two phenomena together form the 1st

order PMD effect. Note that PMD is a dynamic dispersion
since it changes on a time scale of milliseconds. The effect
of PMD can be mitigated using an adaptive multi-input-multi-
output (MIMO) equalizer [80]. Figure 18 (c), (d), and (e) show
the effect of DGD (50 ps), PSP rotation (25 deg.), and 1st

order PMD (DGD = 50 ps, PSP = 25 deg.) on the phase
constellation for 10 Gbps DP-QPSK signal (Pol. X). The eye
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diagram and time-domain representations are also plotted for
the same signal but only for the real part of Pol. X to avoid
redundancy.

e) Polarization dependent loss (PDL): Polarization
dependent loss (PDL) is another impairment that affects polar-
ization multiplexed systems. It results from the polarization
dependence of optical components which causes the two polar-
ization components of an optical signal to reach the destination
with different OSNR values. The most common sources of
PDL include passive couplers, multiplexers, and photode-
tectors. The PDL can be expressed as the loss difference
peak-to-peak of various states of polarization.

f) Phase noise (PN): Phase noise (PN) originates from
the laser at the transmitter side or the local oscillator (LO) at
the receiver side. This impairment can be modeled by a Wiener
process and it depends proportionally on the laser (transmitter
laser and LO) linewidth and symbol duration. PN has no effect
on the performance of non-coherent optical systems since the
decision on those receivers depends on the signal intensity.
However, it has a sever effect on coherent optical systems
because the data is modulated in the optical signal phase. The
optical carrier’s phase recovery, due to PN, depends on the
modulation type [82], [83]. Thus, the MFI will be applied
before the phase recovery algorithms. Figure 18 (f) shows the
effect of laser PN for linewidth of 1000 KHz on the phase con-
stellation, eye diagram, and time-domain for 10 Gbps QPSK
signal.

2) Non-Linear Impairments: Since optical fiber is a non-
linear medium, several nonlinear effects start to appear as
the optical power level increases. These nonlinearities result
from the coexistence of high strength optical fields simulta-
neously in optical channel or the interaction of high intensity
optical fields with the acoustic waves and/or molecular vibra-
tions. This causes power gain or loss at different wavelengths,
wavelength conversion, and crosstalk between wavelength
channels. Optical nonlinearities can be classified into two gen-
eral categories: nonlinear inelastic scattering process which
includes the stimulated Raman scattering (SRS) and stimulated
Brillouin scattering (SBS) and Kerr effect (i.e., the depen-
dence of refractive index on light intensity) which includes the
self-phase modulation (SPM), cross-phase modulation (XPM),
and four-wave mixing (FWM). SBS, SRS, and FWM result in
power gain or loss in wavelength channels by adding gain to
some channels or depleting power from others. SPM and XPM
affect only the phase of the signals which causes frequency
chirping in digital pulses. Frequency chirping worsens the
pulse broadening due to dispersion. It worths to note that in
other contexts, some nonlinear effects can be very useful to
perform important functions. This includes wavelength con-
version, in WDM networks, using FWM and optical wave
amplification using SRS and SBS.

C. Current Available Commercial Solutions and
Standards/Recommendations for OPM and MFI in Optical
Networks

Owing to the need of OPM for signals in the cur-
rent optical networks, different commercial products and

standards/recommendations have been released. However, to
the best of the authors’ knowledge, there are no commercial
solutions that use ML for OPM. Moreover, there are no com-
mercial solutions to MFI for the existing optical networks,
regardless built using ML or not. This is because of to the fact
that MFI application will be employed in the next generation
of optical networks. These networks are going to be adaptive,
where nodes and receivers will be capable of identifying the
modulation type to facilitate signal demodulation. Therefore,
in this subsection, we will discuss the commercial products
and standards/recommendations currently available for OPM.

OPM can be achieved electrically by end-to-end monitoring
of some digital parameters such as the BER [84]; here BER
provides accurate measurements of signal quality. However,
it requires complete demodulation at higher network layers
instead of performing this task at the physical layer. This
reduces impairments monitoring speed. In addition, it is diffi-
cult to determine the root causes of signal degradation because
BER value involves the accumulated effects of all impairments
in the network. Furthermore, the technology is replacing elec-
tronic devices in optical nodes with optical devices to improve
the speed. Hence, monitoring BER electrically at higher layers
is not possible in all network nodes.

The first optical based commercial approaches for monitor-
ing optical networks include optical power meter and optical
spectrum analyzer (OSA) [85]. Optical power meter can be
utilized to monitor the aggregate power transmitted through
a fiber. It is a simple and low-cost widely used device.
However, it does not work with multichannel networks such as
WDM. To measure the power of a specific channel in WDM
networks, OSA-based device is used which, in addition to
power measurement, provides information about the channel’s
wavelength drift.

The noise power in optical networks is one of the main
limiting impairments. OSNR is an important parameter in ana-
lyzing the signal quality in the optical domain. It defines the
signal quality by measuring the signal power to the noise
power. The available solutions in the market include those
for in-service monitoring of wavelength, optical power, and
OSNR of each channel in dense WDM (DWDM) networks in
C and L bands; examples of which are provided by Optoplex
and Lightwave2020 Companies [45], [47].

In addition to the noise power impairment, two other
important impairments that affect optical signals are fiber
CD and PMD. Recommended test and measurement meth-
ods of CD and PMD impairments are reported in the
International Telecommunication Union-Telecommunications
(ITU-T) G.650.1 [86] and ITU-T G.650.2 [87] recommenda-
tions, respectively. For CD measurement, pulse delay tech-
nique and phase shift technique can be used among other
techniques [86]. For PMD measurements, Stokes parameters
evaluation method, state of polarization method, and inter-
ferometric method are recommended [87]. Some commercial
devices are available for CD and PMD impairments moni-
toring [88]–[91]. For instance, PE.fiberoptics Company has
developed a product to measure out-of-service CD and PMD
in DWDM networks supporting up to 40 Gbps data speed [89].
For high speed DWDM networks, VIVA Company provided
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out-of-service solution for CD and PMD monitoring with
speeds up to 100 Gbps [91].

Field trials for in-service monitoring of CD and PMD for
WDM networks have been reported in literature [92], [93].
In [92], Stokes parameters based technique is used for
predicting the CD and PMD values. The trial was performed
for 820 km fiber link between Stockholm to Hudiksvall in
Sweden. However, this technique introduces modifications to
the transmitter, which is not appropriate as it increases the
overall cost of the network. Another field trail was conducted
in [93] for monitoring CD and PMD for a WDM network over
140 km fiber cable length and 10 Gbps data rate speed. In
this work, part of the signal is taped, sampled asynchronously
using two samplers at rate lower than the data rate. The two
sampled signals are plotted in a 2D histogram, which is used
to monitor the CD and PMD impairments.

The utilization of ML for monitoring purposes in current
optical networks is reported in [94], where a field trial was con-
ducted for monitoring OSNR in SDN-based optical network
of 436.4 km fiber length in U.K. The obtained measured val-
ues of OSNR are used to improve the spectral efficiency by
utilizing probabilistic-shaping based bandwidth-variable trans-
mitter (BVT). To the best of authors knowledge, this is the first
time ML is being used in real optical networks for monitoring
signal impairments.

D. Lessons Learned

In this section, we reviewed the widely used types of optical
modulation formats and impairments that have been consid-
ered in the optical communication field. Few lessons can be
drawn as follows.

• The traditional optical modulation formats (i.e., intensity,
phase, and intensity and phase schemes) enjoy differ-
ent signatures in different signal representation domains,
which could be exploited for automatic MFI and/or OPM.
However, the presence of impairments may cause consid-
erable distortions for these signatures, which make the
task of MFI and OPM difficult, especially when multiple
types of distortions are present.

• The choice of the optical receiver type (i.e., direct or
coherent receiver) is a key factor in building optical
systems. The former requires low-cost devices, at the
expense of having low SE. The later doubles the system
SE, but mainly suffers from the ultra-high cost of its com-
ponents. These components are required to increase the
receiver sensitivity and allow real-time implementation of
advanced digital processing of received samples.

• The presence of optical impairments harden the recon-
struction process of information bits; therefore, optical
impairments need to be mitigated for proper demodula-
tion. Fortunately, the majority of impairment mitigation
algorithms are modulation independent. However, the
mitigation techniques for carrier phase and frequency
offsets are often modulation dependent, which require
a prior knowledge of the modulation format [95].
Additionally, SBS and SRS impairments can be neglected
in optical communications, as these impairments are

stimulated by the presence of high power requirement
(>& 20 dBm), which is not applicable in fiber-based
communications [96].

• There are no commercial products or stan-
dards/recommendations for MFI. However, the
commercial OPM devices are only available to
monitor signal noise, CD, and PMD. The currently
available monitoring devices require service-cut to
monitor specific impairments. Therefore, a non-intrusive
solution that can simultaneously monitor all these types
of impairments is mandatory for future optical networks.

IV. OPTICAL PERFORMANCE MONITORING AND

MODULATION FORMAT IDENTIFICATION

The advances in optical networks have established an
increase in the data rate using advanced modulation formats
and introduced different access techniques in the physical
layer. This, in turn, has increased the network complexity
and effect of channel impairments. Moreover, future optical
networks will be adaptive where the network resources are
allocated based on the link condition and customer require-
ments. Therefore, the need for OPM in the optical network is
becoming mandatory. The task of OPM is to estimate optical
signal impairments such as ASE noise (defined in terms of
OSNR parameter), CD, PMD, and PN at the network nodes
without disturbing the traffic. OPM reduces the network down-
time and increases its availability and reliability. The predicted
values enable the network elements to compensate for these
impairments and optimize the adaptive network resources.
In addition, development of optical nodes with built-in sig-
nal format classification and baud rate estimation will pave
the road to the development of autonomous optical networks.
Such networks have the capability to identify the signal type
and perform signal processing tasks such as de-modulation,
equalization, filtering, etc. without the need for prior signal
information.

In this section, we first discuss briefly some conventional
OPM and MFI techniques for optical networks. Then, we com-
prehensively discuss the proposed ML-based techniques for
OPM and MFI.

A. Conventional OPM and MFI Techniques

1) Conventional OPM Techniques: Over the last two
decades, many OPM techniques have been proposed. The
early approaches to perform OSNR monitoring were relying
on out-of-signal band noise power measurement [43]. This
technique was not effective in WDM networks due to the exis-
tence of the OADMs, which remove major part of ASE out
of band noise. Thus, the in-band monitoring provides best
and effective solution especially in WDM networks. Some
techniques for measuring the in-band noise include wave-
length down-converters [97], polarization nulling [98]–[105],
delay interferometer (DI) [106]–[113], and electrical sam-
pling [114], [115] which have some limitations. Wavelength
down-converters based solutions require additional hardware
to select the single sideband (SSB) signal and down-convert
it to an intermediate frequency (IF). In polarization nulling



2856 IEEE COMMUNICATIONS SURVEYS & TUTORIALS, VOL. 22, NO. 4, FOURTH QUARTER 2020

based solutions, two polarizations are used where only one
polarization carries the signal and the other is used for noise
measurement. Then, the received signal is split into two
orthogonal polarization components to measure the OSNR.
If depolarization such as PMD occurs, the polarization that
carries the noise will be mixed with the signal which leads to
inaccurate OSNR measurement. The use of DI for OSNR mon-
itoring does not depend on either PMD or CD. Specifically, the
received optical signal (signal and ASE noise) is measured by
constructive interference, while the ASE noise is measured by
excluding the optical signal using destructive interference. This
method is insensitive to CD or polarization effects. However,
it needs precise wavelength control. In the electrical sampling
technique, the received signal is sampled using two samplers
with a short delay between them. The obtained sampled sig-
nals are displayed in a 2D plot. Then, OSNR can be measured
by analyzing the statistical mean and variance of the 2-D phase
portrait. This technique can monitor a wide dynamic range of
OSNR. However, the phase portrait is sensitive to PMD and
CD impairments, which results in inaccurate OSNR measure-
ment. In addition to the previously reported techniques, the
authors in [116]–[118] proposed to analyze the noise produced
by beating the optical signal with ASE noise at the square-
law receiver (i.e., direct detection receiver). This approach,
however, requires expensive RF components.

In [119]–[123], OSNR monitoring is proposed to be inte-
grated in coherent digital receivers. In [119]–[121], the second-
and fourth-order moments of the received signal are used
for OSNR monitoring. Although this technique is insensi-
tive to frequency offset and PN, its performance is limited
by the performance of the used equalizer [124]. Exploiting
the signal’s cumulative distribution function (CDF) for OSNR
monitoring is reported in [122], [123]. In [123], a reference
CDF of a candidate OSNR is compared with the CDF of
the normalized amplitude of the received signal, where the
candidate OSNR that has the closest average distance to the
signal CDF is selected. To reduce the computational complex-
ity of this technique, the authors in [122] proposed a non-aided
OSNR estimation technique that exploits the empirical CDF
to extract the information of noise variance.

For CD impairment monitoring, the early approaches were
based on detecting the phase of the optical signal [125]. This
is achieved by inserting subcarriers in the transmitter side and
observing the RF tones in the receiver. Another technique is
to apply frequency modulation (FM) on a pilot subcarrier in
the transmitter side. In the receiver, the clock phase of the sig-
nal is detected and observed to monitor any deviation [126].
All previous methods require modification in the transmitter,
which increases the system’s cost. Vestigial side band filter-
ing and clock phase detection [127] have also been used for
CD monitoring, which do not require any modification in the
transmitter side. However, it has limited monitoring range.

For PMD impairment monitoring, the usage of eye dia-
gram has been proposed in literature, but it is costly due to
its high-speed clock requirement [128]. Alternatively, meth-
ods based on RF power spectrum [129] can be used, however,
their performance is influenced by the presence of severe CD
impairment.

2) Conventional MFI Techniques: In general, MFI tech-
niques can be divided into two types: LB and FB schemes.
LB schemes are related to the probabilistic model of the mod-
ulation to be classified. They require formulating the exact
probabilistic model. Therefore, the computational complexity
increases. On the other hand, FB schemes only require extract-
ing some features from the received signal. Therefore, they
are simple and effective at the same time, and widely used in
optical communications [130]–[138].

MFI-based normalized power distribution was proposed
in [130], where the empirical probability distribution of
received signal powers is used to distinguish between the
different modulation formats. The proposed technique is inde-
pendent of PN and offset frequency. However, it is not
adequate for some modulation formats such as M-PSK sig-
nals because they have the same power distribution. Therefore,
this method is limited only for multi-level modulation formats.
Besides, it requires a high OSNR to achieve better MFI. On the
other hand, for signals suffering low OSNR values, MFI-based
compressed sensing (CS) and higher-order cyclic cumulants
were proposed in [131]. Since various modulation formats
have different cumulants (i.e., fourth-order cumulants), these
cumulants can be used for classification purposes. This tech-
nique utilizes CS before the classification stage to enable
low-cost classification. It is noise-tolerant and can be used
for both M-PSK and MQAM signals; however, only the effect
of ASE impairment is considered.

Features extracted from the signal’s amplitude deviation
were exploited in [132]. The ratio of amplitude deviation
for two modulations (i.e., ideal DP-QPSK and DP-16-QAM)
was utilized as a reference feature. Similarly, MFI based on
parameters extracted from the signal’s phase and amplitude
distributions were reported in [133]. These parameters include
the differential phase and amplitude ratio of adjacent symbols.
The product of these two parameters can be used to discrim-
inate the various modulation formats. Both techniques do not
require a large number of samples. However, they are sensitive
to decision thresholds. In [134], the entropy of the amplitude
histogram was used for MFI. The entropy of amplitude his-
togram with a different number of bins (i.e., 3, 5, 7, and 9)
was used to identify different modulation formats. This tech-
nique is tolerant to fiber nonlinearity. However, it can only
distinguish M-QAM signals. In addition, it is sensitive to pre-
defined threshold values. Exploiting the DC component of the
received signal for MFI is reported in [135]. In this technique,
the ratio of the 4th power (exponent) of the DC component to
that of the received signal without phase rotation is utilized to
distinguish the different modulation formats. This technique
can tolerate PN and fiber nonlinearity. However, it is limited
only for three modulation formats.

Using normalized received signal’s amplitude distribution
for MFI is proposed in [136]. This technique is based on find-
ing the CDF of the received signal’s amplitude and compare
it with reference CDFs of all possible candidate modulations.
The decision is taken by measuring the similarity (i.e., min-
imum average distance) between the received signal’s CDF
and reference CDFs. This technique is insensitive to PN
and frequency offset. Moreover, it requires a low number of
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Fig. 19. Different modulation formats and their FFT after nonlinear power,
(a) FFT after (I+jQ)2, (b) FFT after (I+jQ)4, and (c) FFT after (I+jQ)8.

samples and does not require carrier recovery. However, it is
not appropriate for M-PSK classification.

Instead of time-domain features, the authors in [137], [138]
proposed frequency domain features for MFI. The authors
in [137] used nonlinear power transformation for MFI. In
this method, the fast Fourier transform (FFT) was used to
extract information about the modulation type of the signal.
The different powers of the input signal (i.e., (I + jQ)2,
(I + jQ)4, and (I + jQ)8) help determining its modulation
type at the FFT output, as illustrated in Fig. 19. Peak detec-
tion is used to distinguish between the different modulation
formats. This technique is robust to ASE noise. However, it is
hard to identify modulation formats beyond 16-QAM. MFI-
based amplitude variance and the 4th order FFT (i.e., FFT
after applying power 4 for the received signal) were proposed
in [138]. In this method, the incoming signals’ amplitude
variance is used for the separation between M-PSK (M = 4
and 8) and M-QAM (M = 16 and 32) signals. The 4th order
FFT was used for sub-categories classification for M-PSK and
M-QAM signals. This technique has ASE noise and nonlinear-
ity tolerance. However, it is sensitive to pre-defined threshold
values.

B. ML-Based Techniques for OPM and MFI

The general procedure to achieve ML-based OPM and MFI
is illustrated in Fig. 20. There are three steps to develop the
model before using it for impairment estimation or modulation
classification. In the first step, the optical signal is converted
into an electrical signal and sampled to build a dataset. The
second step is to extract specific features of the signal that
contain some information about the impairments or modula-
tion formats. Examples of such features include the amplitude
histogram, CDF, and eye diagram statistics. These features are

Fig. 20. The general procedure for performing OPM and MFI using
ML techniques, where AH: amplitude histogram, IQH: in-phase quadrature
histogram.

then used in the last step to offline train a certain ML algorithm
to perform impairment estimation or modulation classification.
Once the offline training is complete, the developed model
along with the features extraction step are then used for either
online estimation of a specific impairment such as OSNR or
classification of modulation type. Note that in DNN, there is
no hand-crafted features extraction step as it is performed by
the algorithm itself [139], [140]

In the following, we first discuss the proposed ML-based
techniques for OPM and then the proposed techniques for
MFI. Finally, we discuss the joint OPM/MFI techniques.

1) ML-Based Techniques for OPM:
a) ML for OPM using direct detection: Several ML tech-

niques have been presented in the last decade for OPM. Most
of these techniques are exploiting ANN as a ML algorithm to
monitor the optical network impairments. They differ in the
type of features that are used to train the ANN algorithm, and
the way of extracting these features.

The first attempt was in [141]. In this work, the authors
proposed identifying the impairments’ types using SVM
in conjunction with features extracted from the eye dia-
gram image. These features contain 23 low-order Zernike
moments [142], which include a set of orthogonal polyno-
mials. These polynomials represent the image properties with
no redundancy for the purpose of discriminating whether the
signal is normal or contains impairments like CD, PMD,
and crosstalk. This technique has been verified experimentally
for 10 Gbps OOK signal. It provides accuracy greater than
95%. However, it is only limited for determining the type of
impairments.

The multi-impairments monitoring using ANN algorithm
that is trained with features derived from the eye diagram,
after a synchronous sampling (see Fig. 21 (a)), was proposed
in [143], [144]. The extracted features to train the ANN
algorithm include: Q-factor, closure (CL), root-mean-square
(RMS), jitter and crossing amplitude (CA) [143]. This method
can be deployed to monitor OSNR, CD and DGD. Its
performance was verified using simulation for 10-Gbps NRZ-
OOK and 40-Gbps RZ-DPSK signals at OSNR range of 18
to 30 dB, CD range of 100 to 700 ps/nm, and DGD range
of 0 and 35 ps. The correlation coefficient was 0.91 and
0.96 for NRZ-OOK and RZ-DPSK, respectively. This tech-
nique can be used to monitor multi-impairments. However, it
requires precise timing/clock recovery. Therefore, its use espe-
cially in the intermediate nodes is costly and even impossible,
especially for high-speed transmission.
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Fig. 21. Generation of eye diagrams using (a) synchronous sampling and
(b) asynchronous sampling with a synchronization algorithm.

To overcome the need for a precise timing/clock recov-
ery, the authors in [145] proposed extracting the required
features to train the ANN algorithm using asynchronous sam-
pling, and then reconstruct the eye diagram. In this method,
a 40-Gbps RZ-OOK signal is sampled asynchronously (at
a rate lower than the signal symbol rate). Then, the eye
diagram is reconstructed using chirp-z transform software-
synchronization algorithm (CZT-SS) (see Fig. 21 (b)) [146].
The extracted parameters include Q-factor, eye height (EH),
CA, and root-mean-square jitter (JRMS). This approach is ver-
ified by simulation to monitor OSNR, CD and DGD at OSNR
range of 22.5 to 37.5 dB, CD range of 4 to 28 ps/nm, and
DGD range of 1 to 7 ps. The results showed that correla-
tion coefficient of 0.97 was achieved with root mean square
error (RMSE) for OSNR, CD, and DGD of 0.69 dB, 1.05
ps/nm, and 0.38 ps, respectively. Although this method does
not necessitate timing recovery, it requires additional circuity,
i.e., software synchronization to reconstruct the eye diagram.

A multi-layer ANN (ML-ANN) algorithm, using the asyn-
chronous sampling technique, has been applied to moni-
tor a 56-Gbps 4-PAM signal in terms of OSNR, CD and
DGD [147]. The training parameters were extracted from
reconstructed eye diagrams. These parameters include eye
level values, eye heights, crossing amplitudes, and jitter values.
This method was verified by simulation at OSNR range of 26
to 42 dB, CD range of 0 to 400 ps/nm, and DGD range of 0 to
8 ps. The results showed that the RMSE for OSNR, CD, and
DGD were 0.21 dB, 6.79 ps/nm, and 0.8 ps, respectively. This
work deals with multi-level modulation formats, and does not
require timing recovery. However, it needs additional circuity,
i.e., software synchronization.

The asynchronous amplitude histograms (AAHs) method
was exploited in [148], as a feature to train ANN, and then to
monitor the impairments. In this method, the detected signal
is sampled at a rate lower than the signal symbol rate, as illus-
trated in Fig. 22 (a). The samples are divided into uniformly
spaced levels to form a histogram for OOK NRZ signal, as
illustrated in Fig. 22 (b). The performance has been verified by
simulating 40-Gbps RZ-DQPSK and NRZ-16-QAM signals at

Fig. 22. Amplitude sampled signal for AAH generation, and (b) AAH for
OOK NRZ signal.

OSNR range of 10 to 30 dB, CD range 0 to 400 ps/nm, and
DGD range of 0 to 10 ps. The results showed that the RMSE of
RZ-DQPSK(16-QAM) signals were 0.43(0.2) dB, 9.82(9.66)
ps/nm, 0.92(0.65) ps for OSNR, CD and DGD, respectively.
The AAH provides information about the statistical proper-
ties of the sampled signal. It does not require timing recovery
and additional hardware/circuits. However, when the received
signal is heavily impaired by CD and DGD, the distinction
between different impairments becomes difficult.

Features defined in terms of empirical moments have been
used in [149] to train ANN algorithm. In this work, the
detected signal was sampled asynchronously followed by
moments computation. The trained ANN was used to monitor
OSNR, CD and DGD impairments. The performance was ver-
ified by simulation for 40/56 Gbps RZ-DQPSK and 40-Gbps
RZ-DPSK systems at OSNR range of 10 to 26 dB, CD range
of −500 to 500 ps/nm, and DGD range of 0 to 14 ps. The
results showed that RMSEs of 40 (56) Gbps RZ-DQPSK were
0.1(0.1) dB, 27.3(29) ps/nm, 0.94(1.3) ps for OSNR, CD and
DGD, respectively, while RMSEs of 40 Gbps RZ-DPSK were
0.1 dB for OSNR, 17 ps/nm for CD, and 1 ps for DGD. This
technique can be utilized for monitoring both magnitude and
sign of accumulated CD. However, it is not suitable for high
dispersive channels. This is because the extracted moments
from the signal’s amplitude samples lack slope information
that is affected by some impairments like CD.

To extract more details of the statistical properties of
the monitored signal, the 2D histogram has been proposed
as a feature to train ANN algorithm instead of the 1D
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Fig. 23. (a) ADTS block diagram (left) and the amplitude sampled signal
(right), and (b) generated 2D ADTS plot.

Fig. 24. Generation of ADTS using balanced detection.

histogram [150]. The 2D histogram is achieved using asyn-
chronous delay-tap sampling (ADTS). In ADTS, the amplitude
of the signal is sampled using two clocks. A constant electrical
delay time called delay tap between these two clocks is used,
as illustrated in Fig. 23 (a) (left). The two samplers generate
two sequences x and y that are separated by this time delay, as
shown in Fig. 23(a) (right). The output is a 2D ADTS plot, as
shown in Fig. 23 (b). This technique was tested by subjecting a
10-Gbps NRZ-OOK signal to OSNR, CD and DGD, and then
the received signal is monitored in terms of these impairments.
The performance was evaluated by simulation at OSNR range
of 18 to 30 dB, CD range of 100 to 500 ps/nm, and DGD of
range 5 to 35 ps. The results showed correlation coefficient
of value 0.97. Although this technique extends the monitoring
range due to its capability of capturing information about the
slope of the detected signal, the cost of implementing ADTS
is high due to the use of pair of sampling clocks. Figure 23
(b). shows the ADTS of an NRZ-OOK signal.

In [151], the authors proposed to use an optical interfer-
ometer followed by two balanced-detectors before generating
ADTS, as shown in Fig. 24. This allows capturing the transi-
tion of phase changes which provides better results especially
for higher-order modulation formats. The validity of this
approach was confirmed by monitoring OSNR, CD and DGD
impairments in a high speed 100-Gbps QPSK signal. The
effectiveness of this method was verified experimentally at

OSNR range of 16 to 28 dB, CD range of 0 to 50 ps/nm, and
DGD range of 0 to 10 ps. The results showed RMSE values
of 1.27 dB, 2.22 ps/nm, and 0.91 ps for the three impairments
under study. This technique achieved accurate results at high
speed transmission. However, its drawback is in the require-
ment for additional hardware such as interferometer and two
balanced detectors.

Similar to the ADTS approach where the 2D histogram
is computed to act as a signal feature, the authors in [153]
proposed a different technique, called parametric asyn-
chronous eye diagram (PAED). In their work, the detected
signal is passed through two branches, the first of which has
a sampler while the second has a differentiator followed by a
sampler. The differentiator is exploited to capture information
about pulse broadening, which is affected by CD and DGD.
The output of two samplers is represented in a 2D plot. This
2D plot looks like an eye diagram. The eye is divided into
six quadrants. For each division, different parameters can be
extracted such as the signal mean and standard deviation.
The performance was verified by simulation for monitoring
multiple impairments of different modulation formats includ-
ing RZ/NRZ-OOK and QPSK, and monitoring different bit
rates including 10 Gbps, 20 Gbps, and 40 Gbps. Although
shown good performance, this monitoring approach requires
differentiator and two samplers which increase the overall
system’s cost.

Because RF spectrum is insensitive to CD effect, the authors
in [154] proposed exploiting the low-frequency (LF) compo-
nents of the RF spectrum as a feature in monitoring OSNR
parameter. Simulation has been conducted for monitoring 112
Gbps DP-RZ-QPSK at OSNR range from 10 to 24 dB under
large amounts of CD up to 27,000 ps/nm impaired signal. The
obtained results showed RMSE value of 0.84 dB. This tech-
nique provides accurate results at high CD values. However,
it is not appropriate for CD and DGD monitoring because the
RF spectrum is insensitive to these impairments.

The previously mentioned techniques in this subsection
make use of ANN/SVM for impairment monitoring. In [152],
the authors proposed the utilization of CNN for joint OSNR
and CD monitoring for 10 Gbps, NRZ-OOK signal. The input
to the CNN was images representing the 2-D histogram, which
were extracted using the ADTS approach. Simulation results
for simultaneous monitoring of OSNR and CD in the range
of 10 to 40 dB and 0 to 2000 ps/nm, respectively, showed
correlation coefficient of value 0.995. This method achieved
good performance for joint monitoring of OSNR and CD at a
wide range of impairments values. However, it handles images
which increases the system’s complexity.

Table IV summarizes the ML-based OPM techniques for
direct detection. Specifically, we list for each reference the
type of extracted features, modulation formats under consider-
ation, data rate, the utilized ML technique, type of impairments
and their range of values, and monitoring accuracy.

b) ML for OPM using coherent detection: Coherent
detection is used to demodulate complex signals that include
amplitude and phase information represented by the compo-
nents I and Q. In [155], the received I and Q components
(we call them here x and y) are sampled asynchronously to
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TABLE IV
SUMMARY OF ML-BASED OPM TECHNIQUES FOR DIRECT DETECTION

construct a 2D constellation diagram. The constellation dia-
gram is divided into four quadrants (i.e., (xi , yi ) quadrant1
(Q1) if xi < 0 and yi < 0). Two quadrants, Q1 and Q3, are con-
sidered. The extracted features include μ and σ of Q1 and Q3

amplitudes, maximum and minimum values of the y’s at the
x = 0 axis and the Q-factor that is given by (μ3−μ1)/(σ1+σ3).
These features were used to develop a regression model using
ANN algorithm. The validity of this approach was examined
by monitoring OSNR, CD, and DGD for an impaired 40-Gbps
RZ-QPSK signal. This technique was verified by simulation
at OSNR range of 14 to 30 dB, CD range of 20 to 180 ps/nm,
DGD range of 2 to 18 ps. The results showed RMSE value of
0.77 dB for OSNR, 18.7 ps/nm for CD, and 1.17 for DGD.
Note that the utilization of asynchronous sampling eliminates
the need for timing recovery. However, the performance was
evaluated in the existence of small amounts of DGD, CD, and
high OSNR values.

The insensitivity of AAH technique to PN has been miti-
gated in [156] by asynchronously sampling the received signal
and building a 2D I and Q histogram (IQH), as shown in
Fig. 25. In this work, the IQH histogram was used to develop
an SVM-based regressor to monitor OSNR, CD, DGD and PN
(i.e., laser linewidth) impairments. Moreover, the separability
of impairments was investigated using the t-SNE algorithm for

Fig. 25. Asynchronous QPSK constellation diagram, and (b) corresponding
IQH plot.

both single and simultaneous multiple impairments. The t-SNE
is a nonlinear DR technique that facilitates visualization of
complex high-dimensional signals; thereby helps investigating
the conditions under which the optical channel impairments
can be monitored. This monitoring method was verified by
simulation, where a 12.5-Gbps DP-QPSK signal was moni-
tored in terms of OSNR of (9 to 19 dB), CD (200 to 1600
ps/nm), DGD (10 to 70 ps), and PN (10 KHz to 1 MHz). The
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TABLE V
SUMMARY OF ML-BASED OPM TECHNIQUES FOR COHERENT DETECTION

results showed high accuracy compared with AAH. However,
both I and Q samples are needed to build IQH.

To deal with the raw data directly without feature pre-
engineering, like building histograms, the authors in [139]
proposed a technique using DNN (i.e., ML-ANN) algorithm to
monitor OSNR at range from 7.5 to 27 dB. The DNN was trained
using asynchronous raw data for both vertical and horizontal
polarizations (i.e., IH, QH, IV and QV). The proposed technique
was verified experimentally using 14/16 Gbaud DP-QPSK and
14/16 Gbaud 64-QAM signals with different symbol rates and
multi-modulation formats. The results showed mean absolute
error (MAE) less than 0.5 dB. This technique performs OSNR
monitoring without manual feature engineering. However, it
requires the utilization of complex data models. Moreover, it
requires expensive graphics processing units (GPUs). Similarly
in [140], the authors utilized asynchronous raw data to train
LSTM-RNN for simultaneous OSNR and CD monitoring at
28/35 Gbaud DP-16-QAM and 28/35 Gbaud 64-QAM signals.
The performance of this method was evaluated by simulation
for 28/35 Gbaud DP-16-QAM/64-QAM and experimentally for
5/10 Gbaud DP-16-QAM/64-QAM at OSNR range from 15 to
30 dB, and CD range from 1360 to 2040 ps/nm. The results
showed RMSE value less than 0.12 dB for OSNR and 1.09
ps/nm for CD. In this technique, the simultaneous monitoring
of OSNR and CD at high CD range was performed without a
need for preprocessing to extract training features. However,
the requirement for a memory in the LSTM model makes it
of high cost [51].

The traditional DNN requires retraining when the parame-
ters to be monitored get changed; thus time consuming. The
authors in [158] proposed OSNR monitoring for 56/28 Gbps
QPSK signals using transfer learning assisted DNN algorithm,
utilizing amplitude histogram (AH). Transfer learning relies on
adjusting neuron weights based on previous knowledge rather

than random initialization, which in turn greatly accelerates
the training procedure. This technique was verified experimen-
tally at OSNR range from 5 to 30 dB, residual CD range from
0 to 600 ps/nm, and optical launched power range from −6 to
8 dBm. The results showed RMSE value of less than 0.1 dB.
This technique provides high accuracy results in wide OSNR
range. However, it is limited just for OSNR monitoring only.

LSTM-RNN algorithm was also used in [157] to moni-
tor simultaneous OSNR and nonlinear noise power (NL-NP)
caused by fiber nonlinearity. The fiber nonlinearity is due to
transmitting high signal power through the fiber. The LSTM-
NN algorithm was trained using FFT with length 1024. In
this work, simulations were used for verification puposes by
building a setup consisting of five channels with 50 GHz chan-
nel spacing. Different modulation formats were considered
(QPSK, 16-QAM, and 64-QAM) at 28 Gbaud symbol rate
at OSNR range from 15 to 30 dB and at optical power range
from −3 dBm to 3 dBm. The transmission length was varied
from 100 to 1000 km. The obtained results showed that OSNR
monitoring is tolerant to fiber nonlinearity. However, since the
LSTM-based classification/monitoring deals with sequential
data in the time domain, the LSTM-based features extracted
in the frequency domain do not take full benefit of LSTM.

Table V summarizes the literature pertaining to the ML-
based OPM techniques for coherent detection. Specifically, we
list for each reference the type of extracted features, modu-
lation formats under consideration, data rate, the utilized ML
technique, type of impairments and their range of values, and
monitoring accuracy.

2) ML-Based Techniques for MFI: In this section, we
review the proposed techniques for MFI. These techniques are
classified based on the type of signal detection, whether it is
direct or coherent. Although direct detection has an advan-
tage in that it reduces the cost of proposed solution, we
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TABLE VI
SUMMARY OF ML-BASED MFI TECHNIQUES FOR DIRECT DETECTION

notice that most of the proposed MFI techniques are using
coherent receivers, because of the difficulty to recover phase
information in direct detection receivers.

a) ML for MFI using direct detection: The literature
in this category includes [159], where the AAH was uti-
lized to train ANN. The validly of this technique has been
verified by simulation, for six modulation formats with dif-
ferent data rates, including 10 Gbps RZ-OOK, 40 Gbps
NRZ-DPSK, 40 Gbps ODB, 40 Gbps RZ-DQPSK, 100 Gbps
DP-RZ-QPSK, and 200 Gbps DP-NRZ-16-QAM. The MFI
was performed at OSNR in range of 12 to 26 dB, CD in range
of −500 to 500 ps/nm, and DGD in the range of 0 to 10 ps. The
AAH was utilized after detecting the received signal using a
photodetector (direct detection). The results showed MFI accu-
racy greater than 97% for all modulation formats. In order to
reduce the ambiguity in MFI, the authors proposed splitting the
optical received signal into two polarizations. Each polariza-
tion was directly detected and then sampled asynchronously.
The samples for both polarizations were considered and the
AAH of the resulting samples were generated. This modifica-
tion increased the MFI accuracy by more than 99%. Similarly,
AAH has been used in [160], [162] for MFI with ANN classi-
fier optimized by genetic algorithm (GA). The results showed
same MFI accuracy as obtained in [159], with few number
of neurons and hidden layers. The MFI-based AAH provides
high accuracy. However, it cannot be utilized to identify phase
modulation formats such as the M-PSK.

For low OSNR and different modulation formats, the
authors in [161] proposed MFI technique using DT twin
support vector where feature extraction is exploited using
higher-order cumulants (HOC) (i.e., set of quantities describ-
ing a probability distribution). Fourth-order and eighth-order
cumulants and cyclic spectrum were utilized to identify six
modulation formats including 10 Gbps OOK, 40 Gbps DPSK,

100 Gbps QPSK, 100 Gbps OQPSK, 200 Gbps 16-QAM and
200 Gbps 64-QAM. This technique was verified experimen-
tally at OSNR range of −10 to 30 dB, DGD range of 0 and
10 ps, and different fiber lengths to produce CD varying from
0 to 4000 ps/nm. The achieved MFI accuracy for all modu-
lation formats was upto 100% when OSNR equal 5 dB. This
technique provides accurate results at very low OSNR values.
However, it is sensitive to pre-defined threshold values.

Table VI summarizes the literature of ML-based MFI tech-
niques for direct detection. Specifically, we list for each
reference the type of extracted features, modulation formats
under consideration, data rate, the utilized ML technique, type
of impairments and their range of values, and monitoring
accuracy.

b) ML for MFI using coherent detection: In the next
generation fiber-optic networks, there will be a need for
flexible transceivers that support multiple data rates and
multiple modulation formats [163]–[165]. Because of the flex-
ible transceivers, it is no longer assured that signals arriving
at the receiver side will have the same data rate and modu-
lation format. Thus, the receiver requires some techniques to
adjust these changes. MFI is of great importance for future
networks as it makes the network autonomous and flexible.
Therefore, coherent receiver must be able to recognize the
modulation format of arriving signals to guarantee proper
demodulation. Figure 26 shows an adaptive coherent receiver
with DSP architecture. Fortunately, there are some DSP algo-
rithm independent of modulation formats such as IQ skew
removal, CD compensation timing phase recovery, and con-
stant modules algorithm (CMA) equalization that are built in
the data receivers and can be used to improve the signal quality
before performing MFI.

There are many MFI techniques proposed in literature
for coherent detection. In the following, we discuss these
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Fig. 26. Coherent receiver architecture with MFI.

techniques in details. These techniques are based on extract-
ing different time domain features from the received signal. In
addition, there are other classification techniques such as those
relying on image processing. A summary of these techniques
is listed in Table VII.

i) MFI-Based Time Domain Features Extraction: In this
subsection, we review the ML algorithms that exploit the
time-domain to extract features such as the Stokes space
representation, AH, IQH, etc.

1. MFI-based Stokes Space Representation: For dual polar-
ization transmission, the received signal can be represented by
Stokes parameters. The Stokes parameters can be obtained as:

s =

⎡
⎢⎢⎣
s0[k ]
s1[k ]
s2[k ]
s3[k ]

⎤
⎥⎥⎦ =

⎡
⎢⎢⎣
x2[k ] + y2[k ]
x2[k ]− y2[k ]
2Re(xy∗)
2Im(xy∗)

⎤
⎥⎥⎦ (1)

where x[k] and y[k] are the amplitudes of the complex sig-
nal sample k in the V and H polarizations, respectively.
s0 parameter is the signal power, and (s1, s2, s3)

T parame-
ters represent the 3-D Stokes space constellations. It can be
observed from (1) that the phase information is removed after
transformation to Stokes space. Hence, Stokes parameters are
completely independent of the laser frequency offset and phase
noise as well as the polarization rotation of the signal. Other
information inferred from (1) is that the M-PSK signal only
exists in the (s1, s2, s3)

T plane because s1 = 0. However, the
M-QAM signal is more complex because it exists in the plane
(s1, s2, s3)

T . Figure 27 (a) shows the Stokes space represen-
tation of ideal noiseless QPSK, 8-PSK, 8-QAM, and 16-QAM
modulation formats in Poincare sphere. The projections of
modulation formats on (s1, s2), (s2, s3), and (s1, s3) planes are
shown in Fig. 27 (b-d), respectively. It is clear from Fig. 27
that QPSK and 8-PSK are allocated on the plane s1 = 0, while
8-QAM, and 16-QAM are allocated on several planes that are
parallel to the plane s1 = 0.

• MFI-based Stokes space representation with non-
supervised ML: Using Stokes space, the different modulation
formats are represented as clusters in 3D space. Then, it is
helpful to use clustering algorithms, i.e., unsupervised ML,
to classify the different types of modulation formats in this
space. This is the reason why most of the proposed Stokes
space-based ML algorithms are unsupervised.

The authors in [166], [167] proposed an MFI technique
based on Stokes space. The modulation formats are rep-
resented in the 3D Stoke space as clusters (point clouds).
Applying VBEM with GMM algorithms makes it possible to

determine the number of clusters (i.e., count clusters number)
that represents the modulation format type. This technique was
verified by simulation for DP-BPSK, DP-QPSK, DP-8-PSK,
DP-8-QAM, DP-12QAM, and DP-16-QAM modulation for-
mats at 10 Gbaud transmission speed, 30 dB OSNR, and
back to back configuration. Then, the performance was fur-
ther verified by proof-of-concept experiments using DP-QPSK
and DP-16-QAM at 19 dB and 27 dB OSNR, respectively.
The experiments were conducted at 10 Gbaud transmission
speed, 100 kHz-linewidth laser, several hundred MHz offset
frequency, and back to back transmission. The obtained results
revealed that the proposed technique can be used to separate
the aforementioned modulation formats without prior train-
ing. In addition, it is robust to polarization rotation and offset
frequency. However, this work did not consider the effect of
residual CD or low OSNR values.

To study the effect of different OSNR values and residual
CD, the authors in [168], [169] proposed MFI scheme based
on Stokes space analysis followed by HOC (i.e., fourth-order
cumulants) and spatial cross-correlation. In this work, different
types of amplitude and phase modulation formats were consid-
ered. The principle of this technique is as follow. First, Stokes
space is used to separate the modulation formats represented
by a 2D Stokes space (e.g., OOK, M-ary pulse amplitude mod-
ulation (M-PAM) and M-PSK modulation formats) from the
3D modulation formats such as M-QAM modulation formats.
For the 2D modulation formats, HOC is utilized to distin-
guish between them while for 3D modulation formats, spatial
cross-correlation is utilized. This technique was verified exper-
imentally to identify four modulation formats including 32
Gbaud OOK, 32 Gbaud BPSK, 32 Gbaud QPSK, and 16-
32-Gbaud 16-QAM within 11 to 34 dB OSNR range. The
experimental results showed the possibility of achieving more
than 60% probability of correct recognition (PoCR) in back
to back configuration. In case of introducing residual CD by
1056 km transmission fiber, the PoCR was reduced to 50%.
In general, the results showed poor performance in identifying
wide range of modulation formats.

To improve the MFI accuracy performance, the authors
in [170] exploited Stokes space and maximum-likelihood clus-
tering algorithms to identify different types of phase modula-
tion formats. In addition, the performance of these techniques
was compared with other proposed techniques including k-
means, EM, DBSCAN, OPTICS, and spectral clustering.
Simulations were used to identify five modulation formats
including DP-BPSK, DP-QPSK, DP-8-PSK, DP-8-QAM, and
DP-16-QAM, each was transmitted at 28 Gbaud speed with
OSNR in the range of 5 to 30 dB (0 to 15 dB for BPSK) and
back to back configuration. The simulation results showed that
under the same conditions, the proposed technique achieves
more than 95% MFI accuracy which is better than that of
other techniques. However, its computational time is higher
than that of DBSCAN and OPTICS algorithms.

To decrease the computational time, MFI-based non-
iterative algorithms was proposed in [171], [172]. The
proposed method is relying on Stokes space and connected
component algorithm (CCA). It is based on taking the projec-
tion of the 3D Stokes space on (s2, s3) plane. To reduce the
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TABLE VII
SUMMARY OF ML-BASED MFI TECHNIQUES FOR COHERENT DETECTION

effect of ASE on the constellation points in (s2, s3) plane,
Voronoi polygon filtering method [173] was utilized. The
remaining constellation points were converted into a binary
image. Then, the CCA [174] was used to count the number
of clusters, i.e., constellation points. Simulation was con-
ducted to identify three different modulation formats including

DP-QPSK, DP-8-PSK, and DP-16-QAM, all transmitted at
32 Gbaud transmission speed, with OSNR in the range of
10 to 30 dB. The simulation results showed the possibil-
ity of achieving high MFI accuracy of more than 99%.
Furthermore, this method was verified experimentally through
building autonomous receiver able to identify and detect two
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Fig. 27. (a) Stokes space representation of QPSK, 8-PSK, 8-QAM, and 16-QAM, (b) their projection on (s1, s2) plane, (c) their projection on (s2, s3)
plane, and (d) their projection on (s1, s3) plane.

modulation formats including DP-QPSK and DP-16-QAM
at 32Gbaud transmission speed. The MFI in this proposed
work was achieved with low computational time, but only
considered for few modulation formats.

Another MFI technique based on non-iterative algorithm
was proposed in [175]. This technique relies on Stokes space
and adaptive CFSFDP algorithm. In this technique, (s2, s3)
plane is produced and exploited to discriminate between the
various modulation formats according to the density of the
clusters which is achieved using adaptive CFSFDP algorithm.
Simulation was performed to identify five different modula-
tion formats including DP-QPSK, DP-8-QAM, DP-16-QAM,
DP-32-QAM, and DP-64-QAM, all are transmitted at 28
Gbaud transmission speed, with OSNR in the range of 8
to 28 dB. The minimum OSNR required to achieve 100%
MFI accuracy was 12 dB for DP-QPSK dB, and 23 dB
for DP-64-QAM. Furthermore, this technique was validated
experimentally for three different modulation formats includ-
ing DP-QPSK DP-16-QAM and DP-64-QAM, with 28 Gbaud
transmission speed, laser linewidth 100 kHz, OSNR with range
of 12 to 30 dB, and back to back transmission. The minimum

OSNR required to achieve 100% MFI accuracy for DP-QPSK
DP-16-QAM and DP-64-QAM was 12 dB, 19 dB, and 26 dB,
respectively. Furthermore, the effect of fiber nonlinearity and
CD were investigated where 100% MFI accuracy can be
achieved for all modulation formats when the transmitted
power ranges from 5 to 6 dBm. Although this technique is non-
iterative which requires low computational time, it is difficult
to determine the number of clusters for low OSNR values.

MFI based on subtraction (fuzzy mean) clustering [176] was
reported in [177]. In this technique, first, the 3D Stokes vector
is projected into the 2D planes (s2, s3) and (s1, s3). Then,
the fuzzy mean algorithm is applied to determine clusters
density center. Different modulation formats can be distin-
guished according to their statistical parameters (i.e., forth
order cumulant) of the cluster centers distributed on (s2, s3)
and (s1, s3) planes. The performance of this technique was
verified by simulation to identify five modulation formats
including DP-BPSK, DP-QPSK, DP-8-PSK, DP-8-QAM, and
DP-16-QAM, with 28 Gbaud transmission speed, and OSNR
in range of 7 dB to 28 dB. The simulation results showed
the possibility of achieving 99% MFI accuracy. Moreover,
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this technique was validated experimentally for DP-QPSK and
DP-16-QAM, with 28 Gbaud transmission speed, OSNR in
range of 10 dB to 28 dB and back to back transmission
configuration. The results showed the possibility of achiev-
ing 99% MFI accuracy. Furthermore, the MFI accuracy of
this technique was studied under the effect of CD and trans-
mission power. In comparison to the algorithms reported
in [170], this technique provides accuracy quit similar to
maximum-likelihood and better than DBSCAN. However, its
computational time is relatively similar to DBSCAN and better
than maximum-likelihood.

The utilization of CFSFDP algorithm with Stokes space was
reported in [178] for MFI of different M-PSK (M = 2, 4, 8,
and 16) and M-QAM (M = 8 and 16) modulation formats.
The principle of this technique is as follows. First, the M-PSK
modulations set is separated from M-QAM modulations set
according to the value of s1 (i.e., s1 = 0 in case of M-PSK
signals). Then, the CFSFDP algorithm is applied to (s2, s3)
and (s1, s3) planes to identify the M-PSK and M-QAM signals,
respectively. This technique was validated by simulations for
DP-BPSK, DP-QPSK, DP-8-PSK, DP-16-PSK, DP-8-QAM,
and DP-16-QAM modulation formats, with 32 Gbaud trans-
mission speed, 100 kHz laser linewidth, and OSNR in the
range of 7 to 24 dB. The simulation results showed the possi-
bility of achieving more than 95% MFI accuracy. The effect of
other impairments such as CD, PMD, and PDL were also con-
sidered in this work. Furthermore, this technique was verified
experimentally for the same modulation formats, where more
than 95% MFI accuracy was achieved. The proposed tech-
nique has the potential to identify DP-M-PSK and M-QAM
modulation formats.
• MFI-based Stokes space representation with supervised

ML: Instead of exploiting unsupervised ML in conjunction
with Stokes space, the authors in [49] and [179] proposed
using supervised ML algorithms. In [49], Stokes space in con-
junction with two consecutive PNN algorithms was proposed.
In this technique, the AH of projected parameters on (s1, s3)
plane are generated first. The AH is utilized to train PNN1
in order to separate the modulation formats into different
sets according to energy level in (s1, s3) plane. Since the
AH is limited for distinguishing the multi-level signals (i.e.,
M-QAM), the rest of modulation formats (i.e., M-PSK) are
identified using the constellation images of data on (s2, s3)
plane that are used to train PNN2. This technique was ver-
ified by simulation and experiments to identify DP-QPSK,
DP-8-PSK, DP-16-QAM, and DP-64-QAM modulation for-
mats. These modulation formats were transmitted at 28 Gbaud
transmission speed with OSNR in the range of 7 to 35 dB,
and back to back configuration. The DP-M-PSK, DP-16-QAM
and DP-64-QAM signals were separated using PNN1 while the
M-PSK signals were identified by PNN2. The achieved MFI
accuracy was more than 95%. Furthermore, the effect of fiber
nonlinearity and CD effect were investigated. Compared with
the traditional supervised ML (i.e., ANN), MFI-based PNN
is faster and more accurate. However, it needs extra memory
space to store the model.

DNN as a supervised ML algorithm was proposed in [179]
in conjunction with Stokes space for MFI. The constellation

in 3D Stoke space is projected onto three planes; (s1, s2),
(s2, s3,) and (s1, s3) to obtain three images for each exam-
ined modulation format. These images are used as inputs to
three-channels pre-trained CNN algorithm called MobileNet.
This proposed method was verified by simulation to iden-
tify six modulation formats including DP-BPSK, DP-QPSK,
DP-8-PSK, DP-16-QAM DP-32-QAM, and DP-64-QAM, all
transmitted at 28 Gbaud speed with OSNR in the range of 9 to
35 dB. In addition, a frequency offset of 1 GHz was introduced.
An MFI accuracy more than 95% was achieved with OSNR
greater than 8 dB. In addition, the effect of residual CD was
investigated. This technique provides accurate results. However,
it deals with images which increase the computational cost.

2. Other MFI-based time domain features extraction tech-
niques: DNN was exploited in [95] for MFI. The features
were extracted using AH and auto-encoder with Softmax clas-
sifier. First, the AH of I and Q signal’s components are
obtained. Then, an auto-encoder is used to extract a few rep-
resentative features of the signal. These features are used as
input for the Softmax to classify various modulation formats.
This technique was verified experimentally for DP-QPSK,
DP-16-QAM, and DP-64-QAM modulation formats transmit-
ted at 28, 14, and 20 Gbaud symbol rate, respectively. Signal
noise and PN impairments were considered. In addition, 1
GHz frequency offset was introduced. This technique has the
advantage of providing accurate results and robustness to PN
and offset frequency. However, it is restricted only for three
modulation formats and cannot be used to discriminate the
M-PSK modulation formats.

To perform MFI in the co-existence of different impair-
ments, MFI-based fractal dimension (FD) [182], [183] and
variance of the incoming signals’ amplitude was proposed
in [184]. The FD technique tries to find the slope of the
received signal. The scatter plot of FD-variance brings together
each modulation on one cluster with few overlaps. SVM was
used to separate the different clusters. The validity of this
technique was tested by simulation for six modulation for-
mats include BPSK, QPSK, 8-PSK, 16-QAM, 32-QAM, and
64-QAM, transmitted at 20 Gbaud speed. In addition, 1 GHz
frequency offset, residual CD and DGD impairments were
considered. The results showed that MFI accuracy greater than
98.05% can be achieved. The proposed technique considered
both M-PSK and M-QAM in the presence of different chan-
nel conditions such as ASE noise, residual CD, DGD, and
frequency offset. However, FD requires complex calculations.

MFI-based SVM with intensity fluctuation features was
proposed in [180]. These features include Godard’s crite-
rion error [185], [186] and intensity variance. The Godard’s
criterion error is given by

(
N∑

n=1

|
(
D(n)|2 −

(
E |D(n)|4/E |D(n)|2

)))
(2)

where |D(n)|2 is intensity of the received signal D(n), N is
the number of samples, and E |.| is the mean. Different modu-
lation format can be separated by plotting these features in
2D plane, before applying SVM. This technique was veri-
fied experimentally for different modulation formats including
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28 Gbaud DP-QPSK, DP-8-QAM, and DP-16-QAM, and 20
Gbaud DP-32-QAM. The results showed that MFI accuracy
greater than 99.8% can be achieved. In addition, the nonlin-
earity effect was investigated by launching variable signal’s
power. This technique can be used for both M-PSK and
M-QAM signals. However, it requires a large number of
symbols to get accurate results.

CFSFDP algorithm in conjunction with the signal ampli-
tude was proposed in [187] for MFI. The amplitude for both
and I and Q signal’s components is obtained first. Then, every
amplitude level in M-QAM signal is separated using CFSFDP
algorithm. This technique was verified by simulation to iden-
tify six modulation formats including DP-QPSK, DP-8-QAM,
DP-16-QAM, DP-32-QAM, DP-64-QAM, and DP-256QAM,
all transmitted at 12.5 Gbaud speed. The achieved MFI accu-
racy is 95% under ASE impairment effect. To proof the
concept, this technique was validated experimentally for DP-
QPSK, DP-16-QAM, and DP-64-QAM, with 12.5 Gbaud,
transmission speed, where the minimum achieved MFI accu-
racy is 95%. The proposed method is noise tolerant. However,
it is limited for M-QAM signals.

Random forest and AH were exploited in [181] for MFI. After
AH extraction, random forest was used to identify the differ-
ent modulation formats. Simulation was conducted to identify
five modulation formats in WDM transmission system with
three channels. The modulation formats include DP-QPSK,
DP-8-QAM, DP-16-QAM DP-32-QAM, and DP-64-QAM, all
transmitted at 16 Gbaud speed and subjected to ASE. The
minimum OSNR required to achieve 100% MFI accuracy was
between 5 and 24 dB. The effect of non-linearity and frequency
offset were considered too. Furthermore, this technique was
verified experimentally for DP-16-QAM DP-32-QAM, and
DP-64-QAM modulation formats. In addition, the accuracy
and complexity of the random forest is compared with other
techniques including k-NN, SVM and DNN. The results showed
that the MFI accuracy for random forest is better than SVM and
k-NN and the computational complexity for random forest is
less than DNN. However, this work is limited only for M-QAM
modulation formats.

ii) MFI using image processing techniques: Instead of
depending on time/frequency domain features, another MFI
technique that considers the pixel points of an image as the
data was described in [188]. In this work, images of constella-
tion diagram with CNN were used to classify different types of
modulation formats. The validly of this technique was tested
by simulation for six modulation formats including QPSK,
8-QAM, 16-QAM, 32-QAM, and 64-QAM, all subjected to
ASE. The results showed that 100% MFI accuracy can be
obtained. However, its computational complexity is relatively
high.

Similarly, the authors in [189] proposed two techniques
for MFI based on the singular value decomposition (SVD)
and Radon transform (RT) of the constellation diagrams. The
RTs for different modulation formats are shown in Fig. 28.
Different classifiers including SVM, k-NN, and DT were used.
This technique was verified by simulation to identify 4-, 16-,
64-, and 256-QAM and 2-, 4-, 8-, and 16-PSK at 10 Gbaud
transmission speed, OSNR values range from 2 to 30 dB, PN

Fig. 28. RTs of different modulation formats, (a) QPSK, (b) 16-QAM, and
(d) 64-QAM.

range from 1KHz to 10 MHz, and state of polarization (SoP)
range from 5◦ to 45◦. To proof the concept, this technique was
also validated experimentally for DP-QPSK, DP-16-QAM and
DP-64-QAM at 10 Gbaud transmission speed and back to back
transmission. The results showed that the proposed technique
provides accuracy up to 100% MFI even at low OSNR values
of 10 dB. This technique covers wide range of modulation
formats. However, its computational complexity is relatively
high.

3) ML-Based Joint MFI and OPM Techniques: In this sec-
tion, we review the proposed techniques for joint MFI/OPM
in both direct and coherent systems. It is observed that most
of the proposed techniques, especially in coherent systems,
focused on joint OSNR monitoring and MFI because of the
direct relationship to BER and the existence of algorithms
which are able to compensate some other impairments (e.g.,
the CD) before MFI.

a) ML for joint MFI/OPM in direct detection systems:
In [190], SVM and ANN algorithms were used for MFI
and OSNR monitoring, respectively. This technique was veri-
fied experimentally for 32 Gbaud 4, 8, 16, and 64 DP-QAM
signals. In this method, the power eye-diagram is produced
after up-sampling the detected signal in 10 samples/symbol.
Statistical features are extracted from the eye diagram includ-
ing mean, variance, etc. The disadvantage of this method is
using the up-sampler ADC which makes it cost in-effective.

In [191], the authors proposed simultaneous bit rate iden-
tification (BRI), MFI and OPM based on PCA algorithm
in conjunction with ATDS. The principle of this method
is as follows. The ATDS with N × N dimensions is con-
verted into one dimensional vector with length N 2. Then,
the PCA algorithm is used to reduce the dimension (vec-
tor length). The Euclidean distance between the vectors in
lower dimension was used to distinguish the different mod-
ulation formats. This technique was verified by simulation
of 10/20 Gbps RZ-OOK,40/100 Gbps DP-RZ-QPSK, 100/200
Gbps DP-NRZ-16-QAM at OSNR range from 14 to 28 dB,
CD range from −500 to 500 ps/nm, and DGD range from 0
to 10 ps. This method provides information about the slope,
so it extends the impairments range. However, it requires two
samplers.

Instead of using two samplers, as in [191] which increases
the cost, the authors in [192] proposed MFI and OSNR
monitoring technique using PCA in conjunction with the asyn-
chronous single channel sampling (ASCS). ASCS is similar to
ADTS but it uses single sampler rather than two samplers. This
technique was validated experimentally to identify RZ-OOK,
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NRZ-DPSK, and RZ-DPSK, all transmitted at 10 Gbps trans-
mission speed at OSNR range from 10 to 25 dB and CD range
from 0 to 700 ps/nm. Compared with ADTS, ASCS uses one
sampler, hence, the implementation complexity and cost of the
system is reduced. However, it requires additional circuit (i.e.,
software synchronization).

The authors in [193] proposed joint OSNR and MFI
using CNN. Synchronous eye diagram was used to train
CNN. This technique was verified by simulation for DP-
BPSK, DP-QPSK, DP-8-PSK, DP-8-QAM, DP-12QAM, and
DP-16-QAM modulation formats at 10 Gbaud transmission
speed, 30 dB OSNR, and back to back configuration. This
technique does not need manual intervention, i.e., it does not
require extracting features from the eye diagram. The limita-
tions of this method are that first, it requires timing recovery
leading to high cost. Second, the monitoring is performed
using a classifier, not a regressor.

In [194], the authors proposed simultaneous MFI and OSNR
monitoring for 28 Gbaud NRZ-OOK, 4-PAM and 8-PAM,
using AH with MTL-based ANN. In MTL, the network
(i.e., ANN) performs multiple tasks, such as monitoring and
classification, simultaneously. This technique was verified by
simulation and experiments at OSNR range from 10 to 35 dB
under residual CD effect ranging from −100 to 100 ps/nm.
The results showed 100% MFI accuracy and OSNR monitor-
ing mean square error (MSE) below 0.12 dB. The use of MTL
improves the performance compared with traditional training
that is based on single-task learning. However, this work is
limited only for intensity modulation formats.

Similarly, the authors in [41] considered simultaneous
BRI, MFI and OSNR monitoring for higher-order modula-
tion using MTL-based ANN in conjunction with AAH. This
technique was verified by simulation and experiments for DP-
QPSK, DP-8-QAM, and DP-16-QAM at OSNR range from
10 to 26 dB and CD value range from 0 to 1600 ps/nm.
The monitoring is asynchronous as it uses AAH, hence no
time recovery is required and low cost/low complexity is
achieved. The limitations of this method are that first, the
performance decreases as CD increases owing to the fact that
the AHH offers only information about the amplitude. Second,
the simulation results do not match with the experimental
results.

In [195], the authors proposed MFI and OSNR monitoring
using CNN in conjunction with ADTS. The ADTP images
are used as input for the CNN for joint OSNR and MFI.
This technique was verified by simulation for DP-16-QAM,
DP-16-QAM, and DP-64-QAM modulation formats, all trans-
mitted at 28 Gbaud symbol and subjected to ASE and CD
impairments. 100% MFI and OSNR accuracies are obtained.
Furthermore, it was verified experimentally for 16-QAM and
64-QAM signals with achieved accuracy more than 96%. The
advantage of this technique is providing accurate results in the
existence of CD. However, its cost is relatively high because
of using two samplers and the need for more computational
time due to processing images.

The authors in [40] proposed BRI, MFI and OPM including
OSNR, CD and DGD using MTL-based CNN in conjunc-
tion with ATDS. This technique was verified by simulation

Fig. 29. CDFs of different modulation formats.

for NRZ-OOK, RZ-OOK, and NRZ-DPSK for 10/20 Gbps
at OSNR values range from 10 to 28 dB, CD range from
0 to 450 ps/nm, and DGD range 0 to 10 ps. MTL improves
the performance due to the simultaneous training of BRI, MFI
and OPM. However, this technique is computational expensive
because it deals with ADTS as images.

Table VIII summarizes the literature of ML-based joint
OPM-MFI techniques for direct detection.

b) ML for joint MFI/OPM in coherent detection systems:
Among the different types of impairments that affect optical
signals in coherent systems, OSNR is the only parameter con-
sidered in literature in joint MFI and OPM. This is because
OSNR is easier to estimate compared to other impairments
when MFI is required.

The authors in [39] proposed a technique based on AH in
conjunction with DNN (i.e., ML-ANN) to identify MFI as
well as joint OSNR monitoring. This technique was verified
experimentally for identifying three optical signals 56 baud
QPSK, 28 Gbaud 16-QAM, and 60 Gbaud 64-QAM. The
results showed the possibility of monitoring OSNR with less
than 1.2 dB estimation error and 100% MFI accuracy. The
proposed technique is sensitive to PN and offset frequency.
However, it is limited for M-QAM modulation.

Joint BRI, MFI and OPM based on ANN algorithm that
exploits AH features was reported in [196]. The proposed tech-
nique was verified experimentally for DP QPSK and 16-QAM
signals with 12.5, 14, and 16 Gbaud symbol rates, at OSNR
range from 9 to 19 dB, CD range from 200 to 1600 ps/nm,
DGD range from 10 to 70 ps, and PN range from 1 kHz to
1 MHz. This work considered BRI and MFI. However, the
influence of simultaneous co-existence of multi-impairments
was not taken into consideration.

In addition to exploiting AAH features, CDF was exploited
in [197] to train SVM algorithm for joint OSNR monitor-
ing and MFI. The CDFs for different modulation formats
are shown in Fig. 29. This technique was verified numeri-
cally and experimentally for three modulation formats; 4QAM,
16-QAM, and 64-QAM with 12.5 Gbaud speed and back-to-
back setup configuration. The results showed high accuracy
of identifying the transmitted modulation formats. In addition,
they showed the possibility of estimating OSNR with less than
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TABLE VIII
SUMMARY OF ML-BASED JOINT MFI-OPM TECHNIQUES FOR DIRECT DETECTION

1 dB estimation error. This technique requires few number of
samples and is robust to PN and offset frequency. However, it
is limited for M-QAM signals.

Stokes space with DNN (ML-ANN) algorithm was used
in [198] for joint monitoring of OSNR and MFI. The first
order derivations of (s2, s3) and (s1, s3) planes were utilized
as features. Two cascaded DNN algorithms were utilized. The
first was used for MFI while the second was utilized for OSNR
estimation. Four signals with PMD were used to evaluate the
proposed technique performance. The signals under consid-
eration were QPSK, 8-QAM, 16-QAM at 28 Gbaud symbol
rate and 32-QAM at 21.5 Gbaud symbol rate. The results
showed high accuracy of identifying the different transmit-
ted modulation formats. In addition, OSNR estimation error
was found to be less than 0.5 dB. This technique is basically
insensitive to carrier PN, frequency offset and polarization
mixing. However, it contains multiple hidden layers with
multiple neurons leading to an increase in the computational
complexity.

CNN algorithm was used in [199] for MFI and OSNR esti-
mation. Images of constellation diagram of received signals

were used as a training dataset for the algorithm. The validly
of this technique was verified by simulation for six modula-
tion formats: QPSK, 8-PSK, 8-QAM, 16-QAM, 32-QAM, and
64-QAM. The results showed an accuracy larger than 95% for
identifying the different modulation formats, with less than
0.7 estimating error for the OSNR. However, the authors dealt
with the OSNR monitoring as a classification problem, which
is only suitable for discrete OSNR values, as well the compu-
tational complexity is relatively high. Moreover, it is difficult
or even impossible to recover the constellations without prior
information about the modulation formats [179].

Table IX summarizes the literature of ML-based joint OPM-
MFI techniques for coherent detection.

C. Lessons Learned

In this section, we discussed the conventional and ML-based
techniques for OPM and MFI. Few lessons are given below.

• The conventional OPM techniques have been mainly
applied to either single impairment or few impairments
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TABLE IX
SUMMARY OF ML-BASED JOINT MFI-OPM TECHNIQUES FOR COHERENT DETECTION

with a small range of monitoring values. Besides, the con-
ventional FB-based MFI algorithms are either sensitive to
pre-defined threshold values or only limited to classifying
few modulation formats.

• The time domain-based AH features extracted for MFI
can cope with the existence of PN. However, its accu-
racy is affected by ASE noise. On the other hand, features
extracted from the frequency domain are robust to ASE
noise. Therefore, it would be useful to have features that
are extracted from both time and frequency domains.
Such features are already exploited in RF communication
systems and can be adopted for optical communication,
as well.

• The majority of ML-based OPM techniques adopt super-
vised learning, especially ANN. Additionally, OPM tech-
niques are envisioned to be deployed in a large number
of intermediate network nodes to provide comprehen-
sive surveillance. Hence, inexpensive acquisition systems
should be employed. Therefore, receivers with asyn-
chronous sampling and direct detection are preferred
over expensive coherent systems. Moreover, the vast
majority of OPM techniques mainly consider monitor-
ing OSNR parameter, and CD and DGD impairments
in transmission systems employing OOK, DPSK, and
DQPSK direct detection modulation formats. However,
it is more challenging in direct detection acquisition
to monitor impairments when using higher order mod-
ulation formats such as M-QAM (M = 16, 32, and
64) signals. Therefore, more studies are needed in
this field.

• Most of the ML-based MFI techniques are mainly
proposed for coherent adaptive receivers where the
received modulation format changes according to the
network status. Such receivers are using coherent detec-
tion to benefit from the built-in DSP algorithms for
mitigating some signal impairments such as CD. Note
that some algorithms developed for impairments mitiga-
tion are modulation dependent which require identifying
the modulation format first. Therefore, it is advisable that
ML algorithms are built around features that are impair-
ment independent so that the MFI is achieved with high
accuracy. Stokes space features are a viable option, which
allows MFI with relatively high accuracy under stressed
optical signal.

• The intermediate nodes and/or optical receivers are envi-
sioned to have the capability of performing both OPM
and MFI functions. However, achieving such simulta-
neous tasks is not an easy task. ML-based techniques
for joint OPM/MFI are available. But, these techniques
are mainly limited to monitoring only a single param-
eter (OSNR) during the process of performing MFI for
either direct or coherent detection acquisition systems.
Therefore, this calls for conducting more studies to
develop joint OPM/MFI techniques capable of incorpo-
rating more impairments to monitor.

• A closer look at the majority of ML-based OPM and
MFI techniques reveals that these algorithms have been
developed for a set of modulation formats/impairments,
which may not cover the whole set of formats of practical
interest. Therefore, it is necessary to develop ML-based
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OPM/MFI techniques that consider a wider range of
modulation formats and channel impairments, without
compromising the classification/monitoring accuracy or
adding impractical computational complexity.

• The proposed supervised ML techniques for OPM and
MFI are often trained off-line using a specific dataset that
might not be comprehensive to include all key network
situations. Hence, the applicability of these techniques in
practical systems remains questionable, and self-learning
approaches could play a vital role in such cases.

V. OPM AND MFI FOR MULTIPLEXED SIGNALS

In Section IV, we have discussed ML for OPM and MFI for
fiber-based optical networks. However, the advances in optical
communications opened new applications that require intro-
ducing new types of optical networks or using more efficient
multiplexing techniques. In this section, we discuss the ML-
based OPM and MFI methods that are proposed in literature
for multiplexed signals.

In general, multiplexing techniques are useful to increase
network data rate, hence improve bandwidth efficiency.
However, they come with some challenges that require ade-
quate OPM and/or MFI techniques. In the next subsections,
we review such multiplexing techniques that are proposed in
optical networks.

A. Orthogonal Frequency-Division Multiplexing (OFDM)

Orthogonal frequency-division multiplexing (OFDM) is one
of the multiplexing techniques that can be used in next gen-
eration optical networks. It provides some advantages such as
its resistance to CD effect. During the last two years, few
MFI and OPM techniques have been proposed for OFDM
signals using direct detection [200], [201] and coherent detec-
tion [202] receivers. In [200], an MFI technique that is relying
on ANN algorithm was proposed. The ANN is trained using
AH features extracted from the real part of data after FFT
stage. This technique was verified experimentally to iden-
tify five modulation formats including 4-, 16-, 32-, 64- and
128-QAM, transmitted over 25 km fiber link. The proposed
method achieved 100% identification accuracy for received
optical power (ROP) greater than -10 dBm. Later, the authors
extended their work to perform joint OSNR monitoring and
MFI using k-NN algorithm which was trained using AH [203].
To reduce the computational complexity, the authors applied
some pre-processing to reduce the features size. The results
showed reduction in the computational complexity of 1.4%
compared with ANN-based technique. Direct detection was
used in this work, which reduces the cost so that MFI can be
used for intermediate nodes. However, MFI-based AH cannot
be used for phase modulation formats (e.g., M-PSK) because
these types of modulations have constant amplitude, whereas
AH deals with changes in amplitude.

Another MFI technique based on CFSFDP algorithms that
does not require prior training was presented in [204]. In
this technique, the peak density and distance between data
points are utilized to define the number of clusters, based
on which the MFI is achieved. The proposed technique was

verified experimentally for 4-, 8-, 16-, 32-, and 64-QAM mod-
ulation formats. The results showed that this technique can
achieve 100% classification accuracy but only for high OSNR
greater than 21 dB. This work was extended in [201] by utiliz-
ing k-NN regression method to count the number of clusters.
The simulation results showed that this technique can achieve
100% identification accuracy for 8-PSK, QPSK, 8, 16, 64,
and 128-QAM modulation formats transmitted at 12.5 Gbaud
symbol rate with OSNR greater than 19.5 dB.

In [202], the authors introduced MFI based modulus mean
square (MMS) features. In this method, different modulation
formats are transmitted over each subcarrier. The mean square
of the I and Q points for each modulation is calculated and
then an appropriate threshold is applied for each subcarrier.
The proposed method was verified through simulation and
experiments to identify different QPSK and M-QAM (M =
8, 16, 32, and 64) signals. The maximum OSNR required to
achieved 100% identification rate is 25 dB. This work can
be used to identify hybrid modulation formats. However, it is
based on coherent detection to extract the dataset which in
turn increases the cost.

B. Few Mode Fiber (FMF) Multiplexing

FMF is a type of SDM where more than one mode is exploited
for data transmission. Recently, there has been much interest
to exploit FMF in future elastic optical networks to reduce the
overall cost while improving the network capacity. Using MFI
for SMF-based networks has been widely studied in literature.
However, applying MFI for FMF-based networks is still in
its infancy. In contrast to SMF, the optical signal in FMF is
subject to some additional impairments such as the introduced
cross-talk between the modes (mode coupling (MC)). The
authors in [205] investigated by simulation identifying six
types of modulation formats, including DP-BPSK, DP-QPSK,
DP-8-QAM, DP-16-QAM, DP-32-QAM, and DP-64-QAM,
under the effect of ASE and CD impairments, besides, the
MC. ANN classifier was used which exploits the sampled
received signal’s IQH features to train the network. The average
identification accuracy was found to be 98% in the presence
of low MC. However, this accuracy reduces to 90% under
the effect of high MC and CD. Furthermore, the average
identification accuracy was investigated under different symbol
rates including 14 and 20 Gbaud.

C. Lessons Learned

The ML-based techniques of OPM and MFI for multiplexed
signals are still in its infancy and only few studies are reported
in the literature. For the OFDM signal, the reported monitor-
ing techniques considered the traditional impairments of the
optical signal and ignored the impairments related to OFDM
signal such as inter-carrier-interference. Similarly, reported
techniques for FMF signals did not consider all the impair-
ments related to FMF signals such as PMD, mode-dependent
loss (MDL), and frequency offset. Since FMF technology
is a promising solution for future optical networks, more
research is needed in this area. Moreover, developing adap-
tive techniques that can work for single and multi-carrier
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(i.e., super-channel and WDM) networks is of interest to
next-generation high-speed networks.

VI. MFI AND OPM FOR ACCESS NETWORKS

Here, we survey OPM and MFI for access networks. In
particular, we consider two networks where MFI and/or OPM
are used to improve their performance. These are RoF and
free space optical (FSO) communication networks.

A. Radio Over Fiber (RoF) Network

RoF is a hybrid network, where the RF wireless signals’
transportation and distribution is achieved through optical
networks. This technology is gaining more interest especially
in future wireless networks such as the 5G communication,
where RF transmission distance is getting shorter due to
exploiting the high frequencies. Hybrid RoF network can solve
the distance reach issue by extending the RF transmission dis-
tances using fiber. Using ML for MFI in RF wireless networks
is well investigated in literature [206]–[208]. However, MFI in
hybrid RoF technology is still in its early stages. In [209], the
authors proposed using ANN algorithm to classify four types
of modulation formats; BPSK, QPSK, 16-QAM, and OFDM-
QPSK. The extracted AAH features of the sampled received
signal are used to train the ANN. Different impairments were
considered, including CD, DGD, and ASE. Using 60 GHz RF
carrier, the simulation results showed that an accuracy more
than 99% can be achieved regardless of the type of modulation
formats at data rate less than 2.6 Gbps.

Another technique for MFI in hybrid RoF was proposed
in [210], which exploits an auto-encoder preceded by a pre-
processing step. The pre-processing step involves sorting the
values of the in-phase and quadrature samples of a received
signal. In this work, a 28 GHz RF signal and six differ-
ent modulation formats; BPSK, QPSK, 8-PSK, 16-, 64-, and
256-QAM were considered. The performance of the classifier
was investigated experimentally and by simulation under the
effect of CD and ASE impairments. The results showed good
agreement between the simulation and experiments. A classi-
fication accuracy of 98% was achieved for OSNR greater than
10 dB and fiber length less than 60 km. For fiber length longer
than 70 km, the performance starts degrading more because
of CD effect.

B. Free Space Optical (FSO) Communication Network

In FSO communications, OAM is a new multiplexing tech-
nique that has gained interest during the last years due to
its capability to provide new freedom of signal’s carriers
and hence double the data rate of optical communication
systems [211]. When the orthogonal OAM modes are trans-
mitted over turbulent free space channel, the wave-front phase
is perturbed and hence cross-talk is introduced at the receiver.
Monitoring the atmospheric turbulence (AT) impairment helps
in exploiting adaptive modulation techniques or even correct-
ing AT impairment. In [212], a CNN algorithm was used to
determine the severity of AT and simultaneously detect the
OAM modes, in an M-ary pattern coding system. The proposed
algorithm was verified in simulation by considering six values

for AT covering weak to strong turbulence for 4-OAM, 8-
OAM, and 16-OAM. The detecting accuracy of AT types was
found to be 95% on average. Instead of monitoring specific AT
types, the authors in [213] used CNN to build a system that
is capable of providing feedback to the transmitter to correct
the OAM’s transmitted mode, which was disturbed by ran-
dom AT. The results showed that by using such a technique,
the received OAM’s mode has been found to be close to the
desired profile.

C. Lessons Learned

Few lessons can be extracted from this section pertaining
to MFI and OPM for access networks.

• The reach distance in future RF wireless networks such
as 5G/6G is very short. Fiber cables are then viable
solutions to extend the reach distance. The transmitted
signal over this hybrid RF/fiber link is subject to different
types of impairments, some of which occur in the optical
domain and the others in the electrical domain. Therefore,
the development of future OPM/MFI techniques should
consider both types of impairments. Additionally, fiber
impairment, particularly CD, shows a different behavior
in RoF channels, owing to the double-sideband trans-
mission, as compared to the optical baseband distortion
such as the repetitive signal fading and time-shifting
effects. This new behavior deserves special attention from
researchers to investigate its effect on the performance of
ML classifiers.

• Fiber installation is sometimes difficult or even impos-
sible. Therefore, FSO technology is proposed to replace
the fiber in such cases. However, FSO technology has its
own impairments which require designing suitable MFI
and OPM techniques. The work in this area is still in
its infancy and more research is required to consider the
different types of impairments, such as signal scattering,
turbulence, pointing errors, and phase distortion, in the
development of OPM/MFI techniques.

VII. DISCUSSIONS AND GUIDELINES

Since there are many ML-based techniques proposed for
OPM and MFI, some criteria are needed to help identifying
the appropriate algorithms for specific applications. Moreover,
feature selection is a primary element in determining the algo-
rithm performance. In this section, we first list some criteria
that can be used for ML algorithm selection. Then, we discuss
and compare the different types of features that are proposed
in the literature for OPM and MFI in optical networks.

A. Criteria for Identifying the Appropriate Algorithm

1) Accuracy: The accuracy is an important metric that
identifies how much the proposed technique is accurate and
sensitive in predicting the amount of a specific impairment or
identifying a type of a modulation format. High accuracy is
required to provide suitable decisions accordingly.

2) Multitasking: Multitasking in OPM is defined as the
capability of the proposed technique to monitor multiple
impairments simultaneously because the optical signal is
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subjected to different simultaneous impairments while prop-
agating in the channel. In MFI, the proposed techniques are
developed to identify multiple modulation formats, as in adap-
tive optical networks where the modulation formats change
according to the channel condition. Therefore, multitask solu-
tions can be utilized to perform joint OPM and MFI; thereby
implementing one system/algorithm instead of many.

3) Cost of Data Acquisition Hardware: The first step in
OPM and MFI is data acquisition. The hardware required for
signal acquisition needs to be simple and inexpensive. This
is because OPM and MFI functions need to be installed in
many nodes in the network, therefore low-cost solutions help
in reducing the overall network cost.

4) Implementation: The proposed techniques need to be
easy to implement and integrate with the network equipment.
A technique that only requires installing of the OPM/MFI
algorithm on the receiver memory is easy to implement. On
the other side, a technique that requires modifying the receiver
somehow to implement the algorithm is harder to implement.

5) Computational Complexity: Computational complexity
means the amount of time, storage, and other resources that
are needed to execute a particular algorithm. MFI and OPM
techniques that exploit algorithms with low computational
complexity are preferred. The input data size to the algorithm
needs to be small. Furthermore, predicting the impairment or
identifying the modulation format needs to be fast to ensure
building proactive optical networks.

6) Impairments Range: The severity of an impairment
depends on the conditions of the impairment’s source. For
example, low OSNR values exist in case of fiber damage or
power eavesdropping. In such cases, OSNR can drop to low
values in range of few decibels. Therefore, an OPM technique
should be able to monitor a specific impairment over wide
range extending from low values to high values. Similarly, an
MFI technique should be able to identify the type of a modu-
lation format even under harsh conditions such as low signal
power, large noise, and large CD.

B. Features Utilized for OPM and MFI

The performance of ML algorithms is heavily based on
the utilized features and classifiers/regressors. In Section II,
we discussed in details the different classifiers/regressors
employed in literature. Therefore, to complete the picture
about the surveyed algorithms, we consider here the most
commonly used features in literature for OPM and MFI.

Each OPM or MFI technique reported in this survey is
using certain type of features for training the ML algorithm.
Therefore, these features play an important role in determining
the effectiveness of the ML-based OPM and MFI techniques.
In this section, we further discuss these features with emphasis
on their pros and cons.

By virtue of the discussion previously presented in
Sections IV and V, we observe that most of the features extracted
from the time domain signals can be classified according to
their sampling technique, either synchronous or asynchronous.
Asynchronous features are often used such as the recon-
struction eye diagram using the chirp-z conversion software

synchronization algorithm [145], AAHs [148], [159], [162],
ADTSs [40], [150], [152], [191], [195], ASCS [192], IQH [156],
[205], and asynchronous constellation diagram [155]. Most of
these features have been extracted using low cost direct detection
acquisition systems, making them attractive for intermediate
nodes in the optical networks.

In heterogeneous fiber optic networks, direct detection
acquisition systems are not appropriate for long fiber trans-
mission links due to the accumulated linear impairments such
as the CD. In contrast, in coherent detection acquisition
systems, MFI becomes more reliable because DSP algorithms
for CD and some other impairments compensation are often
employed. Features that have been considered from such
acquisition systems include AH [39], [49], [95], [181], [196],
[200], [203], CDF [197], and power distribution [130]. These
features are insensitive to PN and frequency offset. In addi-
tion, they are suitable for multi-level modulation formats such
M-QAM (M = 2, 4, and 8) because of their dependency on
the signal amplitude. However, for phase modulation formats
such as the M-PSK (M = 4, 16, 32, and 64), they are not
appropriate. Moreover, they cannot be used for PN impair-
ment monitoring because they are insensitive to it. In dual
polarization modulations, the signals are prone to polarization
rotation as well as PN and frequency offset. The received sig-
nal that is acquired coherently is often mapped into Stokes
space constellation to produce features that are completely
independent of these impairments [49], [166]–[172], [175],
[177]–[179], [198]. However, Stokes space constellation fea-
tures are sensitive to ASE noise, because the mapping distorts
the ASE noise probability density function. Moreover, Stokes
space constellation features are distorted by PMD and PDL.

Besides, HOC features and some other features extracted
from the signal amplitude and phase that are acquired coher-
ently have been exploited in [132], [133], [135]. In contrast to
Stokes space constellation features, these features are insen-
sitive to ASE noise. However, they are relying on DT that is
sensitive to pre-defined threshold values.

Features extracted from the frequency domain have been
considered as well. LF components of RF spectrum have been
used as features for OSNR monitoring [154]. These features
showed accurate results under high CD impairment values.
However, they are not suitable for CD and PMD monitoring.
On the other hand, FFT-based features extracted after tak-
ing different powers of the time-domain received signal [137],
[138] introduce computational complexity. In addition, these
features are only robust at low values of OSNR due to their
association with thresholding.

Features extracted from images, e.g., the eye diagram
images [193], constellation images [199], and RT images [189]
require long processing time and large memory. Similarly,
deep learning algorithms, which extract features directly from
raw data require long training time and large data size to get
acceptable results.

Figure 30 presents pictorial classification for the commonly
used features in the literature for OPM and MFI, while Table X
summarizes the pros and cons of these features. Moreover,
Table XI lists some reported comparisons in the literature for
different ML techniques using specific features.
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Fig. 30. Features used in the literature. C: coherent detection and D: direct detection.

VIII. LESSONS LEARNED, OPEN ISSUES AND

RESEARCH DIRECTION

ML-based OPM and MFI for optical networks have received
considerable attentions over the last decade. However, there
are some challenges that still require more investigations. In
addition, there are some other optical networks that require the
development of MFI and OPM techniques adequate for their
nature. In this section, we discuss the learned lessons, highlight
the main gaps in the currently proposed ML-based tech-
niques, and present our vision to improve their performance.
Furthermore, we discuss the research directions pertaining to
OPM and MFI in the coming few years.

A. Algorithm Multitasking

ML-based OPM and MFI techniques in the current existing
works are limited to monitoring/identifying specific impair-
ment/modulation formats, which do not support future optical
networks that are subject to different types of impairments
and support variety of modulation formats. For example, the
algorithms that exploit AH features can be used to iden-
tify M-QAM (M = 4, 16, 32, and 64) modulation formats
but not M-PSK (M = 2, 4, and 8) modulation formats.
Similarly, the usage of AH features in OPM algorithms does
not support monitoring PN impairment. Therefore, there is a
need to propose more comprehensive features so that OPM
and MFI techniques have the capability to monitor a wide

range of impairments and identify a large number of modula-
tion formats. The ability to develop a multitasking algorithm
that performs joint OPM/MFI is the foundation for future
intelligent optical networks.

B. New Modulation Formats

So far, the surveyed literature is limited to the recognition
of the traditional modulation formats such as M-PSK (M =
2, 4, and 8) and M-QAM (M = 8, 16, 32, and 64). Apart
from BPSK and QPSK, M-PSK (M ≥ 8) systems are not rec-
ommended for future optical fiber networks (i.e., 400 Gbps
and 1Tbps) [214]. Besides, for the M-QAM schemes, every
point in the constellation diagram is located on a uniform
Cartesian grid and transmitted with equal probability. Recently,
new more efficient modulation formats have been proposed to
improve the capacity and achieve better power efficiency such
as the probabilistic constellation shaping modulation and geo-
metric constellation shaping formats [215]–[217]. The former
relies on transmitting the constellation points at different prob-
abilities while the latter is based on optimizing the OSNR.
The introduction of such new modulation formats in optical
communication requires new MFI algorithms at the receiver
not only to determine the different modulation orders but also
the signal type such as OOK, QAM, probabilistic, geometric,
etc. to facilitate proper demodulation. A recent study for MFI
of probabilistic shaping modulation formats showed that for
some special cases the probabilistic shaping 16-QAM format
might have very small differences in the Jones space with the
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TABLE X
SUMMARY OF PROS AND CONS OF THE FEATURES UTILIZED IN THE LITERATURE

standard 4-QAM format. Similarly, it would be the case with
the probabilistic shaping 64-QAM format and the standard
16-QAM format. Therefore, current MFI techniques used for
standard M-QAM modulation formats may produce low clas-
sification accuracy when employed for the classification of
probabilistic shaping modulation formats, and hence new MFI
techniques are required for such new formats [218].

C. Nonlinear Impairments

The vast majority of research has focused on single car-
rier optical systems, making these studies limited only for
linear effects. However, in WDM networks, beside the linear
effects, there are some other nonlinear impairments such as
FWM, SPM, and XPM that require OPM. Non-linear impair-
ments limit the maximum signal power in optical channel
which reduce the transmission distance. Therefore, it is nec-
essary to accurately measure these effects to enhance the
quality of transmission. According to ITU-T G.697 recom-
mendations [84], in 100 Gbps NRZ/RZ line coding high

speed coherent networks, nonlinear impairments have medium
effect which requires adequate OPM solutions. ML techniques
can help in providing such solutions with high performance
and reasonable cost. In fact, ML-based OPM is an attractive
solution because it does not require exact knowledge of the
mathematical modeling of impairment’s nonlinearity.

D. Wireless and Hybrid Optical Networks

Similar to fiber-based optical networks, some other opti-
cal networks such as RoF, free space optical communication
(FSO), radio over FSO (RoFSO), and visible light com-
munication (VLC) are gaining more interest as counterparts
to fiber-based optical networks. They are useful when fiber
installation is impossible or costly. Such networks require
the development of suitable MFI and OPM techniques that
consider additional types of impairments such as RF noise,
path loss, shadowing and fading effect in RoF and RoFSO
networks. In addition, the VLC and FSO networks have
their own impairments such as turbulence, free space signal
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scattering, light reflection, and pointing errors. As the hybrid
networks combine different types of channels, the task of
designing suitable OPM and MFI becomes more complicated.

E. New Multiplexing Techniques

Besides the traditional multiplexing technique, SDM is a
large player in next generation of optical networks to over-
come the capacity limit of the existing optical communication
systems. SDM is realized by multi-core fiber (MCF), multi-
mode fiber (MMF), and FMF. Furthermore, the dense SDM
(DSDM) systems, MCFs with FMFs, known as few-mode
multicore fibers (FM-MCFs) are also proposed [219]. Such
multiplexing techniques have their own new impairments that
are not yet considered in the literature such as mode coupling
and mode dependent loss which may require the development
of new ML-based OPM and MFI algorithms.

F. Real-Time ML Approaches

In many ML-based algorithms, real-time processing of
samples and number of samples required to achieve cer-
tain accuracy are major concerns especially in time-sensitive
applications such as optical communication. Therefore, the
processing efficiency is an important factor in developing ML-
based solutions. On the other hand, it is noted that all ML-
based OPM and MFI techniques utilize offline training data.
However, in real dynamic optical network, the traffic data as
well as the optical components behavior may change over
time. It is envisaged that the optical network would be capa-
ble to perform self-learning, self-adapting, and self-optimizing.
Therefore, ML-based OPM and MFI techniques need to per-
form training and fast convergence in real time. Therefore,
optical components could be considered to build such algo-
rithms, which will lead to a quantum leap because of their
high speed.
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G. Available Algorithms and Frameworks in Other Fields

Since using ML for OPM and MFI in optical networks is
recent, researchers can benefit from the proposed techniques
and used features in other fields such as RF communica-
tion, bioinformatics and image processing. MATLAB software
is common among researchers in optical communication to
develop ML algorithms for OPM and MFI, which is not
popular in ML community. Other software such as Python
might be more useful for developing ML algorithms because
of the availability of many open-source frameworks such as
TensorFlow, Pytorch, and Caffe.

IX. CONCLUSION

OPM and MFI are expected to be an essential part of
the next generation optical networks by enabling autonomous
optical nodes and receivers which provide increased stabil-
ity, adaptability, and efficient utilization of network resources.
Machine learning has emerged as a reliable solution to build
estimation and classification models for OPM and MFI,
respectively, due to their ability to provide data-drive solutions
that are efficient and accurate. This article provided a compre-
hensive survey of ML-based OPM, MFI, and joint OPM/MFI
techniques for both direct and coherent systems. It also pro-
vided comparisons between these proposed techniques and
addressed future research directions and open issues.

Proposed algorithms in the literature span a wide spec-
trum of techniques but can be categorized in terms of feature
extraction and training method. The majority of algorithms
use supervised approaches to train OPM and MFI models.
However, most of the proposed OPM algorithms have the
advantages of exploiting low-cost direct detection acquisi-
tion systems with simple asynchronous features. On the other
hand, most of the MFI algorithms are using coherent receivers
for data acquisition equipped with impairments’ mitigation
DSP algorithms (e.g., CD compensation algorithms) as pre-
processing step. Features used in most MFI algorithms are
handcrafted to be transparent to certain types of impairments
by utilizing different domains such as Stokes space, CDF, and
AH domains. Some MFI algorithms have been proposed using
unsupervised learning techniques to cluster data samples from
different modulations, and then identify new data samples by
finding common features with existing clusters. For joint OPM
and MFI, most of the proposed algorithms are limited to joint
monitoring of OSNR with MFI.

Unlike OPM/MFI algorithms that uses traditional ML tech-
niques, recent algorithms propose using deep CNNs and
LSTMs models to automatically identify features and per-
form classification or estimation using the same network. This
raises the issue of lack of experimental datasets that are truly
representative of the different settings in optical networks.
One approach to resolve this issue is the use of generative
adversarial neural networks to expand existing experimental
measurements data. Additionally, transfer learning can be used
to efficiently train deep neural networks on new and emerg-
ing technologies such as free space optics, few mode fiber,
or orbital angular momentum. Other trends in machine learn-
ing field such as adaptive learning and online learning can

be enabling technologies for OPM and MFI to build the next
generation optical networks.
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