
3502 IEEE COMMUNICATIONS SURVEYS & TUTORIALS, VOL. 21, NO. 4, FOURTH QUARTER 2019

TLS/PKI Challenges and Certificate Pinning
Techniques for IoT and M2M Secure

Communications
Daniel Díaz-Sánchez , Senior Member, IEEE, Andrés Marín-Lopez, Member, IEEE,

Florina Almenárez Mendoza, Member, IEEE, Patricia Arias Cabarcos , Member, IEEE,
and R. Simon Sherratt , Fellow, IEEE

Abstract—Transport layer security (TLS) is becoming the de
facto standard to provide end-to-end security in the current
Internet. IoT and M2M scenarios are not an exception since TLS
is also being adopted there. The ability of TLS for negotiating
any security parameter, its flexibility and extensibility are respon-
sible for its wide adoption but also for several attacks. Moreover,
as it relies on public key infrastructure (PKI) for authentication,
it is also affected by PKI problems. Considering the advent of
IoT/M2M scenarios and their particularities, it is necessary to
have a closer look at TLS history to evaluate the potential chal-
lenges of using TLS and PKI in these scenarios. According to this,
this paper provides a deep revision of several security aspects of
TLS and PKI, with a particular focus on current certificate pin-
ning solutions in order to illustrate the potential problems that
should be addressed.

Index Terms—Transport layer security, DTLS, public key
infrastructure, trusted third party, certificate pinning, Internet
of Things, machine to machine.

I. INTRODUCTION

IN MANY senses IoT/M2M technology is mature, but there
is a lack of technical [1] and regulatory [2] consensus

concerning security. Concerned by this lack of security and
the increasing population of devices, the U.S. Federal Trade
Commission (FTC) organized a workshop in November 2013
and reported in January 2015 [3] on the major concerns on
device security: APIs, authentication, and update processes. As
discussed in the report, IoT devices have different sizes, shapes
and purposes, but they share a set of differentiating attributes

Manuscript received April 23, 2018; revised September 28, 2018 and
March 8, 2019; accepted April 29, 2019. Date of publication May 2, 2019;
date of current version November 25, 2019. This work was supported
in part by Project MAGOS under Grant TEC2017-84197-C4-1-R, in part
by Project INRISCO under Grant TEC2014-54335-C4-2-R, and in part by
the Comunidad de Madrid (Spain) through the Project CYNAMON co-
financed by European Structural Funds (ESF and FEDER) and the Alexander
von Humboldt Post-Doctoral Program under Grant P2018/TCS-4566.
(Corresponding author: Daniel Díaz-Sánchez.)

D. Díaz-Sánchez, A. Marín-Lopez, F. A. Mendoza, and P. A. Cabarcos
are with the Department of Telematic Engineering, Universidad Carlos III de
Madrid, 28911 Madrid, Spain (e-mail: dds@it.uc3m.es; amarin@it.uc3m.es;
florina@it.uc3m.es; ariasp@it.uc3m.es@it.uc3m.es).

R. S. Sherratt is with the Department of Biomedical Engineering, University
of Reading, Reading RG6 6AH, U.K. (e-mail: r.s.sherratt@reading.ac.uk).

Digital Object Identifier 10.1109/COMST.2019.2914453

from other technologies that demand special attention from a
security perspective. The majority of IoT devices are furnished
with more or less limited processing power that, considering
economies of scale, is managed by a similarly constrained
operating system. The operating system, typically Linux, can
be reprogrammed to overstep the original device purpose.
Moreover, this can happen without user knowledge or con-
sent since rarely these devices have a monitoring system that
helps to realize changes in software or network configuration
and unusual connections.

The re-use of hardware platforms, drivers and development
environments allows a vulnerability found in a device, that can
be easily tampered with, i.e., a smart wristband, to be exploited
in a big population of devices using similar hardware or soft-
ware as, for instance, a car with some kind of infotainment.
Insufficient security analysis for IoT devices and apps may
lead to security risks for unexpected use cases.1 Additionally,
the decrease in hardware, software, development and produc-
tion costs may motivate companies with no previous security
experience, to introduce potentially vulnerable devices in the
market. It should be also considered that re-using hardware
and software should not be a problem, but a benefit, on its
own, since vulnerabilities in components can be detected and
fixed in less time. However, there is an enormous disparity
regarding the support and update of IoT devices. Thus, sup-
port and update are critical in IoT/M2M as outdated devices
can be the way in to million of homes, companies, critical
facilities, and other devices.

The micro-services architecture [4] has been proposed over
time to alleviate updates. It is an architectural style that
structures any application as a collection of loosely coupled
services implementing the application functionality. Beyond
its ability to split a complex application into small pieces and
put all together when needed, the goal of micro-services is
that every component can be independently instantiated and
updated. This favours continuous delivery [5] and continuous
deployment of complex distributed applications. Basically, it
eases maintenance and development operations [6] as well as
it improves agile development [7].

1Fitness tracking app Strava gives away location of secret U.S. army bases,
The Guardian, World edition, 28th jan 2018.

1553-877X c© 2019 IEEE. Translations and content mining are permitted for academic research only. Personal use is also permitted, but republication/
redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

https://orcid.org/0000-0002-3323-6453
https://orcid.org/0000-0001-7401-6185
https://orcid.org/0000-0001-7899-4445

DÍAZ-SÁNCHEZ et al.: TLS/PKI CHALLENGES AND CERTIFICATE PINNING TECHNIQUES FOR IoT AND M2M SECURE COMMUNICATIONS 3503

Fog computing or Fog, is an evolution of the cloud com-
puting model [8], in which resources are moved to the edge
of the network or beyond [9]. The advent of Fog technology,
and Mobile Edge Computing, allows extending the concepts
of Cloud Computing to the network edge. Also Network
Function Virtualization (NFV) and other embodiments [10]
share similar objectives. Nevertheless, the geographic distri-
bution, proximity to consumers and support for high mobility
rates, are fundamental features of Fog/Edge computing needed
for a consistent IoT/M2M development. Conservative estima-
tions calculate that IoT/M2M ecosystem will contribute with
more than 50 billion devices [11] considering personal devices,
sensors and actors to give support to concepts as Smart Cities,
Smart Metering [12], Wereable Computing [13] and Crowd
Sensing, among others.

IoT/M2M applications can benefit from the use of micro-
services. Declarative and asymptotic strategies [14] would
allow these devices to have a minimum operating system and
perform a declaration to request near computing resources, as
Fog, to instantiate certain micro-services. Since micro-services
are software components in constant development and revi-
sion from manufacturers and published in repositories, devices
could get the most recent images of the micro-services ready
at run time. In this way, update problems would be minimized.

As discussed, IoT/M2M presents several security prob-
lems that should be addressed and that can be sometimes
reduced by means of micro-services. However, IoT devices
will have constant communication with Cloud Computing,
Edge Computing, or Fog Computing infrastructures depending
on the purpose of the communication. Among these purposes,
it is possible to find communications between components of
distributed applications or just communications serving differ-
ent data-to-cloud strategies. In most of the cases, the biggest
amount of traffic is expected to be concentrated in the vicinity
of the devices, fruit of the cooperation among application com-
ponents (micro-services) and/or devices and between devices
and Fog/Edge/Cloud Computing backends. However, despite
less numerous, interactions between devices and backends for
data consolidation will be frequent.

The traffic generated among devices and services that will
be transported by these protocols, may contain personal or crit-
ical information and should be adequately protected. In fact,
these protocols are required to support, at least, service authen-
tication and confidentiality. Moreover, it may also be critical
to provide support for micro-service dynamic authentication,
since many of these services will be instantiated on application
request.

Considering the scale of the problem, it is necessary to pro-
vide adequate protocols that let devices fulfil their purpose
securely, requiring no centralized management.

The vast majority of proposed IoT/M2M protocols focus
on solving concrete problems aside from security. IoT and
M2M have inherited the use of Web services or APIs according
to the Representational State Transfer (REST) [15] architec-
ture. However, HTTP and TCP are not suitable for resource
constrained (limited) devices as they require keeping state in
both endpoints and HTTP presents a significant overhead.
For that reason, the activity of the Constrained RESTful

Environments (CoRE) IETF team concentrates on providing an
adequate RESTful architecture proposing 6LoWPAN [16] and
Constrained Application Protocol (CoAP) [17], [18]. Thus, the
major goal of 6LoWPAN is to allow constrained devices to use
IPv6 by simplifying the device requirements, whereas allows
them using an immense address space for a better adoption of
IoT/M2M.

CoAP allows both unicast and multicast restful communica-
tions for IoT/M2M. CoAP relies on UDP as transport protocol
permitting asynchronous message oriented interactions with
a very low overhead and supporting proxies and caches. It
defines a messaging model over UDP with a very small header
providing TCP-like reliability with optional message confir-
mation. For the supported communication patterns, which can
be one to one or one to many, CoAP allows applications to
enable Automatic Repeat-reQuest according to the conditions
but provides transaction identifiers independent from message
identifiers for an improved flexibility.

When it comes to security, these protocols usually rely on
Transport Layer Security (TLS) [19], or its datagram ver-
sion (DTLS) [20]. In fact, HTTP, CoAP, Quick UDP Internet
Connections (QUIC) [21], among other applicable protocols
in the context of IoT/M2M [22] use TLS or DTLS for
confidentiality and authentication [23].

Since TLS relies on Public Key Infrastructure
(PKI) [24], [25] for authentication, it is necessary to
have a closer look at the history of TLS/DTLS to evaluate the
challenges of using TLS and PKI in IoT/M2M environments.
Therefore, this article revises several aspects of TLS/DTLS
and PKI, with a particular focus on Certificate Pinning to
illustrate the potential problems that should be addressed for
a secure inclusion of IoT and M2M for our daily lives.

A. Article Organization

Considering the need of evaluating the challenges and also
considering the dependency of IoT/M2M end-to-end protocols
on TLS, this article performs such a evaluation as follows.

This article describes the evolution of the TLS protocol
in detail in Section II, addressing: TLS handshake and its
latency in Sections II-A and II-B; problems TLS has faced due
to protocol, cypher suite or compression mechanism design
attacks in Section II-C. Since PKI is, nowadays, one of the
cornerstones of TLS, this article makes a deep revision of
the current trust problems of PKI that can affect TLS in
Section III and the evolution of the TLS security over the
time in Section III-B considering both PKI and vulnerability
related problems.

The need for certificate pinning is reasoned in Section IV.
Despite some research has already coped with security in IoT
and M2M [26]–[28] and performed Certificate Pinning tech-
niques comparisons [29], [30], this article not only explores
current solutions to the problems of trust, impersonation
attacks [31], and lack of auditing, but also focuses on their
use in IoT/M2M scenarios. Certificate Pinning techniques are
described in Sections IV-A–IV-F and compared in Section V
discussing their viability for IoT/M2M scenarios. Finally, open

3504 IEEE COMMUNICATIONS SURVEYS & TUTORIALS, VOL. 21, NO. 4, FOURTH QUARTER 2019

challenges and research directions are discussed in Section VI
and conclusions in Section VII.

II. TRANSPORT LAYER SECURITY

This section discusses the interest of TLS [19] for end-to-
end protection in IoT.

TLS was designed to provide confidentiality and integrity
to end-to-end communication. IPSEC [32] is also a remark-
able end-to-end security protocol due to its penetration in
security solutions. IPSEC can provide confidentiality among
network nodes relying on key exchange [33], or using pre-
shared keys. It can also be used as authentication protocol
by means of the “Authentication Header” providing end-to-
end security equivalent to TLS, in fact, this is the default
mechanism in IPv6.

IPSEC, despite relegated in practice to the establishment of
tunnels and Virtual Private Networks (VPN), is an excellent
protection mechanism that can provide the same services than
TLS provides, or complement other protocols bringing bet-
ter security. It should be considered, that despite end-to-end
security is a necessary requirement for secure communica-
tions, it is not the only one. Behringer [34] argued that the
end-to-end security provided by TLS is perceived as enough
in general, but network security is also necessary and thus
IPSEC, among others. Controlling malicious activities from
endpoints, monitor and cryptographically isolate certain links,
and protect against IP spoofing are several tasks that should
be considered beyond end-to-end security.

Other protocols, e.g., Kerberos, do not provide authenti-
cation on their own, but communicate authorization deci-
sions generated by other services as SAML [35]. This also
requires applications to be designed considering the protocol.
There are many other protocols that allow mutual authenti-
cation [36]–[38], including TLS, that require at least one of
the parties involved in the transaction, typically the server, to
disclose its identity, so they do not provide full privacy to
participants.

Thus, being conscious that there are many other protocols
that enable authentication in distributed environments, even
providing full privacy, this article deals with the current state of
TLS and the involved PKI usage for accessing online services
by IoT devices. The reason for analysing TLS is that this is
the only end-to-end protocol that can be considered globally
accepted and typically requires the authentication of one of the
endpoints, thus the lack of server privacy is not considered.

TLS is an excellent tool for establishing secure connections
in IoT environments considering that many of the connections
will be opportunistic such as those concerning service discov-
ery or name resolution, needed for accessing local computing
resources [23]. Despite TLS used in combination with PKI
requires IoT devices to handle PKI certificates, which can be
resource consuming, it provides a good versatility. TLS pro-
vides confidentiality, authentication and allows the negotiation
of almost every security parameter. Both the client applica-
tion and the service can actively participate in the negotiation
using user space libraries. Due to these reasons, TLS has been
adopted by several transport protocols as mentioned before.

TLS was originally designed to work on top of a TCP/IP
stack and thus, it is connection oriented. However, TLS has
been complemented with versions that, using the same secu-
rity negotiation mechanism, work over UDP [20], and even
SCTP [39].

Moreover, the specification of TLS describes an exten-
sion mechanism [40]–[42] to support new functionalities.
TLS extensions are the preferred mechanisms to add new
functionality that were not initially considered by the proto-
col. Extensions add additional information to the handshake
messages augmenting the negotiation capabilities of the pro-
tocol whereas keeping compatibility with older versions. To
achieve that goal, TLS endpoints ignore extensions they do
not understand.

The following sections will discuss the recent versions of
TLS [19] and DTLS [20]. DTLS re-uses TLS sub-protocols
and handshake messages. It just adds the necessary resiliency
to UDP (loss and duplicate datagram management) to serve
as a secure UDP transport for other protocols like TLS does
over TCP. For that reason, the rest of the article will make no
distinction among them unless necessary.

A. Handshake in TLS

TLS provides a secure connection over transport protocols
with optional server-only or mutual authentication. To create
the secure channel, TLS performs a key exchange during the
handshake to derive a secret key to protect the channel. RSA
static is the oldest and simpler mechanism for key exchange.
It has been available since the earliest versions of SSL. In this
key exchange mechanism, shown in Fig. 1, the client generates
a “pre-master” key, encrypts it with the public key of the server
(whose certificate has been previously delivered to the client
using the “Certificate” message), and then sends the encrypted
“pre-master” key to the server using the “ClientKeyExchange”
message. In this way, the protocol manages to exchange a key
with the server in a secure way. The server decrypts the “pre-
master” using its private key. This proof of possession of the
private key provides the server authentication.

The exchange of the “Finished” message triggers the
verification of the integrity of previously exchanged mes-
sages that would fail if the server could not decrypt the
“ClientKeyExchange” message.

The major concern with RSA Static is that it cannot guar-
antee the concept of “forward secrecy” [43], thus it cannot
guarantee past communications will be confidential in the
future [44]. This happens with any key exchange mechanism in
which the long-term secret used to protect the communication
is a shared key that, despite encrypted, is delivered through the
network. Basically, a passive attacker can store the encrypted
key exchange together with the encrypted traffic waiting to
break or steal the server private key. If the attacker manages
to get the key, he can decrypt every previously recorded and
every forthcoming session protected with that private key.

Diffie Hellman [44] (DH) provides forward secrecy and can
be applied to TLS as shown in Fig. 2. In DH, the server sends a
“ServerKeyExchange” message after the server certificate, that
contains the DH parameters or an elliptic curve calculated by

DÍAZ-SÁNCHEZ et al.: TLS/PKI CHALLENGES AND CERTIFICATE PINNING TECHNIQUES FOR IoT AND M2M SECURE COMMUNICATIONS 3505

Fig. 1. TLS handshake with RSA Static. The client sends a “ClientHello”
message containing a list of the supported key exchange, cipher suites and
compression mechanisms so the server can enforce its selection with the
“ServerHello” message. The server delivers the server certificate and fin-
ishes the negotiation using “Certificate” and “ServerHelloDone” messages
respectively. The “ClientKeyExchange” message contains the “pre-master”
key encrypted with the server public key so only the server can decrypt
the “pre-master” key and derive the master key. The client also delivers
“ChangeCipherSpec” and “Finished” messages indicating it has derived the
master key from the “pre-master” key and forthcoming traffic must be pro-
tected with the master key, and so acknowledges the server by delivering
“ChangeCipherSpec” and “Finished” messages.

the server. This information is paired with an ephemeral pub-
lic key generated by the server. The client generates also an
ephemeral key compatible with the server key and delivers it
to the server. In this way, both endpoints can derive a long-
term shared secret avoiding this shared secret to be encrypted
and sent over the network. Beyond key exchange, the authen-
tication is achieved in this case with the server signature over
the parameters in the “ServerKeyExchange” message, thus the
client can verify the signature against the server certificate.

B. Improvements in TLS Handshake Latency

The TLS handshake requires two Round Trip Time (RTT)
delays to finish. From Fig. 1 and Fig. 2, the reader should
note the number of TLS messages to be exchanged among
endpoints does not depend on the key exchange or authen-
tication mechanism. This handshake time, together with the
TCP handshake (do not apply to DTLS), can be a consid-
erable long time for devices that demand a fast interaction,
as those delivering bursts of data while moving. This may
happen frequently in several scenarios in IoT and vehicular
networks. To improve the protocol agility, some specifica-
tions define abbreviated “session resumption”, so devices can
resume previously established sessions with TLS. The orig-
inally abbreviated handshake specification [19] used session
identifiers managed by the server. Other specifications allow
the client to store “session tickets” that can be redeemed
later [45] preventing the server from storing client state.

Nevertheless, negotiation in TLS can have an important
impact on protocol efficiency depending on the transport pro-
tocol and the selected cipher suites. For instance, IoT/M2M

Fig. 2. TLS handshake with Elliptic Curve Diffie Hellman (ECDH). After
the negotiation with the hello messages, the server delivers its certificate. The
key exchange is then initiated by the server with the “ServerKeyExchange”
message that contains the ECDH key material, so the client can derive an
ephemeral key. The “ServerKeyExchange” contains also a signature with the
server key that verifies with the certificate delivered in the “Certificate” mes-
sage. The client can derive an ephemeral key and deliver it to the server
using the “ClientKeyExchange” so both endpoints can derive a master key
according to DH. Alike the handshake presented in Fig. 1, no encrypted key
is delivered during the handshake enabling forward secrecy.

devices, especially those using constrained radio interfaces,
should observe that packets larger than the Maximum Transfer
Unit (MTU) are fragmented increasing latency and energy
expenditure. There are several attacks that can force devices
to fragment data under certain circumstances [46]. Moreover,
besides cipher suite selection, the negotiation of compression
can be also critical to avoid attacks, as will be discussed in
Section II-C, but also to improve efficiency [47].

The aforementioned abbreviated handshake alleviates the
problem of resuming a secure channel between entities in IoT.
For instance, several applications require devices to update a
given resource or to get information periodically. However,
several other applications in IoT/M2M may require to perform
requests to resources that will not repeat again during a rea-
sonable period of time. Thus, the ability of resuming previous
sessions adds no benefit to these applications. For that reason,
there is a need for optimizing TLS handshake by reducing its
latency in any case.

Recent TLS versions incorporate several improvements [48]
as removing the use of RSA Static to improve forward secrecy,
and reducing the handshake to 1RTT or even 0RTT, depending
on the case. TLS has several layered sub-protocols that man-
age TLS functionality internally. The “ChangeCipherSpec”
sub-protocol was in charge of signaling the other part the
forthcoming messages should be delivered encrypted with
the session key. This sub-protocol triggered the verification
of the handshake messages to verify integrity. This sub-
protocol can close the connection if handshake messages were
manipulated, thus there is a chance to perform a Denial of
Service attack. Basically, it is necessary to wait until the

3506 IEEE COMMUNICATIONS SURVEYS & TUTORIALS, VOL. 21, NO. 4, FOURTH QUARTER 2019

Fig. 3. TLS 1.3 handshake 1RTT. In this simplified TLS hand-
shake, “ServerKeyExchange” and “ClientKeyExchange” messages have been
removed, so DH parameters for key exchange, public keys and pre-shared
key labels are delivered in a extension called “key_share”. More precisely,
if (EC)DHE key establishment is in use, the client sends a list of named
DH groups within the extension and the server should be in one of the
groups of the client share. If so, after the “ServerHello” message, the
server delivers also a “key_share” containing the server’s ephemeral key.
“EncryptedExtensions” and “CertificateRequest” contains responses to client
extensions (if any) and a request for client authentication (if mutual authenti-
cation is enabled) respectively. Also, a new message called “CertificateVerify”
is used for server authentication that contains a signature over the handshake
messages exchanged so far.

“ChangeCipherSpec”, several RTTs after the start of the hand-
shake, to realize the attack. Due to that, this sub-protocol
has been removed so any message after “ServerHello” should
be encrypted. In this way, active adversaries, manipulating
handshake messages, can be blocked sooner.

Moreover, “ServerKeyExchange” and
“ClientKeyExchange” have been substituted by the extension
“KeyShare” for key exchange in recent TLS versions, as
shown in Fig. 3. The rest of the messages are kept in the same
order as the original protocol, and the server authentication is
performed by signing the previous handshake messages. The
signature is placed in the message “CertificateVerify” to keep
TLS backwardly compatible.

Recent TLS versions also propose the 0RTTs handshake,
presented in Fig. 4, that is equivalent to the standard hand-
shake, shown in Fig. 3, with the exception it delivers client
data in a extension called “early_data”. In such a way, the
application protocol over TLS, can use that extension to push
the request to the server during the handshake, so once the TLS
secure channel is created the response can be sent. Older ver-
sions needed to wait until the handshake has finished to send
the request to the server, increasing the latency. This reduced
handshake enforces every message after “ClientHello” to be
encrypted with a secret derived from the client secret in a
“keyShareEntry” (an entry of the “key_share” extension), and
requires the server to advertise DH semi-static parameters.

It should be noted that despite the upper protocol requests
can be delivered directly as part of the handshake, the security
properties of TLS are reduced with the 0RTT handshake [49].

Fig. 4. TLS 1.3 handshake 0RTT. If client and server share a PSK (from a
previous handshake or by other means), clients can deliver encrypted data in
the first message using the “early_data” extension.

Reply attacks are possible since the server should incorporate
random data to avoid these kind of attacks in the first message,
but in this case, they are delivered after the “ServerHello” mes-
sage. Moreover, the use of semi-static DH parameters by the
server dare the principle of “forward secrecy” since, at least,
1RTT is necessary to establish the ephemeral secret. Thus, the
first client message may not meet that principle. Server DH
semi-static parameters should be known to the client before
the handshake, due to previous interactions or by any other
means, as discovery protocols [50]. In any case, it is recom-
mended to limit their validity to a week, so any related attack
window of opportunity is reduced.

C. Security Considerations

TLS and its predecessors (SSL) have suffered two different
kind of attacks. The first is based on the protocol conceptual-
ization and its structure. The second, based on the Public Key
Infrastructure, is not directly attributable to the protocol but
affects it since PKI is an important part of TLS. The prob-
lems PKI brings into TLS are explained in Section III and the
current solutions are also explained in later sections.

TLS not only provides confidentiality and optional authen-
tication, but also protects against downgrade attacks willing
to enforce previous (non secure) TLS versions or the use of a
weak protocol. Moreover, TLS provides message authentica-
tion and integrity. This section describes the most important
attacks related to TLS conceptualization, implementation and
structure. Some of them are documented by the IETF [51] and
others are individually described in the literature. A sample of
the most relevant attacks will now be presented.

The re-negotiation attack was discovered in 2009. It allowed
to perform a plain text injection in SSL 3.0 using the protocol
re-negotiation. Basically, the attacker was not able to decrypt
messages but to inject its own requests at the beginning [52].

DÍAZ-SÁNCHEZ et al.: TLS/PKI CHALLENGES AND CERTIFICATE PINNING TECHNIQUES FOR IoT AND M2M SECURE COMMUNICATIONS 3507

It was solved including a handshake message verification
during re-negotiation [53].

Browser Exploit Against SSL/TLS (BEAST) [54], discov-
ered in 2011, allowed an attacker to circumvent the same
origin policy (prevents a page script to contact different pages
except both are from the same domain) in TLS 1.0. It was
solved in the following TLS version. During the meantime,
its was proposed to use RC4 as stream cypher since was
immune to BEAST. Unfortunately, in 2013 a vulnerability was
discovered advising implementers against using RC4.

RC4 was not free of attacks before. It was immune to
BEAST since TLS allowed using RC4 only under certain cir-
cumstances that limited its use. The RC4 vulnerabilities of
2013, found statistical deviations in the algorithm that made it
inadvisable for preventing BEAST [55]. Later on, it was dis-
covered the possibility to recover plain text after observing big
TLS traffic and due to that, RC4 was permanently forbidden
in TLS [56].

Compression Ratio Info-leak Made Easy (CRIME) [57],
discovered in 2012, allowed an attacker to find plain text
messages exploiting padding and compression, thus it was
possible to steal authentication cookies. This attack did not
affect TLS exclusively, but affected also SPDY, HTTP and
others. Browser Reconnaissance and Exfiltration via Adaptive
Compression of Hypertext (BREACH) [58], that was based on
CRIME, was presented in 2013. BREACH permitted attack-
ers to extract sensitive information, including authentication
information, after observing certain data. That allowed attack-
ers to redirect the victim to malicious sites or even inject
content in the Web pages being accessed through the encrypted
channel. Whereas the protection against CRIME was possi-
ble eliminating TLS compression and SPDY headers, current
TLS implementations are still vulnerable to BREACH, since
it is not feasible to eliminate compression from application
protocols.

In 2013, an attack was presented that enabled attackers to
block logout messages by injecting a TCP termination mes-
sage (TCP FIN) without the knowledge of the victim [59].
To achieve the result it was not necessary to infect the user
machine but to compromise a hotspot or any other network
element in the path.

The first versions of SSL were vulnerable to the “padding
oracle attack” discovered in 2002, that allowed using a server
(oracle) to find out if padding was correct or not, allowing to
decrypt messages with the server key without its knowledge.
The attack was feasible using CBC. In 2013, a variant of the
padding attack, called Lucky Thirteen [60], allowed breaking
the message authentication in TLS analysing the time spent
in encryption (timing side-channel attack). It was solved with
an extension to the TLS specification [61]. Padding Oracle
On Downgraded Legacy Encryption (Poodle) was presented in
2014, showing how Cipher Block Chaining (CBC) in SSL3.0
is vulnerable to padding attacks. Despite the majority of the
servers use, at least, TLS 1.0, the attack required forcing
the use of SSL3.0 as a fall-back, frequently supported until
2015 [62].

In 2014 and 2015 two critical vulnerabilities, known as
HeartBleed and BERSerk, that affected OpenSSL and other

widely adopted implementations, were presented. Heartbleed
allowed attackers to exploit a bug for extracting data from
servers; BERSerk exploited a bug in ASN.1 that permitted
man-in-the-middle attacks in several implementations.

Factoring RSA Export Keys (FREAK), identified in 2015,
exploits an old restriction to SSL/TLS exportation introduced
by the government of the United States. This restriction limited
the size of RSA keys to 512 bits. In 2010 it was demonstrated
that breaking short RSA keys was simple enough to become
a problem. FREAK relied on a downgrade attack. It forced
the victim to use an old abandoned version of SSL supporting
the restriction. The attack consisted on influencing the cipher
suite negotiation to enforce the use of weak algorithms [63].
Logjam, also from 2015, was similar to FREAK but enforcing
an old restriction related to Diffie Hellman.

Decrypting RSA with Obsolete and Weakened eNcryption
(DROWN) [64], announced in 2016, could be used to attack
servers using a combination of versions instead of a concrete
one. It used an adaptive-chosen-cipher text attack combined
with a downgrade to SSLv2 (that was still supported by many
servers). The attack was helpful in reducing the effort needed
for a man-in-the-middle attack. It could be estimated that the
33% of the servers in 2016 were affected.

III. TLS/PKI PROBLEMS AND SECURITY EVOLUTION

TLS is becoming the preferred security protocol in mod-
ern IoT/M2M protocols to authenticate services and protect
the communication with them. TLS supports several authenti-
cation mechanisms beyond PKI, as pre-shared keys, but in
general services rely on PKI. Thus, services are bound to
domain names and those domain names are tied to an X.509
certificate to authenticate the service. In few words, we expect
an X.509 certificate that bounds a domain name to a public key
pair, to be issued by a trusted certificate authority. In practice,
PKI certificates contain a extension (“SubjectAltNames”) [25]
with the domain name(s) in which this certificate can be used.

The major concern with x509 certificates is that they were
not designed for the concrete purpose of authenticating domain
names. Due to that, the subject field (the entity to whom it is
issued) is an X.500 directory name [65], [66] and not a domain
name.

X.500 [67], [68] and X.509 [69] are related so services,
people and other entities are described in directories and cer-
tificates are bound to directory entries. Thus, directories can
be used to find entities that will be eventually authenticated
using an X.509 certificate with the appropriate subject name.
Moreover, certificates could be fetched from directories. So
within an organization, directory entries and certificates have
a univocal relation.

This distinctive feature in X.509 certificates names creates
two fundamental problems [70] that affect certificate valida-
tion during a TLS handshake. First, PKI defines a hierarchy
but there is no single root under every certificate can be vali-
dated. In contrast, there are several independent roots available
with their own hierarchy. In such a way, well-known root
Certification Authorities (CAs) are incorporated to the client
application by the software manufacturer or are kept as part

3508 IEEE COMMUNICATIONS SURVEYS & TUTORIALS, VOL. 21, NO. 4, FOURTH QUARTER 2019

of the operating system. That list should be updated regularly
in order to include new CAs or remove those compromised
or ceased. Nowadays, CA lists are quite similar regardless the
software manufacturer but have subtle differences. Since there
is no PKI root authority, the composition and distribution of
the lists is the responsibility of the manufacturer of a partic-
ular software. However, users are allowed to add certificates
that were not originally in the list despite they can be hard to
remove afterwards [71].

Second, every CA included in the list, thus trusted in
advance, can issue certificates for any domain name, being
the owner of that domain name unaware of that. This is an
antagonist behaviour compared to DNS, that does not allow
those changes. In DNS, every DNS zone is sovereign of its
sub-domains and only the root, that is unique, is free to behave
with impunity, but fortunately managed by trustworthy entities.
X.509 certificates, when used for authenticating domain names
in TLS, use a certificate extension called subjectAltName [25]
that allows a certificate to reference alternative names irrespec-
tively of the certificate subject field. Among these alternative
names, domain names are considered. In this way, PKI certifi-
cates define a 1 to N relation between the certificate and the
N domain names the certificate authenticates. This relation is
unidirectional since the domain owner cannot point out which
certificate should be used for a given domain name, except by
using DANE that will be discussed in Section IV-F.

CAs are usually managed by competent serious organiza-
tions, sometimes subject to auditing. Notwithstanding, the lack
of a bidirectional and verifiable relation between the entity that
vouches for a certificate protecting a resource, and the owner
of that resource, allows any CA to masquerade any domain
name without the knowledge of the domain owner. As a sim-
ple example, an attacker can obtain a certificate for a popular
domain name from a compromised or cooperating CA, so any
man-in-the-middle masking that domain, will be fully trusted
by the victim, since the certificate can be verified and con-
tains the domain name. The victim will trust the certificate and
authenticate the server having no way to verify if the owner of
the domain allows that certificate to be used for authenticating
its domain.

Compromising a CA can be considered difficult and quite
infrequent, but the risk exists and there are several well doc-
umented attacks to popular services as Google and Facebook
that will be discussed in Section IV. In order to illustrate the
dimension of the problem, the following section discusses the
current state of PKI certificates and the Certificate Authorities.

A. Current State of PKI Certificates

The Electronic Frontier Foundation (EFF) keeps a database
of certificates [72] in the project “SSL observatory”, used in
SSL/TLS handshakes. That database is no longer updated at
the time of writing this article but the EFF offers a dump
of around 16GB corresponding to 2011. Other organizations,
as Qualys SSL labs, maintain a database of certificates and
verification services that allows to find out if it is secure to
connect to a server using TLS by observing the server con-
figuration [73]. The data used in this section to illustrate the

problems of PKI certificates are based on EEF and Qualys
SSL labs data.

Currently there are more than 200 independent certificate
authorities in lists provided by operating system and applica-
tions. Currently, the biggest trusted root CAs repositories (root
stores) are those handled by software companies as Apple,
Microsoft and Mozilla [74]. Those root CAs expanded to 1482
trusted CAs (not only root but intermediate CAs) controlled
by 651 organizations in 2010.

Several CAs issue subordinate CA certificates allowing the
later to issue certificates as if they were issued by the first.
For instance, the CA named “C = DE, CN = Deutsche
Telekom Root CA 2” had 252 sub CAs in 2011 and “C = US,
CN = GTE CyberTrust Global Root” had 93 sub CAs [75].
The disproportionate proliferation of sub CAs has lead to
extreme situations. “TrustWave” admitted some clients were
issued subordinate CA certificates allowing them to issue cer-
tificates in the name of TrustWave. That amount of trusted
third parties is becoming a serious management problem
leading to attacks that are discussed in Section IV.

When it comes to server certificates, in 2010 there were
more than 16.2 million servers listening at port 443 (HTTP
over TLS default port) but just 11.3 million (38%) were able
to respond to a SSL/TLS handshake and only 4.3 million had a
valid certificate. The rest, over the 60%, used either malformed
or unverifiable certificates. According to the EFF, some server
certificates had a valid signature but were signed with keys
from CAs known to be compromised time ago [75] whereas
others were issued to subject names as “localhost” or even IP
addresses.

The major concern about using malformed or untrusted
certificates when users are involved is that browsers allow
users to continue the interaction even if the certificate can-
not be validated. This behaviour is known as “click(ing)
through” security [76]. The literature concludes that the major-
ity of average users do not understand the warnings shown
by browsers upon a handshake with a defective certificate and
decide to access the service [77] since PKI is complex and hard
to understand. So PKI on its own does not provide protection
as defective certificate warnings can be circumvented.

Eckersley [78] discussed in 2011 that besides the general
use of secure protocols versus their unprotected counterparts
is much more secure, there are still several attacks that basi-
cally rely on how certificates are issued and verified. These
structural problems on their own, thus not considering cryp-
tographic weaknesses and protocol design flaws, allow to
perpetrate sophisticated attacks.

These attacks can be carried out in the following situations:
• if an attacker is able to compromise a CA or its Web

frontend (also known as Registration Authority or RA)
that conveys certificate requests to the CA.

• if a router close to the CA is compromised, since this
allows to read and manipulate outgoing CA email (since
STARTTLS is subject to downgrade attacks).

• if a recursive DNS used by a CA is compromised with
DNS Cache Poisoning Issue (“Kaminsky bug” - CVE-
2008-1447) that helps the attacker preventing a CA from
verifying a domain name.

DÍAZ-SÁNCHEZ et al.: TLS/PKI CHALLENGES AND CERTIFICATE PINNING TECHNIQUES FOR IoT AND M2M SECURE COMMUNICATIONS 3509

TABLE I
TOP-15 COUNTRIES WITH ROOT CAS FROM EFF OVER

A SAMPLE OF 1355551 PKI CERTIFICATES

• attacking other protocols as TCP or BGP to gain access
to the emails sent to the victim’s domain.

• governments or corporations with access to a cooperating
or owned CA that request the issuance of a malicious
certificate for a target domain [79].

In general, every aforementioned mechanism for compro-
mising a CA is worrying, but the participation of governments,
corporations, special-interest groups or lobbys is specially
alarming. The main reason is that trusted certificate lists are
global and observe no jurisdiction whereas CAs belongs to
companies or institutions that are present in different coun-
tries with different legal regulations. Those institutions could
be also misused to attack other countries. Table I shows the
list of countries with root CAs in 2011 [72].

Beyond cross-regulation issues among countries and the
interests CA operators may have, it is important to note that
the consequences of PKI certificates issued by malicious or
inadequately managed CAs, can transcend the good practises
of domain owners, who have no way to defend against, or even
discover, a PKI certificate that has been issued to their domain
without their consent. There are documented evidences of this
kind of problems with PKI certificates, either issued by com-
promised CAs or stolen. Despite those issued by compromised
CAs are more dangerous (can target any domain), stolen ones
can bring severe consequences if domain owners do not realize
the problem during a long time.

An evidence of the frequency of these attacks can be
extracted from Eckerley and Burns analysis [80]. They anal-
ysed Certificate Revocation Lists (CRLs) from the CAs mon-
itored by the SSL observatory at the EFF [72]. CRLs were
analysed considering the reason why every certificate was
included in the CRL. Table II shows the data of those experi-
ments between June and October 2011. It can be appreciated
a significant increment on the number of revocations due to
a compromised CA. Moreover, since there is no obligation to
indicate the reason, it may happen the “Unspecified” category
conceals many other compromised certificates.

CRLs have increased the number of items in the last few
years giving a correct idea not only of the explosion of cer-
tificate revocations, but also of the significant increase of PKI
adoption [78]. Due to that, it is undeniable these problems

TABLE II
REVOCATION REASONS COLLECTED BY EFF

BETWEEN JUNE AND OCTOBER 2011

will increase if PKI is generally adopted by IoT/M2M solu-
tions since the vast majority of IoT/M2M protocols are relying
on TLS/DTLS for security.

The results previously shown are useful for illustrating the
problem of the excess of Trusted Third Parties (TTPs) (CAs
in PKI), and despite the data was collected between 2011 and
2013, the problem is still worrying. In fact, the number of
CAs and certificates is still growing and there are several
documented cases of problems related to misused or mali-
cious certificates that happened after 2011 as discussed in
Section IV.

A more recent study, that analysed the HTTPS certificate
ecosystem over a bigger sample [81], insists also on the
problem of the growing number of TTPs. Table III shows a
comparison of the size of the sample used in different studies
over the time. The study demonstrated several problems [81]
already detected by EFF [72], as the fact that in August 2013
only the 67% of the servers listening to the port 443 were able
to finish a TLS handshake. Moreover, it detected that from
a sample of 8.1 million certificates, only 3.2 million were
trusted. The rest were self-signed certificates (48%), certifi-
cates issued by unknown CAs (33%) and certificates issued
by known but untrusted CAs (19%) [81].

Regarding CAs, the study found 1832 certificates from CAs
belonging to 683 organizations spread among 57 countries
but with the 99% of the CAs concentrated in 10 countries.
From all those organizations with access to a trusted CA
and able to issue certificates without restriction, just the 20%
belongs to commercial CAs. The rest of the organizations
are religious institutions, museums, libraries, and more than
130 financial institutions. In other words, organizations that
are not commercial CAs, control 1350 out of 1382 (74%) of
the CA certificates trusted either directly or not by browsers,
suggesting a big trust problem.

B. TLS Security Evolution

After the discussion of PKI problems regarding trust and
the global PKI ecosystem, this subsection presents and dis-
cusses data regarding the evolution of TLS perceived security
over the time. The data has been fetched from the database of
SSLLabs [73] that, since 2012, publishes [82] a monthly secu-
rity analysis of the most visited servers, as part of the project
SSLPulse [83] that presents a radiography of the TLS security.
SSLPulse performs verification of a certificate and its chain
but concentrates on tests concerning the supported SSL/TLS
versions, their key exchange mechanisms, and the cipher suite

3510 IEEE COMMUNICATIONS SURVEYS & TUTORIALS, VOL. 21, NO. 4, FOURTH QUARTER 2019

TABLE III
COMPARISON AMONG PKI ECOSYSTEM STUDIES [81]

Fig. 5. SSL/TLS security evolution considering the certificate chain (only for servers with valid certificates).

Fig. 6. SSL/TLS security evolution considering key length and cipher suite.

support. The result of the individual tests are combined into
a global score ranging from 0 to 100 (it should be noted a
0 in some tests results in a 0 in the global score). According
to the score, they classify servers with a mark ranging from
A to F being A the best and F the worst. SSLPulse data has
been downloaded and processed to compare the number of
secure (A) and insecure (rest of marks) servers over the time
with respect to the three different families of SSL/TLS prob-
lems. These families are certificate chain problems, key size,
and protocol version or vulnerability problems as described in
Section II-C.

Fig. 5 shows the proportion of secure and insecure servers
against valid and complete and valid but incomplete certifi-
cate chain occurrences, showing it has no significant impact
in the results. It should be noted the study concentrates
on the most visited sites with valid certificates, in con-
trast to other experiments that consider the entire certificate
ecosystem [72], [81].

Fig. 6 shows the security evolution considering the length
of the certificate public key used for authentication (and
sometimes for key exchange), and discovery of insecure
symmetric cypher suites. The figure shows that the number

DÍAZ-SÁNCHEZ et al.: TLS/PKI CHALLENGES AND CERTIFICATE PINNING TECHNIQUES FOR IoT AND M2M SECURE COMMUNICATIONS 3511

Fig. 7. SSL/TLS security evolution considering protocol versions.

of certificates with public key smaller than 1024 bits has
been gradually reduced and vanished at the end of 2013
whereas the most common key length is 2048 bits. The
number of insecure cipher suites has been descending,
becoming incidental in 2017. Alike the case considered in
Fig. 5, there is no relevant correlation between the key
length and cipher suites and the evolution of secure/insecure
servers.

Fig. 7 shows a significant correlation between the SSL/TLS
versions and the number of secure servers. The most signifi-
cant event can be attributed to the Poodle vulnerability of SSL
3.0 (CVE-2014-3566) at the beginning of 2014. This vulnera-
bility caused a drastic decrease on the number of secure servers
until SSL3 was abandoned at the end of 2014. Currently there
are still a non negligible number of occurrences.

IV. CERTIFICATE PINNING SOLUTIONS

As it has been discussed, PKI has no single root authority
able to verify certificates, otherwise it has a big set of indepen-
dent root authorities able to verify only sibling certificates. The
list of root CAs is compiled by software or operating systems
manufacturers.

Section III-A reasons the disproportionate growth of CAs
an its associated problems. In this section, the concept
of Certificate Pinning is introduced as a tool to avoid or
diminish the major current Web problem that will, undoubt-
edly, affect IoT and M2M restful services as well: the lack
of trust.

To better illustrate the problem, consider TLS authentica-
tion. In the process of authenticating a server, the client starts
a TLS handshake and obtains the server certificate during this
handshake as stated in Section II. There are two distinct opera-
tions during a handshake: derive a key to protect the traffic in a
secure way, and authenticate either the server or both the client
and the server (mutual). Despite there are several authentica-
tion algorithms, that can be negotiated during the handshake,
the party to be authenticated should provide a proof of pos-
session of the private key associated with the certificate. The

process is equivalent for server authentication and mutual, so
we will concentrate on server authentication.

The client, once in possession of the server certificate, ver-
ifies the signature and builds a PKI certificate chain from the
server certificate up to the first intermediate or root CA it trusts
by checking the trusted CA list under use. If this verification
is successful, the client can also verify the certificate revoca-
tion list published by the CA. If the verification is successful
and the certificate is not revoked, it checks whether the cer-
tificate alternative name matches the server’s domain name. If
it matches, the connection is considered trusted.

Thus, the creation of the PKI certificate chain is the weakest
part of the verification. It is known that public and private CAs,
that are in the trusted list and thus trusted by the clients, have
introduced intermediate sibling CAs that are therefore trusted
by the clients. The purpose of this intermediate CAs can
range from subordinate CAs borrowed to companies, can issue
certificates without the parent CA intervention, to SSL/TLS
accelerators that can access the traffic in clear text. In the first
case, the intermediate CAs increase the length of the certificate
chain but are transparent to the user. However, as mentioned
in Section III-A, cases as the CA “C = DE, CN = Deutsche
Telekom Root CA 2” that had 252 sub CAs in 2011 and
“C = US, CN = GTE CyberTrust Global Root” had 93 sub
CAs [75], raise concerns about the control the parent CA has
over their sibling CAs.

In the second case, several network operators introduce
intermediate CAs that let companies to accelerate SSL/TLS
traffic [84]. By means of those intermediate CAs, providers can
issue intermediate server certificates that intercepts and accel-
erate SSL/TLS traffic on behalf of customers (for instance Web
servers with a huge traffic). In this way, servers can offload
encrypted streams management to a third party. However,
despite a client accessing a server can perceive an improve-
ment in the response time, it is generally unaware of the
fact its traffic is not protected end-to-end, but decrypted at
an intermediate point in the network and delivered in clear
text from that point to the server. Moreover, there are other
worrying cases in which these solutions are incorporated

3512 IEEE COMMUNICATIONS SURVEYS & TUTORIALS, VOL. 21, NO. 4, FOURTH QUARTER 2019

to consumer electronics devices that can violate user
privacy [85].

Any of these numerous root or intermediate CAs, that can be
compromised or misused, can issue certificates for any domain
name without the knowledge of the domain owner. There are
several well-known cases that occurred without being known
until later. In 2011, the Malaysian Agricultural Research and
Development Institute CA was compromised and used to build
a malicious tool out of the Acrobat update tool. That tool
installed updates that seemed to be legitimate but that turned
the client into a spy machine under the control of the hackers.
Until the problem was detected and the CA certificate was
revoked, they could have impersonated any Internet domain.

In 2011, a CA called Diginotar was used to issue cer-
tificates for Gmail and Facebook among others [71], [86].
Google advertised the problem through a comment from a
customer in Google Groups. Other cases as Comodo in 2011
and TurkTrust in 2013, have been also very popular examples
of compromised CAs. Recently, TrustWave admitted to have
issued subordinate root CA certificates to clients that were able
to issue PKI certificates for any domain in the planet with-
out the control of TrustWave [86]. Those practices increase
the risk of finding certificates issued by third parties without
the knowledge of the owners of the domains that are forged.
These attacks do not break but rather modify the trust chain,
and work transparently to the user and the domain owner, so
they are quite dangerous.

Despite several protocols have been proposed to man-
age trust, or better, to manage “trust-anchors” [87], [88] for
building the certificate chain, the problems arising from com-
promising a CA are still present since the malicious certificate
is issued by a CA that is directly or indirectly in the trusted
CA list and, as it has been reasoned, there are too many.

“Certificate Pinning” is a concept that allows clients to
obtain a better certainty that a certificate used by a server is
not compromised. In the following sections several “Certificate
Pinning” proposals will be evaluated. Certificate Transparency,
described in Section IV-A and SK, in Section IV-B, pro-
pose complementary infrastructures for controlling the cer-
tificates globally together with a client cross verification;
Trust Assertion for Certificate Keys (TACK), analysed in
Section IV-C, proposes a cross verification controlled by the
domain owners; DNS Certification Authority Authorization
(CAA), described in Section IV-D, lets the domain owner limit
which CAs can issue certificates to its domain; HTTP Strict
Transport Security and HTTP Public Key Pinning Protocol
describe new HTTP headers that enforce policies for TLS and
conveys the certificate chain to be used (Section IV-E); finally,
DANE together with DNSSEC are described in Section IV-F2.
The solutions will be compared in Section V and their viability
for IoT/M2M scenarios will be discussed.

A. Certificate Transparency

Certificate Transparency (CT) [89] was proposed as a coun-
termeasure to the impersonation of sites. CT provides a
“Certificate Pinning” or alternative verification for users and
a surveillance system for CAs. Basically, it allows a verifiable

structure containing traces of existing server certificates to
be audited by several actors, every of them with their own
interests, to detect malicious or compromised CAs.

The objectives of this proposal are: to harden malicious
CAs certificate issuance for a given domain without domain
owner knowledge; provide an auditing and monitoring system
to allow domain owners to detect unauthorized certificate
issuances; and, as a consequence of the previous, protect users
from being scammed.

The verifiable structure consists of a Merkle Tree (MT) [90].
Such a tree contains a hash of an object subject to verification
in every leaf. The existence of an object in the tree and the
order in which it was added to the tree can be verified by
means of the MT. To accomplish that, parent nodes in a MT
contain a hash that combines the hashes of their children and
continues until the root, that contains a hash combining the
hash of every descendant. In this way, any change in either
the content or the order of the leafs, alters the value of the
root.

Verifying a leaf in a MT requires processing a number
of nodes proportional to the logarithm of the number of
nodes [91] thus, to verify an single object within a tree of
a million leafs requires processing 20 nodes [92]. The tree
used in CT is based on the proposed method by Crosby and
Wallach [93], that uses a SHA-256 hash. Every node is calcu-
lated over a data list and the hash is 32 bytes long. Thus, for an
ordered sequence of n entries D [n] = {d(0), d(1), . . . , d(n −
1)} the Merkle Tree Hash (MTH) (MTH()) is defined in the
following way [89] for an empty sequence, a single element
and n elements.

An empty sequence MTH() = SHA-256(). For a single entry
in the list corresponding to a tree leaf, MTH(d(0)) = SHA-
256 (0x00 || d(0)). The reason to concatenate 0x00 and d(0)
permits to differentiate the hash operation over the leafs from
the rest of nodes, that are concatenated with 0x01. Otherwise,
it would be possible or easier to generate collisions or second
pre-images of the hash [94].

If n > 1, consider k the biggest power of two less than
n so k<n≤2k. The MTH of a list of n elements, D[n],
defined in a recursive way is MTH(D[n]) = SHA-256(0x01
|| MTH(D[0 : k]) || MTH(D[k : n])) where || means concate-
nation and D [k1 : k2] = d(k1), d(k1 + 1), . . . , d(k2 − 1) is
a list of k2 − k1 elements. In this way, a signature over the
resulting MTH can be used to verify the entire tree.

In CT, each leaf stores a certificate issued by a CA upon
CAs request. There are two interesting verifications in the tree.
The first, verifies if a given certificate belongs to the tree, i.e., it
was communicated by the corresponding CA and added. The
second pursues to verify that this append-only tree has not
been tampered with, so the order in which certificates were
added to the tree is consistent with their time stamps. In order
to prove this, CT defines “Merkle Audit Path” and “Merkle
Consistency Proof”.

The Merkle Audit Path (MAP) for a given leaf is defined as
the shortest list of nodes from the leaf to the root that allows
to derive the MTH for that tree. A verifier in possession of the
signed MTH, uses MAP to verify if a leaf belongs to a tree.
Thus, if the MTH derived from MAP matches the MTH in

DÍAZ-SÁNCHEZ et al.: TLS/PKI CHALLENGES AND CERTIFICATE PINNING TECHNIQUES FOR IoT AND M2M SECURE COMMUNICATIONS 3513

Fig. 8. Example Merkle Tree in two different instants of time to illustrate
the examples of Merkle Audit Path (MAP) and Merkle Consistency Proof
(MCP) calculation.

possession of the verifier, then MAP proves the leaf belongs
to the tree.

The Merkle Consistency Proof (MCP) verifies the tree is
append-only so existing leafs are not modified or deleted and
kept ordered. Suppose a verifier has the current root hash,
MTH(D[n]), and a previous root hash corresponding to the first
m leafs, MTH(D[0 : m]), with m ≤ n. MCP is the minimum
list of tree nodes that allows to verify that the m first leafs are
the same in both trees.

Fig. 8 shows the same tree in two different times. The first
has a hash labelled as hash0 and the second hash1. For the
tree with hash1, the MAP for d0 will be the list [b, h, l] since
d0 can derive a, but needs b to calculate g, h to calculate k and
finally l to calculate hash1. d0 belongs to the tree if hash1

matches the expected MTH. Equivalently, MAP for d4 will be
[f, j, k].

If both trees are considered, a consistency proof between
the tree with hash0 and hash1 will be MCP = [c, d, g, l].
c and g will be used to verify hash0, d to verify k and l to
verify hash1. In this way, it can be verified that hash1 has
been generated from hash0 and thus, it is consistent.

CT defines three components that are log server, monitor
and auditor. Log servers guard CT MTs. Despite the number
of log servers needed to handle the current Internet is not
specified (nor who is in charge of them) [89], some research
indicates that around a thousand servers are needed in all the
world, [95] that may be managed by CAs, Internet Service
Providers and other parties.

When a valid certificate is sent to a log server, it issues a
“Signed Certificate Stamp” (SCT). The SCT is a log server
promise to incorporate the certificate into the tree in a time less
than the “Maximum Merge Delay” (MMD). The certificate
will be included in a leaf of the tree in a structure that includes
the certificate an the SCT. Then a hash is calculated over that
structure and added to the tree.

Every time a certificate is added to the tree, the hash of
every node affected by the change is recalculated down to the
root. The resulting hash at the root is then signed leading to
the “Signed Tree Header” (STH). Thus, only STH (one per
tree) and SCTs (one per certificate) are signed with the log
server key pair to allow secure tree verification.

In order to be accepted by a log server, candidate certifi-
cates should pass a PKI verification. It requires building a
certification path from the certificate to a trusted CA, accord-
ing to the list of trusted CAs accepted by the log server.
Accordingly, every log server shall publish its trusted CA
list [89]. The procedure for CAs is different and requires pre-
certificates with poisoned extensions as explained later in this
section.

In this way, there is no room for self-signed certificates or
those issued by local CAs (security islands) as well as other
use cases that modify locally the trust-anchor to cope with a
high dynamicity, as those described later in Section IV-F2.

Monitors are entities that inspect and verify the operation
of a log server. Monitors have particular interests, looking
for certificates for a given domain or set of domains, but may
overlook others. Every monitor should inspect every new entry
in every monitored log server and may keep a copy of the
entire log. Hence, monitors should periodically obtain the log
server entries and the STH, verify the signature and perform
consistency verifications.

Finally, auditors take partial information from a log server
as input and verify that the information is consistent with
previously collected evidences. According to the specification,
an auditor can be a TLS client or an independent entity that
provides services to TLS clients. Basically, an auditor verifies
the consistency of two SCTs of the same tree, at the same log
server, with a consistency check (MCP).

In general, auditors are aimed to be part of the TLS
clients [95], so the verification of SCTs is devolved upon them.
This is important as TLS clients should reject certificates with-
out a valid SCT. However, it is suggested that monitors could
not only verify the log integrity and look for an interest, but
also provide free or paid services to CAs and domain owners.
Moreover, monitors can be operated by domain owners, and
even act as auditors on behalf of the TLS clients. CT operation
is presented in Fig. 9.

CT requires monitors with particular interests to warn the
owners of the monitored domain names so that owners can
take appropriate actions when a log is misused. Either failing
to insert a certificate in the MMD time or violating the order
in the tree (consistency) is considered misuse. Auditors can
detect failed insertions requesting MAPs for every observed
SCT. Auditors cooperation to detect consistency violations
can be achieved by a “gossip” protocol, as suggested in the
specification.

Supporting CT entails servers to deliver SCT together
with the certificate, so clients can cross-verify SCTs against
certificates. Since log servers are monitored by monitors
and invalidated upon misuse, verifying SCTs may suffice to
harden impersonation using certificates from a compromised
CA. CT proposes several alternatives to deliver SCTs with
certificates [89], [95].

3514 IEEE COMMUNICATIONS SURVEYS & TUTORIALS, VOL. 21, NO. 4, FOURTH QUARTER 2019

Fig. 9. Interaction among participants in Certificate Transparency. Certificate
issuance is a one time operation. TLS handshake is synchronous whereas
the rest of the interactions (auditor-monitor, auditor-log, monitor-log) are
asynchronous.

• Embedded in the certificate: the SCT can be embedded
in the certificate using an X.509v3 extension [96]. The
problem is that the SCT is obtained after the certificate
is accepted by the log server, and embedding the SCT
inside the certificate afterwards will invalidate the signa-
ture. For that reason, CAs willing to embed the SCT in
the certificate, should send a pre-certificate identical to
the certificate that will be eventually issued. A poisoned
extension will be added to the certificate using a critical
X.509 extension and signed (TBSCertificate [24]). In this
way, the pre-certificate serves as a log entry, so can be
used to verify, but cannot be delivered in a TLS hand-
shake. This mechanism does not require changes in the
clients or servers.

• TLS extension: in this case, the time stamp (SCT) is
delivered during the TLS handshake separately from the
certificate by means of a TLS extension [19] with an
specific type. This mechanism requires TLS extensions
to be supported by the endpoints thus, requires a change
in both entities despite nowadays TLS extensions are well
supported.

• OCSP stapling: the time stamp is delivered using the well
known TLS extension “Certificate Status Request” [97].
To indicate this extension actually contains an SCT rather
than OSCP information, a special Object Identifier is
used.

Security considerations for the client: The specification does
not indicate how log servers publish or distribute the neces-
sary keys to verify SCT signatures. In the best case, this log
server public key list should be distributed with the software
or fetched using another out of band protocol. Thus, it requires
an additional trust list beyond the PKI one.

The detection of failure in the addition of a new certificate
requires clients to request one MAP per observed SCT. This
raises privacy concerns as the involved parties can trace the
client by observing requested SCTs. To overcome the problem,
clients can use trusted third party auditors, for instance from
the ISP. Also SCTs can be verified in batches asynchronously
so the time in which the SCT was fetched cannot be learn by

other parties. However it does not prevent parties from learning
the SCTs unless they are altered with noise, what requires an
extra effort from client side.

Any given certificate and its associated SCT can be verified
using a Signed Tree Header, from the same log server, that
was signed Maximum Merge Delay (MMD) after SCT time
stamp. In order to verify the SCT, it is enough to request a
MAP to the log. However, there is a window of opportunity for
an attack that depends on MMD, that is the time a log server
waits for accumulating insertion requests, so they can be added
in batch rather than individually saving costly cryptographic
operations. Due to that, CT is a system able to detect problems
with certificate in hours [95] but its effectiveness in dynamic
environments is inversely proportional to MMD. Moreover, in
order to detect misbehaving log servers, the system demands
a global adoption.

Additionally, there is no clear indication of the expected
behaviour of the CAs regarding the log servers to be used. On
the one hand, it is stated CAs may use some logs at its conve-
nience [95]; on the other hand, it is said CAs will request the
addition of a certificate to every available log server [92]. In
any case, it is agreed there will be no synchronization among
the different log servers leading a different tree per log server.
That complicates monitors to find a log able to verify a given
certificate.

Regarding the client effort, it should have access to a list of
log server public keys to let the auditor verify the SCT sig-
nature, or have a strong trust relation with an external auditor,
which in practise is the same problem. Moreover, a certificate
verified with Certificate Transparency should also pass a PKI
certificate chain and certificate status validation [98].

B. Sovereign Keys

Just like Certificate Transparency, “Sovereign Key
Cryptography for Internet Domains” proposes a public
verifiable and auditable append-only structure [92] that
associates every certificate with a Sovereign Key (SK). A SK
can be associated with one or more certificates and used to
cross-sign the final certificate.

One of the objectives of the SK is to protect clients against
Man In The Middle (MITM) attacks or impersonation. To
achieve this goal, clients supporting SK should verify that the
public key pertaining to a certificate, used by a server, has
been cross-signed with the SK registered for the domain of
the server.

Unlike CT, SK enables the definition of an alternative route
to the server in case of impersonation, MITM attack or con-
nection blocking (every of them detected by SK). In this way,
beyond alerting the user, that may not be effective [77], [99]
as alerts are frequently ignored if there is no alternative way,
SK provides other routes to reach the service.

The verifiable structure used by SK consists on an append-
only “TimeLine” whose entries are relationships between
domain names and SKs (keys), being SKs different from those
used by server certificates.

The purpose of the TimeLine is to store and preserve
the history of SK-domain relations. The latest entry for a

DÍAZ-SÁNCHEZ et al.: TLS/PKI CHALLENGES AND CERTIFICATE PINNING TECHNIQUES FOR IoT AND M2M SECURE COMMUNICATIONS 3515

TABLE IV
RECORD ENTRY IN A SOVEREIGN KEYS TIMELINE

domain, together with the set of updates, changes on the ser-
vice domains, renovations, revocations, and other adjustments,
is valid. A request for a new SK, that will be stored in the
structure contains the fields described in Table IV.

A request for addition to the TimeLine should contain data
related to the SK and the service (or services) to whom it will
be related. The field “Sovereign Key” contains the domain
name (“name”) that the SK applies to. If the “Wildcard” is
unset [100] a different SK can be used per sub domains;
otherwise only the SK will be valid for every sub domain.

Regarding the type of key, expressed with “key type”, the
specification [100] proposes the use of ECC for an optimum
storage and compression [101]. The SK key par should be
generated by the requester. The public key together with a
proof of possession of the private key should be added to the
request. The field “Sovereign public key” contains the public
key from SK.

The structure allows limiting the services to which the SK is
applicable by means of the “protocols” field. The field contains
a text chain with the alternative routes to the services delimited
with semicolon. For instance, HTTP at port 8080 or an onion
routing address [100]. Finally, that table entry also contains
the expiration date in the field “expires on”.

The field “inheriting names” allows SKs to be re-issued for
the domain if current SKs are compromised or revoked. The
value is a list of domains allowed to request the addition of a
new entry under these circumstances. In fact, it is a delegation
to re-register the domain if, and only if, the SK is revoked. In
this way, SK avoids the domain owners listed in the field to
alter others SKs if their domains are compromised but not the
original SK.

Requesting the inclusion of an SK in a domain, requires to
provide evidence that the domain is under the control of the
requester. This evidence can be a certificate signed by a trusted
CA containing the domain name in a subjectAltNames
extension, or a DANE DNSSEC response (see Section IV-F2).
Evidence obtained during the addition of a SK that clients can
verify later.

The server holding the TimeLine has to perform an OCSP
verification [102] before adding the SK. The OCSP verification
is not added to the record due to space constraints.

In order to guarantee the request is consistent and to avoid
manipulations from intermediate entities during the request

process or from the TimeLine server after the request, the
request is signed with the private key of the SK and the result
added to the field “claim_signature”. This signature serves as
a proof of possession as well.

Despite it is not directly stated in the specification [100], it
is understood the fields contained in “Sovereign key”, “In case
of revocation”, and “evidences for claim” are protected by the
signature in “claim_signature”. Any further change performed
by the requester later on is added as a new record to the history
preserved by the TimeLine.

The signature of the TimeLine server over all the fields of
the Table IV is performed with a private key belonging to the
TimeLine server and can be performed offline. Thus, to guar-
antee the append-only feature of the TimeLine an increasing
serial number and a time stamp is added to every entry.

The TimeLine structure can also incorporate other entries:
• References to other TimeLines. It is possible entities man-

aging a TimeLine get the TimeLine key compromised
thus, requests for SK addition can be sent to several
TimeLines. The record field “Incorporate-by-reference”
allows linking a registry in a TimeLine with other reg-
istries in different TimeLines corresponding to the same
operation.

• Revocations provides a mechanism for the owner of the
SK to revoke the key. An effective revocation requires the
revocation date, the name of the SK (domain name), and a
signature over the parameters. The revocation information
will be added to the TimeLine with a unique serial
number and a time stamp.

• Re-issuing of a revoked SK allows a revoked SK to be
re-issued upon an evidence provided from a domain listed
in the field “In case of revocation”. The structure will be
added to the TimeLine with a serial number and a time
stamp.

• Protocol changes tracks changes in the field “Protocols”.
• Root CA list changes. Every entity managing a TimeLine

should keep and maintain a list of trusted CAs. The
list can be modified and every change in the list is
published in the TimeLine with a serial number and a
time stamp. Alike Certificate Transparency, described in
Section IV-A, self-signed certificates, domain CAs and
security islands cannot be used with SK despite they
can be trusted by means of DANE-EE and DANE-TA
described in Section IV-F2.

SKs define three entities that are TimeLine Servers, Mirrors
and clients. TimeLine Servers manage and custody TimeLines.
Unlike CT, SK specifies the set of TimeLine Servers for the
current and foreseeable Internet should have N entries with N
between 10 and 30. It is also stated TimeLine Servers should be
chosen to guarantee diversity in jurisdiction, operational phi-
losophy or security policies, hence the service will be available
even if several TimeLine Servers are compromised or disabled.

Every TimeLine Server should have a key pair for the sig-
nature of the TimeLime as it has been previously explained.
According to the SK specification the list of TimeLine Servers
and their corresponding public keys should be distributed
together with the software as happens with PKI trusted root
CA lists.

3516 IEEE COMMUNICATIONS SURVEYS & TUTORIALS, VOL. 21, NO. 4, FOURTH QUARTER 2019

“Mirrors” increase the overall system performance and
availability by keeping updated copies of the TimeLine Servers.
“Mirrors” should be identified by an IP address, port and
public private key, introducing an additional list of keys.

SK do not define consistency checks based on the struc-
ture as CT does, but at protocol level. TimeLine Servers
should answer mirrors and clients with all the entries since
a given serial number S. Every record returned by a TimeLine
Server should be accompanied by a freshness message
called “Timeline Freshness Message” (TFM) with the fields:
“TimeStamp” of the request; “Highest Serial Number to date”
with the highest serial number of SK records available in
the TimeLine Server at the time of the request; “Highest CA
update Serial Number to Date” the highest serial number of
CA update record, and the signature of the TimeLine.

The specification describes the assessment of the fresh-
ness considering responses younger than 24 hours as fresh,
responses older than 24 hours and younger than 48 hours as
acceptable, those older than 48 hours but younger than 2 weeks
as unacceptable and older than 2 weeks as fatal.

In order to check the operation of a TimeLine Server, the
verifier needs to check the TFM of the responses, determining
a TimeLine Server fails in its duty if, observing the TimeLine:

• two different entries in the TimeLine with the same serial
number

• two different entries with discrepancies in the timestamp
• a TFM with a preceding timestamp and a serial number

higher than a previously observed TFM
• and entry for an SK with an invalid signature
If the verifier, either a Mirror or a Client detects a failure in

a TimeLine Server, it should keep a copy of the entries, distrust
the failing TimeLine Server and add the TimeLine Server to a
bad TimeLine Server record that can be learnt by other Mirrors
and Clients.

In order to synchronize the list of bad TimeLine Servers
among parties, the SK protocol uses a field called “renega-
tion_traking” of 32 bits, that contains the less significant bytes
of the hash of the bad server list. If a Client receives a mes-
sage whose “renegation_traking” field is inconsistent with the
one it keeps, it starts a synchronization process that requires
exchanging their lists.

Security considerations for the client: the SK specifica-
tion [100] does not clearly state how the target domain of
a certificate added to the TimeLine is verified, whereas other
proposals do, as DANE.

If the signature of the record is performed offline, there is
no indication of the time it takes unlike CT that promises to
incorporate the record before the MMD.

As it has been discussed before, every TimeLine Server
should have a key pair for the TimeLine signature. That key
pair should be distributed to Mirrors and Clients with the soft-
ware. Moreover, Mirrors are identified by IP, port and public
key, hence an additional set of keys is introduced in the system.

The specification does not indicate whether the TimeStamp
of the TFM corresponds to the time of the request or the time
of the latest record. In the first case, the server should sign
immediately upon Mirror request, leading to an amplification
attack that can be dangerous if the number of requests grow. In

the second case, the server should not need to sign immediately
but, unless the channel between the server and the client is
protected, an entity in the middle could use previous TimeLine
Server responses to masquerade recent updates.

In regard to privacy, Mirrors can learn the IP address of
the Clients verifying certificates. The specification proposes
two alternatives. The first is that Clients should use Mirrors
managed by their ISPs. In this way, despite the ISP can learn
the domains a given Client visits, they can already do that by
means of the DNS servers. The second consist on a forward-
ing mechanism initiated by the client. It is proposed every
Mirror should have two ports, the main one (443) to send
the request to the Mirror and a second, called “SK mirror
port” or MP, that is used to receive and forward responses. In
such a way, Clients can use a Mirror as a proxy improving
privacy. However, the second proposal does not protect users
from cooperating Mirrors.

Finally, the specification states a Client requests information
to Mirrors every 24 hours. Despite this reduces the load of the
Mirrors, it opens an attack window of 24 hours.

C. Trust Assertion for Certificate Keys

Trust Assertion for Certificate Keys (TACK) [103] allows
users to bind a domain with a certificate using a structure
called TACK, signed with a “TACK signing key” or TSK, that
is chosen by the domain owner. TSKs are trusted by clients and
should not be changed frequently whereas changes to server
certificates are not limited in frequency. TACK constitutes, in
practise, a change in PKI trust model as it moves the trust from
the root CA list to the TSKs. Moreover, it proposes a revo-
cation mechanism for compromised TLS certificates whereas
an overlapping mechanism for updating TSKs in which the
old and new TSK coexist during a time until the old is finally
disabled.

Unlike aforementioned proposals, TACK does not introduce
a global verifiable structure. TSKs and TACKs are generated
and delivered by servers so the client can process and keep
them to establish a long-term trust relation with a server.

The system defines two different life-cycles, one for
TACKs and other for TSKs. The TACK-TSK life-cycle is the
following:

• TSK generation: the server generates an ECDSA
key [104] that would be used to sign one or more domain
name TACKs.

• TACK creation: the TACK contains meta data to asso-
ciate a server certificate with a TSK. Once generated, the
TACK is signed with the TSK.

• TACK deployment: a TACK binding the TLS certificate
and the TSK is given to every server under the domain to
be protected. Those servers advertise the TACK setting
the “activation flag”.

• TACK re-generation: when the TACK expires or the
server changes the TLS certificate, a new TACK is
generated.

• TACKs revocation: if a TLS certificate is compromised,
a new TACK can be created incrementing the field “min
generation”.

DÍAZ-SÁNCHEZ et al.: TLS/PKI CHALLENGES AND CERTIFICATE PINNING TECHNIQUES FOR IoT AND M2M SECURE COMMUNICATIONS 3517

• TACKs deactivation: the server owner can deactivate a
TACK unsetting the “activation flag”, so servers can
remove it after a period of 30 days.

• TACKs overlapping: when a TSK binding a TLS certifi-
cate with a given server by means of a TACK, needs
to be changed, the server publishes a new TACK signed
with the new TSK. The new TACK is distributed together
with the old TACK during a period of time, so clients
can activate the new association whereas the service is
not disrupted.

The fields in a TACK delivered by the server to the client
during a TLS handshake are the following:

• public_key: contains the integers corresponding to a
point in the elliptic curve p-256 [105] that represents the
public key of the TSK that signed the TACK.

• min_generation: contains the value corresponding
to the field min_generation of the TSK associated
with the TACK.

• generation: signals the generation of the TACK so
every other TACK whose generation is less than the
maximum min_generation of the signing TSK is
considered revoked.

• expiration: date after the TACK is considered
expired.

• target_hash: a SHA256 hash [106] of the public
key [24] from the TLS certificate used by the TLS server.

• signature: an ECDSA signature using the TSK over
all the previous fields.

The associations or “pins” between TSKs and domain
names, represented by TACKs, are organized in repositories or
“stores”. Every store keeps a map that relates Fully Qualified
Domain Names (FQDNs) with one or more attribute sets.
Among those attributes, it can be found the issuance date, the
expiration date, the TSK public key (or its hash), and the field
min_generation, that should be equal for every TACK
signed by the same TSK. A client may have one or more stores
that can be local (optional) or provided by a remote party, and
can share pins with other clients. The protocol allows clients to
download TACKs from others, and publish discovered TACKs
using a trusted third party.

TACKs are delivered to the client using a TLS extension,
so clients can verify they are connecting to the appropriate
server corroborating the received TACK with the information
contained in the stores. When a compatible server receives a
TLS handshake message, it negotiates the use of the TACK
TLS extension and delivers a TACK to the client. If the client
has learnt the same TACK several times, it can create a “pin”
between the domain name and the TSK within one of its stores.
The validity of the “pin” is equal to the period of time the
relation has been observed, limiting the impact of erroneous
or malicious “pins”. The exchange and verification processes
come next.

The client verifies the TLS handshake with TACK exten-
sion as valid if the handshake results in an encrypted channel,
the TACK extension is present and the TACK delivered is
valid. A TACK is considered valid if the “generation” field
is greater than the “min_generation” field (from the TSK),
“expiration” is dated in the future, “target_hash” is correct and

the signature verifies. Once the TACK is verified, the client
looks for a “pin” in its stores for the server domain name.
If the stored TACK is equal to the one received, the connec-
tion is flagged as “Confirmed” otherwise as “Contradicted”.
If there is no association registered for the server domain
name the connection is flagged as “unpinned”. In the case
of “unpinned”, if the server TACK has been observed before,
the client can activate a “pin” and create an association with
an end date: end =current + MIN(30 days, current − initial),
being “initial” the date of the initial observation.

Security considerations for the client: As it has been men-
tioned, a client can use one or more stores, one local and others
being remote. The remote ones can be provided by third par-
ties but neither the organizations managing the repositories nor
the requirements for a third party to become trusted, are spec-
ified. Moreover, if repositories containing TACKs related to a
collection of servers from a given geographical area, belong
to an operator or provide TACKs by topic, client queries can
reveal interest or habits raising privacy concerns.

The specification also states clients can share “pins” with
other clients, and even publish those they have discovered
using a trusted third party or sharing service. This raises
privacy concerns as other entities can learn user habits and
interests. Moreover, only valid TACKs can be shared as they
can be easily verified, thus clients cannot add perturbations to
the observed TACKs to avoid profiling. Finally, this requires
the client to support a sharing protocol that may require
additional storage and processing power.

D. DNS Certification Authority Authorization

DNS Certification Authority Authorization (CAA) lets
domain owners specify which CAs can issue certificates for
their domain names. Unlike CT or SK, the proposal does not
define a verifiable structure to store evidences of certificate
issuance, nor a mechanism for cross verification. It just pro-
vides a mechanism for CAs to check if they are allowed to
issue a certificate for a given domain upon reception of a
Certificate Signed Request (CSR). Thus CAA intervenes only
before issuing the certificate.

CAA defines a DNS record called “Certification Authority
Authorization (CAA) DNS Resource Record” that allows the
domain owner, or the entity managing the primary DNS for
that domain, to specify a list of authorized CAs for the purpose
of issuing a certificate. In this way, any compliant CA should
query the domain owners’ DNS server for a CAA record in
order to verify if it is authorized for that domain. In this way,
the inadvertent erroneous issuing risk is reduced.

In a similar way as TLSA DANE records [107], discussed
in Section IV-F, CAA is under the control of the domain
owner and no third party is involved. However, the fundamen-
tal difference is that CAA helps the CA to determine if it is
authorized before issuing the certificate, whereas TLSA allows
clients to verify if a server certificate, used in TLS, is autho-
rized by the domain owner for the purpose of authenticating
an encrypted connection.

According to the specification, compliance with the CAA
DNS record is necessary, but not sufficient condition, for

3518 IEEE COMMUNICATIONS SURVEYS & TUTORIALS, VOL. 21, NO. 4, FOURTH QUARTER 2019

TABLE V
CAA RR EXAMPLE

certificate issuance since certificate requests should also com-
ply with the CA “Certificate Policy”. As part of this criteria, it
is required CAs publish their “Certificate Practices Statement”
(CPS) and count with an external auditing process. CAA
does not pursue creating security islands with local CAs, but
enforces any certificate should be issued by a CA in the CAA
record. The CAA in the record should be a trusted CA for the
client hence, the CA should be in the client’s trusted CA list.
In this way, if a CA listed in a CAA record for a domain is not
trusted by a given client but issued a TLS server certificate,
that client cannot trust the TLS server certificate irrespectively
of the CAA record.

CAA records cannot help clients in cross verification since a
TLS server certificate can have a long life (around years) while
the domain owner can change its providing CA and thus, the
CAA record, several times during the life of TLS certificates.

A CAA RR consists on a set of flags and label-value pairs
known as properties. Several different properties can be asso-
ciated with a domain by publishing different CAA RR under
the same domain DNS. A property can be flagged as “issuer
critical” indicating it should be correctly interpreted by the
issuer (CA) before issuing or otherwise desist from issuing.
The most representative CAA properties are:

• issue <Issuer Domain Name>: authorize the
owner of the domain “Issuer Domain Name” to issue
certificates for domain names managed by the consulted
DNS.

• issuewild <Issuer Domain Name>: same as
previous but allows wildcard domain names.

• iodef <URL>: defines the url where inconsistent cer-
tificate request attempts should be reported to. Uses the
IODEF format [108]

Table V shows an example in which the domain name
example.com asserts the only authorized CA for that
domain is ca.example.net, inconsistent requests should
be reported through email and a URL.

Despite the specification recommends CAA records to be
authenticated with DNSSEC, it is not mandatory. Thus, it
would be possible an attacker drops, alters or inserts fraudulent
CAA records if DNSSEC is not used.

CAA does not prevent impersonation or fraudulent use of
certificates so it contributes to “certificate pinning” but is not
a mechanism on its own. Security considerations for the client
cannot be discussed as no client is involved in CAA.

E. HTTP Strict Transport Security and HTTP Public Key
Pinning Protocol

HTTP Strict Transport Security (HSTS) [109] describes
a mechanism that allows Web sites using HTTP to
declare they are accessible only by means of an encrypted

connection, as HTTPS. Thus, the specification is limited
to HTTP that can be used over TLS [110] with the URI
schema “https”.

HSTS is based on previous research [111], [112] facing
threats from passive and active attackers. In the first group of
attacks, an attacker listens to the network for session cookies
that, despite delivered in first place through a protected channel
(HTTPS), are delivered in clear text (HTTP) when the client
loads other resources.

In the second group of attacks, an attacker can use poi-
soned DNS servers or modify unprotected frames to obtain
that session information. Then, the traffic can be redirected to
unprotected Web servers or to servers using self signed cer-
tificates, since, as discussed in Section III, clients will “click
through” upon a warning. Other threats as phishing or malware
are not addressed by HSTS.

HSTS defines an HTTP header that should be delivered
using HTTP over TLS to the client (User Agent or UA) with
the format that follows [113].

Strict-Transport-Security

= ‘‘Strict-Transport-Security’’ ‘‘:’’

[directive] *(‘‘;’’ [directive])

directive = directive-name [‘‘=’’ directive-value]

directive-name = token

directive-value = token | quoted-string

Among the directives included in the header, the UA should
remember the server policy (“max-age”), if sub-domains
should be treated in the same way (“includeSubDomains”) or
if it should be added to the list of permanent HTTPs servers
(“preload”). Clients should store and keep HSTS policies in the
UA. Some browsers include some preloaded servers avoiding
users to access them without TLS. Nevertheless, HSTS does
not prevent problems derived from malicious certificates issued
by compromised CAs, but prevents sessions to be redirected
to insecure protocols and hence, prevents session information
from being stolen.

HTTP Public Key Pinning Protocol (HPKP) [114] lets client
detect when a trust or certificate chain has changed unexpect-
edly. HPKP defines an HTTP header that lets the UA to learn
which SubjectPublickKey structures should be present
in the certificate chain in future TLS connections with the
same server. The objective is to avoid MITM attacks based on
compromised certificates and it should be used in conjunction
with HSTS.

Thus, HPKP defines a relation among a domain name and a
certificate chain. The proposed mechanism follows a “trust-on-
first-use” (TOFU). The first time the client accesses the server
has no knowledge about the server. So, it would not be able
to detect a MITM attack. However, in this first connection,
the client (UA) learns the valid certificate chain for that server
avoiding future attacks.

The HPKP HTTP header should be delivered over TLS to a
client (UA) with the following format (in which fields “token”
and “quoted-string” are formatted according to [113]).

Public-Key-Directives

= directive *(OWS ‘‘;’’ OWS directive)

DÍAZ-SÁNCHEZ et al.: TLS/PKI CHALLENGES AND CERTIFICATE PINNING TECHNIQUES FOR IoT AND M2M SECURE COMMUNICATIONS 3519

directive = directive-name

directive-name = token

directive-value = token/ quoted-string

The “Pin Directive” allows the Web server to state the
certificates that should be associated with the host. To
do so, it provides a sequence of SHA256 hashes of the
SubjectPublickKey structures of the expected certificate
chain. The directive “max-age” specifies the amount of time
(in seconds) a client should remember the chain, consider-
ing the server as a “Known Pinned Host”. Alike HSTS, it
also includes a directive called “includeSubDomains” and a
“report-uri” to report unsatisfactory verification.

Security considerations for the client: HPKP defines a
mechanism known as TOFU since the first time the client con-
nects to the server it lacks the necessary information to validate
the association (pin) so it would not be able to detect a MITM
attack. Moreover, since average users disregard browser warn-
ings, it is also feasible a MITM attack even for “Known Pinned
Host”.

HSTS and HPKP are designed for HTTP only. Moreover,
clients should store HPKP associations and remember HSTS
policies.

F. DNS-Based Authentication of Named Entities

As discussed in Section III, PKI has not a single root author-
ity able to verify every certificate. DNS has a single root
domain (.) under which every domain tree grows forming a
tree (.com., .net. and others). Thus, unlike PKI in which every
trusted CA can act with impunity issuing certificates, in DNS
only the root can act with impunity altering the domain name
database.

Branches or sub-domains in DNS are delegated to their
respective domain owners. Due to that, DNS has an infras-
tructure ready to provide an adequate certificate pinning
mechanism re-using the DNS infrastructure with several clear
benefits: it does not require the distribution of new credentials
since DNS is already deployed and can provide authenti-
cated records using security extensions (DNSSEC); it does
not require the creation of new services and lets domain own-
ers to manage their trust relations on their own, without the
intervention of third parties.

Section IV-F1 briefly describes DNS security extensions for
a better understanding of DNS-based Authentication of Named
Entities [107] (DANE) that will be described in Section IV-F2.

1) Introduction to DNSSEC: Domain Name System
Security Extensions (DNSSEC-bis) [115], [116] belong to a
set of specifications from the IETF that allows DNS clients
(resolvers) to authenticate the source of DNS responses,
authenticate the non existent domain responses (avoiding cer-
tain attacks), and to verify the integrity of DNS responses. It
does not provide confidentiality unless used together with TLS
or DTLS [117], [118].

DNSSEC [119] was first proposed in 1997 but the first ver-
sion had major scalability problems since parent zones should
sign records upon changes in every delegated branch or child
zone. The current proposal, known as DNSSEC-bis, proposes

Fig. 10. Trust chain comparison between DNSSEC and PKIX [70]

TABLE VI
DNSSEC RESPONSE EXAMPLE - A RR AND ITS RESPECTIVE RRSIG

an indirection in the signature using records called “Delegation
Signer (DS) Resource Records” that improve scalability.

Every DNS record in DNSSEC is delivered together with
and additional record known as RRSIG, that contains a signa-
ture over the original record using a Zone Signing Key (ZSK).
RRSIG records allows authenticating the information from the
DNS. The ZSK is certified by the Key Signing Key (KSK), a
longer term key. KSKs and ZSKs are local to their respective
DNS zones so, in order to create a trust chain to the parent, a
parent DNSSEC uses DS records to indicate the KSKs for the
child zones. This signature delegation process, coherent with
DNS domain name delegation, is followed down to the root.

The DNS root authority itself, has its own practice statement
and a complex ceremony to roll a new RootZone KSK.2 This
ceremony not being altered is the anchor of trust in DNSSEC.
The sequence of DS records from the root to any leaf in the
DNS tree leads to a trust chain alternative to PKI trust chain.
Fig. 10 shows a comparison between both certificate chains
(the reader should note the DNS root is unique whereas PKI
is not and depends on a given certificate).

Table VI shows an example of DNSSEC record that is
discussed next.

2See details at http://data.iana.org/ksk-ceremony/iana.org/ksk-ceremony.

3520 IEEE COMMUNICATIONS SURVEYS & TUTORIALS, VOL. 21, NO. 4, FOURTH QUARTER 2019

The value of a RRSIG is composed by several fields.
The first indicates the type of record being signed (A in
the example). The next field indicates the algorithm used to
create the signature (5 RSA/SHA1 in the example). Then,
the RR contains the registers or labels, that are used to
validate the records generated from a wild card. In the exam-
ple, it has the value of 3 thus, the original is composed
by 3 labels. abc.mydomain.com is the original since
abc.mydomain.com is 3 labels long (abc,mydomain,
com) hence it has not been generated using a wild card.

If 2 was use instead of 3, the field would show the
domain name was generated from *.mydomain.com and
that should be used for the verification according to the spec-
ification [116]. Then, the original RR TTL is included (3600
in the example) avoiding old compromised signing keys to
be used after the TTL. After the TTL, the record includes
the expiration date (20040509183619) and the start date
(20040409183619), the key tag used to identify the signing
key (38519) as well as the signing key name (mydomain).
Several RRs can use the same RRSIGs, the set of RRs sharing
the RRSIG are known as RRSet. Finally, the signature of the
RRSet, is generated as follows [115]:

signature = sign(RRSIG_RDATA | RR(1) | RR(2)...)

where | means concatenation; RRDATA are the fields of the
RRSIG record including the canonical zone name and exclud-
ing the signature field; as mentioned, every RR pertaining to
the RRSIG contributes with RR(i), that is generated in the
following way:

RR(i) = owner | type | class | TTL |

RDATA length | RDATA

Every RR contributing to the signature should belong to the
same signing zone, keep the original TTL, and should have
the same class/type.

The combination of owner, class, and type can be used
to determine that the RRSIG in the example authenticates A
RRs from abc.mydomain.com and no wildcard has been
used. Thus, the signature can be verified using a DNSKEY of
the zone mydomain.com with the key tag 38519 using the
algorithm 5.

2) DNS-Based Authentication of Named Entities (DANE):
DNS-based Authentication of Named Entities [107] (DANE)
relies on DNSSEC to authenticate DANE DNS records with
the purpose of associating domain names with credentials (PKI
certificates). As it was discussed in Section III, the fraudulent
use of certificates is among the most worrying problems of PKI
when used with TLS. The problem is that any compromised
CA can issue certificates for well-known sites that will pass
PKI validation and serve to the purpose of the attack, without
the knowledge of the domain owner. As the aforementioned
proposals, DANE also pursues creating a kind of association
among domain names and certificates (“Certificate Pinning”)
resistant to those attacks.

DANE allows domain owners to include information about
authentication credentials of their permanent services in their
DNS. Considering DNS is typically queried for name res-
olution by the client immediately before connecting to the

Fig. 11. DANE use case: specifying the CA that should be used by a
service (PKIX-TA). The figure shows the DANE record can state the CA that
should have issued the server certificate is “Verisign SubCA” so the TLSA
record constraints the CA. The solid lines represent the hierarchy in both
DNSEC/DANE and PKI. The dashed lines indicate the relation among entities.

server, the client can receive information pertaining to the
credential that should be received from the server during a
TLS handshake before actually connecting to the server. Thus,
avoids malicious certificates to be used to impersonate servers
managed by the domain owner (see Figure 11).

DANE defines a new DNS record called TLSA that allows
a DNS zone to assert how clients, resolving domain names
of that zone, should process certificates received through a
TLS connection. DANE specifications [107], [120] define
the following use cases depending on the parameters of the
register:

• CA constraint: the record specifies the certificate, or the
public key of the certificate of the CA, that should have
issued the TLS certificate. It does not affect the way the
client handles trust since the TLS certificate should pass
PKI validation. It just specifies exactly which CA should
have issued the server certificate, and for that reason is
called “CA constraint” (PKIX-TA [121]). See Fig. 12.

• Server certificate limitation: the record contains the cer-
tificate (or the public key) of the TLS certificate used
by the server. It is called “service certificate constraint”
(PKIX-EE [121]) since it defines the certificate the
server should use. Despite the record specifies a con-
crete certificate, the certificate should pass PKI validation.
See Fig. 13.

• CA specification: the record contains the certificate (or
the public key) of the CA that should have issued the
certificate used by the server. Unlike the first use case,
it is not necessary the certificate passes a PKI valida-
tion. In this case, DANE modifies the way the client
manages trusts and due to that is called “trust anchor
assertion” (DANE-TA [121]). It alters client trust since
specifies a concrete CA that should be trusted even if

DÍAZ-SÁNCHEZ et al.: TLS/PKI CHALLENGES AND CERTIFICATE PINNING TECHNIQUES FOR IoT AND M2M SECURE COMMUNICATIONS 3521

Fig. 12. DANE use case for specifying the CA (PKIX-TA). Server Cert
should pass PKIX validation. PKIX-TA avoids compromised CA attacks.

Fig. 13. DANE use case for specifying server certificate (PKIX-EE). Server
Cert should pass PKIX validation. PKIX-EE avoids compromised CA attacks.

Fig. 14. DANE use case for specifying a domain CA (DANE-TA). Server
Cert does not need to pass PKIX validation and will not pass it unless the
domain CA is added manually to the trusted CA list. Allows Domain CAs
(and security islands).

the CA is not trusted by the client. This use case gives
support to “security islands” within domain so domains
can issue their own certificates using their own CA.
See Fig. 14.

• Server certificate specification: the record contains the
certificate (or the public key) of the TLS certificate

Fig. 15. DANE use case for specifying a server certificate (DANE-EE).
Server Cert does not need to pass PKIX validation and will not pass it anyway.
Allows Server Certs of any kind (including self-signed certificates) that can
be trusted by means of DANE.

used by the server. This use case, called “domain-issued
certificate” (DANE-EE [121]), allows a domain to issue
its own certificates without a third party or CA. Alike
“trust anchor assertion”, it does not require PKI valida-
tion altering client’s trust. In fact, this use case enables
self-signed and ephemeral certificates to be issued by a
domain and trusted by the client. See Fig. 15.

The TLSA record defines a “selector” that sig-
nals whether the content of the records refers to
a “Full Certificate” [24] (Cert) or to its public key,
“SubjectPublicKeyInfo” [24] (SPKI). Moreover, it is possible
to indicate if the registry refers to the exact content or its hash
by means of the field “matching”. Finally, the “certificate
association data” field, defined by the previous two fields,
defines the object target of the association as raw (Full),
hashed with SHA-256 or SHA-512 for both certificate or
public key.

Table VII shows a TLSA example record returned by
a DNS asserting the server abc.xyz.com with a REST
interface [15] running on port 443, should use a certificate
issued by a concrete CA.

The example in Table VII contains a TLSA DANE record
and its related RRSIG DNSSEC record. The TLSA indicates
server abc.xyz.com should use a certificate (3 - “domain-
issued certificate”) whose full binary structure (0 - “Full
Certificate”) should have a SHA-256 hash (1 - SHA-256) with
a value equal to the one provided.

In order to avoid manipulation and to authenticate the
TLSA records, the TLSA record should be delivered together
with its corresponding RRSIG record. The RRSIG record
in the example protects a TLSA RR, using the algorithm
5 (RSA/SHA1) [122]. Stronger protection is achieved with
RSA/SHA-256 or RSA/SHA-512 (IETF RFC 5702), and
ECDSA/SHA-256 (IETF RFC 6605). The RRSIG record
refers to a domain name with 3 labels with a TTL of 900. It
also contains the valid from/to dates, the key tag with the value
14703 and the zone to which the record belongs and from
where the signing public key should be retrieved to verify the
record.

3522 IEEE COMMUNICATIONS SURVEYS & TUTORIALS, VOL. 21, NO. 4, FOURTH QUARTER 2019

TABLE VII
TLSA EXAMPLE RECORD FOR ABC.XYZ.COM

Security considerations for the client: DANE specifies the
compliant TLS client should support the three fields of TLSA
records: certificate usage, selector and matching type. Clients
have to support the four certificate usage values (use cases)
possible in TLSA records, and also to use selector types 0 (full
cert) and 1 (public key) to compare a certificate association
with a certificate from the TLS handshake using hashes (SHA-
256 or 512) or directly as specified by the matching type field
of the TLSA record.

V. COMPARISON OF CERTIFICATE PINNING

SOLUTIONS FOR IOT/M2M

This section contains a comparison of several aspects of
the discussed Certificate Pinning solutions in more detail than
other discussions [29], [30], [95], comparing more solutions
and with a particular focus on its application for IoT/M2M
scenarios. Table VIII, at the end of the section, contains a
summary of the most important aspects of the comparison.

A. Use of Side Channels

Side channels allow to perform some of the necessary vali-
dations but do not use the original protocol. For example, the
use of TLS can trigger the verification but it will be performed
using a different protocol or a different instance of the same
protocol.

The impact of the use of side channels depends on when
the side channel will be used. The first case consists on the
use of the side channel during the TLS handshake. The sec-
ond corresponds to the use of the side channel in a different
moment, generating data that can be used during a future TLS
handshake.

CT does not require the use of side channels during the
TLS handshake but proposes auditors, at client side, to con-
trast information with monitors asynchronously and optionally
to share observed SCTs with other clients by means of a

gossip protocol. Despite the use of side channels during the
handshake is not mandatory, it is possible to verify SCTs syn-
chronously. This synchronous verification could be necessary
in IoT and M2M since devices may suspend their activity dur-
ing long periods of time difficulting asynchronous verification
and the use of gossip protocol. Regarding the difficulties with
the gossip protocol, it does not mean an IoT device cannot
cooperate, but the effectiveness of the cooperation should be
contextualized. An IoT/M2M device can be limited in stor-
age capacity affecting observed SCTs storage. Moreover, it
should be taken into account the energy balance between
the energy expenditure in transmissions needed to fulfil the
device’s purpose, and those motivated by the CT protocol.

SK requires the use of side channels to verify the pin.
The server delivers the pin (data structure signed with the
SK) through TLS together with the certificate, and the pin
should be verified. The verification is not necessarily per-
formed online, it can be performed later on, or by a daemon
running in the client that downloads verification information
from a mirror periodically (to keep SKs fresh for later ver-
ification). The same considerations of CT can be applied to
SK since devices may not be always online for keeping the
information fresh.

TACK does not require side channels since the server pro-
vides all the necessary information during the handshake. The
server distributes the domain signing key known as TSK with
an activation flag. Clients just need to store and remember
TSKs for future verification of TACKs signed with stored
TSKs. However, the specification describes that TACKs can be
optionally downloaded from a trusted third party. Despite there
is no description concerning the way clients trust these third
parties, downloading and keeping a list of trusted third par-
ties, can be considered as the use of a side channel. Moreover,
TACK also proposes clients to share their observed TACKs,
requiring additional side channels.

CAA is a mechanism for domain owners to advertise
what CA is currently authorized to issue certificates for their
domain. CAA does not involve clients so no side channel can
be considered.

HSTS and HPKP are limited to HTTP. The first defines
policies to enforce the use of TLS and the other makes a
promise about the certificate chain a server will use in a future.
Since HSTS and HPKP information is delivered simultane-
ously using HTTP over TLS and needs no further verification,
this protocol does not rely on side channels.

Finally, DANE uses DNS with security extensions for veri-
fying the TLS certificate. For that reason it uses a side channel
(DNS) immediately before the TLS handshake.

B. Instant Recovery From Loss of Key - IR

One of the most worrying problems of PKI is to have a
private key compromised. This problem in PKI have associated
several processes as: certificate revocation, which involves the
CA to have the certificate added to the revocation list; request
of a new certificate; and service re-establishment with the new
certificate.

DÍAZ-SÁNCHEZ et al.: TLS/PKI CHALLENGES AND CERTIFICATE PINNING TECHNIQUES FOR IoT AND M2M SECURE COMMUNICATIONS 3523

TABLE VIII
SUMMARY OF THE CERTIFICATE PINNING TECHNIQUES COMPARISON. READ ◦/•/− AS “NO”/“YES”/“DO NOT APPLY” RESPECTIVELY

In case of loss, CT requires the issuance of a new cer-
tificate to be notified to the appropriate logs. The previous
certificate is not explicitly revoked since the addition of a
new certificate for the domain name implicitly revokes the
previous certificate. Despite this process can be triggered
immediately after the new certificate is issued, it should be
considered the addition of the new certificate can be delayed
up to MMD.

After MMD, the new certificate can be asynchronously ver-
ified by monitors. Let “Maximum Verification Delay” (MVD)

be the time for verification. The total recovery time is bounded
to a maximum t = MMD+MVD. Moreover, the verification of
an SCT can be triggered by an auditor, requesting information
to a monitor, that eventually will reach a log. The time until
the first client connects to a server that provides the new SCT
and thus, an auditor verifies, or a monitor requests the verifi-
cation of a SCT can be called “Maximum SCT Delivery” time
(MSD) and corresponds to t = MMD+MSD. For that reason,
the total time is t = max(MMD+MVD,MMD+MSD). That
time should be considered since monitors do not need to verify

3524 IEEE COMMUNICATIONS SURVEYS & TUTORIALS, VOL. 21, NO. 4, FOURTH QUARTER 2019

every log server nor look for all the domains, so it can happen
an SCT is not verified in a long time.

SK otherwise defines an explicit revocation mechanism that
distinguishes between the TLS certificate and the domain SK
key. It provides a mechanism to recover the SK using the
“incorporate by reference”. In general, it is possible to use a
new key immediately after the loss of the previous one. Alike
CT, there are certain time considerations that should be taken
into account.

In SK, there is no definition for the maximum time it can
take the addition of a new record. It can be added imme-
diately or in batches, however SK assesses the freshness of
the data received by the client being the period of the 24
first hours, in which any information is considered fresh, a
significant window of opportunity for an attack. Despite new
keys can be used immediately, previous keys can be consid-
ered valid during at least 24 hours. So, it would be enough
to prevent clients under attack from updating SK information
during 24 hours. SK proposes a cooperation protocol to keep
a list of fresh TimeLine servers that could reduce the time a
compromised TimeLine server is considered fresh. However,
IoT devices cannot guarantee they can commit resources to
cooperation.

TACK allows to recover from a server key loss but not
immediately. A TACK can be substituted according to a plan
with a key roll-over mechanism since the proposal supports
key overlapping during a time. If a TACK is compromised
(which is equivalent to a server key compromised), it can be
revoked increasing the field “min_generation”. After that, a
new key can be announced, but it can take some time until
the change to the new key is effective.

HTTP Public Key Pinning protocol (HPKP) makes a
promise about the certificate chain that will be used by
the server during a time established in the field “max_age”
of the pining directive. So new keys cannot be incor-
porated immediately except for clients connecting for the
first time.

In regards to DANE, since clients query DANE information
from the DNS before connecting to the server, the minimum
time for incorporating a new key after a server key loss is the
DANE RR Time To Live (TTL).

C. Global Attack Detection - GA

A global attack in this context is an attack where the server
certificate has been substituted by a malicious one, issued by a
compromised CA, and every client accessing the victim server
can observe the malicious certificate. A malicious certificate,
in this case, passes the PKI verification. Due to that, this sec-
tion evaluates not only the ability of the different proposals to
defend clients and domain owners against this kind of attacks,
but also the effect of the proposals over domains not adopting
each solution.

Two different cases should be considered. In the first, the
attacker compromises the CA and tries to impersonate a TLS
server using a TLS server with the malicious certificate, but
does not add the malicious certificate to the verifiable structure
(if any) described by the proposal. This attack will be called

“impersonation only attack”. In the second, the attacker not
only compromises the CA and tries to impersonate a TLS
server using a malicious certificate, but also adds the malicious
certificate to the verifiable structure. This attack will be called
“impersonation with poisoning attack”.

In the event of an impersonation only attack, CT clients
can defend against the attack if and only if CT is globally
adopted by domain owners, since clients will reject any TLS
handshake not providing a SCT as a proof. Domain owners
will not notice the attack since auditors do not notify monitors
about servers not complying with CT, or that complied in the
past and have stopped doing so. Clients not supporting CT will
not notice the attack and may be exposed to the attack for a
long time since the compliant domain owner cannot notice the
attack as well, so cannot react to it.

If CT is globally adopted by clients but optionally by
servers, a legitimate TLS server using a legitimate certificate,
but unwilling to support CT will be indistinguishable from
a malicious one. Clients will not finish the handshake since
there is no possibility to verify the certificate by means of
CT thus, domain owners not supporting CT will be excluded
from secure traffic. CT compliant domain owners will also not
notice the attack.

If CT is globally adopted by clients and servers, clients will
detect the attack, but not domain owners since there is no trace
of malicious certificate in log serves.

In the event of a impersonation with poisoning attack, the
previous considerations can be applied except that domain
owners have a chance to detect the attack if they monitor
actively every log sever.

The CT gossip protocol and the auditor-monitor interaction,
is orchestrated around the verification of SCTs, but there is
no mechanism to signal the lack of an SCT or to detect
servers that delivered SCTs in the past and stopped doing so.
If auditors were able to notify monitors about servers that
stop delivering SCTs, monitors would be able to investigate
the issue and notify domain owners contributing to an early
detection. Unfortunately, that functionality is not considered
in CT.

IoT/M2M global adoption of CT is not plausible due to
the heterogeneity of devices and solutions, so global attack
detection may not be feasible.

In the event of an impersonation only attack, entities sup-
porting SK can verify if the associated SK key is in force, by
requesting every available record for that domain since a given
time or sequence number. Hence, if SK is globally adopted
by domain owners but optionally by clients, SK aware clients
will detect the attack since the TLS certificate provided by the
server lacks the signature of the SK.

If SK is globally adopted by clients but not servers, SK
would have the same problem as CT, it would be enough for
an attacker to impersonate the TLS server with the malicious
certificate without offering the SK, so malicious servers will
be indistinguishable from legitimate servers not using SK. If
SK is globally adopted by both domain owners and clients,
the attack will be detected. In any case, domain owners will
not notice the attack since no new record will be added to the
TimeLine server.

DÍAZ-SÁNCHEZ et al.: TLS/PKI CHALLENGES AND CERTIFICATE PINNING TECHNIQUES FOR IoT AND M2M SECURE COMMUNICATIONS 3525

An impersonation with poisoning attack in SK is more com-
plex to achieve, since SK is expected to be better protected
and less exposed than TLS server keys. Nevertheless, if SK
is compromised, and the domain owner does not realize, SK
provides no protection since the domain owner cannot revoke
the SK.

Cooperation among devices in SK protects from TimeLine
server tampering, but not from an attack to a concrete TimeLine
server.

If TACK is globally adopted by clients, in the event of
an impersonation only attack, clients are able to detect TLS
servers changing from a legitimate certificate to a malicious
one since the later will have no TSK signature. As happens
in CT and SK, legitimate servers not supporting TACK will
be treated in the same ways as malicious ones. If TACK
becomes mandatory for servers and optional for users, only
TACK aware clients will be protected from this kind of attacks.
Even if TACK is adopted by both domain owners and clients,
there is no way domain owners can notice their TLS servers
are being impersonated unless clients share not only observed
TACKs but report the absence of TACKs for a give domain
name.

In principle, the impersonation with poisoning attack has
no sense in TACK since there is no verifiable structure, but
in practise, it could be possible to achieve the same result
by poisoning the third parties that clients can use to obtain
trusted TACKs. There is no clear definition of the requirements
an entity should fulfil in order to become a trusted party nor
definition of the security of the protocol used to fetch TACKs
from them. In any case, if the TSK is also compromised, there
is no way to detect both attacks.

HPKP allows compatible clients to detect a global attack if
the attack happens after they have visited the TLS server for
the first time, when they get the trust chain that will be used
in the future. Non HPKP aware clients and those aware but
visiting the site for the first time after the attack starts would
not notice.

In the event of an impersonation only attack, if the
domain owner supports DANE, only clients supporting DANE
will notice the attack. Clients do not need to rely on
previously stored information to detect it. However, if the
domain owner does not support DANE, even DANE clients
will not notice the attack. The attack cannot be, in prin-
ciple, detected by the domain owner unless it uses DANE
and another party supporting DANE finds an inconsistency
between the authenticated authoritative information provided
by the DNS and the information obtained during the TLS
handshake.

If clients globally adopt DANE but not domain owners, a
DANE client cannot be aware of an attack if the domain owner
does not support DANE. However, the attack is only effective
for a DANE aware domain owner if the attacker compromises
not only the CA but also the domain owner’s DNS (in order
to remove or alter DANE information from the DNS server).
The latest can be considered an impersonation with poison-
ing attack, that will be useful if and only if, the attacker not
only compromise the DNS server but also gains access to the
DNSSEC ZSKs.

D. Targeted Attack - TA

A targeted attack is similar to a global attack. In this case,
the malicious certificate cannot be observed by every client
accessing the victim server but by a group of devices that
constitute the target group.

The effectiveness of CT, SK, TACK, and HPKP, in this
case, is equivalent to that of the global attack discussed in
Section V-C. Again, as discussed before, many proposals as
CT, SK, and TACK, that do not report TLS servers that stop
being compliant, will have an equivalent protection. Others,
that expect a different behaviour, as HPKP if first visited
before the attack, would detect these kind of attacks promptly.
Any expected benefit or potential benefit from cooperation
among entities will be reduced in this case since the group
able to observe the attack is reduced. Considering IoT/M2M
devices, as reasoned before, may not be able to commit
resources for cooperation, the degree of protection would be
the same.

In the case of DANE, since there is no expected cooper-
ation and devices would not store any previous information,
the protection is formally equal to the global attack.

E. Trusted Third Party Dependency - TTP

This section evaluates the impact of additional trusted third
parties on the participants. As it has been already discussed
in Section III, the increasing number of directly or indirectly
trusted CAs (TTPs), distributed with current software, consti-
tutes a problem of trust, and is one of the weakest points in
PKI applied to TLS. Certificate Pinning solutions have been
proposed to overcome this PKI weakness, preventing some
attacks in a more or less efficient way. However, some of the
analysed solutions rely on additional TTPs, that may even-
tually grow and become a problem. Moreover, managing a
whole new TTP structure may require extra effort from both
client and server sides.

Log servers in CT use a public key pair to sign the SCT
they issue upon the addition of new TLS certificates. CT does
not clarify how these new key pairs are obtained, distributed
or revoked, but it can be supposed the list of CT current
authorized key pairs will be distributed together with the soft-
ware, in the same way as PKI. In this way, as described in
the specification, CT requires auditors embedded in clients
to have knowledge of CT TTPs or to delegate to external
components, but does not clarify how trust will be estab-
lished between clients and external auditors. Managing lists
of CAs is a problem on its own, but worse in IoT/M2M since
many devices may get updates later that expected or never be
updated. For that reason, requiring IoT/M2M devices to be
updated with an additional TTP list constitutes an additional
problem.

In the case of SK, every TimeLine server has its own key
pair. SK clearly states the TimeLine server list and their corre-
sponding keys should be distributed with software in the same
way as trusted certificates in PKI. Moreover, mirrors in SK
should identify by means of their IP/port and public key, so
SK introduces two additional key sets (TimeLine server and
mirrors). Management and distribution of the two lists may

3526 IEEE COMMUNICATIONS SURVEYS & TUTORIALS, VOL. 21, NO. 4, FOURTH QUARTER 2019

be a problem for IoT/M2M devices that can be frequently out
of date.

TACK does not need additional TTPs. Every domain has its
own TSK that is distributed during the activation. The domain
is responsible of the distribution requiring no cooperation from
software manufacturers. Alike TACK, HPKP does not intro-
duce new TTPs, it just conveys what CAs should be found
in the certificate chain provided by the TLS server during a
handshake. Nevertheless, TACK proposes third parties to pro-
vide sets of trusted TACKs. Despite these third parties act as
mere online stores for TACKs, the list of authorized TACKs
may need some management.

DANE relies on DNSSEC for authenticating DANE DNS
responses. These responses, which can be used to verify TLS
certificates, are signed with a ZSK, which is authorized by the
parent with a signature, then successively down to the root
that is signed by a reputed CA. The CA signing the unique
DNS root is well known and verifiable with the current PKI
certificate list. For that reason, DANE does not require the use
of additional trusted third parties.

F. Instant Start Up - IS

This section discusses if proposed solutions allows a TLS
server to start using a certificate immediately after issuance
without generating trust problems in clients.

CT requires the CA to register the certificate in a log server
in order to get the SCT, that will be delivered through a exten-
sion in TLS or directly embedded in the certificate. CT log
servers add new certificates asynchronously in a time shorter
than MMD. A certificate provided by a TLS server is trusted
if the SCT is signed by a log server public key that the client
trusts. If the log server has been compromised, participants
may need up to a time t = max(MMD+MVD,MMD+MSD),
as discussed in Section V-B, to verify a SCT trustworthily. In
IoT/M2M, CT does not suppose any improvement over PKI,
since in both cases a TLS certificate can be used immedi-
ately and CT provides the same degree of security than PKI
during t.

SK does not hamper instant use of TLS certificates since
the only requirement is the domain owner to register a domain
key (SK) beforehand. After a domain owner registers the SK
for its domain, any new certificate can be used instantly. The
only requirement for a cross verification is to have the new
certificate signed with the domain SK. Alike CT, if a TimeLine
server has been compromised, it would be necessary to wait
more than 24 hours, according to the freshness defined by the
protocol, to have a trustworthy cross verification. So the degree
of protection, at least during a 24 hours window, would be the
same as with plain PKI.

In the case of TACK, there is a time in which the TACKs to
remove are distributed together with their replacements thus, a
change should be planned ahead. Hence, it is possible to start
using a new certificate with its corresponding TACK immedi-
ately, but the distribution process can affect the convergence
time. It should be also considered that TACK allows third par-
ties to provide trusted TACK sets, so they should be updated
accordingly upon changes.

HPKP allows the immediate use of new certificates by
TLS servers. The major concern is that clients whose
first interaction with the server happens after the change,
cannot determine whether the certificate is legitimate
or not.

Finally, DANE is considered an alternative independent
channel. Since DANE clients will not store any previous record
of a given server beyond the TTL time of the record, they will
take as valid the new certificate.

G. Unmodified Servers - US

One of the mayor concerns of Certificate Pinning is
the addition or alteration of protocols to support the pro-
posals. Significant changes will add complexity to clients
complicating the adoption. This section analyses changes
required by the previously discussed Certificate Pinning
solutions.

CT proposes alternative mechanisms to deliver SCTs to the
client during a TLS handshake. The first consists on delivering
SCTs using TLS extensions with two possibilities, using a CT
TLS extension or an OSCP one. The second describes how the
SCT can be directly incorporated to the certificate by register-
ing a pre-certificate before issuing the final certificate. In the
first case, CT requires clients to support the TLS extensions
described in the proposal. Despite supporting an exotic TLS
extension may be challenging, CT considers the use of the
widely adopted OSCP TLS extension. Thus, the use of TLS
extensions is not a big concern since are widely supported. In
the second case, there is no need to change the protocol since
the SCT is embedded in the certificate so, the complexity is
moved to the PKI software.

Nevertheless, it should be considered CT proposes a gossip
protocol for clients to exchange SCTs. That new proto-
col should be supported by clients. In regard to IoT/M2M,
it is coherent to assume TLS extension support is not a
problem since they are supported by reference TLS implemen-
tations as OpenSSL. Concerning the gossip protocol, and any
other protocol supporting the interaction among parties (i.e.,
auditor-monitor), their support can be more challenging since
additional software requires to be updated, but more precisely
due to the reasons discussed in Section V-A.

In SK specification, it is suggested the SK signature over
the certificate chain is transmitted during the handshake as
part of the server certificate. In this case, there is no need for
modifying the protocol.

Alike CT, TACK requires the use of TLS extensions that
are well supported in IoT. However, TACK may need support
for trusted third parties providing trusted TACKs to clients.

HPKP and HSTS require changes in HTTP headers in
both clients and servers thus, servers can deliver the chain
and clients process it. Clients unable to understand those
headers should ignore them, so it would not be a problem
in IoT/M2M.

Finally, DANE does not require any modification to the
server or clients. Due to that, it can be used whenever the
client DNS resolver supports DNSSEC and is able to process
DANE RRs.

DÍAZ-SÁNCHEZ et al.: TLS/PKI CHALLENGES AND CERTIFICATE PINNING TECHNIQUES FOR IoT AND M2M SECURE COMMUNICATIONS 3527

H. Necessary Storage - NS

Certificate Pinning solutions pursue to provide some of
the following characteristics: verifiable structures that can be
audited; cross verification for clients; or grounds for trust
based on collections of evidences. Hence, some information
should be stored in different entities considered by the solu-
tion. It is necessary to evaluate the impact of these proposals
on the storage.

CT requires the storage of SCTs at client side (auditor) to
be verified by monitors or shared by means of the gossip pro-
tocol. Additionally, CT requires storing a list of TTPs or log
servers that should be trusted. According to the expected size
of SCTs and pubic keys, it would not be a problem event
for IoT/M2M unless the number of SCTs or keys grow exag-
geratedly. Moreover, CT requires auditors to store evidences
(pieces of the MT or node sequences) that will be used to
detect errors and malicious behaviours.

SK requires the storage of TimeStamps, SKs and lists of
mirrors with their corresponding keys to feed the synchro-
nization protocol and allow the verification. The specification
makes a study of the estimated demanded size according to
the data entropy, showing the requirements can be afforded by
IoT/M2M devices.

The TACK specification defines “stores” as the place within
the client where to store observed and downloaded TACKs.
According to the TACK structure, it should not be a problem
to store a reasonable number of TACKs in IoT/M2M.

Alike the aforementioned solutions, HPKP requires storing
both HPKP associations and HSTS policies in the client, but it
should not be a significant information volume for IoT/M2M.

DANE does not require the client to store any information.

VI. OPEN CHALLENGES AND RESEARCH DIRECTIONS

This section describes open challenges and research direc-
tions to improve TLS/certificate pinning in the context of
IoT and M2M. Adoption is among the most critical prob-
lems in Certificate Pinning. On the one hand, the lack of a
global adoption can harden attack detection as discussed in
Sections V-C and V-D. According to the discussion, clients
may be unable to differentiate malicious servers from those
not adopting the solution. On the other hand, requiring global
adoption may hamper innovation in server authentication and
security protocols. There is an interesting research area on
improving proposed certificate pinning protocols, or other
information systems, to convey extended information to clients
so they can differentiate among services not supporting a given
solution voluntarily from those that may be malicious. Beyond
the current possible outcome of these solutions: of secure (con-
nect) or not secure (do not connect); it would be interesting
to increase the outcome space by defining a third option that
represents uncertainty.

This is important for IoT/M2M devices. Commercially
available off-the-shelf software or hardware, which is going
to be integrated into an IoT device ecosystem long time after
its manufacturing process, it may become not only a secu-
rity threat [123] due to certain vulnerabilities detected after
production, but also unusable if it cannot reach backends.

Certificate Pinning solutions, if adopted globally, can lead to
a scenario in which devices cannot reach backends to receive
the appropriate updates and can be easily misused.

Future reseach considering uncertainty, should explore solu-
tions where devices engage in extended authentication by other
means, for instance using application protocol layers, that
eventually let them reach the appropriate backends. Also solu-
tions based on advertising alternative routes to the service as
part of the certificate pinning solution, should be explored.
This is presently incorporated of SK (see Section IV-B) to
prevent denial of service.

Every of the certificate pinning solutions analyzed in
Sections IV-A to IV-F focus on making it difficult for mali-
cious endpoints to forge others’ identity by means of compro-
mised or cooperating CAs. As stated in the analysis, despite
every solution has its own mechanism, the combination of sev-
eral solutions or even their hybridization may contribute to a
better one.

The results obtained from various solutions can be com-
bined for judging the security of a given service using PKI by
means of a risk assessment engine. Several works [124]–[126]
argue that an evidence collection process and its ulte-
rior analysis can be of paramount importance to overcome
several attacks. These solutions can be also incorporated
into IoT/M2M environments and carried out by constrained
devices.

When it comes to the hybridization, there are several
interesting topics to be addressed. For instance, CT (see
Section IV-A) and SK (see Section IV-B) keep a central struc-
ture that according to several cryptographic properties or using
timestamps, are useful to detect several attacks, if inspected
regularly for misuse, and to find out when the attack happened.
Despite these solutions have demonstrated their effectiveness
under certain circumstances, the control of the structure may
fall under a single private entity diminishing Internet neutrality.
Other solutions, as TACK (see Section IV-C) or DANE (see
Section IV-F2) do not keep a historical record, so they cannot
be audited for misuse, but allow clients to get an immediate
response regarding the trustworthiness of a given service. A
very interesting research can be carried out proposing the use
of verifiable structures locally combined with solutions provid-
ing an immediate response. In such a way, solutions as DANE
or TACK, could not only provide an immediate verification but
also keep an auditable historic record of the credentials they
vouch for.

Finally, the support of constrained devices opens an
interesting research. Considering the limitations present on
nowadays IoT/M2M devices, certificate pinning solutions
should address the verification of the certificates requiring a
minimum storage (as reasoned in Section V-H) and energy
expenditure. Moreover, as part of the offloading strategies, it
is becoming a trend to move certain communication services
to the cloud and to the fog. Since the access to these services
is performed using TLS or DTLS, certificate pinning solu-
tions play an important role. It is worth mentioning the work
of DNS PRIVate Exchange (DPRIVE) Working Group of the
IETF on DNS privacy, that focuses on providing confidential-
ity to DNS transactions relying on TLS/DTLS for this purpose.

3528 IEEE COMMUNICATIONS SURVEYS & TUTORIALS, VOL. 21, NO. 4, FOURTH QUARTER 2019

As part of the offloading strategy in IoT/M2M, DNS resolvers
will probably be replaced by a stub resolver that forwards
any DNS request to a resolver located near the device relying
on DNS over (D)TLS to guarantee privacy. Due to that, the
correct authentication of the resolver’s certificate is especially
worrying since it enables a huge number of attacks.

VII. CONCLUSION

TLS has been widely used on Internet with a high degree
of success. Thus, it is reasonable it has been adopted by
IoT and M2M protocols. However, TLS and PKI tackle with
static services whereas services in IoT/M2M can be dynamic
and several orders of magnitude more numerous. Moreover,
IoT/M2M require adequate security support to address lim-
itations in processor, memory and battery and multiple
vendors.

The global picture of PKI presented in the article, identifies
problems (Section III-A) in regards to the number of authori-
ties that combined with the increasing number of endpoints to
protect, reveals that alternative certificate validation and attack
detection mechanisms are desirable to guarantee an adequate
degree of security.

Certificate Pinning technique (Section IV) is being envis-
aged as a way to strengthen the trust in the system. This
article has reviewed and compared the different proposals for
certificate pinning in the context of IoT/M2M. Section V has
analyzed the proposals in different aspects. Let us review the
main points we have found.

Only CT, SK and DANE use side channels. CT for exchang-
ing SCTs data, SK to verify the pin, and DANE for DNS initial
queries. In case of key loss, CT, SK, CAA and DANE provide
instant recovery, with different but bounded uncertainty times.

In a global attack scenario, IoT/M2M global adoption of CT
is required. This is not plausible due to the heterogeneity of
devices and solutions, so global attack detection may not be
feasible. Similar problems appear for SK in which malicious
servers will be indistinguishable from legitimate servers not
using SK. This is also the case of TACK if adopted by both
domain owners and clients since there is no way domain own-
ers can notice their TLS servers are being impersonated unless
clients share not only observed TACKs but report the absence
of TACKs for a give domain name. HPKP only protects clients
from a global attack to already visited and trusted TLS servers.
This may strongly limit the dynamicity of interactions with
the IoT increasing huge number of apps, services and devices.
DANE also requires global adoption in servers and clients to
protect from an impersonation only attack, if the domain owner
supports DANE, only clients supporting DANE will notice the
attack. There are no significant differences regarding instant
start up, and server modification.

CT and SK are the only approaches that require additional
TTPs. The need for extra storage is common to all proposals
but CAA and DANE, since they get the information from the
DNS. DANE is the only that supports security islands and
scenarios of domain owner self-signed certificates. CT, SK
and TACK require third party management, while the others
can be managed by the domain owner.

From all that, we conclude that DANE offers a set of char-
acteristics desirable for IoT and its dinamic scenarios. DANE
uses an existing side channel (DNS) but does not require using
a new side channel during TLS handshake. A query for the
address record is most often performed before the TLS hand-
shake. Thus services can frequently update certificates and
instantly recover from loss of keys, without imposing con-
vergence times or involving third parties. DANE does not
require collaboration between IoT limited devices in global
attack scenarios, nor additional TTPs, lowering operation and
management costs.

REFERENCES

[1] C. M. Medaglia and A. Serbanati, “An overview of privacy and
security issues in the Internet of Things,” in The Internet of
Things, D. Giusto, A. Iera, G. Morabito, and L. Atzori, Eds.
New York, NY, USA: Springer, 2010, pp. 389–395. [Online]. Available:
https://link.springer.com/chapter/10.1007%2F978-1-4419-1674-7_38

[2] R. H. Weber, “Internet of Things—New security and privacy chal-
lenges,” Comput. Law Security Rev., vol. 26, no. 1, pp. 23–30,
2010. [Online]. Available: http://www.sciencedirect.com/science/
article/pii/S0267364909001939

[3] Internet of Things: Privacy & Security in a Connected World, Federal
Trade Commission, Washington, DC, USA, 2015.

[4] C. Richardson. (2016). Microservice Architecture Patterns and
Best Practices. Accessed: Feb. 12, 2016. [Online]. Available:
http://microservices.io/index.html

[5] L. Chen, “Continuous delivery: Huge benefits, but challenges too,”
IEEE Softw., vol. 32, no. 2, pp. 50–54, Mar./Apr. 2015.

[6] A. Balalaie, A. Heydarnoori, and P. Jamshidi, “Microservices architec-
ture enables DevOps: Migration to a cloud-native architecture,” IEEE
Softw., vol. 33, no. 3, pp. 42–52, May/Jun. 2016.

[7] C. Yang, P. Liang, and P. Avgeriou, “A systematic mapping study on
the combination of software architecture and agile development,” J.
Syst. Softw., vol. 111, pp. 157–184, Jan. 2016.

[8] F. Bonomi, R. A. Milito, J. Zhu, and S. Addepalli, “Fog computing
and its role in the Internet of Things,” in Proc. 1st Ed. MCC Workshop
Mobile Cloud Comput. (MCC), 2012, pp. 13–16. [Online]. Available:
http://doi.acm.org/10.1145/2342509.2342513

[9] S. Wang, J. Xu, N. Zhang, and Y. Liu, “A survey on service migration
in mobile edge computing,” IEEE Access, vol. 6, pp. 23511–23528,
2018.

[10] “OpenFog architecture overview,” Fremont, CA, USA, OpenFog
Consortium, White Paper, Feb. 2016.

[11] D. Evans, “The Internet of Things: How the next evolution of the
Internet is changing everything,” vol. 1, San Jose, CA, USA, CISCO,
White Paper, pp. 1–11, 2011.

[12] B. Plale et al., “CASA and LEAD: Adaptive cyberinfrastructure for
real-time multiscale weather forecasting,” Computer, vol. 39, no. 11,
pp. 56–64, Nov. 2006.

[13] T. Martin and J. Healey, “2006’s wearable computing advances
and fashions,” IEEE Pervasive Comput., vol. 6, no. 1, pp. 14–16,
Jan./Mar. 2007.

[14] G. Pollock, D. Thompson, J. Sventek, and P. Goldsack, “The asymp-
totic configuration of application components in a distributed system,”
College Sci. Eng., School Comput. Sci., Univ. Glasgow, Glasgow,
U.K., Rep., 1998. [Online]. Available: http://www.dcs.gla.ac.uk/∼
joe/auxiliary/papers/Personal/AsymptoticConfig.pdf

[15] R. T. Fielding, “REST: Architectural styles and the design of network-
based software architectures,” Ph.D. dissertation, Inf. Comput. Sci.,
Univ. California at Irvine, Irvine, CA, USA, 2000. [Online]. Available:
http://www.ics.uci.edu/∼fielding/pubs/dissertation/top.htm

[16] N. Kushalnagar, G. Montenegro, and C. Schumacher, “IPv6 over
low-power wireless personal area networks (6LoWPANs): Overview,
assumptions, problem statement, and goals,” RFC 4919, Internet Eng.
Task Force, Fremont, CA, USA, pp. 1–12, Aug. 2007. [Online].
Available: https://www.rfc-editor.org/rfc/rfc4919.txt

[17] D. Karaman et al., “Managing 6LoWPAN sensors with CoAP on
Internet,” in Proc. 23rd Signal Process. Commun. Appl. Conf. (SIU),
2015, pp. 1389–1392.

DÍAZ-SÁNCHEZ et al.: TLS/PKI CHALLENGES AND CERTIFICATE PINNING TECHNIQUES FOR IoT AND M2M SECURE COMMUNICATIONS 3529

[18] Z. Shelby, K. Hartke, and C. Bormann, “The constrained applica-
tion protocol (CoAP),” RFC 7252, Internet Eng. Task Force, Fremont,
CA, USA, pp. 1–112, Jun. 2014. [Online]. Available: https://www.rfc-
editor.org/rfc/rfc7252.txt

[19] T. Dierks and E. Rescorla, “The transport layer security (TLS) pro-
tocol version 1.2,” RFC 5246, Internet Eng. Task Force, Fremont,
CA, USA, pp. 1–104, Aug. 2008. [Online]. Available: https://www.rfc-
editor.org/rfc/rfc5246.txt

[20] E. Rescorla and N. Modadugu, “Datagram transport layer secu-
rity version 1.2,” RFC 6347, Internet Eng. Task Force, Fremont,
CA, USA, pp. 1–32, Jan. 2012. [Online]. Available: https://www.rfc-
editor.org/rfc/rfc6347.txt

[21] R. Lychev, S. Jero, A. Boldyreva, and C. Nita-Rotaru, “How secure
and quick is QUIC? Provable security and performance analyses,” in
Proc. IEEE Symp. Security Privacy, May 2015, pp. 214–231.

[22] P. K. Verma et al., “Machine-to-machine (M2M) communica-
tions: A survey,” J. Netw. Comput. Appl., vol. 66, pp. 83–105,
May 2016. [Online]. Available: http://www.sciencedirect.com/
science/article/pii/S1084804516000990

[23] H. Tschofenig and T. Fossati, “Transport layer security (TLS)/
datagram transport layer security (DTLS) profiles for the Internet
of Things,” RFC 7925, Internet Eng. Task Force, Fremont, CA,
USA, pp. 1–61, Jul. 2016. [Online]. Available: https://www.rfc-
editor.org/rfc/rfc7925.txt

[24] D. Cooper et al., “Internet X.509 public key infrastructure certifi-
cate and certificate revocation list (CRL) profile,” RFC 5280, Internet
Eng. Task Force, Fremont, CA, USA, pp. 1–151, May 2008. [Online].
Available: https://www.rfc-editor.org/rfc/rfc5280.txt

[25] P. Yee, “Updates to the Internet X.509 public key infrastructure certifi-
cate and certificate revocation list (CRL) profile,” RFC 6818, Internet
Eng. Task Force, Fremont, CA, USA, pp. 1–8, Jan. 2013. [Online].
Available: https://www.rfc-editor.org/rfc/rfc6818.txt

[26] M. L. Sichitiu and M. Kihl, “Inter-vehicle communication systems:
A survey,” IEEE Commun. Surveys Tuts., vol. 10, no. 2, pp. 88–105,
2nd Quart., 2008.

[27] J. Kim, J. Lee, J. Kim, and J. Yun, “M2M service platforms: Survey,
issues, and enabling technologies,” IEEE Commun. Surveys Tuts.,
vol. 16, no. 1, pp. 61–76, 1st Quart., 2014.

[28] J. Granjal, E. Monteiro, and J. S. Silva, “Security for the Internet
of Things: A survey of existing protocols and open research
issues,” IEEE Commun. Surveys Tuts., vol. 17, no. 3, pp. 1294–1312,
3rd Quart., 2015.

[29] J. Clark and P. C. van Oorschot, “SoK: SSL and HTTPS: Revisiting
past challenges and evaluating certificate trust model enhancements,”
in Proc. IEEE Symp. Security Privacy, Berkeley, CA, USA, 2013,
pp. 511–525.

[30] J. Amann et al., “Mission accomplished? HTTPS secu-
rity after diginotar,” in Proc. Internet Meas. Conf. (IMC),
London, U.K., 2017, pp. 325–340. [Online]. Available:
http://doi.acm.org/10.1145/3131365.3131401

[31] M. Conti, N. Dragoni, and V. Lesyk, “A survey of man in the middle
attacks,” IEEE Commun. Surveys Tuts., vol. 18, no. 3, pp. 2027–2051,
3rd Quart., 2016.

[32] S. Kent and K. Seo, “Security architecture for the Internet
protocol,” RFC 4301, Internet Eng. Task Force, Fremont, CA,
USA, pp. 1–101, Dec. 2005. [Online]. Available: https://www.rfc-
editor.org/rfc/rfc4301.txt

[33] C. Kaufman, “Internet key exchange (IKEv2) protocol,” RFC 4306,
Internet Eng. Task Force, Fremont, CA, USA, pp. 1–99, Dec. 2005.
[Online]. Available: https://www.rfc-editor.org/rfc/rfc4306.txt

[34] M. H. Behringer, “End-to-end security,” Internet Protocol J.,
vol. 12, no. 3, pp. 20–26, Sep. 2009. [Online]. Available: https://
www.cisco.com/c/dam/en_us/about/ac123/ac147/archived_issues/ipj_
12-3/ipj_12-3.pdf

[35] S. Cantor, J. Kemp, R. Philpott, and E. Maler, Assertions and Protocols
for the OASIS Security Assertion Markup Language (SAML) V2.0,
document saml-core-2.0-os, Org. Adv. Struct. Inf. Stand., Mar. 2015.
[Online]. Available: http://docs.oasis-open.org/security/saml/v2.0/saml-
core-2.0-os.pdf

[36] R. Canetti and H. Krawczyk, “Security analysis of IKE’s signature-
based key-exchange protocol,” in Proc. Annu. Int. Cryptol. Conf., Santa
Barbara, CA, USA, 2002, pp. 143–161.

[37] H. Krawczyk, “SIGMA: The ‘SIGn-and-MAc’ approach to authenti-
cated Diffie–Hellman and its use in the IKE protocols,” in Proc. 23rd
Annu. Int. Cryptol. Conf., Santa Barbara, CA, USA, Aug. 2003,
pp. 400–425. doi: 10.1007/978-3-540-45146-4_24.

[38] W. Aiello et al., “Just fast keying: Key agreement in a hostile Internet,”
ACM Trans. Inf. Syst. Security, vol. 7, no. 2, pp. 242–273, 2004.

[39] A. Jungmaier, E. Rescorla, and M. Tuexen, “Transport layer secu-
rity over stream control transmission protocol,” RFC 3436, Internet
Eng. Task Force, Fremont, CA, USA, pp. 1–9, Dec. 2002. [Online].
Available: https://www.rfc-editor.org/rfc/rfc3436.txt

[40] B. Aboba and D. Simon, “PPP EAP TLS authentication pro-
tocol,” RFC 2716, Internet Eng. Task Force, Fremont, CA,
USA, pp. 1–24, Oct. 1999. [Online]. Available: https://www.rfc-
editor.org/rfc/rfc2716.txt

[41] T. Dierks and C. Allen, “The TLS protocol version 1.0,” RFC 2246,
Internet Eng. Task Force, Fremont, CA, USA, pp. 1–80, Jan. 1999.
[Online]. Available: https://www.rfc-editor.org/rfc/rfc2246.txt

[42] S. Blake-Wilson, M. Nystrom, D. Hopwood, J. Mikkelsen, and
T. Wright, “Transport layer security (TLS) extensions,” RFC 3546,
Internet Eng. Task Force, Fremont, CA, USA, pp. 1–29, Jun. 2003.
[Online]. Available: https://www.rfc-editor.org/rfc/rfc3546.txt

[43] A. J. Menezes, P. C. van Oorschot, and S. A. Vanstone, Handbook
of Applied Cryptography (Discrete Mathematics and Its Applications),
1st ed. Boca Raton, FL, USA: CRC Press, Oct. 1996. [Online].
Available: http://amazon.com/o/ASIN/0849385237/

[44] W. Diffie, P. C. Van Oorschot, and M. J. Wiener, “Authentication and
authenticated key exchanges,” Designs Codes Cryptography, vol. 2,
no. 2, pp. 107–125, 1992. doi: 10.1007/BF00124891.

[45] J. Salowey, H. Zhou, P. Eronen, and H. Tschofenig, “Transport
layer security (TLS) session resumption without server-side state,”
RFC 5077, Internet Eng. Task Force, Fremont, CA, USA,
pp. 1–20, Jan. 2008. [Online]. Available: https://www.rfc-editor.org/
rfc/rfc5077.txt

[46] R. Hummen et al., “6LoWPAN fragmentation attacks and mitiga-
tion mechanisms,” in Proc. 6th ACM Conf. Security Privacy Wireless
Mobile Netw. (WiSec), Budapest, Hungary, 2013, pp. 55–66. [Online].
Available: http://doi.acm.org/10.1145/2462096.2462107

[47] S. Raza, H. Shafagh, K. Hewage, R. Hummen, and T. Voigt, “Lithe:
Lightweight secure CoAP for the Internet of Things,” IEEE Sensors J.,
vol. 13, no. 10, pp. 3711–3720, Oct. 2013.

[48] B. Dowling, M. Fischlin, F. Günther, and D. Stebila, “A cryptographic
analysis of the TLS 1.3 handshake protocol candidates,” in Proc. 22nd
ACM SIGSAC Conf. Comput. Commun. Security, Denver, CO, USA,
2015, pp. 1197–1210.

[49] C. Cremers, M. Horvat, S. Scott, and T. van der Merwe, “Automated
analysis and verification of TLS 1.3: 0-RTT, resumption and delayed
authentication,” in Proc. IEEE Symp. Security Privacy (SP), San Jose,
CA, USA, 2016, pp. 470–485.

[50] D. J. Wu, A. Taly, A. Shankar, and D. Boneh, “Privacy, discov-
ery, and authentication for the Internet of Things,” in Computer
Security—ESORICS 2016, I. Askoxylakis, S. Ioannidis, S. Katsikas,
and C. Meadows, Eds. Cham, Switzerland: Springer Int., 2016,
pp. 301–319. [Online]. Available: https://link.springer.com/chapter/
10.1007/978-3-319-45741-3_16

[51] Y. Sheffer, R. Holz, and P. Saint-Andre, “Summarizing known
attacks on transport layer security (TLS) and datagram TLS
(DTLS),” RFC 7457, Internet Eng. Task Force, Fremont, CA,
USA, pp. 1–13, Feb. 2015. [Online]. Available: https://www.rfc-
editor.org/rfc/rfc7457.txt

[52] E. Rescorla. (2009). Understanding the TLS Renegotiation
Attack. Accessed: Apr. 3, 2018. [Online]. Available:
http://www.educatedguesswork.org/2009/11/understanding_the_tls_
renegoti.html

[53] E. Rescorla, M. Ray, S. Dispensa, and N. Oskov, “Transport layer
security (TLS) renegotiation indication extension,” RFC 5746, Internet
Eng. Task Force, Fremont, CA, USA, pp. 1–15, Feb. 2010. [Online].
Available: https://www.rfc-editor.org/rfc/rfc5746.txt

[54] T. Duong and J. Rizzo, “Here come the ⊕ Ninjas,”
vol. 320, 2011. Accessed: Apr. 23, 2018. [Online]. Available:
http://nerdoholic.org/uploads/dergln/beast_part2/ssl_jun21.pdf

[55] N. J. AlFardan, D. J. Bernstein, K. G. Paterson, B. Poettering,
and J. C. N. Schuldt, “On the security of RC4 in TLS,”
in Proc. SEC, 2013, pp. 305–320. [Online]. Available:
http://dl.acm.org/citation.cfm?id=2534766.2534793

[56] A. Popov, “Prohibiting RC4 cipher suites,” RFC 7465, Internet
Eng. Task Force, Fremont, CA, USA, pp. 1–6, Feb. 2015. [Online].
Available: https://www.rfc-editor.org/rfc/rfc7465.txt

[57] J. R. T. Duong. (Sep. 2012). The CRIME Attack. [Online]. Available:
https://docs.google.com/presentation/d/11eBmGiHbYcHR9gL5nDyZ
Chu_-lCa2GizeuOfaLU2HOU/edit#slide=id.g1d134dff_1_222

http://dx.doi.org/10.1007/978-3-540-45146-4_24
http://dx.doi.org/10.1007/BF00124891

3530 IEEE COMMUNICATIONS SURVEYS & TUTORIALS, VOL. 21, NO. 4, FOURTH QUARTER 2019

[58] Y. Gluck, N. Harris, and A. Prado. (2013). BREACH: Reviving the
CRIME Attack. [Online]. Available: http://breachattack.com

[59] B. Smyth and A. Pironti, “Truncating TLS connections to vio-
late beliefs in Web applications,” presented at the 7th USENIX
Workshop Offensive Technol., Washington, DC, USA, 2013. [Online].
Available: https://www.usenix.org/conference/woot13/workshop-
program/presentation/Smyth

[60] N. J. A. Fardan and K. G. Paterson, “Lucky thirteen: Breaking the TLS
and DTLS record protocols,” in Proc. IEEE Symp. Security Privacy,
Berkeley, CA, USA, Mar. 2013, pp. 526–540.

[61] P. Gutmann, “Encrypt-then-MAC for transport layer security (TLS)
and datagram transport layer security (DTLS),” Internet Eng. Task
Force, Fremont, CA, USA, RFC 7366, pp. 1–7, Sep. 2014. [Online].
Available: https://www.rfc-editor.org/rfc/rfc7366.txt

[62] R. Barnes, M. Thomson, A. Pironti, and A. Langley, “Deprecating
secure sockets layer version 3.0,” Internet Eng. Task Force, Fremont,
CA, USA, RFC 7568, pp. 1–7, Jun. 2015. [Online]. Available:
https://www.rfc-editor.org/rfc/rfc7568.txt

[63] N. Mavrogiannopoulos, F. Vercauteren, V. Velichkov, and
B. Preneel, “A cross-protocol attack on the TLS proto-
col,” in Proc. ACM Conf. Comput. Commun. Security (CCS),
Raleigh, NC, USA, 2012, pp. 62–72. [Online]. Available:
http://doi.acm.org/10.1145/2382196.2382206

[64] C. Paar et al., “DROWN: Breaking TLS using SSLv2,” in Proc. 25th
USENIX Security Symp., 2016, pp. 689–706. [Online]. Available:
https://www.usenix.org/sites/default/files/sec16_full_proceedings.pdf

[65] D. Chadwick, Understanding X. 500: The Directory. London, U.K.:
Chapman & Hall, 1994.

[66] R. Housley, W. Ford, W. Polk, and D. Solo, “Internet X.509 pub-
lic key infrastructure certificate and CRL profile,” Internet Eng. Task
Force, Fremont, CA, USA, RFC 2459, pp. 1–129, Jan. 1999. [Online].
Available: https://www.rfc-editor.org/rfc/rfc2459.txt

[67] W. Yeong, T. Howes, and S. Kille, “X.500 lightweight directory
access protocol,” Internet Eng. Task Force, Fremont, CA, USA,
RFC 1487, pp. 1–21, Jul. 1993. [Online]. Available: https://www.rfc-
editor.org/rfc/rfc1487.txt

[68] S. Hardcastle-Kille, “X.500 and domains,” Internet Eng. Task Force,
Fremont, CA, USA, RFC 1279, pp. 1–15, Nov. 1991. [Online].
Available: https://www.rfc-editor.org/rfc/rfc1279.txt

[69] K. Igoe and D. Stebila, “X.509v3 certificates for secure shell
authentication,” Internet Eng. Task Force, Fremont, CA, USA, RFC
6187, pp. 1–16, Mar. 2011. [Online]. Available: https://www.rfc-
editor.org/rfc/rfc6187.txt

[70] R. L. Barnes, “Let the names speak for themselves: Improving domain
name authentication with DNSSEC and DANE,” Internet Protocol J.,
vol. 15, no. 1, pp. 201–213, Mar. 2015.

[71] H. Hoogstraaten, “Black Tulip: Report of the investigation into
the DigiNotar certificate authority breach,” Fox-IT BV, Delft,
The Netherlands, Rep. PR-110202, 2012.

[72] EF Foundation. (2010). The EFF SSL Observatory. Accessed: Apr. 11,
2018. [Online]. Available: https://www.eff.org/observatory

[73] Qualys Labs. (2009). SSL Server Test. Accessed: Apr. 19, 2018.
[Online]. Available: https://www.ssllabs.com/ssltest/index.html

[74] J. A. Berkowsky and T. Hayajneh, “Security issues with certificate
authorities,” in Proc. IEEE 8th Annu. Ubiquitous Comput. Electron.
Mobile Commun. Conf. (UEMCON), Oct. 2017, pp. 449–455.

[75] J. B. P. Eckersley, “Is the SSliverse a safe place?” in Proc. 27th Chaos
Commun. Congr. (CCC), 2010, pp. 1–56.

[76] N. Good et al., “Stopping spyware at the gate: A user study
of privacy, notice and spyware,” in Proc. ACM Symp. Usable
Privacy Security (SOUPS), 2005, pp. 43–52. [Online]. Available:
http://doi.acm.org/10.1145/1073001.1073006

[77] J. Sunshine, S. Egelman, H. Almuhimedi, N. Atri, and L. F. Cranor,
“Crying wolf: An empirical study of SSL warning effective-
ness,” in Proc. 18th Conf. USENIX Security Symp. (SSYM),
Berkeley, CA, USA, 2009, pp. 399–416. [Online]. Available:
http://dl.acm.org/citation.cfm?id=1855768.1855793

[78] P. Eckersley. (2011). How Secure Is HTTPS Today? How Often
Is It Attacked?. Accessed: Apr. 11, 2018. [Online]. Available:
https://www.eff.org/deeplinks/2011/10/how-secure-https-today

[79] C. Soghoian and S. Stamm, “Certified lies: Detecting and defeat-
ing government interception attacks against SSL (short paper),” in
Proc. 15th Int. Conf. Financ. Cryptography Data Security (FC), 2012,
pp. 250–259. doi: 10.1007/978-3-642-27576-0_20.

[80] P. Eckersley and J. Burns. (2011). The (Decentralized) SSL
Observatory. Accessed: Apr. 11, 2017. [Online]. Available:
http://static.usenix.org/events/sec11/tech/slides/eckersley.pdf

[81] Z. Durumeric, J. Kasten, M. Bailey, and J. A. Halderman, “Analysis
of the https certificate ecosystem,” in Proc. ACM Conf. Internet Meas.
Conf. (IMC), Barcelona, Spain, 2013, pp. 291–304. [Online]. Available:
http://doi.acm.org/10.1145/2504730.2504755

[82] SSL Labs. (2017). SSL Pulse—Survey of the SSL Implementation of the
Most Popular Web Sites. Accessed: Apr. 21, 2017. [Online]. Available:
https://www.trustworthyinternet.org/ssl-pulse/

[83] I. Ristic. (2012). SSL Pulse—To Make SSL More Secure
and Pervasive. Accessed: Feb. 12, 2017. [Online]. Available:
https://www.trustworthyinternet.org/blog/2012/4/25/ssl-pulse-to-make-
ssl-more-secure-and-pervasive/

[84] W. Chou, “Inside SSL: Accelerating secure transactions,” IT Prof.,
vol. 4, no. 5, pp. 37–41, Sep./Oct. 2002.

[85] G. K. Pandya. (2013). Nokia’s MITM on HTTPS Traffic From
Their Phone. Accessed: Apr. 23, 2018. [Online]. Available:
https://gaurangkp.wordpress.com/2013/01/09/nokia-https-mitm/

[86] S. Schultze and S. B. Roosa, “Trust darknet: Control and com-
promise in the Internet’s certificate authority model,” IEEE Internet
Comput., vol. 17, no. 3, pp. 18–25, May/Jun. 2013. [Online]. Available:
https://doi.ieeecomputersociety.org/10.1109/MIC.2013.27

[87] R. Housley, S. Ashmore, and C. Wallace, “Trust anchor manage-
ment protocol (TAMP),” Internet Eng. Task Force, Fremont, CA, USA,
RFC 5934, pp. 1–91, Aug. 2010. [Online]. Available: https://www.rfc-
editor.org/rfc/rfc5934.txt

[88] S. Ashmore and C. Wallace, “Using trust anchor constraints dur-
ing certification path processing,” Internet Eng. Task Force, Fremont,
CA, USA, RFC 5937, pp. 1–8, Aug. 2010. [Online]. Available:
https://www.rfc-editor.org/rfc/rfc5937.txt

[89] B. Laurie, A. Langley, and E. Kasper, “Certificate transparency,”
Internet Eng. Task Force, Fremont, CA, USA, RFC 6962,
pp. 1–27, Jun. 2013. [Online]. Available: https://www.rfc-editor.org/
rfc/rfc6962.txt

[90] R. Merkle, “Method of providing digital signatures,”
U.S. Patent 4 309 569, Jan. 1982. [Online]. Available:
https://www.google.com/patents/US4309569

[91] G. Becker Merkle Signature Schemes, Merkle Trees and Their
Cryptanalysis, Ruhr-Universität Bochum, Bochum, Germany, 2008.

[92] B. Laurie and C. Doctorow, “Secure the Internet,” Nature, vol. 491,
pp. 325–326, Nov. 2012.

[93] S. A. Crosby and D. S. Wallach, “Efficient data structures for tamper-
evident logging,” in Proc. 18th Conf. USENIX Security Symp. (SSYM),
Montreal, QC, Canada, 2009, pp. 317–334. [Online]. Available:
http://dl.acm.org/citation.cfm?id=1855768.1855788

[94] P. Rogaway and T. Shrimpton, “Cryptographic hash-function basics:
Definitions, implications, and separations for preimage resis-
tance, second-preimage resistance, and collision resistance,” in
Proc. 11th Int. Workshop FSE, Delhi, India, Feb. 2004, pp. 371–388.
doi: 10.1007/978-3-540-25937-4_24.

[95] DigiCert Inc. (2016). Certificate Transparency. [Online]. Available:
https://www.certificate-transparency.org/

[96] S. Farrell, “Other certificates extension,” Internet Eng. Task Force,
Fremont, CA, USA, RFC 5697, pp. 1–8, Nov. 2009. [Online].
Available: https://www.rfc-editor.org/rfc/rfc5697.txt

[97] D. Eastlake, III, “Transport layer security (TLS) extensions: Extension
definitions,” Internet Eng. Task Force, Fremont, CA, USA, RFC
6066, pp. 1–25, Jan. 2011. [Online]. Available: https://www.rfc-
editor.org/rfc/rfc6066.txt

[98] A. Deacon and R. Hurst, “The lightweight online certificate status pro-
tocol (OCSP) profile for high-volume environments,” Internet Eng.
Task Force, Fremont, CA, USA, RFC 5019, pp. 1–22, Sep. 2007.
[Online]. Available: https://www.rfc-editor.org/rfc/rfc5019.txt

[99] C. Herley, “So long, and no thanks for the externalities: The rational
rejection of security advice by users,” in Proc. ACM Workshop New
Security Paradigms Workshop (NSPW), 2009, pp. 133–144. [Online].
Available: http://doi.acm.org/10.1145/1719030.1719050

[100] P. Eckersley. (2012). Sovereign Key Cryptography for Internet
Domains. Accessed: Jan. 25, 2018. [Online]. Available:
https://www.eff.org/sovereign-keys

[101] D. M. Gordon, “A survey of fast exponentiation methods,” J.
Algorithms, vol. 27, no. 1, pp. 129–146, 1998.

[102] S. Santesson et al., “X.509 Internet public key infrastructure online
certificate status protocol—OCSP,” Internet Eng. Task Force, Fremont,
CA, USA, RFC 6960, pp. 1–41, Jun. 2013. [Online]. Available:
https://www.rfc-editor.org/rfc/rfc6960.txt

http://dx.doi.org/10.1007/978-3-642-27576-0_20
http://dx.doi.org/10.1007/978-3-540-25937-4_24

DÍAZ-SÁNCHEZ et al.: TLS/PKI CHALLENGES AND CERTIFICATE PINNING TECHNIQUES FOR IoT AND M2M SECURE COMMUNICATIONS 3531

[103] M. Marlinspike, “Trust assertions for certificate keys,” Internet
Eng. Task Force, Fremont, CA, USA, Working Draft, Internet-
Draft draft-perrin-tls-tack-02, Jan. 2013. [Online]. Available:
http://www.ietf.org/internet-drafts/draft-perrin-tls-tack-02.txt

[104] D. Johnson, A. Menezes, and S. Vanstone, “The elliptic curve digi-
tal signature algorithm (ECDSA),” Int. J. Inf. Security, vol. 1, no. 1,
pp. 36–63, 2001. doi: 10.1007/s102070100002.

[105] “Digital signature standard (DSS),” Nat. Inst. Stand. Technol.,
Gaithersburg, MD, USA, Rep. FIPS PUB 186-4, 2009.

[106] Secure Hash Standard, FIPS Standard 180-2, 2002.
[107] P. Hoffman and J. Schlyter, “The DNS-based authentication of

named entities (DANE) transport layer security (TLS) protocol:
TLSA,” Internet Eng. Task Force, Fremont, CA, USA, RFC
6698, pp. 1–37, Aug. 2012. [Online]. Available: https://www.rfc-
editor.org/rfc/rfc6698.txt

[108] R. Danyliw, J. Meijer, and Y. Demchenko, “The incident object descrip-
tion exchange format,” Internet Eng. Task Force, Fremont, CA, USA,
RFC 5070, pp. 1–92, Dec. 2007. [Online]. Available: https://www.rfc-
editor.org/rfc/rfc5070.txt

[109] J. Hodges, C. Jackson, and A. Barth, “HTTP strict transport secu-
rity (HSTS),” Internet Eng. Task Force, Fremont, CA, USA, RFC
6797, pp. 1–46, Nov. 2012. [Online]. Available: https://www.rfc-
editor.org/rfc/rfc6797.txt

[110] E. Rescorla, “HTTP over TLS,” Internet Eng. Task Force, Fremont,
CA, USA, RFC 2818, pp. 1–7, May 2000. [Online]. Available:
https://www.rfc-editor.org/rfc/rfc2818.txt

[111] C. Jackson and A. Barth, “ForceHTTPS: Protecting high-security Web
sites from network attacks,” in Proc. 17th Int. World Wide Web Conf.,
2008, pp. 525–534.

[112] C. Jackson and A. Barth, “Beware of finer-grained origins,” in Proc.
Web Security Privacy (W2SP), 2008, pp. 1–7. [Online]. Available:
http://seclab.stanford.edu/websec/safelock/fgo.pdf

[113] R. Fielding et al., “Hypertext transfer protocol—HTTP/1.1,” Internet
Eng. Task Force, Fremont, CA, USA, RFC 2616, pp. 1–176, Jun. 1999.
[Online]. Available: https://www.rfc-editor.org/rfc/rfc2616.txt

[114] C. Evans, C. Palmer, and R. Sleevi, “Public key pinning exten-
sion for HTTP,” Internet Eng. Task Force, Fremont, CA, USA,
RFC 7469, pp. 1–28, Apr. 2015. [Online]. Available: https://www.rfc-
editor.org/rfc/rfc7469.txt

[115] R. Arends, R. Austein, M. Larson, D. Massey, and S. Rose, “Resource
records for the DNS security extensions,” Internet Eng. Task Force,
Fremont, CA, USA, RFC 4034, pp. 1–29, Mar. 2005. [Online].
Available: https://www.rfc-editor.org/rfc/rfc4034.txt

[116] R. Arends, R. Austein, M. Larson, D. Massey, and S. Rose, “Protocol
modifications for the DNS security extensions,” Internet Eng. Task
Force, Fremont, CA, USA, RFC 4035, pp. 1–53, Mar. 2005. [Online].
Available: https://www.rfc-editor.org/rfc/rfc4035.txt

[117] Z. Hu et al., “Specification for DNS over transport layer secu-
rity (TLS),” Internet Eng. Task Force, Fremont, CA, USA, RFC
7858, pp. 1–19, May 2016. [Online]. Available: https://www.rfc-
editor.org/rfc/rfc7858.txt

[118] T. Reddy, D. Wing, and P. Patil, “DNS over datagram transport
layer security (DTLS),” Internet Eng. Task Force, Fremont, CA, USA,
RFC 8094, pp. 1–13, Feb. 2017. [Online]. Available: https://www.rfc-
editor.org/rfc/rfc8094.txt

[119] D. Eastlake, III, “Domain name system security extensions,” Internet
Eng. Task Force, Fremont, CA, USA, RFC 2535, pp. 1–47, Mar. 1999.
[Online]. Available: https://www.rfc-editor.org/rfc/rfc2535.txt

[120] R. Barnes, “Use cases and requirements for DNS-based authentica-
tion of named entities (DANE),” Internet Eng. Task Force, Fremont,
CA, USA, RFC 6394, pp. 1–12, Oct. 2011. [Online]. Available:
https://www.rfc-editor.org/rfc/rfc6394.txt

[121] O. Gudmundsson, “Adding acronyms to simplify conversations about
DNS-based authentication of named entities (DANE),” Internet Eng.
Task Force, Fremont, CA, USA, RFC 7218, pp. 1–5, Apr. 2014.
[Online]. Available: https://www.rfc-editor.org/rfc/rfc7218.txt

[122] D. Eastlake, III, “RSA/SHA-1 SIGs and RSA KEYs in the domain
name system (DNS),” Internet Eng. Task Force, Fremont, CA, USA,
RFC 3110, pp. 1–7, May 2001. [Online]. Available: https://www.rfc-
editor.org/rfc/rfc3110.txt

[123] R. J. Ellison and C. Woody, “Supply-chain risk management:
Incorporating security into software development,” in Proc. IEEE 43rd
Hawaii Int. Conf. Syst. Sci. (HICSS), 2010, pp. 1–10.

[124] P. Arias-Cabarcos et al., “A metric-based approach to assess risk for ‘on
cloud’ federated identity management,” J. Netw. Syst. Manag., vol. 20,
no. 4, pp. 513–533, 2012.

[125] C. Skalka, X. S. Wang, and P. Chapin, “Risk management for
distributed authorization,” J. Comput. Security, vol. 15, no. 4,
pp. 447–489, 2007.

[126] N. Li and J. Feigenbaum, “Nonmonotonicity, user interfaces, and
risk assessment in certificate revocation,” in Proc. Int. Conf. Financ.
Cryptography, 2001, pp. 166–177.

Daniel Díaz-Sánchez received the Ph.D. degree in
telematics engineering from the University Carlos
III of Madrid, where he is an Associate Professor.
His research interests include distributed authenti-
cation/authorization, content protection, distributed
computing, fog computing, IoT, and smart cities.

Andrés Marín-Lopez received the Ph.D. degree
in telecommunication engineering from the
Universidad Politécnica of Madrid. He is an
Associate Professor with the University Carlos III
of Madrid. His research interests include ubiquitous
computing: limited devices, trust, and security in
next-generation networks.

Florina Almenárez Mendoza received the Ph.D.
degree in telematics engineering from the University
Carlos III of Madrid, where she is an Associate
Professor. Her research interests include trust and
reputation management models, identity manage-
ment, and security architectures in ubiquitous
computing.

Patricia Arias Cabarcos received the Ph.D. degree
in telematics engineering from the University Carlos
III of Madrid. She is an Alexander von Humboldt
Post-Doctoral Fellow with Universität Mannheim.
Her interests include authentication, identity man-
agement, and information systems security.

R. Simon Sherratt received the Ph.D. degree
in electronic engineering from the University of
Salford, U.K. He is a Professor with the University
of Reading, U.K. His research interests include smart
homes, personal area networks, wearable devices,
and their security, all with a focus for mass-market
healthcare.

http://dx.doi.org/10.1007/s102070100002

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles false
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo false
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
 /Arial-Black
 /Arial-BoldItalicMT
 /Arial-BoldMT
 /Arial-ItalicMT
 /ArialMT
 /ArialNarrow
 /ArialNarrow-Bold
 /ArialNarrow-BoldItalic
 /ArialNarrow-Italic
 /ArialUnicodeMS
 /BookAntiqua
 /BookAntiqua-Bold
 /BookAntiqua-BoldItalic
 /BookAntiqua-Italic
 /BookmanOldStyle
 /BookmanOldStyle-Bold
 /BookmanOldStyle-BoldItalic
 /BookmanOldStyle-Italic
 /BookshelfSymbolSeven
 /Century
 /CenturyGothic
 /CenturyGothic-Bold
 /CenturyGothic-BoldItalic
 /CenturyGothic-Italic
 /CenturySchoolbook
 /CenturySchoolbook-Bold
 /CenturySchoolbook-BoldItalic
 /CenturySchoolbook-Italic
 /ComicSansMS
 /ComicSansMS-Bold
 /CourierNewPS-BoldItalicMT
 /CourierNewPS-BoldMT
 /CourierNewPS-ItalicMT
 /CourierNewPSMT
 /EstrangeloEdessa
 /FranklinGothic-Medium
 /FranklinGothic-MediumItalic
 /Garamond
 /Garamond-Bold
 /Garamond-Italic
 /Gautami
 /Georgia
 /Georgia-Bold
 /Georgia-BoldItalic
 /Georgia-Italic
 /Haettenschweiler
 /Helvetica
 /Helvetica-Bold
 /HelveticaBolditalic-BoldOblique
 /Helvetica-BoldOblique
 /Impact
 /Kartika
 /Latha
 /LetterGothicMT
 /LetterGothicMT-Bold
 /LetterGothicMT-BoldOblique
 /LetterGothicMT-Oblique
 /LucidaConsole
 /LucidaSans
 /LucidaSans-Demi
 /LucidaSans-DemiItalic
 /LucidaSans-Italic
 /LucidaSansUnicode
 /Mangal-Regular
 /MicrosoftSansSerif
 /MonotypeCorsiva
 /MSReferenceSansSerif
 /MSReferenceSpecialty
 /MVBoli
 /PalatinoLinotype-Bold
 /PalatinoLinotype-BoldItalic
 /PalatinoLinotype-Italic
 /PalatinoLinotype-Roman
 /Raavi
 /Shruti
 /Sylfaen
 /SymbolMT
 /Tahoma
 /Tahoma-Bold
 /Times-Bold
 /Times-BoldItalic
 /Times-Italic
 /TimesNewRomanMT-ExtraBold
 /TimesNewRomanPS-BoldItalicMT
 /TimesNewRomanPS-BoldMT
 /TimesNewRomanPS-ItalicMT
 /TimesNewRomanPSMT
 /Times-Roman
 /Trebuchet-BoldItalic
 /TrebuchetMS
 /TrebuchetMS-Bold
 /TrebuchetMS-Italic
 /Tunga-Regular
 /Verdana
 /Verdana-Bold
 /Verdana-BoldItalic
 /Verdana-Italic
 /Vrinda
 /Webdings
 /Wingdings2
 /Wingdings3
 /Wingdings-Regular
 /ZapfChanceryITCbyBT-MediumItal
 /ZWAdobeF
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 200
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages false
 /ColorImageDownsampleType /Average
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 200
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages false
 /GrayImageDownsampleType /Average
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 400
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages false
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create PDFs that match the "Recommended" settings for PDF Specification 4.01)
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

