
586 IEEE COMMUNICATIONS SURVEYS & TUTORIALS, VOL. 21, NO. 1, FIRST QUARTER 2019

Security Data Collection and Data Analytics
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Abstract—Attacks over the Internet are becoming more and
more complex and sophisticated. How to detect security threats
and measure the security of the Internet arises a significant
research topic. For detecting the Internet attacks and measuring
its security, collecting different categories of data and employing
methods of data analytics are essential. However, the literature
still lacks a thorough review on security-related data collection
and analytics on the Internet. Therefore, it becomes a necessity
to review the current state of the art in order to gain a deep
insight on what categories of data should be collected and which
methods should be used to detect the Internet attacks and to
measure its security. In this paper, we survey existing studies
about security-related data collection and analytics for the pur-
pose of measuring the Internet security. We first divide the data
related to network security measurement into four categories:
1) packet-level data; 2) flow-level data; 3) connection-level data;
and 4) host-level data. For each category of data, we provide a
specific classification and discuss its advantages and disadvan-
tages with regard to the Internet security threat detection. We
also propose several additional requirements for security-related
data analytics in order to make the analytics flexible and scal-
able. Based on the usage of data categories and the types of data
analytic methods, we review current detection methods for dis-
tributed denial of service flooding and worm attacks by applying
the proposed requirements to evaluate their performance. Finally,
based on the completed review, a list of open issues is outlined
and future research directions are identified.

Index Terms—Security-related data, data collection, data
analytics, DDoS flooding attacks, worm attacks, security
measurement.

I. INTRODUCTION

THE INTERNET has played an important role in our
daily life. At the same time when the Internet brings
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us great convenience, it also raises a lot of security threats.
Security threats have become an important factor that restricts
the development of the Internet. Recently, security threats
have been examined in several different fields. Zou et al. [1]
first summarized security requirements of wireless networks
and then presented a comprehensive overview of attacks
encountered in wireless networks. Ahmad et al. [2] ana-
lyzed various security threats to application, control, and data
planes of Software Defined Networking (SDN). Ali et al. [3]
presented some security threats in cloud computing and
provided a comparative analysis of attacks and counter-
measures. AbdAllah et al. [4] identified five major aspects
related to security in Information-Centric Networking (ICN)
based on the ICN attacks. Many researchers have con-
sidered that the premise of guaranteeing security is to
effectively resolve security threats, especially to prevent
attacks.

Network attacks that are the main threats for security over
the Internet have attracted special attention. The openness and
interconnection of the network and the security vulnerabili-
ties of protocols and software lead to multiple and multi-level
network attacks. Distributed Denial of Service (DDoS) and
worm attacks are two typical attacks over the Internet. DDoS
attacks aim to prevent normal users from accessing spe-
cific network resources. The distribution of DDoS attacks
causes serious damage. Worms, a kind of self-duplicating and
self-propagating malicious codes, spread themselves across
networks without any human interaction. They compromise
hosts by exploiting vulnerabilities in operating systems or
installed programs and employ the infected hosts to launch
many kinds of attacks. Researchers have completed many
surveys to offer an overview on how to effectively counter
DDoS and worm attacks. In early work, Peng et al. [5]
introduced defense mechanisms for DoS and DDoS attacks.
They classified defense mechanisms into following categories:
attack prevention, attack detection, attack source identifica-
tion, and attack reaction. Zargar et al. [6] surveyed defense
mechanisms for DDoS flooding attacks from the perspective
of source-based, destination-based, network-based, and hybrid
approaches. Yan et al. [7] presented a comprehensive survey
on defense mechanisms against DDoS attacks using SDN in a
cloud computing environment. Li et al. [8] presented a survey
and compared the Internet worm detection and containment
mechanisms from the perspective of activity characteristics of
the worms. Kaur and Singh [9] reviewed signature-based worm
detection methods based on the classifications of signature
generation.
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TABLE I
COMPARISON OF OUR SURVEY WITH OTHER EXISTING SURVEYS

Different perspective of surveys offers different understand-
ing of detecting and defending DDoS and worm attacks.
However, based on our investigation, there is still an evident
lack of a thorough survey from the perspective of summariz-
ing detection methods for DDoS and worm attacks from the
view of security-related data. Security-related data (security
data, in short) refer to the data that can be used to detect
security attacks, security threats or intrusions. It is the basic
element in attack detection, no matter whether at a training
or detecting stage. Many kinds of methods are employed to
analyze security data to detect attacks. Before designing a
detection method, we should select: (i) appropriate security
data categories that capture sufficient information on malicious
activities of attacks, (ii) effective analytic method that has the
ability to accurately detect attacks by analyzing security data.
By doing this, we can make a detection method accurate and
efficient. In order to gain a deep insight into data categories
and analytic methods, it becomes necessary to carefully sur-
vey current detection methods for network attacks from the
perspective of security data.

In this paper, with the purposes discussed above, we
firstly divide security data over the Internet into four cat-
egories: packet-level data, flow-level data, connection-level
data, and host-level data. The packet-level data is defined as
the information of packet header, packet payload and packet
activities. It gives full information about network activities.
Detection methods that use the packet-level data can detect
most network attacks. But inspecting individual packets in
high-speed network and encrypting packet payload in some
circumstances make packet-level data-based methods ineffi-
cient. Flow is defined as a stream of packets that have one
or more same attributes. It gives a more macroscopic view
of network traffic. The flow-level data represents statistical
information about the flow. Detection methods that use the
flow-level data can be deployed over a high-speed network.
They have the ability to solve the detection challenges related
to encryption. A connection is defined as the aggregated traf-
fic between two IP addresses. The connection-level data is the
statistical description of connection. It provides global infor-
mation of exchanged traffic between two IP addresses in a
given time. We can use the connection-level data in conjunc-
tion with the packet-level data and the flow-level data to gain a
more detailed insight into network traffic. The host-level data
represents information about system events. It records host
activities and uses it as a certain decision criterion. From the

perspective of these security data categories, we survey cur-
rent detection methods for DDoS flooding and worm attacks
over the last decade. Then, we present a detailed overview on
how they use different data categories and analytic methods
to detect attacks. By summarizing attack detection methods,
we discuss appropriate data categories and analytic methods
that can be used to detect specific DDoS flooding and worm
attacks. We also propose several additional requirements and
use them as a measure to evaluate the performance of existing
detection methods.

Although we can find a number of existing surveys about
DDoS and worm attacks in [5]–[14], our survey has different
focuses, provides deep review on the relationship between data
categories and attack types and conducts literature evaluation
based on additional requirements of data analytics. A tabulated
comparison of our survey with other existing surveys of DDoS
and worm attacks is presented in Table I. Through comparison,
we can summarize the main contributions of this paper as
below:

(i) We summarize commonly used security data over the
Internet and divide them into four categories: packet-level data,
flow-level data, connection-level data, and host-level data. For
each data category, we provide a specific classification and
discuss its advantages and disadvantages with regard to the
Internet threat detection.

(ii) We propose several additional requirements for security-
related data analytics in order to make the analytics flexible
and scalable.

(iii) We thoroughly review current detection methods of
Distributed Denial of Service (DDoS) flooding and worm
attacks from the view of the usage of data categories and
the types of data analytic methods by applying the proposed
requirements to evaluate their performance. We also summa-
rize what data categories and analytic methods can be used to
detect what specific DDoS flooding and worm attacks.

(iv) We further figure out a number of open issues and pro-
pose future research directions to motivate network security
research.

The rest of the paper is organized as follows. Section II
introduces the main categories of security data. For each cat-
egory of data, we give a specific classification and discuss
its advantages and disadvantages regarding the Internet threat
detection. In Section III, we discuss analytic methods of secu-
rity data that are applied to detect attacks and propose a
number of security requirements to evaluate the performance
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TABLE II
ABBREVIATIONS IN THE PAPER

and quality of analytic methods. In Sections IV and V, respec-
tively, we review current detection methods for DDoS flooding
and worm attacks based on the security data categories and
applied data analytic methods. Furthermore, we discuss some
open research issues and present future research directions in
Section VI. Finally, conclusions are presented in the last sec-
tion. For convenience, the reader can refer to Table II for all
abbreviations used throughout the paper.

II. SECURITY DATA

For any attacks, detection methods, whether used at the
training, testing or detecting stage, are based on data. The data
fundamentally affects the efficiency and accuracy of detection
methods. Because different categories of data have different
application scenarios, we should first consider what category
of data could meet our needs when designing a detection
method. In this section, for each category of data, we first
briefly introduce its collection methods and then present its
classification. Based on these findings, we can effectively
and explicitly choose data categories to meet the needs of
a detection method.

A. Packet-Level Data

Packets are generated when users’ programs run such
protocols as Transmission Control Protocol (TCP), User
Datagram Protocol (UDP), Internet Control Message Protocol
(ICMP), etc. A packet consists of a packet header and a
packet payload. Following the definition presented in the
previous section, the packet-level data includes packet header
information, packet payload information, and packet activity
information.

1) Collection Method of Packet: Normally, we collect
network packets at a physical interface by using a spe-
cific application programming interface called packet capture
(pcap). Libpcap and Winpcap are two packet collecting soft-
ware libraries for Unix and Windows, respectively. They have
many network functions such as protocol analyzers, packet
sniffers, network monitors, etc. There are many popular packet
collecting tools freely available. For example, TCPdump pro-
vides the functions of collecting packets and making some
statistical analysis based on tracing files [15]. Wireshark that
adds a GUI to TCPdump and includes many traffic signa-
tures can be used for application identification [16]. Snort is
a tool for real-time traffic analysis, which is capable of per-
forming content searching/matching and detecting many types
of network security attacks [17]. Nmap uses raw IP packets to
probe computer networks for host discovery, service and oper-
ating system detection [18]. Moreover, libtrace is an efficient
packet collection and analysis library that supports multiple
data formats [19].

One of the commonly used hardware-based packet collec-
tion methods is a mirroring mode. Packet forwarding devices
mirror packets coming from one or more ports to another port,
to which a capture device connects. This process is called
port mirroring, port monitoring, or Switched Port Analyzer
session [20]. Port mirroring can analyze both incoming and
outgoing packets with a whole network view. But mirroring
may induce packet delay, loss or reorder. Thus, having enough
bandwidth is essential for a mirror port.

2) Classification of Packet-Level Data: Based on the defi-
nition of the packet-level data, we classify them into a number
of types as below, which are usually used to detect the DDoS
and worm attacks. Mahoney and Chan [21] introduced 33
header features that can be used to detect anomalies. Herein,
we briefly discuss some commonly used header features for
detecting DDoS and worm attacks.

a) Source/destination IP address: Source/Destination IP
address is the fundamental part of data transmission in TCP/IP.
It represents the address of a sender/receiver. The distribu-
tion and changing rate of source IP address are often utilized
when attacks are launched by Botnet. The reason is that the
bots usually have a more concentrated source IP address than
legitimate users and they are usually strange for attack targets.
Usually we apply information entropy to calculate the prob-
ability distribution of the source IP address. A high entropy
value represents a high degree of randomness of IP addresses.
In the same way, the distribution and changing rate of des-
tination IP address can be used to infer the possibility of
attacks in the case that a malicious host carries out target
scanning.
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b) Source/destination port: Source/Destination port
exists in the TCP and UDP protocols. Different ports serve
for different protocols. The distribution and changing rate of
source/destination port are usually used to detect worm scan-
ning. Worms scan a specific port on many destination hosts
(horizontal scan) or scan several ports on a single destination
host (vertical scan). These behaviors lead to drastic changes
in the statistical information of the port.

c) Time to live: The main function of Time to Live (TTL)
is to restrict the transmission distance (hop count) of packets.
Due to the relative stability of the network, the hop count
between a host and another host is located in a certain range.
Based on this knowledge, Hop-Count-Filter (HCP) is applied
to detect IP spoofing attack by matching the hop count of
packets sent from their actual source with the hop count of
packets sent from a claimed source [22]. The distribution of
TTL values can also be used to detect IP spoofing. If distinct
TTL values are observed in packets’ headers that come from
the same source address, we can infer with high probability
that this address has been spoofed [23].

d) Timestamp: Timestamp represents a point-in-time of
sending/receiving packets. Accurate packet timestamps are
essential in many scenarios, e.g., they are used to compute
inter-arrival time of packets, Round Trip Time (RTT) between
two hosts and the delay of transmission routes. Timestamp can
also be applied to check non-repudiation of packets [24].

e) Packet payload: Packet header features are useful to
detect attacks that exploit vulnerabilities of a network stack
or scan hosts for vulnerable services. Packet payload infor-
mation can be used to detect attacks directed at vulnerable
applications since the attackers imitate the network behaviors
of normal users. For example, some malicious code of worm
is carried by packet payload, therefore it cannot be detected
by packet header attributes; some application layer DDoS
attacks can be launched by using abnormal application con-
tents with legitimate network/transport layer behaviors. Deep
Packet Inspection (DPI) is a method that uses both packet
header and payload information to determine whether a packet
is an intrusion or not [25]. It is effective to detect attacks
in application layer. The main challenges for payload-based
detection methods are: (i) invasion of privacy, packet payload
often encapsulates the data of higher level protocols such as
HTTP and DNS, these data contain user private information,
so that there is no right to directly check packet payload infor-
mation, (ii) Secure Sockets Layer (SSL) and Transport Layer
Security (TLS) protocols encrypt application contents that are
carried in payload, so it is difficult to detect malicious activities
based on the analysis of packet payload.

f) Packet size: Packet size consists of header size and
payload size expressed in bytes. Usually, the size of packet
header is constant, but payload size is not fixed. It often
depends on which system and application the packet is com-
ing from. Some statistical information of packet size is widely
used to detect attacks that are launched by Botnet, such as
maximum packet size, minimum packet size, average packet
size and standard deviation of packet size. The size of attack
packets originated from one bot is similar to other packets that
come from the same kind of bots. So attack traffic generated

from the same botnet has similar or same packet size. Another
usage of packet size is to inspect abnormal packets with arbi-
trary contents in payload. Moreover, we can determine the
number of transmitting bytes by accumulating packet size in
a certain time period.

g) The number of packets: The number of packets is
another widely used data type in current detection methods,
e.g., a drastical increase in the number of packets is an indi-
cator of DDoS flooding attacks. According to the direction of
packet transmission, this type can be divided into the num-
ber of incoming packets, the number of outgoing packets and
the number of bidirectional packets. We also classify this data
type based on the protocol types, e.g., the number of ICMP
(request/reply) packets, the number of TCP packets with dif-
ferent flags (SYN, ACK, FIN, SYN-ACK, RST, etc.), the
number of TCP-based protocol packets (HTTP, FTP, SMTP,
etc.) and the number of UDP-based protocol packets (DNS,
TFTP, NTP, etc.). These classifications can be freely combined
with protocol header information or other information, such as
the number of incoming TCP SYN packets from a source IP
address, the number of incoming packets to a same destination
port, the number of outgoing DNS query packets, and so on.
Furthermore, we can use packet rate to represent the number
of transmitting packets per unit time.

B. Flow-Level Data

In high-speed networks with rates up to hundreds of Gigabit
per second (Gbps), collection of packet-level data requires
expensive hardware. Moreover, due to the increasing usage
of payload encryption and sophisticated obfuscation meth-
ods, traditional packet-based detection methods also exhibit
poor performance. With the purposes of providing a macro-
scopic view of the network traffic and endeavoring to deal
with the encrypted packets, the concept of flow has emerged.
A flow is defined as a stream of packets that have one or more
same attributes. These same attributes, usually called flow
keys, commonly include packet header information, packet
contents and meta-information [26]. For example, the flow
keys of NetFlow, introduced in Cisco routers, are source IP
address, destination IP address, source port, destination port,
IP protocol, IP type of service and ingress interface [27].
Flow aggregation techniques utilize a tuple of predefined flow
keys to aggregate packets. Different aggregated granularities
on network traffic can be obtained by choosing different flow
keys, according to the need of network administrators [28].
Flow has many applications [29]: network monitoring, appli-
cation monitoring, host monitoring, network application clas-
sification and security awareness and intrusion detection. In
this paper, we focus on the applications of flow in intrusion
detection. Sperotto et al. [30] provided a detailed discussion
on why flow-based intrusion detection is required and then
presented an overview. Umer et al. [11] summarized current
available flow-based datasets used for evaluation of intrusion
detection methods and surveyed flow-based intrusion detection
methods.

1) Collection Method of Flow: There are two flow col-
lection strategies [29]: (i) depth-first, choosing specific flow
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Fig. 1. The collection process of flow.

keys to aggregate packets in order to meet collection demands,
(ii) breadth-first, collecting as much as possible information in
order to have a global view on network traffic. We simplify
the collection process of flow as illustrated in Fig. 1. The
complete processes of flow collection and flow exportation
are discussed in [26]. The first stage concerns packet collec-
tion from a monitor point. Then packets are aggregated into
flows with predefined flow keys. During packet aggregation,
statistical information of a flow is continuously updated in a
flow cache. Once a flow record expires, it is sent to a flow
collector for further analysis. A flow is considered expired
when [26], [30]: (i) the flow was idle meaning that no pack-
ets have been transmitted for a long time exceeding a given
threshold (idle timeout), (ii) the flow reaches the maximum
allowed lifetime (active timeout), (iii) the FIN or RST flags
have been seen in a TCP flow (natural expiration), (iv) auto-
matic reduction of timeout parameters in case of resource
constraints (resource constraints), (v) the flow cache memory
becomes full (emergent expiration), (vi) all flow cache entries
have to be expired in emergent events (cache flush).

2) Classification of Flow-Level Data: Flow-level data rep-
resents the statistical information of a flow. We classify
flow-level data into the following types. Each type is extracted
from flow records.

a) Flow count: Flow count is the number of differ-
ent flows resulting from aggregating packets with the same
flow keys. For example, at a host-side, we can aggregate
incoming packets by source address, destination address, and
protocol types. In the sequel, many flows with different three
attributes can be obtained. Flow count is used to measure this
quantity.

b) Flow type: When flow keys consist of port num-
bers or other protocol identifiers, we can acquire many kinds
of flow such as HTTP flow, DNS flow, ICMP flow, TCP
(SYN, SYN-ACK, FIN, etc.) flow and others. We can combine
flow count with flow types to detect some evidently abnor-
mal traffic. In a normal TCP connection building process, the
number of SYN flow is equal to the number of SYN-ACK
flow. In the same way, the number of DNS query flow is
also equal to the number of DNS response flow. Any abrupt
changes of these balanced relationships indicate the presence
of attacks.

c) Flow size: A flow is made up of packets that share
one or more same attributes. Therefore flow size is the number

of packets in a flow. During DDoS flooding attacks, the size
of attack flows is distinctly larger than legitimate flows.

d) Flow direction: From the perspective of a specific
network, the transmission direction of packets is divided into
incoming (inbound traffic) and outgoing (outbound traffic).
Flow is generated by aggregating packets. Hence, flow can
be classified into inflow and outflow. Inflow is determined by
aggregating incoming packets with flow keys and outflow is
specified by aggregating outgoing packets. For example, from
the view of host-side, there have to be inflows and outflows
during a normal TCP connection.

e) Flow duration: As we discussed above, a flow is
expired according to six scenarios. So flow duration is the time
duration from the first packet’s arrival time to the expiration
time of flow.

f) Flow rate: Flow rate is defined as the number of trans-
mitting packets of a flow per unit time. In a given flow, the
packets share one or more the same attributes. The flow rate
has higher specificity than the packet rate but they have mostly
similar usages. In the case of high-rate DDoS flooding attacks,
the rate of attack flows is distinctly higher than the rate of
normal flows.

C. Connection-Level Data

A connection is defined as the aggregated traffic between
two IP addresses from the perspective of a specific network,
where one address belongs to internal addresses and the other
is an external address. If the rule of traffic collection is the
same as the rule of flow expiration, a connection is made up
of two flows (inflow and outflow). A connection will con-
tain many flows if the collection rule is more extensive than
the rule of flow expiration. For example, we define a connec-
tion as being composed of transmission traffic between two
IP addresses in five minutes. We may get a number of flows
(inflows and outflows) in this connection. Notably, the dif-
ference between flow and connection is that a flow does not
have size restriction, that is to say, the flow is generated even
if a single packet has been exchanged. But a connection is
generated by at least two packets. Moreover, the notion of
connection in this paper is the granularity of network traffic,
which is different from the notion of “connection-oriented” in
TCP protocol.

Connection-level data describes the traffic statistical infor-
mation (includes inbound traffic and outbound traffic)
exchanged between two IP addresses. It has a higher gran-
ularity of network traffic than the flow-level data because it
provides global information of exchanged traffic between two
IP addresses in a given time. The connection-level data can
be divided into the following types.

1) Connection Size: Connection size can be divided into
the size of packet-level and the size of flow-level. The size
of packet-level is the total number of packets in a connection,
while the size of flow-level is the count of flows.

2) Connection Duration: Connection duration is the time
duration from connection generation to connection termi-
nation. It measures the communication time between two
hosts.
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3) Connection Count: Connection count is the number of
connections in a certain period of time. It offers the infor-
mation about the number of hosts that a given host connects
within that period. A drastic change of connection count is
also a signal of attack occurrence.

4) Connection Type: Connection type is determined by
the type of collected traffic, such as TCP connection, UDP
connection and ICMP connection.

The collection process of connection-level data is actu-
ally the process of collecting packet-level or flow-level data.
Usually, we make use of the connection-level data together
with the packet-level data and the flow-level data to acquire
more detailed information about network traffic. By tracing a
connection status and applying it together with the first two
data categories, we can distinguish attack traffic from normal
traffic based on the difference between them. But a detection
method using the connection-level data requires keeping track
of host and connection information, which implies that such
a method requires more resources than other methods.

D. Host-Level Data

The host-level data is collected from a local host while the
former three categories are collected from network devices.
Various open-source tools can be used to collect host-
level data, such as Collectl in Linux [31], Loadrunner in
Windows [32], etc. The host-level data provide comprehen-
sive knowledge of system events as it records host activities,
host changes, host resource consumption, etc. Each type of
attack is intended to have an impact on host performance.
The host-level data can describe any internal changes in the
host. They are widely used in Host-based Intrusion Detection
System (HIDS). A HIDS monitors the internals of a com-
puting system by analyzing host-level data. It is capable of
detecting internal abnormal activities such as modification of
file systems, privilege escalation, unauthorized logging and
unauthorized access. Herein, we discuss some commonly used
types of host-level data in attack detection.

1) CPU and Memory Usage: Monitoring CPU usage can
deliver useful load information about running software pro-
grams. We can measure CPU usage at system level and user
level. If a host is suffering from a network/transport layer
DDoS flooding attack, the CPU usage of system level will
drastically increase, but user level usage will hold steady.
However, under application DDoS flooding attacks, such as
HTTP requests and asymmetric attacks, both system level and
user level CPU usage will simultaneously increase. Memory
usage reveals the information about data exchange. It also
drastically increases during application DDoS flooding attacks
because applications need to process massive data.

2) Operation Log: Operation logs can be classified into
equipment operation logs and application operation logs. The
equipment operation logs collect the running events of equip-
ment that connects with host, such as keyboard and mouse
click events, cursor changes, writable objects, etc. The applica-
tion operation logs represent user-related activities when using
a specific application, e.g., local port creations or destruction

events, the number of login events, software usage events,
system calls, etc.

E. Summarization and Comparison

Table III shows the summarization and comparison of four
data categories. From the table, we can observe that each
data category has its own advantages and disadvantages with
regard to security threat detection. Packet-level data that has
full information about packet payload and packet header can
offer detailed records of network activities, making real-time
detection and payload matching possible. But having the infor-
mation of packet payload is double-edged as it could intrude
user privacy. Moreover, by considering the need of inspecting
individual packets, existing collection methods of packet-level
data are not suitable for high-speed networks with a rate up
to hundreds of Gbps. Current collection methods of flow-level
data provide several advantages compared to packet-level data,
such as suitable for high-speed networks and widely deployed.
The main merit of collecting flow-level data is to reduce the
amount of network traffic to be analyzed. But the flow-level
data has no information about packet payload, thus it is not
useful in payload-based detection methods. The connection-
level data records global information exchanged between two
hosts so that it gives a higher granularity of network traffic than
the flow-level data. We can measure the communication situ-
ation of a given host by analyzing the connection-level data.
And when making use of the connection-level data together
with the packet-level data or the flow-level data, we can obtain
detailed information about network activities. However, col-
lecting the connection-level data needs to keep track of the
status of each connection, which requires additional resources.
The host-level data differs from the first three data categories
as it offers comprehensive information of system events rather
than the information of network traffic and records any internal
changes of a host. The host-level data are rarely analyzed
alone to detect attacks due to the high false positive caused
by some normal user activities that lead to abnormal system
performance.

Through the above discussion, we can conclude that the
selection of data categories is determined by the needs of a
detection method and a network environment. We can take the
advantages of each data category and use them in conjunction.
For example, by considering the connection-level data together
with the packet-level or the flow-level data, we can detect
application layer related attacks. By analyzing the host-level
data with network status, we can accurately infer whether a
host suffers attacks.

III. METHODS AND REQUIREMENTS OF

SECURITY DATA ANALYTICS

In this section, we briefly introduce the widely used analytic
methods of security data and discuss their advantages and dis-
advantages. In order to make the analytic methods of security
data flexible and scalable, we further propose four additional
requirements in terms of security data analytics.
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TABLE III
SUMMARIZATION AND COMPARISON OF DATA CATEGORIES

A. Methods of Security Data Analytics

The methods of security data analytics with the purpose
of detecting network attacks can be classified into three
main categories: statistical methods, machine learning, and
knowledge-based methods, as shown in Fig. 2. This classi-
fication is based on the nature of data analytic methods. It is
not straightforward to propose a classification for security data
analytic methods, because there is substantial overlap among
the methods used in various classes.

1) Statistical Methods: In statistical methods, the network
traffic activity occurring in normal conditions is captured and
a profile representing its normal behaviors is generated. The
profile is created based on metrics such as packet-level data
and flow-level data. In the sequel, a statistical inference is
applied to calculate an anomaly score (usually a distance to
the profile), which is generated based on currently observed
traffic and the normal profile. If the score passes a certain
threshold, an alarm of anomaly will be generated. Univariate
models, multivariate models and time series models have been
applied in statistical methods. The univariate models need

prior knowledge of the underlying distribution of data and
estimate the parameters from given data (e.g., mean and stan-
dard deviation). The multivariate models consider correlations
between two or more metrics and do not need prior knowl-
edge of an underlying distribution. The time series models,
which use an interval time combining with an event counter
or a resource measure, consider the order and the inter-arrival
times of observations as well as their values.

There are several widely used examples of statistical meth-
ods in attack detection. The first is information entropy.
Entropy summarizes the traffic distribution by capturing the
important characteristic of traffic features. The traffic distribu-
tion is used to detect abnormal behaviors through comparing
with a predefined distribution. An entropy-based method is
suitable for detecting attacks launched by Botnet based on
anomalous patterns in networks [33]. In [34], several mea-
sures, such as entropy, conditional entropy, relative entropy,
information gain, etc., were used to explain the characteristics
of a dataset. Another statistical method is Cumulative Sum
(CUSUM) algorithm, which is a sequential analysis technique
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Fig. 2. Classification of analytic methods of security data.

used to detect irregular changes in traffic traces [35]. It is based
on the fact that if a change occurs, the probability distribution
of random sequence will change from negative to positive.
Other examples are Exponentially Weighted Moving Average
(EWMA) algorithm [36], Holt-Winter algorithm [37], etc.

The statistical methods have a number of distinct advan-
tages:

• They do not require prior knowledge of network attacks.
It means that they have the capability of detecting zero-
day attacks.

• They can accurately detect the attacks that cause abruptly
changes in network traffic, when setting an appropriate
threshold.

• They use few features to characterize the network traffic
so that their time and space complexity is small.

But, the statistical methods also have some disadvantages:
• They are susceptible to being trained by an attacker.
• The pure normal behavior model of a network is difficult

to establish.
• An appropriate threshold is difficult to set in order to

successfully balance false positives and false negatives.
• Most statistical methods rely on an assumption of a quasi-

stationary process [38], which is not always realistic.
2) Machine Learning: Machine learning aims to establish

an explicit or implicit model of analyzed patterns. The machine
learning is mainly divided into three categories [39]–[41]:
(i) supervised learning, (ii) unsupervised learning, and (iii)
semi-supervised learning. In the supervised learning, the
algorithm learns knowledge from labeled data and uses the
obtained knowledge to classify the unknown data. Several
supervised learning algorithms (e.g., K-Nearest Neighbor
(KNN), Support Vector Machines (SVM), and Artificial
Neural Network (ANN), Decision Trees, etc.) have been
widely applied to detect network attacks [42]. In the unsuper-
vised learning, the algorithm finds the underlying structure
of the data without any labels. The unsupervised learning
methods that mainly work based on similarity or distance
computation are divided into partitioning methods (e.g., K-
means, K-medoids, etc.), hierarchical methods (e.g., BIRCH,

Chameleon, etc.), density-based methods (e.g., DBSCAN,
OPTICS, etc.), and grid-based methods (e.g., STING,
CLIQUE, etc.). In semi-supervised learning, a portion of
labeled data is mixed into a large amount of unlabeled data
to generate the training dataset for unsupervised learning.
Here, the labeled data is used to obtain a mapping from a
large number of clusters to several classes. Some detailed
discussions about how to employ the machine learning to
detect network attacks are presented in [39] and [40].

The machine learning has a number of advantages:
• It has high detection rate.
• It is capable of updating their execution processes in

response to new traffic.
But, it also has some disadvantages:
• The supervised learning cannot detect unknown attacks

until relevant information is fed for retraining.
• The unsupervised learning needs prior knowledge to

determine the number of clusters and is under the
assumption that the large clusters are normal and small
clusters are abnormal.

• The machine learning consumes more resources in both
training and updating processes than other two types of
methods.

3) Knowledge-Based Methods: In the knowledge-based
methods, network or host events are matched with predefined
attack rules or patterns or signatures to examine them for the
presence of known attack instances. Expert system is the most
widely used knowledge-based methods. The expert system
extracts the specific features from the training data and builds a
rule in order to classify new coming data. Another type of the
knowledge-based methods is ontology analysis. It expresses
the relationships between collected data and uses these rela-
tionships to infer particular attack types. Furthermore, logic
analysis models attack patterns in an expressive logic structure
and uses this structure to determine whether network events
are legal.

The knowledge-based methods exhibit the following advan-
tages:

• They are simple, robust, and flexible.
• They have a high detection rate under the circumstance

that attack rules or patterns or signatures are accurately
established.

Some disadvantages of the knowledge-based methods are
identified as below:

• They cannot detect unknown attacks.
• They need high-quality prior knowledge.
• These methods may trigger some false alarms due to non-

availability of biased normal and attack datasets.

B. Requirements of Security Data Analytics

Various theories and methods can be applied to analyze
security data so as to detect network attacks. Traditional
requirements (such as real-time, high accuracy, less consump-
tion, widely deployment, etc.) have been usually considered
when designing attack detection methods. But the Internet
attacks are growing day-by-day, novel detection methods
should be developed. As a result, additional requirements on
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detection methods should be further considered for the purpose
of detecting all potential security threats and attacks and apply-
ing into network security measurement. With the purpose of
making detection methods more flexible and scalable, we pro-
pose four additional requirements. By considering these four
requirements, we believe future detection methods will show
advanced performance.

1) Self-Adaptive Detection (SD): The anomaly-based detec-
tion methods typically build normal profile for network behav-
iors, and detect intrusion based on the deviation between
normal profile and current network profile [43]. They have the
ability to detect zero-day attacks while misuse-based detection
methods can only detect known attacks by using signatures.
But an attacker can elaborately launch attacks by intentionally
training detection methods to make it gradually accept abnor-
mal network behaviors as normal. Facing such an attack, it is
hard to define what types of network behaviors are normal. If
the patterns of normal network behaviors are wrong or incom-
plete, anomaly-based detection methods will have a high false
positive rate. Therefore the detection methods should adaptive
to the changes of current network behaviors instead of mainly
depending on a static profile, that is to say the detection meth-
ods should be capable of updating the detection strategies with
traffic changes.

2) Dynamic Threshold (DT): Most detection methods set a
threshold during the measurement of deviation in anomaly-based
technologies or make it act as an upper bound for measuring
the number of anomalies. Actually, it is difficult to choose a
proper value as the threshold that can be applied in all kinds
of networking scenarios. Setting a fixed threshold value could
greatly impact detection accuracy and efficiency. Thus, it is
preferred that the threshold should dynamically accuracy and
efficiency. Such a dynamically changed threshold could greatly
balance between false positive rate and false negative rate.

3) Protocol Independence (PI): There are many kinds of
DDoS flooding and worm attacks in the context of various
networking protocols. We cannot predict when and which type
of attacks will occur. A qualified detection method should be
protocol independent for detecting DDoS flooding and worm
attacks. Both direct and indirect DDoS flooding attacks have
their own attack characteristics and could exploit multiple pro-
tocols to launch attacks. So a protocol-independent method
is expected to detect a category of DDoS flooding attacks
instead of detecting a specific protocol-related attack. For
worm attacks, we prefer efficient early detection at scanning
and propagating phases. Although worms have many scanning
and propagating schemes, they have a similar purpose. A pro-
tocol independent method can detect both known and unknown
worms based on the scanning or propagating schemes. In par-
ticular and from the view of network security measurement, a
generic and pervasive method is highly expected for evaluating
the Internet security as a whole.

4) Deal With Flash Crowds (DFC): Flash crowds that mas-
sive legitimate users send request packets to a server in a short
period of time, have very similar properties to DDoS flood-
ing and worm attacks. But they are legitimate network traffic.
A comprehensive comparsion between DDoS flooding attacks
and flash crowds is shown in Table IV [5]. Moreover, with

TABLE IV
COMPARISON BETWEEN DDOS FLOODING

ATTACKS AND FLASH CROWDS

Fig. 3. DDoS flooding attacks.

the development of the Internet, flash crowds occur more and
more frequently. An attacker usually launches malicious activ-
ities as soon as flash crowds occur. It can hide its activities
under flash crowds and achieves its malicious goals. The detec-
tion methods that have the ability of dealing with flash crowds
and distinguishing attacks accompanying with flash crowds are
urgently needed.

IV. SECURITY DATA ANALYTICS FOR DDOS
FLOODING ATTACK DETECTION

Distribution and cooperation are the main characteristics of
DDoS attacks. There are two methods to launch DDoS attacks
over the Internet. One is called protocol attack (also called
vulnerability attack and killer packet attack). It exploits vulner-
ability of protocols or applications and sends some malformed
packets to the victim. The victim will crash when processing
these malformed packets. For example, Ping of Death attack,
Winnuke attack and Teardrop attack fall into this category.
Another attack is called DDoS flooding attack, which is the
most common one, as shown in Fig. 3. This type of attack
floods a victim and occupies the victim’s resources so that it
cannot provide normal services for legitimate users.

Usually attackers launch DDoS attacks with massive hosts
that have installed malware programs. A botnet is made up of
compromised hosts (zombies) and controlled by an attacker
(botmaster). The botmaster utilizes command and control
system (C&C system) to remotely control and issue attack
commands to zombies. Botnets have been studied extensively.
Khattak et al. [44] presented three comprehensive taxonomies
of botnet features. The first taxonomy categorizes botnet
behaviors as those concerning propagation, rallying, C&C,



JING et al.: SECURITY DATA COLLECTION AND DATA ANALYTICS IN INTERNET: SURVEY 595

Fig. 4. The classification of DDoS flooding attacks.

purpose, topology, and evasion. The second taxonomy classi-
fies botnet detection methods into bot detection, C&C system
detection and botmaster detection. The third taxonomy classi-
fies botnet defense mechanisms into preventive and remedial.
Hoque et al. [10] classified botnet into stationary botnets and
mobile botnets. They not only introduced current develop-
ment trends of botnets, but also pointed out challenges when
designing botnets.

To prevent DDoS attacks, there are two different ways:
(i) direct attack detection that exploits the characteristics of
DDoS attacks, (ii) botnet detection that detects bots, botmas-
ter and C&C system. In this paper, we focus on the detection
methods for DDoS flooding attacks.

DDoS flooding attacks can be generated in two ways: direct
flooding attacks and indirect flooding attacks, as shown in
Fig. 4 (we only list some specific examples, there still are
many examples based on different protocols). In the direct
flooding attacks, attackers usually spoof source IP address
of attack packets and send them to a victim directly. In the
case of indirect flooding attacks, attackers use many inno-
cent intermediates to flood the victim indirectly. Based on
this classification, we surveyed current detection methods for
DDoS flooding attacks based on the data categories and the
methods of data analytics they used. We discussed the cur-
rent work based on some data categories in each data analytic
method because other categories had not been found in the
usage of corresponding attack detection in the literature as
best as we know. Notably, due to the detection problem of
Low-rate DDoS flooding attacks that we will explain in the fol-
lowing, we separately discuss this type of attacks. Moreover,
a discussion in each subsection is given with the purpose of
identifying what categories of data should be collected and

which analytic method should be applied for each type of
attack.

A. Detection Methods Against Network/Transport Layer
DDoS Flooding Attacks

The main purpose of Network/Transport Layer DDoS (N/T-
L DDoS) flooding attacks is to consume network bandwidth
and overwhelm network infrastructures by sending a large vol-
ume of attack traffic. These attacks often exploit weaknesses
of network/transport protocols.

SYN flooding attacks are one of the most frequently happen-
ing N/T-L DDoS flooding attacks which exploit the weakness
of TCP three-way handshake. An attacker sends massive SYN
request packets to a victim without subsequent ACK reply
packets. The victim is busy in processing these request pack-
ets with a half-open connection so that it has few resources to
process normal user’s request packets. In this part, the detec-
tion methods of SYN flooding attacks are mainly discussed,
because UDP protocol is currently used to launch reflection
flooding attacks and ICMP flooding attacks can be easily
defended by firewall.

1) Statistical Methods: In this part, we discuss statistical
analytic methods for detecting N/T-L DDoS flooding attacks
using packet-level data, flow-level data and connection-level
data.

a) Use packet-level data: Bellaiche and Gregoire [45]
used the numbers of SYN, ACK, SYN-ACK and RST packets
that drastically change in unusual TCP handshakes to detect
attacks. Entropy is calculated based on the fraction of these
packet counts occurring under normal traffic. During SYN
flooding attacks, massive unusual handshakes cause the drastic



596 IEEE COMMUNICATIONS SURVEYS & TUTORIALS, VOL. 21, NO. 1, FIRST QUARTER 2019

change of the numbers of the above four types of packets. SYN
flooding attacks can be detected when the variation of entropy
value exceeds a certain threshold. The detection method is
independent from the traffic volume and does not produce false
alarms during flash crowds. Thus, this method can satisfy the
requirement of DFC, but cannot achieve the goals of SD, DT,
and PI.

Based on the similar principle, Sengar et al. [46] used
normalized frequencies of SYN, SYN-ACK, FIN and RST
packets during non-attack traffic to build normal probability
distributions. During detection, current probability distribution
of packet counts is built. Hellinger distance is employed to
measure the distance between normal probability distributions
and current probability distributions. A dynamic threshold was
computed by employing a stochastic gradient algorithm based
on the Hellinger distance observed during a training period.
An alarm will be raised when the Hellinger distance is higher
than an estimated threshold. Their method has the ability of
detecting the attacks that violate the normal communication
steps of protocols. Therefore, the method can support DT and
PI, but the requirements of SD and DFC cannot be satisfied.

Boro et al. [47] considered two detection features for UDP
flooding attacks targeted to a particular destination: (i) the
count of total destination port changes for non-spoofed source
addresses with random destination ports, and (ii) the count
of source addresses changes for randomly spoofed source
addresses. A KD-Tree that each node represents a unique
source address is used to record information of incoming traf-
fic. In each time interval, they performed pre-order traversal of
the KD-Tree to calculate the entropies of the count of destina-
tion port changes and the count of source address changes. An
alarm will be raised to indicate UDP flooding attacks when
the two entropies beyond a preset threshold. However, this
method cannot support all additional requirements.

Kim et al. [48] proposed a statistics-based malicious
packet detection and filtering scheme named PacketScore.
PacketScore utilizes the notion of “Conditional Legitimate
Probability” (CLP) based on Bayesian theorem to judge
whether a packet is legitimate. The CLP of a packet is cal-
culated by comparing its attribute values with the values in a
baseline profile. The baseline profile contains the distribution
of six attributes namely packet size, TTL value, source address
prefix, TCP flag and server port number, and some joint dis-
tribution, such as <packet size and protocol-type> , <server
port number and protocol-types>, etc. Once the score of every
packet is computed, PacketScore prioritizes packets based on
their scores and performs selective packet filtering by com-
paring the scores with a dynamic threshold that is determined
by a recent snapshot of CLP values. The method can support
DT and PI, but cannot satisfy the requirements of SD and
DFC. Some extended schemes of PacketScore were described
in [49] and [50].

b) Use flow-level data: Zhou et al. [51] utilized source
address and destination address to aggregate packets into
flows. Based on the knowledge that attack packets that orig-
inated from the same botnet have the similar size, they
calculated entropy of the distribution of packet size in each
flow. The more concentrated the packet size is, the lower the

entropy is. They detected DDoS flooding attacks by measur-
ing the entropy deviation between normal and current traffic.
Their method is protocol independent because they only used
the packet size in each flow. Thus, the method can support the
requirement of PI. But it cannot achieve the goals of SD, DT,
and DFC.

c) Use connection-level data: David and Thomas [52]
monitored traffic on connection-level and aggregated traffic
into flows with 5 tuples (viz. source and destination addresses,
source and destination ports, and protocol type). The entropy
of flow counts was calculated for each connection in each time
interval. Moreover, an dynamic threshold was calculated based
on the traffic pattern of network activities and user behav-
iors. DDoS flooding attacks are detected when the variation
between the entropy of flow counts at each instant and the
mean value of entropy in that time interval are greater than
their corresponding thresholds. The method can achieve the
requirement of DT, but cannot support SD, DT and DFC.

2) Machine Learning: In this part, we discuss machine
learning for detecting N/T-L DDoS flooding attacks using
packet-level data, flow-level data and connection-level data.

a) Use packet-level data: Saied et al. [53] applied an
Artificial Neural Network (ANN) to separate attack traffic
from genuine traffic based on specific features. They compared
the features of legal packets, which are generated by normal
applications with the features of illegal packets that are gener-
ated by DDoS attacking tools. Then, they used distinct features
as input variables to train TCP/UDP/ICMP topological ANN
structures, including source IP address, source and destina-
tion port number, packet size, the number of packets, etc. The
trained ANN can detect known and unknown DDoS flooding
attacks with high accuracy. Thus, the method can support the
requirement of PI, but cannot achieve the goals of SD, DT
and DFC.

Vijayasarathy et al. [54] proposed a real-time detection
method using a Naive Bayes classifier. They used window-
ing to split input traffic into traffic subsets in order to obtain
reasonable estimation and control over the reaction time of the
system for attacks and have better models from big training
datasets. In the phase of training, the system takes traffic statis-
tics namely the amount of source and destination addresses,
source and destination ports, the number of packets, TCP flags,
packet size and packet arrival time as input and trains them
using the Naive Bayes algorithm. 10-fold cross validation was
used to evaluate the accuracy of attack. But this method cannot
support all additional requirements.

Su [55] proposed a detection method by combining with
a weighted k-nearest neighbor (KNN) classifier. The author
derived 35 features from headers, including IP, TCP, UDP,
ICMP, ARP, and IGMP. A weight value is calculated for each
feature and an optimal vector of weighted features is used for
attack classification. This method achieves 97.42% detection
accuracy for known attacks and 78% accuracy for unknown
attacks. The method can support PI, but cannot satisfy the
requirements of SD, DT and DFC.

The traffic of DDoS flooding attacks launched by a Botnet
is quite different from flow crowds. Kong et al. [56] iden-
tified some statistical features to discriminate DDoS flooding
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attacks from flash crowds, such as the number of unique source
addresses in each interval, the number of increased source
addresses in adjacent interval, the average of the number of
packets sent by source addresses in each interval, and the stan-
dard of the number of packets sent by source addresses in each
interval. With these features, traffic is classified by employing
some supervised methods. The method can satisfy DFC, but
cannot support SD, DT and PI.

Lee et al. [57] proposed a proactive detection method
for DDoS flooding attacks by exploiting an architecture that
consists of the selection of victims that help attack, the com-
munication between an attacker and victims, and the process
of launching an attack. The entropy of source and destina-
tion addresses, the entropy of source and destination ports, the
entropy of packet types, the occurrence of packet types (TCP,
UDP, and ICMP), and the number of packets are computed to
build feature vectors based on a sample of consecutive pack-
ets. A hierarchical clustering algorithm was adopted to form
clusters using the feature vectors. The normal traffic and each
phase of DDoS flooding attacks are partitioned. The method
can support the requirement of PI, but cannot achieve the goals
of SD, DT and DFC. An extended detection method combined
with a feature ranking algorithm was proposed in [58].

b) Use flow-level data: Data centers provide a various
of services and applications such as Web, FTP, DNS, Hadoop,
etc. Many services containing a data center can easily lead to
corresponding DDoS attacks. Traditional packet-based DDoS
attack detection methods seem impractical. Xiao et al. [59]
proposed an efficient detection method deployed at data
centers by applying CKNN (K-nearest neighbors traffic clas-
sification with correlation analysis) on flow-level data. They
aggregated packets that come from the data center network
with identical 5 tuples (viz. source and destination addresses,
source and destination ports, and protocol type). Each flow
can be represented by a set of statistical features, such as flow
duration, flow size, etc. Due to the high correlation among
the flows, which were generated by the same application, the
method can detect the existing attacks by examining flow fea-
tures with CKNN classification and correlation analysis. The
detection method that makes full use of the similarity among
flows instead of pre-building a profile is self-adaptive and pro-
tocol independent. Thus, this method can support SD and PI,
but cannot satisfy the requirements of DT and DFC.

Wagner et al. [60] designed a kernel function based a
one-class SVM classifier to detect attacks. A special kernel
function considers properties of Netflow records and projects
data points into a higher dimension before classification. Such
a one-class SVM classifier is capable of identifying outliers
and anomalies. They tested the detection method with some
types of flooding attacks and obtained high detection accuracy.
Thus, the method can satisfy the requirement of PI, but cannot
achieve the goals of SD, DT and DFC.

Qin et al. [61] aggregated packets into flows with 5 tuples
(viz. source and destination addresses, source and destina-
tion ports, and protocol type). For each flow, they recorded
packet size, source address, destination address, destination
port, and flow duration. Then they constructed entropy vec-
tors of these five features and modeled normal profiles using

a K-means algorithm. By comparing current traffic profiles
with the normal traffic profiles, the deviations of entropy vec-
tors are calculated and compared with a threshold to figure
out potential attacks. The method can support PI, but cannot
satisfy the requirements of SD, DT and DFC.

c) Use connection-level data: Kumar and
Selvakumar [62] proposed a classification algorithm called
RBPBoost by combining ensemble of neural classifiers and
Neyman Pearson cost minimization strategy. Several features
were extracted from traffic during a specified time window,
such as the number of connections to the same host, the
number of connections having the same packet length, the
number of connections that have SYN errors using the same
service, the number of UDP echo packets to a specified port,
etc. In training phase, an ensemble of neural classifiers was
trained using the above features for each individual dataset
and the results were combined. In testing phase, the Neyman
Pearson Structural Risk Minimization was applied to make a
final classification decision. But the method cannot support
all additional requirements.

3) Knowledge-Based Methods: In this part, we discuss
knowledge-based analytic methods for detecting N/T-L DDoS
flooding attacks using packet-level data, flow-level data and
connection-level data.

a) Use packet-level data: Sun et al. [63] discussed five
kinds of skillful SYN flooding attacks and proposed an accu-
rate and fast detection method, named SACK2. Under a normal
TCP three-way handshake, the number of SYN-ACK packets
that a server sends should be almost equal to the number of
ACK packets that a client sends. However during the SYN
flooding attack, this balanced relationship will be broken with
a large deviation as there are no corresponding ACK packets.
SACK2 utilizes counting bloom filters to observe the differ-
ence of SYN-ACK packets and ACK packets in number. Each
bucket in bloom filters is hash value that is calculated by
using client’s and server’s IP addresses, client and server’s
ports, and client and server’s initial sequence numbers of TCP
packets. SACK2 does not leave any chance for an attacker to
evade the detection, so it can detect all kinds of SYN flooding
attacks and distinguish attacks from flash crowds by adjusting
a threshold. Thus, this method can satisfy the requirement of
DFC, but cannot achieve the goals of SD, DT and PI.

The PING command of ICMP protocol is used to test
whether a host is reachable. When a source host sends a PING
request to a living host, that host must answer with a PING
reply. A PING flooding attack exploits this weakness to over-
whelm a host with mass PING requests. Yadav et al. [64]
proposed a distributed defense approach to mitigate the PING
flooding attack by inspecting whether the number of PING
request packets crosses a threshold or whether the size of
PING request packets is bigger than the size of normal PING
packet. When a router, which connects with a victim, has
detected a PING flooding attack, it will issue an alert mes-
sage to intermediate routers. Those routers will start dropping
the PING packets whose destination address is the victim’s
IP address. In daily Internet activities, the PING command is
often blocked by firewall. However, the method cannot support
all additional requirements.
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b) Use flow-level data: Sanmorino and Yazid [65]
proposed a protocol independent detection method that uses
flow patterns. All incoming packets with identical 5 tuple (viz.
source and destination addresses, source and destination ports,
and protocol type) are aggregated into flows. They used flow
size and flow count to calculate the average flow size in a time
interval. If the average flow size is very small while flow count
is large, then a flooding attack is happening at that time. For
example, during SYN flooding attacks, an attacker employs
massive bots to overwhelm a victim. So the flow count will
drastically increase due to the increase of the number of new
source IP address. The method can satisfy the requirement of
PI, but cannot achieve the goals of SD, DT and DFC.

Miao et al. [66] introduced eight scenarios of SYN flooding
attacks according to the positions of attackers, victims and
attacking addresses. Then they used Netflow data to detect
Internet-wide SYN flooding attacks based on the symmetry
relationship between SYN flows and SYN-ACK flows. But
their method cannot support all additional requirements.

c) Use connection-level data: Rahmani et al. [67] uti-
lized total variation distance to measure the similarity between
inflow size and outflow size in each connection. During nor-
mal TCP/UDP/ICMP connections, inflow size and outflow size
retain a similar shape. Any abrupt disproportion corresponds
to a legitimate or an illegitimate anomaly. Distance measure-
ment is an effective way to discriminate DDoS flooding attacks
from flash crowds because the similarity among attack traffic
is much higher than the similarity among legitimated traffic of
flash crowds. Thus, the method can satisfy the requirements
of SD, PI and DFC, but cannot support DT.

4) Discussion: Table V gives a summary of detection
methods of N/T-L DDoS flooding attacks. We also provide
comparison results of existing detection methods with regard
to N/T-L DDoS flooding attacks in terms of the following
criteria:

• Self-adaptive Detection:
-Yes: The detection method detects attacks adaptively to
the changes of current network behaviors.
-No: The detection method employs a static profile to
detect attacks.

• Dynamic Threshold:
-Yes: The detection method applies a dynamic threshold
to detect attacks.
-No: The detection method uses a static threshold to
detect attacks.

• Protocol Independent:
-Yes: The detection method has the ability to detect
a category of attacks independently from a concrete
protocol.
-No: The detection method can only detect a specific
protocol-related attack.

• Deal with Flash Crowds:
-Yes: The problem of flash crowds was considered and
solved in the paper.
-No: The problem of flash crowds was not considered or
solved in the paper.

From the table, we can observe that the number of pack-
ets and flow count are widely used to detect N/T-L DDoS

flooding attacks, especially in knowledge-based detection
methods [63]–[67]. This is inspired by the nature of the
flooding attacks that flood a target host with massive pack-
ets, which is obvious in the network/transport layer. Current
DDoS flooding attacks are often launched by a botnet. Each
bot, which is infected by the same malicious program, gen-
erates attack packets in the same format. The attack packets
share many similar characteristics, such as destination address,
source port, destination port, packet size, packet rate. These
identical characteristics at the packet-level lead to similari-
ties on flow-level (such as flow rate, flow size, flow duration)
and connection-level (such as connection size, connection
duration). Therefore, generating a profile that measures the
distribution of traffic features (such as source and destination
addresses, source and destination ports, packet size, packet
rate, flow duration, etc.) in statistical methods is quite neces-
sary [45]–[48], [51], [52]. Machine learning-based detection
methods often select some important characteristics of traffic
features that can reflect that the traffic is generated by a botnet,
to classify attack traffic [53], [57], [59], [62].

Moreover, the properties of Self-adaptive Detection and
Dynamic Threshold are not widely applied in the current lit-
erature. Most of the methods do not take the problem of flash
crowds into account. This leads to high false rate when flash
crowds occur.

B. Detection Methods Against Application Layer DDoS
Flooding Attacks

Application Layer DDoS (AL-DDoS) flooding attacks gen-
erally focus on exhausting server resources such as sock-
ets, CPU, memory, disk/database bandwidth and I/O band-
width [68]. The attacker usually customizes them to disrupt a
particular Web server. Unlike N/T-L DDoS flooding attacks,
AL-DDoS flooding attacks can be launched by using legiti-
mate traffic and the volume of traffic is also not too large.
Moreover, during flash crowds, attackers can imitate legitimate
user’s requests and attack a targeted server. The AL-DDoS
flooding attacks become more and more undetectable due to
the above obscure activities.

Several famous AL-DDoS flooding attacks are discussed
below.

(i) HTTP flooding attacks: The HTTP flooding attacks are
one of the most famous AL-DDoS flooding attacks that aim to
Web servers. They can be mainly classified into the following
categories [6], [68]: (a) HTTP request flooding attacks that
send high-rate requests packets, such as HTTP GET/POST
flooding attacks. (b) Slow HTTP request attacks (idle attacks)
in which an attacker keeps HTTP connection opening in an
idle state without actually sending a complete HTTP request,
such as slowloris attack, (c) HTTP asymmetric attacks that
send high-workload requests. Jiang et al. [69] provided valu-
able insight on the impacts of AL-DDoS flooding attacks on
HTTP/1.1 and HTTP/2.0.

(ii) SIP flooding attacks: These attacks can be easily
launched by employing open SIP traffic generators. They
have some attack forms: (a) SIP INVITE flooding attacks in
which a large number of INVITE messages are generated and
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TABLE V
SUMMARY AND COMPARISON OF DETECTION METHODS OF N/L-T DDOS FLOODING ATTACKS

transmitted to a victim. (b) SIP BYE flooding attacks in which
a large number of BYE messages are sent to a SIP server.
(c) SIP REGISTER flooding attacks in which a large number
of user agent REGISTER requests are sent to a SIP registrar.
(d) Multi-attribute flooding attacks in which a large number
of all four SIP messages (INVITE, BYE, RINGING, and OK)
are sent to the SIP server.

(iii) DNS flooding attacks: During DNS flooding attacks,
some attacker commands bots to send a large volume of mal-
formed DNS queries to a DNS server in order to exhaust its
resources. There are two types of DNS flooding attacks [70]:
(a) Water Torture in which bots send a large number of
DNS queries by adding random subdomains to a prefixed
domain. (b) NXDOMAIN in which bots send a large number
of queries to non-existent domain names. Another DNS-based
DDoS flooding attack is amplification flooding attacks. We
will discuss them in Section IV-D.

1) Statistical Methods: In this part, we discuss statisti-
cal analytic methods for detecting AL-DDoS flooding attacks

using packet-level data, flow-level data and connection-level
data.

a) Use packet-level data: Based on the principle of
HTTP protocol, Alenezi and Reed [71] proposed a detection
method for HTTP flooding attacks. During normal network
communications, congestion window (cwnd) value is changing
due to congestion control and the change is with an reason-
able range. But when a HTTP flooding attack occurs, the
victim controls traffic volume by setting the cwnd value at
a low value. Instead of building a static normal profile, they
employed a Cumulative Sum (CUSUM) algorithm to detect the
variation of cwnd values. If the threshold value is exceeded,
an alarm is triggered. The method can support SD, but cannot
satisfy the requirements of DT, PI and DFC.

Zhou et al. [72] proposed an efficient method that can
be deployed in network backbone to distinguish AL-DDoS
flooding attacks from flash crowds. Their method has three
modules: (i) abnormal traffic detection module that issues a
specific signal of ‘ATTENTION’ if abrupt changes in the
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number of HTTP GET request packets exceed a presumed
threshold, (ii) AL-DDoS flooding attack detection module that
first derives traffic model from Web traffic by using the num-
ber of HTTP GET request packets and the packet arrival
time of each incoming source address, and then compares
the current traffic model with a normal traffic model to get
attack probability, (iii) filter module that drops the network
traffic coming from a malicious source address that is deter-
mined by the second module. Thus, the method can satisfy
the requirement of DFC, but cannot achieve the goals of SD,
DT and PI.

Sengar et al. [46] applied the same detection method to
detect SIP flooding attacks by using the probability distri-
butions of the number of SIP INVITE, SIP 200 OK, SIP
ACK and SIP BYE packets. But the above detection method
becomes ineffective if the four types of packets are propor-
tionally flooded simultaneously. Tang et al. [73] developed
a versatile detection method for the SIP flooding attacks.
They designed a three-dimensional sketch data structure to
separately summarize the number of SIP INVITE, SIP 200
OK, SIP ACK and SIP BYE packets. Based on sketch data
structure, a probability distribution is established for each
SIP attribute independently. A SIP flooding attack can be
detected with a high probability by comparing the Hellinger
distance among data distributions in sketches with a dynamic
threshold that is calculated with Exponential Weighted Moving
Average (EWMA) algorithm. Thus, their method can satisfy
the requirement of DT, but cannot achieve the goals of SD,
DT and DFC.

Wang et al. [74] proposed an effective detection and defense
system for AL-DDOS flooding attacks, named SkyShield,
which monitors the divergence of distribution of packet
amount recorded by sketch. SkyShield employs three sketches
(S1, S2, S3) and two Bloom filters (B1, B2). In each detec-
tion cycle, S1 is used to record information of all incoming
requests with source addresses as input keys. S2 stores the
results of S1 in the last normal detection cycle. At the end
of each cycle, the divergence between S1 and S2 is calculated
and compared with a threshold that is computed by a Multiple
Independent EWMA algorithm. If an anomaly is detected,
S2 will not be updated anymore that ensures the detection
method is self-adaptive and S3 will be updated by S1. In mit-
igation phase, all incoming traffic will be checked by B1 that
is a whitelist and B2 that represents a blacklist. The remain-
ing requests are inspected based on abnormal buckets of S3.
SkyShield achieves high performance in attack detection and
mitigation even when the attacks occur during flash crowds.
Thus, SkyShield can satisfy all additional requirements of SD,
DT, PI and DFC.

Thapngam et al. [75] used packet arrival rate as input to
extract pattern behavior of attack packets. They observed that
the transmission rate of attack packets has the property of
repeatability and can be considered as a pattern in a short
period of time. Oppositely, the packet arrival rate of normal
traffic is non-predictable because the users may take time to
skim and respond. They employed Pearson’s correlation coef-
ficient to judge the similarity among traffic to discriminate
attack traffic from the traffic generated by real users like flash

crowds. Thus, their method can achieve the goals of SD, PI
and DFC, but cannot support DT.

Yu et al. [76] first acted as attackers to mimic browsing
behaviors of a legitimate Web viewer in order to study the
characteristics of mimicking attacks. They found that mimick-
ing attacks can be successfully launched if the attacker has a
sufficient number of active bots. However, sufficient number of
bots is hard to fully gather in some time, which gives possible
to detect the flash crowd mimicking attacks. They established
a map of the number of page request for a 24-hour period
and based on it, a mapping of the variation of fine corren-
tropy that is a tool for second order similarity measurement
of page requests was built. The flash crowd mimicking attacks
can be accurately detected by comparing current mappings
with the pre-established mappings. The method can satisfy
the requirement of DFC, but cannot achieve the goals of SD,
DT and PI.

Bhatia [77] presented an ensemble-based DDoS flooding
attack detection method that has the ability of separating flash
crowd traffic. They combined packet-level data and host-level
data per interval to construct traffic feature vector, namely the
number of packets, the number of new source addresses, the
number of source addresses, the number of packets per IP,
CPU utilization, CPU load, memory utilization. Exponentially,
EWMA algorithm was employed to analyze traffic feature
vector in two adjacent time intervals to detect attacks. Thus,
the method can support SD and DFC, but cannot satisfy the
requirements of DT and PI.

Alonso et al. [70] proposed a novel notion called DNS social
structure by abstracting recursive DNS traffic from recursive
DNS servers. They observed a phenomenon that DNS usage
gives rise to a social structure through mining the interac-
tions of IP address to domain names. A normal DNS social
structure will be built at DNS server-side based on the num-
ber of distinct source (agent) IP addresses, the number of
DNS query packets and other calculated features. During DNS
flooding attacks, the normal DNS social structure is drastically
changed, indicating the presence of attack. But their method
cannot support all additional requirements.

b) Use flow-level data: Yu et al. [78] applied a similar-
ity metric, called flow correlation coefficient to discriminate
attack flows among suspicious flows (such as flow crowds).
In their method, each flow is made up of incoming pack-
ets that share the same destination address. They formulated
the flow correlation coefficient by using the basic elements
of flow size. When a possible attack alarm goes off, the flow
correlation coefficient between suspicious flows is calculated.
If the correlation coefficient exceeds a threshold, this pair of
flows is determined as attack. The detection method is self-
adaptive and protocol independent because it makes full use
of the similarity among flows. Thus, their method can satisfy
the requirements of SD, PI and DFC, but cannot support DT.
Saravanan et al. [79] also proposed using flow similarity to
detect AL-DDoS flooding attacks during flash crowd.

Giralte et al. [80] described a normal user behavior in a
statistical way. They aggregated packets with the same source
address and protocol type. Then the flow count, flow size and
flow rate of HTTP protocol are used to compute statistics for
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each user (each source address). If a high deviation between
a user value and the average value is reported, this user is
labeled as suspicious. However, their method cannot support
all additional requirements.

Zolotukhin et al. [81] defined that a conversation is the com-
bination of two flows such that the source socket of one of
these flows is equal to the destination socket of another flow
and vice versa. They recorded conversation duration (that is
flow duration) and extracted following features from inflow
and outflow in each TCP conversation: packet rate (per sec-
ond); the number of transmit bytes per second; maximal,
minimal and average of packet size; maximal, minimal and
average of TCP window values; maximal, minimal and average
of TTL values; and percentage of packets with different TCP
flags. During offline training, a normal user behavior model is
built with the help of fuzzy clustering based on these features.
Then, they applied an online training algorithm to rebuild the
model every time when a new portion of network traffic is
available for the analysis. Reconstruction error between the
old model and the new one is calculated. If the error value
exceeds a predefined threshold, this conversation is consid-
ered to be an intrusion. However, this method cannot support
all additional requirements.

c) Use connection-level data: Beitollahi and
Deconinck [82] measured various statistical attributes
for users in non-attack conditions, including the distribution
of source IP addresses, request packet rates, the number
of transmit bytes per second (downloading rat), connection
duration, browsing behaviors that extracted from Web opera-
tion logs, arrival distribution rate of users (source addresses),
and well-known confirmed users. They used these features
to build a normal user profile. For each connection, a score
is assigned based on normal user profile. The connections
that get lower scores are more possible to be intrusions. The
method can support PI, but cannot satisfy the requirements
of SD, DT and DFC.

2) Machine Learning: In this part, we discuss applying
machine learning to detect AL-DDoS flooding attacks using
packet-level data and connection-level data.

a) Use packet-level data: Adi et al. [83] designed a
stealthy DDoS flooding attack that has the ability of directly
attacking HTTP/2 Web servers. They showed this type of
attack can degrade the performance of machine learning anal-
ysis. To prevent this novel attack, the authors presented a
detection scheme that combines feature selection techniques
and supervised learning methods. Three features are extracted
from legitimate and malicious traffic, namely the number of
packets grouped by packet type, the total number of bytes
grouped by packet type and the packet arrival time. These fea-
tures are ranked and classified by supervised learning methods.
But the method cannot support all additional requirements.

Ramamoorthi et al. [84] first built normal user’s behavior
profile using HTTP request rate, page viewing time, the num-
ber of TCP and UDP and ICMP packets, etc. These features of
behavior profile are used as training samples for an Enhanced
Support Vector Machines (ESVMs) with string kernels. The
experimental results show that this ESVM with string kernels
has a higher accuracy than one class SVMs, Binary SVMs and

SVMs with string kernels. But their method cannot support all
additional requirements.

She et al. [85] introduced a clustering-based detection
method for HTTP flooding attacks. They first defined that if
the time interval between two packets that arrive continuously
less than a pre-set threshold, then these two packets are in the
same session. According to this definition, they extracted fol-
lowing features from a session: the total number of requests
in a session, the total size of all request packets in a session,
the request packet rate of a session and the average frequency
of the request packets in a session. The K-means algorithm
was used to cluster traffic and a normal user’s behavior model
was obtained from clusters. A new session is whether normal
or not is determined by its distance from the normal model.
But the method cannot support all additional requirements.

b) Use connection-level data: Singh et al. [86] analyzed
the standard Environmental Protection Agency-Hypertext
Transfer Protocol (EPA-HTTP) dataset and extracted some
essential features, namely the entropy of the number of HTTP
GET request packets per connection, the number of HTTP
GET request packets for a particular IP address, and the
variance of the entropy per IP address. These features were
considered as the input to a multilayer perceptron classification
algorithm with a genetic algorithm for differentiating attacks
from a normal profile. Their method not only shows that the
entropy values of the number of HTTP GET request packets
and IP addresses decrease in case of an attack, but also proves
that the nature of packet transmission from an attack source
is almost identical. Their method cannot support all additional
requirements.

3) Knowledge-Based Methods: In this part, we discuss
knowledge-based analytic methods for detecting AL-DDoS
flooding attacks using packet-level data and flow-level data.

a) Use packet-level data: Geneiatakis et al. [87] uti-
lized the one-to-one mapping relationship among INVITE-
responses-ACKs to detect SIP flooding attacks. Three bloom
filters with counters are respectively employed to keep track
of the INVITE requests and the corresponding responses and
the final ACKs. A new metric calculated based on the coun-
ters, named “session distance”, is introduced as a detection
measurement against such attacks. The smaller the value of
session distance, the more legitimate traffic is. They calcu-
lated a judging dynamic threshold by considering the average
value of the session distance, network delay and user response
time. Experimental results showed that detection time is negli-
gible and the rate of false alarms is very low if applying such
a detection method. The method can satisfy the requirements
of SD and DT, but cannot support PI and DFC.

Liao et al. [88] analyzed the differentiation between Web
user’s behaviors and then extracted the following two fea-
ture sequences to represent browsing behaviors: the sequence
of request frequency and the sequence of request interval.
The detection architecture consists of two parts: (i) Request
interval sequence part. This part filters normal users based
on the assumption that they take more time in Web browsing
than malicious users that have a short time interval between
two adjacent request packets. (ii) Request frequency sequence
part. This part further filters normal users from malicious
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users by using a decomposition and rhythm matching algo-
rithm. The remaining sequences are inspected based on a
predefined threshold. But the method cannot support all
additional requirements.

b) Use flow-level data: Zhang et al. [89] proposed a
novel packets aggregation method that uses meta-information
and employs resulting flows to detect AL-DDoS flooding
attacks. They used two surface features from packets of a
single user (source address): average scan time and sequence
of page requests. Average scan time is, in fact, the average
of inter-arrival time of request packets from the same source
address. Sequence of page requests represents the access times
of a specific page namely the number of request packets of that
page. Then they aggregated users’ packets with similar aver-
age scan time and sequence of page requests to one flow. By
adding up all users’ sequence of page requests and calculating

page’s access frequency to generate a normalized frequency
vector, hot-spot access is extracted from flows. Finally, they
applied Dempster-Shafer (D-S) evidence theory to analyze
flow rate to evaluate a flow and assess whether it is an attack
flow or not. Thus, their method can support SD, but cannot
satisfy the requirements of DT, PI and DFC.

4) Discussion: Having the same format as in Table V,
we summarize and compare detection methods of AL-DDoS
flooding attacks in Table VI.

From the table, we can see that the number of pack-
ets is still an important traffic feature to detect AL-DDoS
flooding attacks. In statistical methods, measure the similar-
ity among traffic [72], [75], [78] and monitor the changes of
user behaviors [70], [71], [77], [80]–[82] are widely employed
to detect AL-DDoS flooding attacks, rather than using infor-
mation entropy to reveal the distribution of traffic features.



JING et al.: SECURITY DATA COLLECTION AND DATA ANALYTICS IN INTERNET: SURVEY 603

This is due to the obscure characteristics of AL-DDoS flood-
ing attacks. The detection methods that combine with traffic
compression and fusion technique [73], [74] for AL-DDoS
flooding attacks obtain high performance, which are capa-
ble of dealing with large-scale network traffic. The usages
of machine learning and knowledge-based methods in detect-
ing AL-DDoS flooding attacks are as similar as the usages in
detecting N/T-L flooding attacks. Although both flash crowds
and AL-DDoS flooding attacks are gusty and have a high vol-
ume in network traffic. There still exist some key differences
between them, such as the distribution of source addresses,
the speed of traffic, the volume of traffic, traffic arrival time,
etc. All these features can be used to discriminate AL-DDoS
flooding attacks from flash crowds by measuring the simi-
larity among the traffic [72], [74]–[78]. We also find that the
requirements on dynamic threshold and protocol independence
are not widely considered in the current detection methods.

C. Detection Methods Against Low-Rate DDoS Flooding
Attacks

Low-rate DDoS (LDDoS) flooding attacks send a large
number of packets within a specific time interval to decline the
performance of a victim’s services. They follow the form of
periodic pulse (ON/OFF pattern), as shown in Fig. 5. LDDoS
flooding attacks are totally different from traditional high-rate
DDoS flooding attacks. First, they exploit many vulnerabilities
of a target system, e.g., shrew attacks use TCP Retransmission
Time-Out (RTO) mechanism [90], NewShrew attacks use both
TCP RTO mechanism and slow start mechanism [91], low-
rate DoS attacks against concurrent servers (LoRDAS) use
the service response mechanism of application layer [92], and
Reduction of Quality (RoQ) attacks exploit a common adap-
tation mechanism [93]. Second, LDDoS flooding attacks send
attack packets only in a specific interval and do nothing in
other time-slots. This characteristic of LDDoS flooding attacks
hides abnormal traffic as legitimate traffic by keeping a low
average rate. Obviously, it is difficult to use the detection meth-
ods for high-rate DDoS flooding attacks to detect the LDDoS
flooding attacks.

1) Statistical Methods: In this part, we discuss statistical
analytic methods for detecting LDDoS flooding attacks using
packet-level data and flow-level data.

a) Use packet-level data: Hoque et al. [94] used the
entropy of source addresses, the change rate of IP addresses
and packet rate to build a normal profile under non-attack traf-
fic. A dissimilarity value is calculated based on the deviation
between normal profile and current profile. If the dissimi-
larity value is greater than a predefined threshold, an alarm
is generated. The detection method is protocol independent
because it exploits the basic characteristics of LDDoS. They
also proposed a method to classify low-rate and high-rate
DDoS flooding attacks. Their method can support PI, but
cannot satisfy the requirements of SD, DT and DFC.

Xiang et al. [95] proposed a detection method for LDDoS
flooding attacks by using two new information metrics namely
generalized entropy metric and information distance metric.
The generalized information entropy as a generalization of

Fig. 5. LDDoS flooding attacks.

Shannon entropy is one of a family of functions for quantify-
ing either the diversity uncertainty or randomness of a system.
In their method, the distribution of source IP addresses or the
distribution of IP packet sizes can be used. The information
distance they designed can measure the deviation of probabil-
ity distributions between attack traffic and normal traffic. By
adjusting the value of parameters of the generalized entropy
and information distance metrics, the method can increase the
information distance between LDDoS flooding attack traffic
and normal traffic. The detection method is protocol indepen-
dent because it exploits the basic characteristics of LDDoS. It
can support PI, but cannot satisfy the requirements of SD, DT
and DFC.

Network traffic exhibits self-similarity over a large time
scale while presenting multifractal characteristics over a small
time scale. Based on this idea, Wu et al. [96] proposed a
novel detection method for LDDoS flooding attacks using a
multifractal technology. When LDDoS flooding attacks are
launched, a large number of UDP packets will appear in the
network because the LDDoS flooding attacks usually use UDP
protocol. This status makes the Lipschitz-Holder exponent
(Holder exponent) that is used to characterize the bursty of
network traffic, fall quickly. The smaller the Holder expo-
nent is, the more bursty the network traffic. Therefore, by
monitoring the abrupt change of the Holder exponent in adja-
cent time periods through wavelet analysis, LDDoS flooding
attacks can be detected and considered to exist if the deviation
is larger than a detection threshold. Their method can satisfy
the requirement of SD, but cannot achieve the goals of DT,
PI and DFC. Based on the multifractal characteristics exist in
network traffic, another LDDoS attack detection work based
on wavelet transform and neural network is described in [97].

b) Use flow-level data: It is obvious that a periodic pulse
is difficult to be detected by using existing methods of analyz-
ing network traffic in time domain, because its average share of
bandwidth is not big enough. Wu et al. [98] used the theory of
Digital Signal Processing (DSP) based on a small signal model
to detect TCP-based LDDoS flooding attacks. They aggregated
packets into flows by protocols and considered the variation
of flow size in adjacent time periods as the sign of attack. The
method can support SD, but cannot satisfy the requirements
of DT, PI and DFC.

Zhou et al. [99] proposed an Expectation of Packet Size
(EPS)-based method to distinguish LDDoS attacks from legit-
imate traffic. They classified packets that share the same
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destination address into flows and calculated EPS value of
each flow at different time. The EPS value of attack traffic is
smaller than that of normal traffic and varies within a narrow
limit. Motivated by this difference, attack flows can be dis-
tinguished by comparing the EPS values among flows. This
detection method is protocol independent since it exploits the
basic characteristics of LDDoS. Thus, the method can support
PI, but cannot satisfy the requirements of SD, DT and DFC.

2) Knowledge-Based Methods: In this part, we discuss
knowledge-based analytic methods for detecting LDDoS
flooding attacks using flow-level data.

Use flow-level data: During the congestion time caused by
LDDoS flooding attacks, the rate of attack flows will dras-
tically increase while normal flow rate will decrease due to
the congestion control mechanism. But in a non-attack period,
the rate of attack flows is close to zero and normal flow rate
will increase. Wu et al. [100] utilized the difference between
the rate of normal flows and attack flows in pulse periods to
fight against LDDoS flooding attacks. They aggregated incom-
ing packets by source and destination addresses and recorded
each flow rate in a time interval. When packet loss rate is
abnormal, the average rate of each flow is calculated. If flow
rate is beyond a predefine threshold, this flow is treated as a
malicious flow. This detection method exploits the basic char-
acteristics of LDDoS and does not need to prebuild a normal
profile. Thus, it can satisfy the requirements of SD and PI, but
cannot support DT and DFC.

Zhang et al. [101] proposed a novel metric called
Congestion Participation Rate (CPR) deployed in a router to
detect LDDoS flooding attacks. All incoming packets with
identical five-tuple keys (viz. source and destination addresses,
source and destination ports and protocol type) are aggregated
into flows. The CPR of a given flow is defined as the ratio
of the flow size in congestion time to the flow size in normal
time. During attacks, the CPR values of attack flows substan-
tially increase and become higher than a threshold. Through
monitoring the difference of CPR values of network flows,
their method can effectively identify LDDoS flooding attack
flows. The detection method exploits the basic characteristics

of LDDoS and does not need to prebuild a normal profile.
Thus, this method can support SD and PI, but cannot achieve
the goals of DT and DFC.

3) Discussion: Using the same format as in Table V,
we summarize and compare detection methods of LDDoS
flooding attacks in Table VII.

From the table, we can observe that detection methods
for LDDoS flooding attacks are different from the detec-
tion methods for the first two types of attacks. As opposed
to the high-rate DDoS flooding attacks, LDDoS flooding
attacks inject a short burst of traffic periodically to occupy the
resources of victim. These attacks are difficult to detect and
defense, as most of the detection methods for DDoS flooding
attacks are triggered by high-rate and high-volume traffic. The
most efficient way of detecting LDDoS flooding attacks is to
find the periodicity and abruptness of the changes in packet
amount, which is analyzed in frequency domain [96], [98].
Another way is to find the similar characteristics (such as
packet size, packet rate, etc.) of packets generated by the same
botnet to detect LDDoS flooding attacks [94], [95], [99]. Also,
utilizing the distinct behaviors of LDDoS flooding attacks is
an effective detection method [100], [101]. Obviously, most
of the detection methods for LDDoS flooding attacks are self-
adaptive to the changes of traffic [96], [98], [100], [101] and
protocol independent [94], [95], [99]–[101]. These methods
use the basic characteristics of the attacks and are very robust.
However, the adoption of dynamic threshold and the problem
of flash crowds are not considered in the above reviewed
works.

D. Detection Methods Against Reflection Amplification
DDoS Flooding Attacks

In Distributed Reflection DoS (DRDoS) flooding attacks,
as shown in Fig. 6, an attacker employs bots to send mas-
sive request packets with a spoofed source address (a vic-
tim’s address) to reflectors. The reflectors reply corresponding
response packets to the victim. As a result, the victim receives
a lot of response packets and its system resources will be



JING et al.: SECURITY DATA COLLECTION AND DATA ANALYTICS IN INTERNET: SURVEY 605

drastically consumed. Usually, the size/number of response
packets is many times larger than the size/number of request
packets, so we call this type of DRDoS flooding attacks
as reflection amplification DDoS flooding attacks (referred
to as amplification DDoS flooding attacks). There are two
reasons for an attacker to launch DRDoS flooding attacks:
(i) anonymity: an attacker can hide its location with a spoofed
source IP address; (ii) amplification: an attacker can amplify
the impact of attacks by exploiting botnet and unsymmetrical
size of response packets.

The impact of DRDoS flooding attacks can be measured by
two amplification factors: Packet Amplification Factor (PAF)
which is the ratio of the number of response packets to
the number of request packets and Bandwidth Amplification
Factor (BAF) which is the ratio of the payload size of
response packets to the payload size of request packets.
Rossow [102] has evaluated 14 UDP-based protocols, which
are vulnerable to be exploited to launch amplification attacks.
They showed that UDP-based amplification flooding attacks
usually have much higher amplification factors. Moreover,
Kuhrer et al. [103] demonstrated that TCP three-way hand-
shake also has amplification potential and the amplification
factors are around 20.

Detection methods of amplification DDoS flooding attacks
can be classified into two methods: reflector-end and victim-
end. At the reflector-end, the key techniques against amplifica-
tion flooding attacks are the detection of spoofed address. But
there are two drawbacks of reflector-end detection methods:
(i) there exist many potential reflectors, and (ii) illegiti-
mate incoming requests might look the same as legitimate
requests in reflectors. At the victim-end, typical detection
methods depend on analyzing the unbalance relationship
between outgoing request packets and incoming response
packets or utilizing attack attributes of DDoS flooding attacks.
Ryba et al. [104] discussed that the victim-end detection meth-
ods may be ineffective. The reason is that after attacks have
occurred, the victim’s bandwidth may already have become
saturated or the volume of traffic is too high for the victim to
process. In the next two subsections, we review current detec-
tion methods of DRDoS flooding attacks from the perspective
of security data.

1) Statistical Methods: In this part, we discuss statistical
analytic methods for detecting DRDoS flooding attacks using
flow-level data.

Use flow-level data: Wei et al. [105] found that the rate of
responsive flows from reflectors has linear relationship with
each other because they are simulated by the same attack-
ing traffic. They defined all packets to a victim through one
router as a flow. Spearman’s rank correlation coefficient was
employed to calculate the flow correlation coefficient between
flow pairs to differentiate attack traffic from legitimate traffic.
Their method exploits the similar characteristics of DRDoS
flooding attack traffic. Thus, the method can support SD and
PI, but cannot satisfy the requirements of DT and DFC. Similar
work was proposed in [106].

2) Machine Learning: In this part, we discuss machine
learning for detecting DRDoS flooding attacks using packet-
level data.

Fig. 6. DRDoS flooding attacks.

Use packet-level data: Gao et al. [107] found that the fol-
lowing five features largely change in a time unit during
DRDoS flooding attacks: (i) the number of packets that only
contain IP header without TCP or UDP header, (ii) the sum
sizes of the UDP packets sent to the victim, (iii) the number
of packets sent to the victim, (iv) quantity variance of packets
sent to and received by the victim, and (v) the maximum num-
ber of the packets sent to the victim among all ports. Based
on the variation of these features, a normalized polynomial
kernel based SVM algorithm is applied to decide whether the
data in transiting is attack traffic. The method cannot satisfy
all additional requirements.

Meitei et al. [108] selected several features from DNS
query traffic, such as the mean of inter packet arrival time
from same IP, probability of occurrence of an IP per 15 sec-
onds, minimum, average and maximum packet size, etc.
They classified the DNS traffic into normal and abnormal by
employing Decision Tree, Multilayer Perceptron, Naive Bayes
and SVM. Attribute selection algorithms such as Information
Gain, Gain Ratio and Chi Square are used to reduce the redun-
dant features. The experimental results show that Decision
Tree achieves the highest accuracy of 99.3%. However, their
method cannot support all additional requirements.

Attack packets that are generated by the same botnet have a
high similarity on packet-level data. Cai et al. [109] proposed a
reflector-end detection method for DNS amplification flooding
attacks. They extracted three features per unit time, includ-
ing the number of DNS request packets, the ratio of DNS
response packet size to DNS request packet size and the ratio
of the number of DNS response packets to the number of DNS
request packets. Then, they used k-means algorithm to clas-
sify normal and abnormal clusters to make a detection pattern
and calculate reference points. Based on the detection pattern,
new data is whether normal or not is determined by its dis-
tance from the reference point of each group. But the method
cannot support all additional requirements.

3) Knowledge-Based Methods: In this part, we discuss
knowledge-based analytic methods for detecting DRDoS
flooding attacks using packet-level data and flow-level data.
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TABLE VIII
SUMMARY AND COMPARISON OF DETECTION METHODS OF DRDOS FLOODING ATTACKS

a) Use packet-level data: If reflectors are able to detect
whether the source address of request packets has been
spoofed, it would be very easy to detect and prevent amplifi-
cation flooding attacks. Through analyzing two large datasets,
Rudman and Irwin [23] showed that the variation of source
address and TTL values are useful for detecting NTP amplifi-
cation attack. If the packets from the same source address have
an obvious gap among TTL values, this source address is an
attack target. The reason is attack sources are commonly dis-
tributed in different subnets, so the final TTL values of packets
sent to the same targeted address must be different.

Böttger et al. [110] identified following additional features
to characterize DRDoS flooding attacks and used them to
distinguish legitimate requests from spoofed attack requests:
request and response packet size and payload similarity; the
number of ICMP port unreachable messages; TTL values.
They showed that a protocol-agnostic approach makes detec-
tion process effective to defend not only the attacks on static
port numbers, but also novel DRDoS flooding attacks. The
method can support PI, but cannot satisfy the requirements of
SD, DT and DFC.

Tsunoda et al. [111] proposed a simple but robust method to
detect DRDoS. They summarized the types of response pack-
ets of TCP/IP protocols and their corresponding request types.
Hence, the proposed method used a confirmation mechanism
to confirm the validity of received response packets based on
a request-response relationship. The method can support SD
and PI, but cannot achieve the goals of DT and DFC.

Kambourakis et al. [112] extracted source/destination IP
address and source/destination port number from DNS request
packets to build a DNS request table with four columns.
A DNS responses table that has the same structure as the
request table is built based on the features extracted from DNS
response packets that a client receives. Through comparing
these two tables, a response packet is marked as suspicious if
the features of the response packet do not match the request
packets previously sent in a given period. As soon as the num-
ber of suspicious packets exceeds a given threshold, an alert

is generated. This method can only satisfy the requirement
of SD.

b) Use flow-level data: Huistra [113] stated that DNS
amplification flooding attacks can be detected by observing
the size and the number of DNS packets at reflector-end.
He aggregated packets with Netflow standard. For each DNS
request inflow, flow size is compared with a predefined thresh-
old to determine whether this flow is suspicious. For each
DNS response outflow, flow size is dealt with the same pro-
cess and furthermore the average size of the response packets
is also taken into consideration as a second metric. The method
cannot satisfy all additional requirements.

4) Discussion: Having the same format as in Table V,
we summarize and compare detection methods of DRDoS
flooding attacks in Table VIII.

For DRDoS flooding attacks, existing methods usually use
legitimate request packets to deceive reflectors so as not to
generate anomalies in network traffic. But it is also effi-
cient to detect them by utilizing similar characteristics of
attack traffic [105], [107]–[109]. Another way for defending
DRDoS flooding attacks is to monitor the deviation between
the statistical information of outgoing traffic (request traffic)
and the statistical information of incoming traffic (response
traffic) [110]–[113]. However, the application of dynamic
threshold and the problem of flash crowds are not considered
in these methods.

E. Detection Methods Against Link Flooding Attacks

Link flooding attacks (also called crossfire attacks [114]) are
launched by a botnet to cut off specific links in the Internet
and to make a specific region disconnected from others. Fig. 7
shows an attack model of link flooding attacks [115]. First, an
attacker elaborately selects a target area and decoy servers. The
decoy servers must be located around the target area. A map
of network topology about the paths from the bots to target
servers is created by employing bots to send traceroute com-
mands to target servers. When all bots complete the work of
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Fig. 7. Overview of the link flooding attack.

finding the paths, the attacker aggregates all traceroute results
and finds target links that frequently appear in the results.
Then, the attacker selects bot-decoy pairs. A suitable bot-
decoy satisfies the condition that traceroute commands from
the bot to the decoy server contain the target links. Once tar-
get links and bot-decoy pairs are selected, the attacker blocks
target links by commanding bots to send low-rate traffic to
decoy servers. As a result, the target area is isolated from
other regions. Herein, the purpose of introducing link flooding
attacks is to arouse researchers’ attention. This type of attack
has serious attack potential although it needs an elaborate
design.

Through analyzing the generation process of link flooding
attacks, Hirayama et al. [115] found that the number of tracer-
oute packets that are used to find target links between bots and
target/decoy servers increases before the attack occurs. They
employed a detection server to count the number of traceroute
packets at routers. When the cumulative sum is higher than a
predefined threshold, an alarm will be triggered. Hirayama’s
detection method is the first study that can detect link flooding
attacks before link congestion occurs.

Xue et al. [116] proposed a novel system called LinkScope
to detect link flooding attacks and locate target links or
area. As link flooding attacks congest the links around a tar-
get area, following anomalies could happen on these links:
(i) packet loss rate, connection failure rate and Round-Trip
Time (RTT) could drastically increase, (ii) available bandwidth
could decrease, and (iii) packet reordering could increase on
related routers. LinkScope contains three types of probing
patterns to measure these anomalies caused by link flooding
attacks. The first is Round Trip Probing (RTP), mainly used
to measure packet loss rate, RTT and packet reordering. The
second is Extended Two Way Probing (eTWP) that is used
to measure available bandwidth. The third one is Modified
Recursive Packet Train (mRPT) that is used to locate the target
links or the target area by combining hop-by-hop and end-to-
end measurement. Finally, LinkScope correlates the traceroute
data and the measurement data to infer the target links or the
target area.

Rerouting traffic is a feasible method to detect link flooding
attacks. Liaskos et al. [117] formulated a detection method
of link flooding attacks via relational algebra. It represents

the association of bots to potential targets. They continu-
ously rerouted traffic in a manner so that bots are forced
to persistent participation in link flooding events. Thus, the
bots exhibit suspicious behaviors and reveal their presence.
Lee et al. [118] proposed a collaborative re-routing system
that reroutes legitimate traffic to uncongested links while limits
bandwidth available to attack traffic at congested links.

Actually, it is difficult to detect link flooding attacks by
using current detection methods of DDoS flooding attacks.
There are three reasons behind this [114], [115]: (i) attack
traffic does not reach the target region directly, (ii) bots dis-
guise as legitimate users with valid addresses to communicate
with decoy servers, (iii) botnets can flood target links without
sending unwanted traffic, e.g., they can send useful packets to
each other.

V. SECURITY DATA ANALYTICS FOR

WORM ATTACK DETECTION

Worms are a kind of self-duplicating and self-propagating
malicious codes that spread themselves across networks with-
out any human interaction. They compromise systems, steal
sensitive information, congest network and launch many kinds
of attacks. A worm’s life consists of following phases [8], [12]:
(i) target finding, worm uses scanning technologies to search
vulnerable hosts that can be compromised easily, (ii) transfer-
ring, worm sends its duplication to victims after the victims
are discovered, (iii) activation, malicious activities of worms
can be triggered based on a specific data or under a certain
condition, (iv) infection, once worm has successfully infected
the host, the infected host will exhibit malicious behaviors.
During the first two phases, the worm is active over the Internet
and causes some network anomalies, making it possible to be
detected by exploiting its special behaviors.

The categories of worms are classified by the different char-
acteristics in target finding and transferring phases [8], as
shown in Fig. 8. According to the manners in the target find-
ing phase, we can classify worms into scan-based worms,
topology-based worms and passive worms. The scan-based
worms search vulnerable hosts by probing IP addresses, e.g.,
hit-list scanning worms, routable scanning worms, and blind
scanning worms. The topology-based worms use the informa-
tion contained in a victim machine to search new targets, e.g.,
email worms and social network worms. The passive worms
wait for a host request and reply with worm duplication,
e.g., CRClean worm. According to the ways in propagation,
worms can be divided into self-carried worms, second channel
worms and embedded worms. The self-carried worms straight-
forwardly transfer malicious codes embedded in payload by
itself. The second channel worms obtain malicious codes by
visiting specific public servers or infected machines through
a backdoor. The embedded worms mix its malicious codes in
legitimate traffic to hide themselves. Based on the ways in
transmission, there are TCP-based worms that transmit mali-
cious codes with TCP protocol and UDP-based worms that
transmit malicious codes with UDP protocol. The difference
between these two transmission schemes is that the TCP-
based worms are latency-limited and the UDP-based worms
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Fig. 8. The classification of worm characteristics.

are bandwidth-limited. According to the format of malicious
codes that worms carry, worms can be classified into three
types. The first one is monomorphic worms that do not change
the sequence of malicious codes and always send the same
content to targets. The second one is polymorphic worms
that mutate malicious codes by using some encryption or
semantics-preserving code manipulation techniques [119]. The
polymorphic worms are the mostly prevalent over the Internet.
The last one is metamorphic worms that perform different
behaviors under different environments.

Comparing with the DDoS flooding attacks, worms are more
difficult to detect. Herein, we discuss some typical detection
methods for worm attacks based on the methods of data ana-
lytics and the data categories they used. Most methods detect
worms by exploiting its special behaviors in target finding and
transferring phases. Therefore, packet-level data and flow-level
data are mainly used, while connection-level data (such as con-
nection count) is analyzed by knowledge-based methods [8]
and the host-level data is rarely analyzed alone to detect such
kind of attacks. Moreover, we give a summary and comparison
of detection methods of worm attacks in the last subsection of
Section V.

A. Statistical Methods Against Worm Attacks

In statistical methods, behavior-based techniques are widely
employed to capture essential characteristics of worms that
reflect the unique behaviors in target finding and transfer-
ring phases. They inspect the headers of packets instead of
checking the payload information. In the following, we dis-
cuss statistical analytic methods for detecting worms using
packet-level data and flow-level data.

1) Use Packet-Level Data: Yang et al. [120] proposed a
method for detecting local worms by analyzing the charac-
teristics of the traffic generated by TCP-based worms. The
TCP-based worms often send SYN packets to scan destina-
tion addresses and ports that are randomly selected. So there
will be many SYN packets with no corresponding received
SYN-ACK packets. The authors respectively counted the num-
ber of SYN packets sent out and the number of SYN-ACK

packets received in the adjacent time interval. CUSUM algo-
rithm is used to monitor the abrupt changes of the balanced
relationship between SYN and SYN-ACK packets. By adjust-
ing CUSUM algorithm with different collection methods, the
proposed method can be applied to detect both high-speed
and low-speed scanning. But their method cannot support all
additional requirements.

Guo et al. [121] proposed a behavior-based detection
method for Instant Messaging worms. They first defined three
characteristic functions of Instant Messaging worms: the num-
ber of different users (distinct IP addresses) that one user
communicates with using the same content, the number of
users (distinct IP addresses) that one user communicates with
in a certain period, and the number of packets with same size
that one user sends out. Mahalanobis distance was employed to
calculate the distance between the characteristic distributions
of the normal behavior profile established in training phrase
and newly observed traffic. Instead of setting a static threshold
to measure the distance, the authors used CUSUM algorithm
to monitor the distance changes to detect Instant Messaging
worms during detection stage. The method cannot satisfy all
additional requirements.

Zou et al. [122] presented a worm detection method by
using the notion of “detecting monitored traffic trend, not
burst” [123]. The “trend detection” method based on the basic
characteristic of worms that a worm propagates exponentially
with a constant and positive exponential rate in its early
stage. They designed an Internet worm monitoring system.
In the system, monitors record the number of scanning pack-
ets (such as TCP SYN) and the amount of different source
addresses to calculate the average scan rate and scan dis-
tribution in a unit time. These two features were analyzed
by Kalman filter to estimate whether there exist some ille-
gitimate scan activities caused by a worm in the monitored
traffic. In addition, the authors presented a formula to predict
a worm’s population size to show how many computers over
the Internet are really infected based on monitored data. The
method can support PI, but cannot achieve the goals of SD,
DT and DFC.
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2) Use Flow-Level Data: Yu et al. [124] introduced a
new worm class, called Camouflaging Worm (C-Worm, in
short). The C-Worm intelligently manipulates the volume of
its scanned traffic in order to avoid generating any noticeable
trends that are tracked by existing worm detection systems.
The intelligent manipulation of C-Worm means that there is no
significant difference between its traffic and non-worm traffic.
However, the recurring manipulative nature of the C-Worm can
be used as a basic characteristic to discriminate C-Worm since
it is found that its distinction is clear in frequency domain.
In the frequency domain, the Power Spectral Density (PSD)
function shows a comparatively even distribution across a wide
spectrum range for non-worm scan traffic, while the PSD of
C-Worm scan traffic show spikes or noticeably high concentra-
tions at a certain range of spectrum. The function of Spectral
Flatness Measure (SFM) is applied to measure the degree of
flatness of PSD, a bigger SFM value implies flatter PSD dis-
tribution and vice versa. Based on the above knowledge, they
aggregated packets into flows with the same port number. For
each flow, the distribution of PSD of the number of unique
destination IP addresses and its corresponding SFM are calcu-
lated. If the SFM value is smaller than a predefined threshold,
a C-Worm propagation alert is generated. This method satis-
fies the requirements of SD and PI, but cannot achieve the
goals of DT and DFC.

Comparing with normal TCP-based traffic, the traffic gen-
erated by TCP-based scanning worms has a determinate rate
prescribed by worm’s self-propagation codes. This leads to dif-
ferent characteristics in frequency domain that can be used to
distinguish worm traffic from normal traffic. Kim et al. [125]
employed autocorrelation and Power Spectral Density (PSD)
estimations to extract the frequency characteristic of SYN
packet arrival time from a flow defined as SYN arrivals
with the same source and destination address pair. The esti-
mation methods showed that the frequency characteristic of
arrival time of SYN packets from legitimate hosts spreads
out all over the frequency band, whereas the packets from
a worm infected host does not. Their method has low imple-
mentation complexity and the parameters of the method are
independent from the network size and time-of-day. Thus, the
method can support SD, but cannot achieve the goals of DT,
PI and DFC.

Because the hit-list makes worm scan more targeted, the
infection speed is much higher than the initial spreading phase.
Based on this intrinsic property of hit-list scanning worms,
Collins and Reiter [126] used Netflow traffic to detect them.
They built protocol graphs that each of them is a represen-
tation of a traffic log for a single protocol (e.g., HTTP, FTP,
SMTP and Oracle). In the graph, the vertices represent the
IP addresses used by clients or servers for a particular pro-
tocol, and the edges represent communications between those
addresses. Normally, the number of vertices in the graph is sta-
ble over time and also the pattern of communications has the
same property. Under the attack of hit-list scanning worms,
these regularities will be disturbed with a large number of
vertices in the graph (the scanned hosts) and enlarged com-
munications. Their method can support PI, but cannot satisfy
the requirements of SD, DT and DFC.

Wagner and Plattner [127] developed a Netflow-based
entropy analysis that highlights outbreaks of fast worms.
During worm scanning, the flow count with the same source
IP address (the scanning host) will drastically increase. This
changing characteristic leads to the decrease of the entropy
in the distribution of the source IP addresses. At the same
time, the flow count with different destination IP addresses
will also increase since the scanning host attempts to con-
tact others. This changing characteristic leads to the increase
of the entropy in the distribution of destination IP addresses.
By observing variations of the entropy values, the source
of worms (the scanning host) will be detected efficiently.
But their method cannot satisfy all additional requirements.
Based on the same principle, Stoecklin et al. [128] also mea-
sured the variation of these two types of flow counts to
detect attacks. Unlike Wagner’s work, Gates et al. [129] used
histogram-based analysis instead of entropy-based analysis.

Bin et al. [130] introduced a protocol independent flow
analysis method based on NetFlow. They used the number of
transmitting bytes (sent/received), outgoing flow records and
bidirectional flow records to build a feature vector for each
flow. Variance similarity or Euclidean distance is calculated
between monitored flows and normal profile that is trained
as the average of normal traffic records. If the value of sim-
ilarity or distance is greater than a predefined threshold, the
flow is considered as an attack flow. This method is capable
of detecting worms, Trojan horses, malicious network attacks,
and unexpected network applications. Their method can sup-
port PI, but cannot satisfy the requirements of SD, DT and
DFC.

Muraleedharan and Parmar [131] presented a behavior-
based detection for TCP-based fast and slow scanning. They
generated two profiles namely short-term profile and long-term
profile of TCP scanning. The short-term profile is a time-based
profile for fast scanning, which works with flow duration, flow
size, average packet size in each flow, etc. Differently, the
long-term profile is independent of time and is used to detect
slow scanning. It takes source address and port, destination
address and port, and packet size as parameters and applies
entropy to build the profile. Both fast and slow scanning can be
detected by measuring the distance between currently collected
traffic and the two profiles. However, their method cannot
support all additional requirements.

B. Machine Learning Against Worm Attacks

The main role of machine learning in worm detection is
to discriminate worm traffic from legitimate traffic. It learns
the distinct characteristics between worm traffic and legitimate
traffic and then builds a judge criterion. According to the crite-
rion, the current collected network traffic is analyzed in order
to determine whether the traffic is generated by a worm. In the
following, we discuss machine learning for detecting worms
using packet-level data, flow-level data and host-level data.

1) Use Packet-Level Data: Farag et al. [132] designed a
model that consists of four modules to identify worm traf-
fic from normal traffic and predict infection percentage in
a network. The first module is Traffic Statistical Analyzer
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Module that collects traffic and then calculates traffic features
in terms of packet rate, the number of packets generated by
each source/destination port in a unit time period, and the
number of packets per protocol in a unit time period. The sec-
ond module is Port Matching Module that records the number
of packets per port that matches worm infection behaviors.
The third module is ANN Module that takes the above traffic
features as input and identifies the worm traffic from normal
traffic. The last module is Classification/Prediction Separated
Model that employs two ANNs, one is used to generate worm
behavior class and normal behavior class, the other is used
to obtain the percentage of infection in the network. But the
method cannot satisfy all additional requirements.

Sun and Chen [133] proposed a clustering and rough set
based worm detection method to distill and block worm traf-
fic in an early stage. They extracted many header features to
construct feature vector for each packet, such as packet size,
source and destination addresses, TTL value, header length,
etc. An improved clustering algorithm was used to cluster
packets. After that, similar clusters, measured by a matching
value that represents the number of equivalent characteristic
values between two clusters, were merged to generate a super
cluster. This super cluster is a suspicious cluster due to the sim-
ilarity among the worm traffic. The authors also measured the
growth rate of the super cluster to confirm its suspiciousness.
If it exceeds a pre-defined threshold, the super cluster is highly
possible a result of worm attacks. This step eliminates the false
alarm caused by flash crowds. Blocking rules were established
by employing a rough set theory to calculate boundary approx-
imation and lower approximation of super cluster. Thus, their
method can satisfy the requirements of SD, PI and DFC, but
cannot support DT.

2) Use Flow-Level Data: Comar et al. [134] designed a
novel integrated detection method that leverages the accuracy
of supervised classification in detecting known attacks and
holds the adaptability of unsupervised learning for detecting
new attacks. First, they extracted 108 flow-level and packet-
level features in each flow, such as flow duration, flow direc-
tion, flow size, statistical values of packet size, etc. Then, they
used an effective tree-based feature transformation approach
to mitigate data imperfection issues and construct informa-
tive, non-linear features for accurate detection. Meanwhile,
an intrusion detection system module performs Deep Packet
Inspection (DPI) and tags each flow whether it belongs to some
threat. Otherwise, the flow is labeled as “good/unknown”. By
combining the results of these two processes, a macro-level
binary classifier and many micro-level classifiers are built
to detect malicious flows. Their method can not only detect
worms but also some malwares. Thus, their method can sup-
port PI, but cannot satisfy the requirements of SD, DT and
DFC.

Email worms remain a serious security threat over the
Internet. It causes network congestion and delivers many kinds
of viruses. The propagation strategy of email worms relies
on social engineering, spreading via email among social con-
tacts. Due to its specific propagation strategy, traditional worm
detection methods are incapable of detecting this class of
Internet worms. But by analyzing the traffic that email worms

generate, researchers found that it can lead some anoma-
lies in DNS traffic [135], [136]. Based on this knowledge,
Chatzis and Popescu-Zeletin [135] proposed a method that
can detect email worms in a local name server at early stage.
They aggregated DNS query packets with source IP addresses.
Normal DNS query flows share many same canonical behav-
iors, while abnormal DNS query flows that email worms
generate are also similar to each other. Thus, Hierarchical clus-
tering and similarity search over time series based on flow
sizes were used to find the classes of normal and abnormal
traffic respectively. The method can only support SD.

Email worm generates a large number of traffic that does
not rely on DNS to translate names into numeric IP addresses.
Based on the similar principle, Abdulla et al. [137] captured
flow-level data using Netflow standard within a certain period
of time and classified the DNS flows into four types: DNS
request data, DNS response data, DNS normal data that the
DNS flows sent by using fully qualified domain names, and
DNS anomalies that the DNS flows sent by using IP addresses
rather than fully qualified domain names. The flow counts
of the above types of flows were considered as inputs of
K-Nearest Neighbors and Naive Bayes to judge whether the
traffic in this period of time is abnormal. But their method
cannot support all additional requirements.

3) Use Host-Level Data: Stopel et al. [138] presented a
novel approach based on Artificial Neural Network (ANN)
for analyzing computer behaviors to detect worms. They col-
lected many features from equipment operation logs (e.g.,
about writable objects, cursor changes, windows, and key-
board, etc.), system operation logs (e.g., about memory,
network interface, physical disk, processes, processor, etc.)
and network behaviors (e.g., the statistic information of TCP,
UDP and ICMP). These features are merged to generate a
vector of 323 features. Fisher’s score ranking is preferable
applied to select important behavior features that can be
used to detect the presence of worms. Although their method
exhibits a sound performance in detecting new behaviors
of known worms, the process of measuring features con-
sumes significant amount of computing power. The method
can support PI, but cannot satisfy the requirements of SD,
DT and DFC.

Corporations usually deployed many defensive mechanisms
to protect themselves from worm attacks while personal com-
puter (PC) users have insufficient protection [139]. Major
obstacles for detector deployment are the high false posi-
tive alarms and the operation overload. Early work such as
BINDER [139], based on the intuition that network connec-
tions initiated by worms are rarely triggered by user inputs
(e.g., keyboard and mouse click events), so it uses time differ-
ence between network connections and user triggered events
as a detection feature. BINDER’s detection method is inca-
pable of detecting unknown worms and can be evaded by
attackers with fake user events or infected normal programs.
Seo et al. [140] designed an improved detection method called
PC-WDS based on the extend ideas proposed in BINDER. It
applies sophisticated features to improve detection accuracy
while reducing false alarms. PC-WDS conducts the follow-
ing analysis: (i) user interaction analysis: analyzing the time
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difference between equipment operation logs and network con-
nections to estimate the likelihood that a user’s interaction that
really triggers network connections, (ii) destination address
analysis: analyzing the change rate of destination addresses
to predict whether the system is undertaking the worm scan-
ning, (iii) network connection analysis: analyzing the number
of failed network connections to calculate the likelihood of
machine-triggered activity for every event of failed network
connection, (iv) port creation analysis: analyzing system oper-
ation logs to calculate the likelihood that port creation has been
triggered by user events. A normal behavior profile is built
based on the likelihood of machine-triggered failed network
connections, port creations and new destination addresses.
Finally, a one-class SVM algorithm is used to detect outliers
as the Internet worm behaviors by using the normal profile.
Experimental results show that PC-WDS that utilizes the basic
characteristic of worms has the ability of detecting unknown
worms with high accuracy. Thus, PC-WDS can support PI, but
cannot satisfy the requirements of SD, DT and DFC.

C. Knowledge-Based Methods Against Worm Attacks

In knowledge-based methods, some techniques are widely
employed to detect worms. One is signature-based techniques.
There are three types of signatures: content-based, semantic-
based and vulnerability-based. Content-based signatures are
established based on strings or substrings in byte sequences.
Semantic-based signatures are generated by using the structure
of the executable code or the analysis information of worms.
Vulnerability-based signatures are generated by capturing the
characteristics of the vulnerability the worm exploits. Another
technique is expert system that matches network activities with
prebuilt attack rules of worms. In the following, we discuss
knowledge-based methods for detecting worms using packet-
level data, flow-level data and connection-level data.

1) Use Packet-Level Data: Many worms use a pseudo
random number generator to generate random addresses as
infection targets. This behavior without undertaking a DNS
query is different from legitimate publicly available services
and then is considered as a sign of propagation of worms.
Ahmad el al. [141] presented a detection system that keeps
tracking outgoing SYN and UDP packets of monitored traffic.
They correlated SYN and UDP packets with a DNS resolution
cache to determine the absence of DNS lookup. If the number
of this type of packets exceeds a threshold, the propagation of
worms is detected. Then a containment solution starts to block
traffic. Their method can only support SD. Similar approach
is proposed in [142].

When spreading, worms always exploit the same set of
vulnerabilities and try to infect others as soon as they have
infected the current host. Chen et al. [143] proposed a real-
time detection called WormTerminator. They set a virtual
machine that clones the host and runs in parallel to the host.
Any outgoing traffic from the host is firstly delivered to the vir-
tual machine. Therefore, if a worm has successfully infected
the current host, the virtual machine must be subsequently
infected after receiving the traffic that the worm generated.
Then the virtual machine will exhibit malicious behaviors and

start to infect other hosts. Two timing correlation parameters
are used: (i) Ttime , the maximum time interval between the
time when the virtual machine receives traffic and the time
when the virtual machine starts to send out traffic, (ii) Tsize ,
the time that is consumed to transfer all the traffic. Fast spread-
ing worms strive to propagate to and infect as many other hosts
as possible in the shortest possible time and the size of them
is usually small. So, if the virtual machine receives some con-
tinuous traffic whose transmission time is less than Tsize , and
starts to send similar traffic to other hosts within time Ttime ,
the delivered traffic is considered as worm traffic. However,
their method cannot satisfy all additional requirements.

Xiao et al. [144] proposed a detection method based on
the traffic information of each single process instead of all
the processes. For one process whose traffic is TCP or UDP
protocol based, they considered it as suspicious in case that
the number and change rate of source ports exceed a thresh-
old. For one process based on ICMP protocol, if it has sent
out too many ICMP packets and these packets have different
destination addresses, this process is considered as suspi-
cious. Then they used the traffic similarity among suspicious
processes to check worm traffic. But the method cannot satisfy
all additional requirements.

Tang and Chen [145] analyzed the characteristics of poly-
morphic worms in detail and then introduced a new Position
Aware Distribution Signature (PADS)-based detection method
to resist them. They first partitioned network traffic into
clusters using Normalized Cuts algorithm. After partitioning,
Expectation-Maximization and Gibbs Sampling are used to
compute PADSs. Instead of using single PADS, the multi-
segment position-aware distribution signature that contains a
set of PADSs is utilized to match incoming byte sequence to
identify potential worms. However, their method cannot satisfy
all additional requirements.

2) Use Flow-Level Data: The worms that utilize buffer
overflow vulnerabilities often send longer length of certain
protocol fields than those in normal packets to overflow the
buffer. Wang et al. [146] proposed the first network-based
vulnerability-signature method that generates length-based sig-
natures for detecting buffer overflow worms. They first classi-
fied network traffic into different protocol flows based on port
numbers or other protocol identifiers. Then, for each protocol,
they filtered out known worms and separated the traffic into
a suspicious traffic pool and a normal traffic pool. Both the
pools are analyzed by a protocol parser to obtain each protocol
message of a set of packet header fields in flows. Each field is
expressed with a type and a length. The field length informa-
tion of both the pools is then considered as input to generate
signatures. The length-based signatures are effectively used to
detect buffer overflow worms, and are very hard for attackers
to evade. Their method can support PI, but cannot satisfy the
requirements of SD, DT and DFC.

Wang et al. [147] designed a payload-based system for
polymorphic worm detection and signature extraction. As a
front-end processing stage, a multi-dimensional traffic cluster-
ing and classification scheme is used for flow classification
and separating clusters into anomaly/attack. Then, a general-
ized suffix tree is built based on the payload of all packets in
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flows in suspicious clusters. After building the tree, all nodes
are traversed and the prefix of each selected node is taken as
a putative worm signature. Their method can support PI, but
cannot satisfy the requirements of SD, DT and DFC.

3) Use Connection-Level Data: Worms send out large
numbers of scanning packets to find victims. During blind
scanning, the scan includes unused addresses and closed ports,
causing the failure of connection attempts. Keeping track of
the outbound connection attempts is a traditional way to detect
worms in the scanning phase. Rasheed et al. [148] recorded
the number of first failed connection by counting ICMP error
packets or TCP RST packets returned from external destina-
tion addresses in each connection. An alarm will be raised
when the number of first failed connections is higher than an
estimated threshold. The detection method is flexible because
it calculates the alarm threshold at different time. The method
can achieve the goals of SD and DT, but cannot support PI
and DFC. Moreover, based on the high failure probability of
First Contact Connections (FCCs) of worms, some detection
methods were proposed [149]–[152].

After analyzing real worms and botnet traffic with Snort,
Braun et al. [153] concluded that the majority of the signa-
tures of such attacks can be found by checking the first few
kilobytes of payload during TCP connections. They employed
two time-out Bloom filters that are composed of timestamps
instead of bits to respectively store the start and end time of a
connection. Meanwhile, one sketch was employed to store the
number of payload bytes in a connection. Then they used a
packet sampling algorithm to collect the first N bytes of pay-
load of a connection to find whether there are existing attack
signatures. However, their method cannot satisfy all additional
requirements.

D. Discussion

With the same format as in Table V, we summarize and
compare detection methods of worm attacks in Table IX.
From the table, we find that IP address, port and the
volume of traffic are widely used to detect worms due to
the basic characteristics of worm scanning [120]–[122],
[124]–[127], [130], [131], [141], [143], [144], [148]. Some
works used the features such as packet rate, packet arrival time,
packet size, payload, etc., to detect worms in their transferring
phase [132]–[135], [137], [138], [140], [145]–[147], [153].
Host-level data are used in conjunction with packet-level
and flow-level data because worms are malicious programs
that directly execute at host-side [138], [140]. Each kind of
worms has different reflecting characteristics. Thus, detection
methods for worms are also quite different. Normally, we
should make full use of the specific behaviors of worms in
both scanning and transferring phases to detect them.

Besides, most of the worm detection methods do not con-
sider the problem of flash crowds. A worm can easily hide
its malicious activities under the flash crowds. Also, dynamic
thresholds are not widely employed to measure the changes of
network traffic, which may lead to low detection performance
due to the variability of worms.

VI. OPEN ISSUES AND FUTURE RESEARCH DIRECTIONS

A. Open Issues

According to the above literature review and comparisons,
we figure out a number of open issues with regard to the
detection of DDoS flooding and worm attacks, security data
collection and data analytics.

First, at present, the configuration of reasonable relation-
ships among data types for generating a normal profile is
not well solved. Entropy and probability distributions are
widely used in the calculation of deviation/information dis-
tance between the normal profile and a real-time traffic pro-
file. But during daily network traffic transmission, inevitable
network congestion or other abrupt events may change the
relationships among data types that were set up in advance and
saved in the normal profile. The normal profile that represents
fragile relationships among data types could cause a high false
alarm rate. For example, some methods detect SYN flooding
attacks by monitoring the changes in the balanced relationship
between the numbers of SYN packets and SYN-ACK packets.
However, in actual network transmission, the number of SYN
packets is much higher than that of SYN-ACK packets due to
network congestion. It is hard to accurately decide quantita-
tive deviation as an alert threshold for SYN flooding attacks.
In another instance, some detection methods for SIP flooding
attacks build a normal profile based on the probability distri-
butions of the number of SIP INVITE, SIP 200 OK, SIP ACK
and SIP BYE packets. But the detection methods will become
ineffective if the four packet counts are simultaneously and
proportionally increased. Thus, setting up a high-quality nor-
mal profile that can effectively detect the abnormal still need
further and deep investigation.

Second, energy and cost efficiency are not considered in the
most of current detection methods, which impacts practical
deployment of the proposed methods. Especially when using
machine learning technologies to detect attacks. Massive fea-
tures of network traffic are needed in order to achieve high
detection accuracy, as shown in Tables V–IX. But extracting
massive features for analysis could consume time and many
resources. Energy efficient solutions are highly expected in
practice. But only a few existing studies take this factor into
consideration.

Third, context-aware and flexible detection methods are sel-
dom studied at present. There are two main issues. First, most
threshold-based detection methods set a static threshold. Since
network traffic fluctuates over time, a static threshold lacks
flexibility and is unable to be applied into different networking
scenarios. How to dynamically set a threshold that is adaptive
to networking contexts at real time should be urgently stud-
ied. Second, how to effectively discriminate attack traffic from
flash crowds is still an open issue. Most of the detection meth-
ods do not take the problem of flash crowds into account. Flash
crowds are unexpected, but inevitable.

Forth, the literature still lacks a comprehensive and holistic
detection method that can fully make use of all four cate-
gories of security data to measure the Internet security. There
are few studies about combining host-level data, connection-
level data with packet-level data and flow-level data to detect
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TABLE IX
SUMMARY AND COMPARISON OF DETECTION METHODS OF WORM ATTACKS

DDoS flooding and worm attacks. For example, an attacker
can launch application layer DDoS flooding attacks by using
legitimate connection. In this condition, tracking connection
status and drilling down packet-level data or flow-level data
are necessary. It is also possible to detect worms at the

propagation stage. Moreover, quite a number of detection
methods do not consider host-level data that provides com-
prehensive information of system events. Some work applies
host-level data (such as application operation logs, equip-
ment operation logs, host behaviors, etc.) to detect network
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intrusions on hosts [154]–[159] and concerns host data privacy
protection during data collection and processing [160]. A com-
prehensive detection method by applying all four categories of
security data still lacks, but highly expected in the literature
for detecting all or most security threats for the purpose of
network security measurement.

Last but not the least, a generic and pervasive solution
for detecting various attacks and providing a thorough view
on the Internet security at real time is still missing but
highly expected in practice. Such a solution is of significantly
important to network security.

B. Future Research Directions

All above open issues motivate future research. We suggest
a number of interesting future research directions as outlined
below.

First, adaptive security data collection methods should be
researched for achieving efficient and comprehensive data col-
lection. Current detection methods choose data category in
advance and then collect data constantly in any cases. As we
have discussed in Section II, collection methods of packet-
level data are not suitable in high-speed network. Likewise,
collection methods of flow-level data convey less information
about network traffic than packet-level data. Different network
contexts request different traffic collection methods. Moreover,
as we have presented in Sections IV and V, each kind of
attacks exhibits its own characteristics and can be detected
in different circumstances by selecting appropriate data cate-
gories and data items. In order to counter any abrupt changes
in network traffic, data collection methods that can adaptively
collect appropriate data are urgently needed.

Second, a generic and pervasive Internet security measure-
ment solution should be studied by applying all four typical
categories of security data. Each security data category reveals
different information about network traffic. How to efficiently
and effectively make use of these data categories to detect all
potential attacks in different circumstances is worth explor-
ing. We should make use of each data category in an integrated
way to figure out the Internet security in general. For example,
it has potential to work out advanced detection methods for
detecting AL-DDoS flooding attacks by using connection-level
data, packet-level and flow-level data, for detecting DRDoS
flooding attacks by combining flow-level data with packet-
level data, and for designing worm detection methods by using
all four data categories. In addition, how to economically col-
lect sufficient data to detect synthetic attacks (different types
of attacks happening at the same time) is an interesting and
significant research topic.

Third, the Internet security measurement with efficiency
and traceability is a very interesting research topic. It is
significant to explore new theories and methods or apply
some existing theories for addressing this issue. For exam-
ple, Granular Computing as a growing and powerful theory
for complex problem solving, large-scale data mining and
fuzzy information processing can be applied to detect and
trace attacks. Yao et al. [161] classified granular comput-
ing research into three groups: philosophical and fundamental

views of Granular Computing, individual Granular Computing
techniques, and Granular Computing applications. It is antic-
ipated that Granular Computing can lead to new compu-
tational paradigms. Throughout the developments in these
years, Granular Computing has shown many advantages when
dealing with big data, such as attribute reduction [162], multi-
source data aggregation [163], and feature selection [164]. We
can apply the same theory into network security data collection
and analytics. In terms of network security data, packets as the
basic granules can be constructed into flows with flow keys
and flows can be further constructed into connection data with
addresses and ports. Each connection data drills down into
flows or packets. Based on these relationships, selecting appro-
priate original information granularity and optimal granular
description of network security data in different network sce-
narios can not only reduce the size of data used for analytics,
but also has the ability of dealing with elaborate attacks.

Forth, trustworthy security data fusion is an essential and
significant research topic for the purpose of measuring the
Internet security as a whole. Efficient and effective preprocess-
ing of network security data is the precondition for detecting
attacks. Incomplete, uncertain, imprecise or vague information
is the main reason of wrong or poor-quality detection. How to
efficiently process these data in a trustworthy (at least depend-
able and reliable) way is still an open research issue. In the
future, it is beneficial to pay more attention to data fusion and
composition methods to deal with network security data, such
as the sketch technique applied in [73] and [74]. Data compo-
sition represents a process of data preprocessing and aims to
extract most valuable and useful data with high trustworthi-
ness. It is an essential step for intrusion detection and security
level calculation, considering the big data feature of network
security data over the Internet.

VII. CONCLUSION

Although there are numerous surveys about detection meth-
ods for network attacks, there is still an acute lack of a
perspective from the viewpoint of the categories of secu-
rity data. In this paper, we first classified security data into
four categories and presented a detailed description of each
of them. For each category, we discussed its types that are
commonly used to detect network attacks. We also discussed
analytic methods of security data and proposed four additional
requirements for evaluating their performance in order to sup-
port detection scalability and flexibility. Then, we thoroughly
surveyed current detection methods for DDoS flooding and
worm attacks from the perspective of security data and data
analytic methods. We elaborated in detail what categories of
data are used and which analytic method is applied. Each
attack has its own specific characteristics. When designing
a detection method, we should thoroughly understand attack
characteristics and select appropriate data categories and data
analytic methods to meet the needs. Some open issues and
future research directions show that there is still a long way
to go, especially from the view of the Internet security mea-
surement. For achieving this goal, we should figure out all
potential threats by processing all categories of security data.
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Working out effective data composition or fusion methods is
essential for realizing efficient and economic security data ana-
lytics. Forming more effective analytic methods can emerge as
a promising direction worth following.
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