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A Survey on Quantum Channel Capacities

Laszlo Gyongyosi

Abstract—Quantum information processing exploits the quan-
tum nature of information. It offers fundamentally new solutions
in the field of computer science and extends the possibilities
to a level that cannot be imagined in classical communica-
tion systems. For quantum communication channels, many new
capacity definitions were developed in comparison to classical
counterparts. A quantum channel can be used to realize classi-
cal information transmission or to deliver quantum information,
such as quantum entanglement. Here we review the properties of
the quantum communication channel, the various capacity mea-
sures and the fundamental differences between the classical and
quantum channels.

Index Terms—Quantum communication, quantum channels,
quantum information, quantum entanglement, quantum Shannon
theory.

I. INTRODUCTION

CCORDING to Moore’s Law [322], the physical lim-

itations of classical semiconductor-based technologies
could be reached within the next few years. We will then
step into the age of quantum information. When first quantum
computers become available on the shelf, today’s encrypted
information will not remain secure. Classical computational
complexity will no longer guard this information. Quantum
communication systems exploit the quantum nature of infor-
mation offering new possibilities and limitations for engineers
when designing protocols. Quantum communication systems
face two major challenges.

First, available point-to-point communication link should be
connected on one hand to cover large distances an on the
other hand to reach huge number of users in the form of
a network. Thus, the quantum Internet [264], [300] requires
quantum repeaters and quantum switches/routers. Because of
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the so called no-cloning theorem [535], which is the sim-
ple consequence of the postulates of the quantum mechanics,
the construction of these network entities proves to be very
hard [507].

The other challenge — this paper focuses on — is the amount
of information which can be transmitted over quantum chan-
nels, i.e., the capacity. The capacity of a communication
channel describes the capability of the channel for deliver-
ing information from the sender to the receiver, in a faithful
and recoverable way. Thanks to Shannon we can calculate the
capacity of classical channels within the frames of classical
information theory! [463]. However, the different capacities
of quantum channels have been discovered just in the ‘90s,
and there are still many open questions about the different
capacity measures.

Many new capacity definitions exist for quantum channels
in comparison to a classical communication channel. In the
case of a classical channel, we can send only classical infor-
mation while quantum channels extend the possibilities, and
besides the classical information we can deliver entanglement-
assisted classical information, private classical information,
and of course, quantum information [53], [134]. On the other
hand, the elements of classical information theory cannot be
applied in general for quantum information —in other words,
they can be used only in some special cases. There is no
general formula to describe the capacity of every quantum
channel model, but one of the main results of the recent
researches was a simplified picture in which various capacities
of a quantum channel (i.e., the classical, private, quantum) are
all non-additive [242].

In possession of admitted capacity definitions they have to
be calculated for various channel models. Channels behave in
very different ways in free-space or in optical fibers and these
two main categories divides into many subclasses and special
cases [176], [179], [551].

Since capacity shows only the theoretically achievable trans-
mission rate and gives no construction rules how to reach or
near them, therefore quantum channel/error correction coding
has similar importance from practical implementation point of
view as in case of classical information theory [169].

This paper is organized as follows. In Section II, prelimi-
naries are summarized. In Section III, we study the classical
information transmission capability of quantum channels. In
Section IV, we discuss the quantum capacity. Numerical
examples are included in Section V. Section VI focuses on
the practical implementations of quantum channels. Finally,

!Quantum Shannon theory has deep relevance concerning the information
transmission and storage in quantum systems. It can be regarded as a natu-
ral generalization of classical Shannon theory. Classical information theory
represents an orthogonality-restricted case of quantum information theory.
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Section VII concludes the paper. Supplementary material is
included in the Appendix.

II. PRELIMINARIES
A. Applications and Gains of Quantum Communications

Before discussing the modeling, characteristics and capaci-
ties of quantum channels we present their potential to improve
state-of the-art communication and computing systems.

We highlight the fact that from application point of view
the concept of channel can represent any medium possessing
an input to receive information and an output to give back a
modified version of this information. This simplified definition
highlights the fact that not only an optical fiber, a copper cable
or a free-space link can be regarded as channel but a computer
memory, too.

Quantum communication systems are capable of providing
absolute randomness, absolute security, of improving trans-
mission quality as well as of bearing much more information
in comparison to the current classical binary based systems.
Moreover, when the benefits of quantum computing power are
properly employed, the quantum based solutions are capable
of supporting the execution of tasks much faster or beyond
the capability of the current binary based systems [129]. The
appealing gains and the associated application scenarios that
we may expect from quantum communications are as follows.

The general existence of a qubit ¢ in a superposition state
(see the next sub-sections of Section II) of two pure quantum
states |0) and |1) can be represented by

1) = «|0) + B11), 6]

where o and B are complex number. If a qubit ¥ is mea-
sured by |0) and |1) bases, the measurement result is randomly
obtained in the state of |0) or |1) with the corresponding prob-
ability of |a|? or | 8]. This random nature of quantum measure
have been favourably used for providing high quality random
number generator [246], [262], [312]. It is important to note
that along with the measurement randomness, no-cloning the-
orem [535] of qubit says that it is not possible to clone a qubit.
This characteristics allow quantum based solutions to support
absolute security, to which there have been abundant examples
of quantum based solutions [174], [296], [298], [537], [553]
where a popular example of mature applications is quantum
key distribution (QKD) [52], [67].

Quantum entanglement is a unique characteristic of quan-
tum mechanics, which is another valuable foundation for pro-
visioning the absolute secure communication. Let us consider
a two qubit system o represented by

lo) = @00(0)[0) + 2010} [1) + cx10[1)[0) + 11 [1)[1),  (2)

where a0, @01, @10, @11 are complex numbers having |on0|2 +
leo1 |2 + |aio| + |o11 |2 = 1. If the system o is prepared in one
of the four states (see the Appendix), for example

lo) = a00l0)|0) + a11|1)[1), 3)

where |aoo|? + |a11]?> = 1, the measurement result of the two
qubits is in either |00) or |11) state. In this state, the two
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qubits are entangled, meaning that having the measurement
result of either of the two is sufficient to know the measure-
ment result of the other. As a result, if the two entangled
qubits are separated in the distance, for example 144 km ter-
restrial distance [156] or earth-station to satellite 1200 km
distance [545], information can be secretly transmitted over
two locations, where there exists entanglement between the
two locations. The entanglement based transmission can be
employed for transmitting classical bits by using the super-
dense coding protocol [1], [32], [239] or for transmitting qubits
using the quantum teleportation protocol [54], [223].

Classical channels handle classical information, i.e., orthog-
onal (distinguishable) basis states while quantum channels
may deliver superposition states (linear combination of basis
states). Of course, since quantum mechanic is more com-
plete than classical information theory classical information
and classical channels can be regarded as special cases of
quantum information and channels. Keeping in mind the appli-
cation scenarios, there is a major difference between classical
and quantum information. Human beings due to their lim-
ited senses can perceive only classical information; therefore
measurement is needed to perform conversion between the
quantum and classical world.

From the above considerations, quantum channels can be
applied in several different ways for information transmission.
If classical information is encoded to quantum states, the quan-
tum channel delivers this information between its input and
output and finally a measurement device converts the infor-
mation back to the classical world. In many practical settings,
quantum channels are used to transfer classical information
only.

The most discussed practical application of this approach
is QKD. Optical fiber based [240], [252], [279], [497]
ground-ground [549] and ground-space [297] systems have
already been demonstrated. These protocols independently
whether they are first-generation single photon systems or
second-generation multi photon solutions exchange classical
sequences between Alice and Bob over the quantum channel
being encoded in non-orthogonal quantum states. Since the
no-cloning theorem [241], [535] makes no possible to copy
(to eavesdrop) the quantum states without error, symmetric
ciphering keys can be established for both parties. In this case
quantum channel is used to create a new quality instead of
improving the performance of classical communication.

Furthermore, quantum encoding can improve the transmis-
sion rates of certain channels. For example the well-known
bit-flip channel inverts the incoming bit value by probability
p and leaves it unchanged by (1 — p). Classically this type
of channel can not transmit any information at all if p = 0.5
even if we apply redundancy for error correction. However, if
classical bits are encoded into appropriate quantum bits one-
by-one, i.e., no redundancy is used, the information will be
delivered without error. This means that quantum communica-
tion improves the classical information transmission capability
of the bit-flip channel form O to the maximum 1. The dif-
ferent models of classical information transmission over a
quantum channel will be detailed in Section III (particulary
in Sections III-C-III-G).
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The second approach applies quantum channels to deliver
quantum information and this information is used to improve
the performance of classical communication systems. The
detailed discussion of the transmission of quantum information
is the subject of Section IV. These protocols exploit over-
quantum-channel-shared entangled states, i.e., entanglement
assisted communications is considered. In case of quantum
superdense coding [57], [69], [241] we assume that Alice and
Bob have already shared an entangled Bell-pair, such as |Boo)
(see the Appendix), expressed as

L
V2

When Alice wants to communicate with Bob, she encodes
two classical bits into the half pair she possesses and sends
this quantum bit to Bob over the quantum channel. Finally,
Bob leads his own qubit together the received one to a mea-
suring device which decodes the original two classical bits.
Practically 2 classical bits have been transferred at the expense
of 1 quantum bit, i.e., the entanglement assisted quantum
channels can outperform classical ones.

Another practical example of this approach is distributed
medium access control. In this case a classical communica-
tion channel is supported by pre-shared entanglement. It is
well-known that WiFi and other systems can be derived from
the Slotted Aloha protocol [2] widely used as a reference.
Slotted Aloha can deliver [0.5/e, 1/e] packets in average in
each timeslot if the number of nodes is known for every-
one, and optimal access strategy is used by everyone. This
is because of collisions and unused timeslots. Practically the
size of the population can be only estimated which decreases
the efficiency. However, if special entangled |w,) states are
generated as

| Boo) = —=(100) +[11)). “4)

1 < :
wa) = —= y [207). 5
) = = ; 2070 (5)
and used to coordinate the channel access in a distributed way
the timeslot usage will improve to 100% and there is no need
to know the number of users.

Further important application scenarios are related to quan-
tum computers where quantum information has to be delivered
between modules over quantum connections. Similarly quan-
tum memories are practically quantum channels of course with
different characteristics compared to communication channels
which store and read back quantum information.

B. Privacy and Performance Gains of Quantum Channels

Due to the inherent no-cloning theory of quantum mechan-
ics, the random nature of quantum measurement as well as
to the unique entanglement phenomenon of quantum mechan-
ics, secure communications can be guaranteed by quantum
communications. The private classical capacity of a quantum
channel is detailed in Section III-C.

Moreover, quantum communications using quantum chan-
nels is capable of carrying much more information in compar-
ison to the current classical binary based systems. Let us have
a closer look at Eq. (1), where obviously one qubit contains
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superpositioned 2! distinct states or values, which is equivalent
to at least 2 bits. In the case of using two qubits in Eq. (3), 2°
distinct states or values are simultaneously conveyed by two
qubits, meaning at least 22 x 2 bits are carried by 2 qubits.
Generally, n qubits can carry up to 2" states, which corre-
sponds to 2" x n bits. The superposition nature of qubits leads
to the advent of powerful quantum computing, which is in
some cases proved be 100 millions times faster than the clas-
sical computer [129]. Moreover, in theory quantum computer
is capable of providing the computing power that is beyond
the capability of its classical counterpart. Importantly, in order
to realise such supreme computing power, the crucial part is
quantum communications, which has to be used for transmit-
ting qubits within the quantum processor as well as between
distributed quantum processors.

Additionally, quantum receivers [48] relying on quantum
communications principle has proved to outperform classical
homodyne or heterodyne receiver in the context of optical
communications. For the sake of brevity, please allow us to
refer interested readers to [48] and [502].

C. Communication Over a Quantum Channel

Communication through a quantum channel cannot be
described by the results of classical information theory; it
requires the generalization of classical information theory by
quantum perception of the world. In the general model of com-
munication over a quantum channel N, the encoder encodes
the message in some coded form, and the receiver decodes
it, however in this case, the whole communication is realized
through a quantum system.

The information sent through quantum channels is car-
ried by quantum states, hence the encoding is fundamentally
different from any classical encoder scheme. The encoding
here means the preparation of a quantum system, accord-
ing to the probability distribution of the classical message
being encoded. Similarly, the decoding process is also differ-
ent: here it means the measurement of the received quantum
state. The properties of quantum communication channel, and
the fundamental differences between the classical and quan-
tum communication channel cannot be described without the
elements of quantum information theory.

The model of the quantum channel represents the physi-
cally allowed transformations which can occur on the sent
quantum system. The result of the channel transformation
is another quantum system, while the quantum states are
represented by matrices. The physically allowed channel trans-
formations could be very different; nevertheless they are
always Completely Positive Trace Preserving (CPTP) transfor-
mations (trace: the sum of the elements on the main diagonal
of a matrix). The trace preserving property therefore means
that the corresponding density matrices (density matrix: math-
ematical description of a quantum system) at the input and
output of the channel have the same trace.

The input of a quantum channel is a quantum state, which
encodes information into a physical property. The quantum
state is sent through a quantum communication channel, which
in practice can be implemented, e.g., by an optical-fiber
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channel, or by a wireless quantum communication channel.
To extract any information from the quantum state, it has to
be measured at the receiver’s side. The outcome of the mea-
surement of the quantum state (which might be perturbed)
depends on the transformation of the quantum channel, since
it can be either totally probabilistic or deterministic. In con-
trast to classical channels, a quantum channel transforms the
information coded into quantum states, which can be, e.g.,
the spin state of the particle, the ground and excited state of
an atom, or several other physical approaches. The classical
capacity of a quantum channel has relevance if the goal is
transmit classical information in a quantum state, or would like
to send classical information privately via quantum systems
(private classical capacity). The quantum capacity has rele-
vance if one would like to transmit quantum information such
as superposed quantum states or quantum entanglement.

First, we discuss the process of transmission of informa-
tion over a quantum channel. Then, the interaction between
quantum channel output and environment will be described.

1) The Quantum Channel Map: From algebraic point of
view, quantum channels are linear CPTP maps, while from a
geometrical viewpoint, the quantum channel N is an affine
transformation. While, from the algebraic view the transfor-
mations are defined on density matrices, in the geometrical
approach, the qubit transformations are also interpretable via
the Bloch sphere (a geometrical representation of the pure
state space of a qubit system) as Bloch vectors (vectors in
the Bloch sphere representation). Since, density matrices can
be expressed in terms of Bloch vectors, hence the map of a
quantum channel A also can be analyzed in the geometrical
picture.

To preserve the condition for a density matrix p, the noise
on the quantum channel A must be trace-preserving (TP), i.e.,

Tr(p) = Tr(N(p)), (6)

and it must be Completely Positive (CP), i.e., for any identity
map /, the map I ® A maps a semi-positive Hermitian matrix
to a semi-positive Hermitian matrix.

For a unital quantum channel N, the channel map trans-
forms the / identity transformation to the / identity transfor-
mation, while this condition does not hold for a non-unital
channel. To express it, for a unital quantum channel, we have

NI =1, (N
while for a non-unital quantum channel,
N #1 (8)

Focusing on a qubit channel, the image of the quantum
channel’s linear transform is an ellipsoid on the Bloch sphere,
as it is depicted in Fig. 1. For a unital quantum channel, the
center of the geometrical interpretation of the channel ellip-
soid is equal to the center of the Bloch sphere. This means that
a unital quantum channel preserves the average of the system
states. On the other hand, for a non-unital quantum channel,
the center of the channel ellipsoid will differ from the cen-
ter of the Bloch sphere. The main difference between unital
and non-unital channels is that the non-unital channels do not
preserve the average state in the center of the Bloch sphere.
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Fig. 1. Geometrical picture of a noisy qubit quantum channel on the Bloch
sphere [242].

It follows from this that the numerical and algebraic analysis
of non-unital quantum channels is more complicated than in
the case of unital ones. While unital channels shrink the Bloch
sphere in different directions with the center preserved, non-
unital quantum channels shrink both the original Bloch sphere
and move the center from the origin of the Bloch sphere.
This fact makes our analysis more complex, however, in many
cases, the physical systems cannot be described with unital
quantum channel maps. Since the unital channel maps can be
expressed as the convex combination of the basic unitary trans-
formations, the unital channel maps can be represented in the
Bloch sphere as different rotations with shrinking parameters.
On the other hand, for a non-unital quantum map, the map
cannot be decomposed into a convex combination of unitary
rotations [242].

2) Steps of the Communication: The transmission of infor-
mation through classical channels and quantum channels
differs in many ways. If we would like to describe the process
of information transmission through a quantum communica-
tion channel, we have to introduce the three main phases of
quantum communication. In the first phase, the sender, Alice,
has to encode her information to compensate the noise of the
channel NV (i.e., for error correction), according to properties
of the physical channel - this step is called channel coding.
After the sender has encoded the information into the appro-
priate form, it has to be put on the quantum channel, which
transforms it according to its channel map - this second phase
is called the channel evolution. The quantum channel A/ con-
veys the quantum state to the receiver, Bob; however this state
is still a superposed and probably mixed (according to the
noise of the channel) quantum state. To extract the informa-
tion which is encoded in the state, the receiver has to make
a measurement - this decoding process (with the error correc-
tion procedure) is the third phase of the communication over
a quantum channel.

The channel transformation represents the noise of the quan-
tum channel. Physically, the quantum channel is the medium,
which moves the particle from the sender to the receiver. The
noise disturbs the state of the particle, in the case of a half-
spin particle, it causes spin precession. The channel evolution
phase is illustrated in Fig. 2.
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The channel evolution phase

Physical
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Physical
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particle

Noisy quantum channel
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Fig. 2. The channel evolution phase.

Finally, the measurement process responsible for the decod-
ing and the extraction of the encoded information. The
previous phase determines the success probability of the recov-
ery of the original information. If the channel A is completely
noisy, then the receiver will get a maximally mixed quantum
state. The output of the measurement of a maximally mixed
state is completely undeterministic: it tells us nothing about the
original information encoded by the sender. On the other hand,
if the quantum channel A is completely noiseless, then the
information which was encoded by the sender can be recov-
ered with probability 1: the result of the measurement will be
completely deterministic and completely correlated with the
original message. In practice, a quantum channel realizes a
map which is in between these two extreme cases. A general
quantum channel transforms the original pure quantum state
into a mixed quantum state, - but not into a maximally mixed
state - which makes it possible to recover the original message
with a high - or low - probability, depending on the level of
the noise of the quantum channel V.

D. Formal Model

As shown in Fig. 3, the information transmission through
the quantum channel N is defined by the p;, input quantum
state and the initial state of the environment pg = |0)(0|. In the
initial phase, the environment is assumed to be in the pure state
|0). The system state which consist of the input quantum state
pin and the environment pg = |0)(0|, is called the composite
state pipn @ PE-

If the quantum channel V is used for information transmis-
sion, then the state of the composite system changes unitarily,
as follows:

U(pin ® pE)U", 9)

where U is a unitary transformation, and UTU = I. After the
quantum state has been sent over the quantum channel N, the
Pour OULpUL state can be expressed as:

N (o) = pour = Tr| Uloun@pm)U' .

where Trg traces out the environment E from the joint state.
Assuming the environment E in the pure state |0), pp =
|0){0|, the A (pin) noisy evolution of the channel A/ can be
expressed as:

N (pin) = pour = TreUpin®0) (0| U,

(10)

(1)
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Fig. 3. The general model of transmission of information over a noisy
quantum channel.

while the post-state pg of the environment after the transmis-
sion is
pe = TrsUpin®|0) (0 U, (12)

where Trp traces out the output system B. In general, the
i-th input quantum state p; is prepared with probability p;,
which describes the ensemble {p;, p;}. The average of the input

quantum system is
Oin = Zpipi,
i

The average (or the mixture) of the output of the quantum
channel is denoted by

(13)

Gout =N (oin) =Y piN (). (14)
i
E. Quantum Channel Capacity
The  capacity of a  communication  channel

describes the capability of the channel for sending information
from the sender to the receiver, in a faithful and recoverable
way. The perfect ideal communication channel realizes an
identity map. For a quantum communication channel, it
means that the channel can transmit the quantum states per-
fectly. Clearly speaking, the capacity of the quantum channel
measures the closeness to the ideal identity transformation /.

To describe the information transmission capability of the
quantum channel A/, we have to make a distinction between
the various capacities of a quantum channel. The encoded
quantum states can carry classical messages or quantum
messages. In the case of classical messages, the quantum
states encode the output from a classical information source,
while in the latter the source is a quantum information
source.

On one hand for classical communication channel N, only
one type of capacity measure can be defined, on the other hand
for a quantum communication channel N a number of differ-
ent types of quantum channel capacities can be applied, with
different characteristics. There are plenty of open questions
regarding these various capacities. In general, the single-use
capacity of a quantum channel is not equal to the asymptotic
capacity of the quantum channel (As we will see later, it also
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Fig. 4. Communication over a noisy quantum channel.

depends on the type of the quantum channel). The asymp-
totic capacity gives us the amount of information which can
be transmitted in a reliable form using the quantum channel
infinitely many times. The encoding and the decoding func-
tions mathematically can be described by the operators £ and
D, realized on the blocks of quantum states. These super-
operators describe unitary transformations on the input states
together with the environment of the quantum system. The
model of communication through noisy quantum channel A
with encoding, delivery and decoding phases is illustrated in
Fig. 4.

We note, in our paper we will use the terms classical quan-
tity and quantum quantity with relation to the quantum channel
N as follows:

1) classical quantity: it is a measure of the classical trans-
mission capabilities of a quantum channel. (See later:
Holevo information, quantum mutual information, etc.,
in Section III)

2) quantum quantity: it is a measure of the quantum trans-
mission capabilities of a quantum channel (See later:
quantum coherent information,etc., in Section IV)

If we mention classical quantity we will do this with rela-
tion to the quantum channel A, i.e., for example the Holevo
information is also not a typical’ classical quantity since it is
describes a quantum system not a classical one, but with rela-
tion to the quantum channel we can use the classical mark.
The historical background with the description of the most
relevant works can be found in the Related Work part of each
section. For detailed information see [242].

FE. Definitions

Quantum information theory also has relevance to the
discussion of the capacity of quantum channels and to infor-
mation transmission and storage in quantum systems. As we
will see in this section, while the transmission of product states
can be described similar to classical information, on the other
hand, the properties of quantum entanglement cannot be han-
dled by the elements of classical information theory. Of course,
the elements of classical information theory can be viewed as
a subset of the larger and more complex quantum information
theory [552].

First, we summarize the basic definitions and formulas of
quantum information theory. We introduce the reader to the
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description of a noisy quantum channel, purification, isomet-
ric extension, Kraus representation and the von Neumann
entropy. Next, we describe the encoding of quantum states
and the meaning of Holevo information, the quantum mutual
information and quantum conditional entropy.

1) Discussion: Before starting the discussion on various
capacities of quantum channels and the related consequences
we summarize the basic definitions and formulas of quantum
information theory intended to represent the information stored
in quantum states. Those readers who are familiar with density
matrices, entropies etc. may run through this section.

The world of quantum information processing (QIP) is
describable with the help of quantum information theory
(QIT), which is the main subject of this section. We will pro-
vide an overview of the most important differences between
the compressibility of classical bits and quantum bits, and
between the capacities of classical and quantum communica-
tion channels. To represent classical information with quantum
states, we might use pure orthogonal states. In this case there
is no difference between the compressibility of classical and
quantum bits.

Similarly, a quantum channel can be used with pure orthog-
onal states to realize classical information transmission, or
it can be used to transmit non-orthogonal states or even
quantum entanglement. Information transmission also can be
approached using the question, whether the input consists of
unentangled or entangled quantum states. This leads us to say
that for quantum channels many new capacity definitions exist
in comparison to a classical communication channel.

Quantum information theory also has relevance to the
discussion of the capacity of quantum channels and to infor-
mation transmission and storage in quantum systems. While
the transmission of product states can be described similar
to classical information, on the other hand, the properties of
quantum entanglement cannot be handled by the elements of
classical information theory. Of course, the elements of classi-
cal information theory can be viewed as a subset of the larger
and more complex quantum information theory.

Before we would start to our introduction to quantum infor-
mation theory, we have to make a clear distinction between
quantum information theory and quantum information process-
ing. Quantum information theory is rather a generalization
of the elements and functions of classical information the-
ory to describe the properties of quantum systems, storage of
information in quantum systems and the various quantum phe-
nomena of quantum mechanics. While quantum information
theory aims to provide a stable theoretical background, quan-
tum information processing is a more general and rather exper-
imental field: it answers what can be achieved in engineering
with the help of quantum information. Quantum information
processing includes the computing, error-correcting schemes,
quantum communication protocols, field of communication
complexity, etc.

The character of classical information and quantum infor-
mation is significantly different. There are many phenomena in
quantum systems which cannot be described classically, such
as entanglement, which makes it possible to store quantum
information in the correlation of quantum states. Entangled
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quantum states are named to EPR states after Einstein,
Podolsky and Rosen, or Bell states, after J. Bell. Quantum
entanglement was discovered in the 1930s, and it may still
yield many surprises in the future. Currently it is clear
that entanglement has many classically indescribable proper-
ties and many new communication approaches based on it.
Quantum entanglement plays a fundamental role in advanced
quantum communications, such as teleportation, quantum
cryptography etc.

The elements of quantum information theory are based on
the laws of quantum mechanics. The main results of quan-
tum information processing were laid down during the end of
the twentieth century, the most important results being stated
by Feynman, Bennett, DiVincenzo, Devetak, Deutsch, Holevo,
Lloyd, Schumacher, Shor and many more. After the basic
concepts of quantum information processing had been stated,
researchers started to look for efficient quantum error correc-
tion schemes and codes, and started to develop the theoretical
background of fault-tolerant quantum computation. The main
results from this field were presented by Bennett, Schumacher,
Gottesman, Calderbank, Preskill, Knill, and Kerckhoff. On the
other hand, there are still many open questions about quan-
tum computation. The theoretical limits of quantum computers
were discovered by Bennett, Bernstein, Brassard and Vazirani:
quantum computers can provide at best a quadratic reduction
in the complexity of search-based problems, hence if we give
an NP-complete problem to quantum computer, it still cannot
solve it. Recently, the complexity classes of quantum informa-
tion processing have been investigated, and many new classes
and lower bounds have been found.

By the end of the twentieth century, many advanced and
interesting properties of quantum information theory had been
discovered, and many possible applications of these results in
future communication had been developed. One of the most
interesting revealed connections was that between quantum
information theory and the elements of geometry. The space of
quantum states can be modeled as a convex set which contains
points with different probability distributions, and the geomet-
rical distance between these probability distributions can be
measured by the elementary functions of quantum information
theory, such as the von Neumann entropy or the quantum rel-
ative entropy function. The connection between the elements
of quantum information theory and geometry leads us to the
application of advanced computational geometrical algorithms
to quantum space, to reveal the still undiscovered properties of
quantum information processing, such as the open questions
on the capacities of the quantum channels or their additiv-
ity properties. The connection between the Hilbert space of
quantum states and the geometrical distance can help us to
reveal the fantastic properties of quantum bits and quantum
state space.

Several functions have been defined in quantum informa-
tion theory to describe the statistical distances between the
states in the quantum space: one of the most important is
the quantum relative entropy function which plays a key role
in the description of entanglement, too. This function has
many different applications, and maybe this function plays the
most important role in the questions regarding the capacity of
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quantum channels. The possible applications of the quantum
relative entropy function have been studied by Schumacher
and Westmoreland and by Vedral.

Quantum information theory plays fundamental role in the
description of the data transmission through quantum com-
munication channels. At the dawn of this millennium new
problems have arisen, whose solutions are still not known, and
which have opened the door to many new promising results
such as the superactivation of zero-capacity quantum chan-
nels in 2008, and then the superactivation of the zero-error
capacities of the quantum channels in 2009 and 2010. One of
the earliest works on the capacities of quantum communica-
tion channels was published in the early 1970s. Along with
other researchers, Holevo was showed that there are many
differences between the properties of classical and quantum
communication channels, and illustrated this with the bene-
fits of using entangled input states. Later, he also stated that
quantum communication channels can be used to transmit both
classical and quantum information. Next, many new quantum
protocols were developed, such as teleportation or super-
dense coding. After Alexander Holevo published his work,
about thirty years later, he, with Benjamin Schumacher and
Michael Westmoreland presented one of the most important
result in quantum information theory, called the Holevo-
Schumacher-Westmoreland (HSW) theorem [230], [456]. The
HSW-theorem is a generalization of the classical noisy chan-
nel coding theorem from classical information theory to a
noisy quantum channel. The HSW theorem is also called
the product-state classical channel capacity theorem of a
noisy quantum channel. The understanding of the classical
capacity of a quantum channel was completed by 1997 by
Schumacher and Westmoreland, and by 1998 by Holevo, and it
has tremendous relevance in quantum information theory, since
it was the first to give a mathematical proof that a noisy quan-
tum channel can be used to transmit classical information in a
reliable form. The HSW theorem was a very important result
in the history of quantum information theory, on the other
hand it raised a lot of questions regarding the transmission of
classical information over general quantum channels.

The quantum capacity of a quantum channel was firstly for-
mulated by Seth Lloyd in 1996, then by Peter Shor in 2002,
finally it was completed by Igor Devetak in 2003, - the result is
known as the LSD channel capacity [132], [299], [473]. While
the classical capacity of a quantum channel is described by
the maximum of quantum mutual information and the Holevo
information, the quantum capacity of the quantum channels is
described by a completely different correlation measure: called
the quantum coherent information. The concept of quantum
coherent information plays a fundamental role in the compu-
tation of the quantum capacity which measures the asymptotic
quantum capacity of the quantum capacity in general. For the
complete historical background with the references see the
Related Works.

2) Density Matrix and Trace Operator: In this section
we introduce a basic concept of quantum information theory,
called the density matrix.

Before we start to discuss the density matrix, we intro-
duce some terms. An n X n square matrix A is called
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positive-semidefinite if (y|A|y) is a non-negative real number
for every vector |y). If A = AT, i.e., A has Hermitian matrix
and the {A1, A2, ... A,} eigenvalues of A are all non-negative
real numbers then it is positive-semidefinite. This definition
has important role in quantum information theory, since every
density matrix is positive-semidefinite. It means, for any vector
|p) the positive-semidefinite property says that

n n

(elple) =Y pilplvd) Wile) =Y _pillplyl> = 0. (15)
i=1 i=1

In (15) we used, the density matrix is denoted by p, and it

describes the system by the classical probability weighted sum

of possible states

p =D _pilvi) (vil. (16)
1

where |¢;) is the i-th system state occurring with classical
probability p;. As can be seen, this density matrix describes
the system as a probabilistic mixture of the possible known
states the so called pure states. For pure state |¢) the den-
sity matrix is p = [{¥)(¥| and the rank of the matrix is
equal to one. Trivially, classical states, e.g., |0) and |1) are
pure, however, if we know that our system is prepared to
the superposition «/LEOO) + |1)) then this state is pure, too.
Clearly speaking, while superposition is a quantum linear com-
bination of orthonormal basis states weighted by probability
amplitudes, mixed states are classical linear combination of
pure superpositions (quantum states) weighted by classical
probabilities.

The density matrix contains all the possible information that
can be extracted from the quantum system. It is possible that
two quantum systems possess the same density matrices: in
this case, these quantum systems are called indistinguishable,
since it is not possible to construct a measurement setting,
which can distinguish between the two systems.

The density matrix p of a simple pure quantum system
which can be given in the state vector representation [{r) =
«|0) 4+ B|1) can be expressed as the outer product of the ket

and bra vectors, where bra is the transposed complex con-
o

jugate of ket, hence for |y) = 8 Y] = [a*  B*] the
density matrix is
p=1v) (vl = m[a* B*]
|t af| la)?>  ap*
- [a*ﬂ ﬁﬂ*] = [a*ﬁ IﬂIQ}' 4

The density matrix p = Z?:l pil¥i) (¥i| contains the proba-
bilistic mixture of different pure states, which representation
is based on the fact that the mixed states can be decomposed
into weighted sum of pure states [514].

To reveal important properties of the density matrix, we
introduce the concept of the trace operation. The trace of a
density matrix is equal to the sum of its diagonal entries. For
an n x n square matrix A, the 7r trace operator is defined as

n
Tr(A) = ai +an+ - +aw =Y _ ai, (18)
i=1
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where a;; are the elements of the main diagonal. The trace of
the matrix A is also equal to the sum of the eigenvalues of its
matrix. The eigenvalue is the factor by which the eigenvector
changes if it is multiplied by the matrix A, for each eigen-
vectors. The eigenvectors of the square matrix A are those
non-zero vectors, whose direction remain the same to the orig-
inal vector after multiplied by the matrix A. It means, the
eigenvectors remain proportional to the original vector. For
square matrixA, the non-zero vector v is called eigenvector of
A, if there is a scalar A for which

Ay = v, (19)

where A is the eigenvalue of A corresponding to the eigenvec-
tor v.

The trace operation gives us the sum of the eigenvalues of
positive-semidefinite A, for each eigenvectors, hence Tr(A) =
S Ay and Tr(A¥) = Y, AK. Using the eigenvalues, the
spectral decomposition of density matrix p can be expressed as

p =7 nled (il (20)

where |@;) are orthonormal vectors.
The trace is a linear map, hence for square matrices A and B

Tr(A+ B) = Tr(A) + Tr(B), 21)
and

Tr(sA) = sTr(A), (22)

where s is a scalar. Another useful formula, that for m x n
matrix A and n X m matrix B,

Tr(AB) = Tr(BA), (23)

which holds for any matrices A and B for which the product

matrix AB is a square matrix, since

m n

Tr(AB) = Z ZAiiji = Tr(BA).

i=1 j=I

(24)

Finally, we mention that the trace of a matrix A and the trace
of its transpose AT are equal, hence

Tr(A) = Tr(AT). (25)

If we take the conjugate transpose A* of the m x n matrix A,
then we will find that

Tr(A*A) = 0, (26)

which will be denoted by (A, A) and it is called the inner
product. For matrices A and B, the inner product (A, B) =
Tr(B*A), which can be used to define the angle between the
two vectors. The inner product of two vectors will be zero if
and only if the vectors are orthogonal.

As we have seen, the trace operation gives the sum of the
eigenvalues of matrix A, this property can be extended to
the density matrix, hence for each eigenvectors A; of density
matrix p

Tr(p) = ZA,». (27)
i=1
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Now, having introduced the frace operation, we apply it to a
density matrix. If we have an n-qubit system being in the state

p =Y iy pil¥i) (¥il, then

Tr(Zmlww) = > piTr(Y) (i)

i=1 i=1

=> pilily) =1, (28)

i=1
where we exploited the relation for unit-length vectors |v;)

(Wily) = 1. (29)
Thus the trace of any density matrix is equal to one
Tr(p) = 1. (30)

The trace operation can help to distinguish pure and mixed
states since for a given pure state p

Tr<p2> -1, G1)
while for a mixed state o,
Tr(az) <1 (32)
where Tr(p?) = Y022 and Tr(c?) = Y, ?, where w;
are the eigenvalues of density matrix o.
Similarly, for a pure entangled system pgpr
Tr(p%:PR> =1, (33)

while for any mixed subsystem ogpr of the entangled state
(i.e., for a half-pair of the entangled state), we will have

Tr(ong> < 1.
The density matrix also can be used to describe the effect
of a unitary transform on the probability distribution of the
system. The probability that the whole quantum system is in
|;) can be calculated by the trace operation. If we apply
unitary transform U to the state p = > i, pi|¥)(¥il, the
effect can be expressed as follows:

> Pty (il U) = U(prn w)rﬁ = UpU".
i=1 i=1

(35)

(34)

If the applied transformation is not unitary, a more general
operator denoted by G is introduced, and with the help of this
operator the transform can be written as
n n
G(p) =Y AipAl =" Apily) (wiDA],  (36)
i=1

i=1

where Z;’zlAiAlT = I, for every matrices A;. In this sense,
operator G describes the physically admissible or Completely
Positive Trace Preserving (CPTP) operations. The application
of a CPTP operator G on density matrix p will result in a
matrix G(p), which in this case is still a density matrix.

Now we can summarize the two most important properties
of density matrices:

1) The density matrix p is a positive-semidefinite matrix,

see (15).
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2) The trace of any density matrix p is equal to 1, see
(28). The properties of a quantum measurement are as
follows.

3) Quantum Measurement: Now, let us turn to measure-
ments and their relation to density matrices. Assuming a
projective measurement device, defined by measurement oper-
ators - i.e., projectors {P;}. The projector P; is a Hermitian
matrix, for which P; = PjT and P]g = Pj. According to the
3" Postulate of Quantum Mechanics the trace operator can
be used to give the probability of outcome j belonging to the
operator P; in the following way

PijIP;p] = Tr(PijD - Tr(PJTPjp) = Tr(Pip). (37)

After the measurement, the measurement operator P; leaves
the system in a post measurement state

P[> pil i) (il |P; PjpP; PjpP;

= (P [ pil v (Wl [P Tr(PooPy) — Tr(Pyp)
(38)

If we have a pure quantum state |) = «|0) + B|1), where
o = (0]y) and B = (1]¥). Using the trace operator, the
measurement probabilities of |0) and |1) can be expressed as

Pr[j =01y ] = Tr(Pjp) = Tr(10) (O] 1) ()
——
Oly)
= (01 Tr(10) (¥) = (O1¥) (¥ [0)

= 0[Oy ) =a-a* =laf*, (39)
and
Pr[j = 11y] = Tr(Pjp) = Tr| |1) (1]|¥) (V|
S ——
(1)
= (1Y) Tr(| 1) (¥]) = (A|Y) (1)
= (Y)Y =B - B* = IBI*,  (40)

in accordance with our expectations. Let us assume we have
an orthonormal basis M = {|x1){xi|, ..., |x,){x,|} and an
arbitrary (i.e., non-diagonal) density matrix p. The set of
Hermitian operators P; = {|x;)(x;|} satisfies the complete-
ness relation, where P; = |x;){x;| is the projector over |x;),
i.e., quantum measurement operator M; = |x;)(x;| is a valid
measurement operator. The measurement operator M; projects
the input quantum system |[¥) to the pure state |x;) from
the orthonormal basis M = {|x1)(x1], ..., |x;)(xx|}. Now, the
probability that the quantum state |/) is after the measurement
in basis state |x;) can be expressed as

(v miw) = (wipiv)

=D x| |1 (il <Z|xl)xl> = ll*.
j=1 =1
(41)

In the computational basis {|x1),..., |x,)}, the state of the
quantum system after the measurement can be expressed as

p' = pilx) (il (42)
i=1
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and the matrix of the quantum state o’ will be diagonal in the
computational basis {|x;)}, and can be given by

P1 0 vee 0
0 0
p=| P (43)
: : 0
0o 0 O Pn
To illustrate it, let assume we have an initial (not diagonal)
density matrix in the computational basis {|0), 1)}, e.g., [¢) =
«|0) + B|1) with p = |«|? and 1 — p = |B|? as

2 *
p=1¥) (vl =['“' f‘/jz}, (44)

a*B
and we have orthonormal basis M = {|0)(0[, |[1)(1]}. In this
case, the after-measurement state can be expressed as

2
p’=p|0><0|+<1—p>|1><1|=['“' 0 }

0 181?
_lr 0
{0 1—-p|

As it can be seen, the matrix of p’ is a diagonal matrix in
the computational basis {|0), |1)}. Eq. (44) and (45) highlights
the difference between quantum superpositions (probability
amplitude weighted sum) and classical probabilistic mixtures
of quantum states.

Now, let us see the result of the measurement on the input
quantum system p

(45)

1
M(p) =) M;pM] = MopM + MipM.
j=0

(46)

For the measurement operators My = |0)(0] and M| = |1)(1]
the completeness relation holds

1
> MM =10)(0110) (0] + 1) (1]]1) (1]
=0

=|0><0|+|1><1|=[(1) ﬂ=1. (47)

Using input system p = [{)(i|, where |{) = «|0) + B]|1),
the state after the measurement operation is

1
M(p) =)  MjpM;
j=0

=10) (0l p[0) (O] + | 1) (1] p[ 1) (1]

=10) (O[1y) (¥ [10) (O] + [ 1) (1] ) ([ |1) (1]

= 10) (O[y )01y ) (O] + [ 1) (1) (1) (1]

= [{0[¥)1710) (O] + [(1[y)*[ 1) (1]

= 1al*10) (O] + B 1) (1] = pl0) (O] +1—p| 1) (1].

(48)

As we have found, after the measurement operation M(p), the
off-diagonal entries will have zero values, and they have no

relevance. As follows, the initial input system p = [¢) (V]
after operation M becomes

Tl aﬂ*}g/_[lalz 0 }
p‘[ BT T Lo BR)

o (49)
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a) Orthonormal basis decomposition: Let assume we
have orthonormal basis {|b1), |b2), ..., |b,)}, which basis can
be used to rewrite the quantum system [i/) in a unique
decomposition

[¥) = bilb1) + b2|b2) + - -+ bplby) = Zbilbi), (50)
i=1

with complex b;. Since (¥ |) = 1, we can express it in the
form

n

Wiy =D bbilbilb) =Y bi> =1, (51)
i=1

i=1 j=I

where b is the complex conjugate of probability amplitude
b;, thus |b;|? is the probability p; of measuring the quantum

system |¢) in the given basis state |b;), i.e.,
pi = Ibil*. (52)

Using (16), (50) and (51) the density matrix of quantum
system |Y) can be expressed as

p = |b1121b1) (b1 + |b2|?|b2) (ba| + -+ |bul?1by) (bl
n n

= > Ibil?1b) (bil =Y pilbi) (bil .
i=1 i=1

This density matrix is a diagonal matrix with the probabilities
in the diagonal entries

(53)

4 0 0
0 0
p= P2 (54)
0 .0
0O ... 0 Pn

The diagonal property of density matrix (53) in (54) can be
checked, since the elements of the matrix can be expressed as

pij = (bil plbj)

= (bil (Zpi|b,-><b,-|) |b) =Y pu{bilbi)(bilby),  (55)
=1

=1

where Y )L pi=1.

b) The projective and POVM measurement: The pro-
Jective measurement is also known as the von Neumann
measurement is formally can be described by the Hermitian
operator Z, which has the spectral decomposition

Z = Z,\um.
m

where P,, is a projector to the eigenspace of Z with eigenvalue
Am. For the projectors
> pat
m

and they are pairwise orthogonal. The measurement out-
come m corresponds to the eigenvalue X,,, with measurement
probability

(56)

(57)

Pr(m|y)] = (Y| Pmlir). (58)
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When a quantum system is measured in an orthonormal basis
|m), then we make a projective measurement with projector
P, = |m)(m|, thus (56) can be rewritten as

Z = Zum.
m

The P POVM (Positive Operator Valued Measurement)is

intended to select among the non-orthogonal states {|v/;)}"

and defined by a set of POVM operators {M A1 where

i=1"

(59)

Mi=Qlo;, (60)
and since we are not interested in the post-measurement state
the exact knowledge about measurement operator Q; is not
required. For POVM operators M; the completeness relation
holds,

(61)

ZMi =1

For the POVM the probability of a given outcome n for the
state |1) can be expressed as

Prli|y)] = (Y| Mi|r). (62)

The POVM also can be imagined as a ‘black-box’, which out-
puts a number from 1 to m for the given input quantum state
¥, using the set of operators

{Mi, ..., Mo, Mg}, (63)
where {M1, ..., M,,} are responsible to distinguish m dif-
ferent typically non-orthogonal states, i.e., if we observe
i € [1, m] on the display of the measurement device we can
be sure, that the result is correct. However, because unknown
non-orthogonal states can not be distinguished with probabil-
ity 1, we have to introduce an extra measurement operator,
Mp+1, as the price of the distinguishability of the m different
states and if we obtain m+1 as measurement results we can
say nothing about |v). This operator can be expressed as

M1 =1=) M. (64)
i=1

Such M,,+1 can be always constructed if the states in
{Iyn)},, are linearly independent. We note, we will omit list-
ing operator M,, ;1 in further parts of the paper. The POVM
measurement apparatus will be a key ingredient to distin-
guish quantum codewords with zero-error, and to reach the
zero-error capacity of quantum channels.

The POVM can be viewed as the most general formula from
among of any possible measurements in quantum mechan-
ics. Therefore the effect of a projective measurement can be
described by POVM operators, too. Or with other words, the
projective measurements are the special case POVM measure-
ment [241]. The elements of the POVM are not necessarily
orthogonal, and the number of the elements can be larger than
the dimension of the Hilbert space which they are originally
used in.
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G. Geometrical Interpretation of the Density Matrices

While the wavefunction representation is the full physical
description of a quantum system in the space-time, the tensor
product of multiple copies of two dimensional Hilbert spaces
is its discrete version, with discrete finite-dimensional Hilbert
spaces. The geometrical representation also can be extended
to analyze the geometrical structure of the transmission of
information though a quantum channel, and it also provides a
very useful tool to analyze the capacities of different quantum
channel models.

As it has been mentioned, the Bloch sphere is a geomet-
rical conception, constructed to represent two-level quantum
systems in a more expressive way than is possible with alge-
braic tools. The Bloch sphere has unit radius and is defined
in a three-dimensional real vector space. The pure states are
on the surface of the Bloch sphere, while the mixed states are
in the interior of the original sphere. In the Bloch sphere rep-
resentation, the state of a single qubit |¢) = «|0) + B]1) can
be expressed as

i8 o ip 0

[Y) =e <cos§|0) +e‘psm§|1)>, (65)
where § is the global phase factor, which can be ignored from
the computations, hence the state |i) in the terms of the angle
0 and ¢ can be expressed as

0 iv . 0

|¥) = cos=|0) + €'Psin—|1). (66)

2 2
The Bloch sphere is a very useful tool, since it makes possi-
ble to describe various, physically realized one-qubit quantum
systems, such as the photon polarization, spins or the energy
levels of an atom. Moreover, if we would like to compute
the various channel capacities of the quantum channel, the
geometrical expression of the channel capacity also can be
represented by the Bloch sphere. Before we would introduce
the geometrical calculation of the channel capacities, we have
to start from the geometrical interpretation of density matri-
ces. The density matrix p can then be expressed using the
Pauli matrices (a set of three complex matrices which are

Hermitian and unitary) oy = [(1) (1)} or = [? (;l} and

|10 as
Z=10 -1
1
_ + rxox + ryoy + rszz’ (67)
2
where r = (ry, ry,rz) = (sinfcose, sinfsing, cosf) is the

Bloch vector, ||(rx, rz, ry)|| < 1, and o = (ox, oy, 07)!. In
the vector representation, the previously shown formula can
be expressed as

1+ro

p= 5

In conclusion, every state can be expressed as linear com-
binations of the Pauli matrices and according to these Pauli
matrices every state can be interpreted as a point in the
three-dimensional real vector space. If we apply a unitary

(68)
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transformation U to the density matrix p, then it can be

expressed as

14+ UrU'o
3 ,

14+ UroU"

p— p = U/OUJr = (69)

and ¥ = UrU" realizes a unitary transformation on r as a
rotation.

A density matrix p can be expressed in a ‘weighted form’
of density matrices p; and p, as follows:

p=yp1+0—=y)p, (70)

where 0 < y < 1, and p; and p; are pure states, and lie on
a line segment connecting the density matrices in the Bloch
sphere representation. Using probabilistic mixtures of the pure
density matrices, any quantum state which lies between the
two states can be expressed as a convex combination

p=po1+U—=p)p2,0<p =<1 (71)

This remains true for an arbitrary number of quantum states,
hence this result can be expressed for arbitrary number of
density matrices. Mixed quantum states can be represented as
statistical mixtures of pure quantum states. The statistical rep-
resentation of a pure state is unique. On the other hand we note
that the decomposition of a mixed quantum state is not unique.
In the geometrical interpretation a pure state p is on the sur-
face of the Bloch sphere, while the mixed state o is inside. A
maximally mixed quantum state, o = %I , can be found in the
center of the Bloch sphere. The mixed state can be expressed
as probabilistic mixture of pure states {p1, p2} and {p3, pa}.
As it has been stated by von Neumann, the decomposition of
a mixed state is not unique, since it can be expressed as a
mixture of {p1, p2} or equivalently of {p3, p4a}.

One can use a pure state p to recover mixed state o from
it, after the effects of environment (E) are traced out. With the
help of the partial trace operator, Bob, the receiver, can decou-
ple the environment from his mixed state, and the original state
can be recovered by discarding the effects of the environment.
If Bob’s state is a probabilistic mixture 0 =), pil¢:) (¢il, then
a global pure purification state |W) exists, which from Bob’s
state can be expressed as

o = Tre| W) (W], (72)

Note, density matrix o can be recovered from |W) after dis-
carding the environment. The decoupling of the environment
can be achieved with the Trg operator. For any unitary trans-
formation of the environment, the pure state |W) is a unique
state.

We have seen, that the decomposition of mixed quan-
tum states into pure quantum states is not unique, hence
for example, it can be easily verified by the reader, that the
decomposition of a mixed state 0 = %(|0)(0| + [1)(1]) can
be made with pure states {|0), [1)}, and also can be given
with pure states {—=(]0) + 1)), (|0) [1))}. Here, we have
just changed the ﬁ;ms from rectlhnear to diagonal, and we
have used just pure states - and it resulted in the same mixed
quantum state.
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H. Channel System Description

If we are interested in the origin of noise (randomness) in
the quantum channel the model should be refined in the fol-
lowing way: Alice’s register X, the purification state P, channel
input A, channel output B, and the environment state E. The
input system A is described by a quantum system p,, which
occurs on the input with probability px(x). They together form
an ensemble denoted by {px(x), px},cx, Where x is a classical
variable from the register X. In the preparation process, Alice
generates pure states p, according to random variable x, i.e.,
the input density operator can be expressed as p, = |x)(x|,
where the classical states {|x)},cx form an orthonormal basis.
According to the elements of Alice’s register X, the input
system can be characterized by the quantum system

pa =) px@pe =Y px(®)]x) (xl.

xeX xeX

(73)

The system description is illustrated in Fig. 5.

The system state p, with the corresponding probability dis-
tribution px(x) can be identified by a set of measurement
operators M = {|x)(x|},cx. If the density operators p, in pa
are mixed, the probability distribution px(x) and the classi-
cal variable x from the register X cannot be identified by the
measurement operators M = {|x) (x|} ,cx, since the system state
px 1s assumed to be a mixed or in a non-orthonormal state.
Alice’s register X and the quantum system A can be viewed
as a tensor product system as

{px(0), 1x) (xlx ® px} ey (74)

where the classical variable x is correlated with the quantum
system pyx, using orthonormal basis {|x)}x. Alice’s register
X represents a classical variable, the channel input system is
generated corresponding to the register X in the form of a
quantum state, and it is described by the density operator p7.
The input system A with respect to the register X, is described
by the density operator

pxa =Y px®|x) (x|x ® p},

xeX

(75)

where o3 = |¥x) (Y|4 is the density matrix representation of
Alice’s input state |[,) .

1) Purification: The purification gives us a new viewpoint
on the noise of the quantum channel. Assuming Alice’s side
A and Alice’s register X, the spectral decomposition of the
density operator p4 can be expressed as

pa =Y px(0)lx){xla, (76)
X

where px(x) is the probability of variable x in Alice’s register
X. The {px(x), |x)} together is called an ensemble, where |x)
is a quantum state according to classical variable x. Using the
set of orthonormal basis vectors {|x)p},.x of the purification
system P, the purification of (76) can be given in the following
way:

(77)

O pa = Y _V/Px®)1x) plx) 4

From the purified system state |¢)p,, the original system state
pa can be expressed with the partial trace operator (see the
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Detailed model of a quantum communication channel exposing the interaction with the environment. Alice’s register is denoted by X, the input

system is A while P is the purification state. The environment of the channel is denoted by E, the output of the channel is B. The quantum channel has
positive classical capacity if and only if the channel output system B will be correlated with Alice’s register X.

Appendix) Trp(-), which operator traces out the purification
state from the system

pa = Trp(l@) (@] pa)- (78)

From joint system (77) and the purified state (78), one can
introduce a new definition. The extension of p4 can be given as

pa = Trp(wpa), (79)

where wpyq is the joint system of purification state P and
channel input A [522], which represents a noisy state.

2) Isometric Extension: Isometric extension has utmost
importance, because it helps us to understand what happens
between the quantum channel and its environment whenever
a quantum state is transmitted from Alice to Bob. Since the
channel and the environment together form a closed physical
system the isometric extension of the quantum channel N is
the unitary representation of the channel

enabling the ‘one-sender and two-receiver’ view: beside Alice
the sender, both Bob and the environment of the channel
are playing the receivers. In other words, the output of the
noisy quantum channel A/ can be described only after the
environment of the channel is traced out

(80)

o8 = Tre(Ua—gE(Pa)) = N(pa). (81)

3) Kraus Representation: The map of the quantum chan-
nel can also be expressed by means of a special tool called
the Kraus Representation. For a given input system p4 and
quantum channel NV, this representation can be expressed as

N(pa) =Y NipaN}, (82)

where N; are the Kraus operators, and Zl»NiT N; = I. The iso-
metric extension of N by means of the Kraus Representation
can be expressed as

ps=N(pa) =Y NipaN] = Unpe(pa) = Y Ni® i) .
i i

(83)

The action of the quantum channel A on an operator |k){/|,
where {|k)} form an orthonormal basis also can be given in
operator form using the Kraus operator Ny = N'(|k)(l|). By
exploiting the property UU' = Ppg, for the input quantum
system 4

o8 = Up—pe(pa) = UpaU'
Y Ni@livg |oa| YN ® (ilg
i J

=Y " NipaN] ® i) (jl -
ij

(84)
If we trace out the environment, we get the equivalence of the
two representations

o = Tre(Ua—pE(pA)) = ZNiPANzT-

1

(85)

4) The von Neumann Entropy: Quantum information pro-
cessing exploits the quantum nature of information. It offers
fundamentally new solutions in the field of computer sci-
ence and extends the possibilities to a level that cannot be
imagined in classical communication systems. On the other
hand, it requires the generalization of classical information the-
ory through a quantum perception of the world. As Shannon
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entropy plays fundamental role in classical information theory,
the von Neumann entropy does the same for quantum informa-
tion. The von Neumann entropy S(p) of quantum state p can
be viewed as an extension of classical entropy for quantum
systems. It measures the information of the quantum states in
the form of the uncertainty of a quantum state. The classi-
cal Shannon entropy H(X) of a variable X with probability
distribution p(X) can be defined as

HX) = =) plog(p(x)),

xeX

(86)

with 1 < H(X) < log(|X|), where |X| is the cardinality of the
set X.
The von Neumann entropy

S(p) = —Tr(plog(p)) (87)

measures the information contained in the quantum system p.
Furthermore S(p) can be expressed by means of the Shannon
entropy for the eigenvalue distribution

d
S(p) =H®}) =— Zkilog(ki), (88)
i=1

where d is the level of the quantum system and A; are the
eigenvalues of density matrix p.

5) The Holevo Quantity: The Holevo bound determines the
amount of information that can be extracted from a single qubit
state. If Alice sends a quantum state p; with probability p; over
an ideal quantum channel, then at Bob’s receiver a mixed state

pB=pa= Y pipi (89)
i

appears. Bob constructs a measurement {M;} to extract the
information encoded in the quantum states. If he applies the
measurement to pa, the probability distribution of Bob’s clas-
sical symbol B will be Pr[b|ps] = Tr(M;Mpr). As had been
shown by Holevo [228], the bound for the maximal classical
mutual information between Alice and Bob is

I(A:B) < S(pa) — Y piS(pi) = X

l

(90)

where yx is called the Holevo quantity, and (90) known as the
Holevo bound.

In classical information theory and classical communica-
tion systems, the mutual information /(A:B) is bounded only
by the classical entropy of H(A), hence I1(A:B) < H(A). The
mutual information /(A:B) is bounded by the classical entropy
of H(A), hence I(A:B) < H(A). On the other hand, for mixed
states and pure non-orthogonal states the Holevo quantity y
can be greater than the mutual information /(A:B), however,
it is still bounded by H(A), which is the bound for the pure
orthogonal states

I(A:B) = x = H(A). oD

The Holevo bound highlights the important fact that one qubit
can contain at most one classical bit, i.e., cbit of information.
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6) Quantum Conditional Entropy: While the classical con-
ditional entropy function is always takes a non negative value,
the quantum conditional entropy can be negative. The quan-
tum conditional entropy between quantum systems A and B is
given by

S(AIB) = S(paB) — S(p).

If we have two uncorrelated subsystems p4 and pp, then the
information of the quantum system p4 does not contain any
information about pp, or reversely, thus

S(paB) = S(pa) + S(pp), 93)

hence we get S(A|B) = S(pa), and similarly S(B|A) = S(pp)-
The negative property of conditional entropy S(A|B) can be
demonstrated with an entangled state, since in this case, the
joint quantum entropy of the joint state less than the sum of
the von Neumann entropies of its individual components. For
a pure entangled state, S(pap) = 0, while S(p4) = S(pp) =1
since the two qubits are in maximally mixed %1 state, which
is classically totally unimaginable. Thus, in this case

S(A[B) = —=S(pp) =0,

and S(B|A) = —S(pa) = 0 and S(pa) = S(pa).

7) Quantum Mutual Information: The classical mutual
information /(-)measures the information correlation between
random variables A and B. In analogue to classical informa-
tion theory, /(A:B) can be described by the quantum entropies
of individual states and the von Neumann entropy of the joint
state as follows:

I(A:B) = S(pa)+S(pp) — S(pap) = 0,

i.e., the quantum mutual information is always a non nega-
tive function. However, there is a distinction between classical
and quantum systems, since the quantum mutual informa-
tion can take its value above the maximum of the classical
mutual information. This statement can be confirmed, if we
take into account that for an pure entangled quantum system,
the quantum mutual information is

92)

(94)

95)

I(A:B) = S(pa)+S(pp) —S(pap) =1+1-0=2, (96)
and we can rewrite this equation as
1(A:B) = 28(pa) = 2S(pp)- o7)

For some pure joint system pap, the equation (97) can be
satisfied such that S(p4) = S(pp) and S(pap) = 0.

If we use entangled states, the quantum mutual information
could be 2, while the quantum conditional entropies could
be 2. In classical information theory, negative entropies can
be obtained only in the case of mutual information of three
or more systems. An important property of maximized quan-
tum mutual information: it is always additive for a quantum
channel.

The character of classical information and quantum infor-
mation is significantly different. There are many phenomena in
quantum systems which cannot be described classically, such
as entanglement, which makes it possible to store quantum
information in the correlation of quantum states. Similarly, a



GYONGYOSI et al.: SURVEY ON QUANTUM CHANNEL CAPACITIES

quantum channel can be used with pure orthogonal states to
realize classical information transmission, or it can be used to
transmit non-orthogonal states or even quantum entanglement.
Information transmission also can be approached using the
question, whether the input consists of unentangled or entan-
gled quantum states. This leads us to say that for quantum
channels many new capacity definitions exist in comparison to
a classical communication channel. In possession of the gen-
eral communication model and the quantities which are able to
represent information content of quantum states we can begin
to investigate the possibilities and limitations of information
transmission through quantum channels [300].

8) Quantum Relative Entropy: The quantum relative
entropy measures the informational distance between quantum
states, and introduces a deeper characterization of the quantum
states than the von Neumann entropy. Similarly to the classical
relative entropy, this quantity measures the distinguishability
of the quantum states, in practice it can be realized by POVM
measurements. The relative entropy classically is a measure
that quantifies how close a probability distribution p is to a
model or candidate probability distribution g. For probability
distributions p and g, the classical relative entropy is given by

D(plg) = Zpi10g<%>,

while the quantum relative entropy between quantum states p
and o is

(98)

D(pllo) = Tr(plog(p)) — Tr(plog(o))

= Tr[p(log(p) — log(a))]. (99)

In the definition above, the term Tr(plog(c)) is finite only if
plog(o) > 0 for all diagonal matrix elements. If this condition
is not satisfied, then D(p|lo) could be infinite, since the trace
of the second term could go to infinity.

The quantum informational distance (i.e., quantum relative
entropy) has some distance-like properties (for example, the
quantum relative entropy function between a maximally mixed
state and an arbitrary quantum state is symmetric, hence in this
case it is not just a pseudo distance), however it is not commu-
tative, thus D(pl|lo) # D(o||p), and D(pllo) > 0 iff p # o,
and D(p|lo) = 0 iff p = 0. Note, if o has zero eigenvalues,
D(pllo) may diverge, otherwise it is a finite and continuous
function. Furthermore, the quantum relative entropy function
has another interesting property, since if we have two density
matrices p and o, then the following property holds for the
traces used in the expression of D(p|o)

Tr(plog(p)) = Tr(plog(0)). (100)

The symmetric Kullback-Leibler distance is widely used in
classical systems, for example in computer vision and sound
processing. Quantum relative entropy reduces to the clas-
sical Kullback-Leibler relative entropy for simultaneously
diagonalizable matrices.

We note, the quantum mutual information can be defined by
quantum relative entropy D(-||-). This quantity can be regarded
as the informational distance between the tensor product of
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the individual subsystems ps ® pp, and the joint state psp as
follows:

1(A:B) = D(pallpa ® pp) = S(pa)+S(pB) — S(paB)-
(101)

9) Quantum Rényi-Entropy: As we have seen, the quan-
tum informational entropy can be defined by the S(p) von
Neumann entropy function. On the other hand, another entropy
function can also be defined in the quantum domain, it is called
the Rényi-entropy and denoted by R(p). This function has rele-
vance mainly in the description of quantum entanglement. The
Rényi-entropy function is defined as follows

R(p) = Tr(p"),

T—r (102)

where » > 0, while R(p) is equal to the von Neumann entropy
function S(p) if

lim R(p) = S(p). (103)
If parameter r converges to infinity, then we have
lim R(p) = —log(llpl)- (104)
r—0o0

On the other hand if » = 0 then R(p) can be expressed from
the rank of the density matrix

R(p) = log(rank(p)). (105)

1. Related Work

The field of quantum information processing is a rapidly
growing field of science, however there are still many chal-
lenging questions and problems. These most important results
will be discussed in further sections, but these questions cannot
be exposited without a knowledge of the fundamental results
of quantum information theory.

1) Early Years of Quantum Information Theory: quantum
information theory extends the possibilities of classical infor-
mation theory, however for some questions, it gives extremely
different answers. The advanced communications and quan-
tum networking technologies offered by quantum information
processing will revolutionize traditional communication and
networking methods. Classical information theory— was
founded by Claude Shannon in 1948 [207], [463]. In
Shannon’s paper the mathematical framework of communi-
cation was invented, and the main definitions and theorems
of classical information theory were laid down. On the other
hand, classical information theory is just one part of quantum
information theory. The other, missing part is the Quantum
Theory, which was completely finalized in 1926.

The results of quantum information theory are mainly
based on the results of von Neumann, who constructed the
mathematical background of quantum mechanics [385]. An
interesting—and less well known—historical fact is that quan-
tum entropy was discovered by Neumann before the classical
information theoretic concept of entropy. Quantum entropy
was discovered in the 1930s, based on the older idea of entropy
in classical Statistical Mechanics, while the classical informa-
tion theoretic concept was discovered by Shannon only later,
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in 1948. It is an interesting note, since the reader might have
thought that quantum entropy is an extension of the classical
one, however it is not true. Classical entropy, in the context
of Information Theory, is a special case of von Neumann’s
quantum entropy. Moreover, the name of Shannon’s formula
was proposed by von Neumann. Further details about the his-
tory of Quantum Theory, and the main results of physicists
from the first half of the twentieth century such as Planck,
Einstein, Schrodinger, Heisenberg, or Dirac can be found
in the works of Misner et al. [321], McEvoy and Zarate [314],
Sakurai [441], Griffiths [188] or Bohm [75].

‘Is quantum mechanics useful’— asked by Landauer in
1995 [287]. Well, having the results of this paper in our
hands, we can give an affirmative answer: definitely yes. An
interesting work about the importance of quantum mechani-
cal processes was published by Dowling and Milburn [142].
Some fundamental results from the very early days of
Quantum Mechanics can be found in [91], [139], [150], [151],
[173], [222], [428], [445], [446], and [498]. About the early
days of Information Theory see the work of Pierce [427]. A
good introduction to Information Theory can be found in the
work of Yeung [544]. More information about the connection
of Information Theory and statistical mechanics can be found
in work of Aspect from 1981 [22], in the book of Jaynes [248]
or Petz [415]. The elements of classical information theory and
its mathematical background were summarized in a very good
book by Cover and Thomas [115]. On matrix analysis a great
work was published by Horn and Johnson [231].

A very good introduction to quantum information the-
ory was published by Bennett and Shor [64]. The idea that
the results of quantum information theory can be used to
solve computational problems was first claimed by Deutsch
in 1985 [131].

Later in the 90s, the answers to the most important
questions of quantum information theory were answered,
and the main elements and the fundamentals of this field
were discovered. Details about the simulation of quantum
systems and the possibility of encoding quantum informa-
tion in physical particles can be found in Feynman’s work
from 1982 [158]. Further information on quantum simulators
and continuous-time automata can be found in the work of
Vollbrecht and Cirac [510].

2) Quantum Coding and Quantum Compression: The next
milestone in quantum information theory is Schumacher’s
work from 1995 [453] in which he introduced the term, ‘qubit.’
In [452]-[455] the main theories of quantum source coding
and the quantum compression were presented. The details of
quantum data compression and quantum typical subspaces can
be found in [453]. In this paper, Schumacher extended those
results which had been presented a year before, in 1994 by
Schumacher and Jozsa on a new proof of quantum noiseless
coding, for details see [451]. Schumacher in 1995 also defined
the quantum coding of pure quantum states; in the same year,
Lo published a paper in which he extended these result to
mixed quantum states, and he also defined an encoding scheme
for it [302]. Schumacher’s results from 1995 on the compres-
sion of quantum information [453] were the first main results
on the encoding of quantum information its importance
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and significance in quantum information theory is similar to
Shannon’s noiseless channel coding theorem in classical infor-
mation theory. In this work, Schumacher also gives upper and
lower bounds on the rate of quantum compression. We note,
that the mathematical background of Schumacher proof is very
similar to Shannon’s proof, as the reader can check in [453]
and in Shannon’s proof [463].

The method of sending classical bits via quantum bits was
firstly completed by Schumacher et al. in their famous paper
form 1995, see [452]. In the same year, an important paper
on the encoding of information into physical particles was
published by Schumacher et al. [452], [453]. The fundaments
of noiseless quantum coding were laid down by Schumacher,
one year later, in 1996 [454], [455]. In 1996, many impor-
tant results were published by Schumacher and his colleges.
These works cover the discussion of the relation of entropy
exchange and coherent quantum information, which was com-
pletely unknown before 1996. The theory of processing of
quantum information, the transmission of entanglement over a
noisy quantum channel, the error-correction schemes with the
achievable fidelity limits, or the classical information capacity
of a quantum channel with the limits on the amount of acces-
sible information in a quantum channel were all published in
the same year. For further information on the fidelity limits
and communication capabilities of a noisy quantum channel,
see the work of Barnum et al. also from 1996 [44]. In 1997,
Schumacher and Westmoreland completed their proof on the
classical capacity of a quantum channel, and they published
in their famous work, for details see [456]. These results
were extended in their works from 1998, see [457]-[459].
On the experimental side of fidelity testing see the work of
Radmark et al. [433].

About the limits for compression of quantum informa-
tion carried by ensembles of mixed states, see the work
of Horodecki [237]. An interesting paper about the quan-
tum coding of mixed quantum states was presented by
Barnum er al. [41]. Universal quantum compression makes it
possible to compress quantum information without the knowl-
edge about the information source itself which emits the
quantum states. Universal quantum information compression
was also investigated by Jozsa et al. [255], and an extended
version of Jozsa and Presnell [253]. Further information about
the technique of universal quantum data compression can be
found in the article of Bennett er al. [55]. The similarity of
the two schemes follows from the fact that in both cases
we compress quantum information, however in the case of
Schumacher’s method we do not compress entanglement. The
two compression schemes are not equal to each other, how-
ever in some cases if running one of the two schemes
fails they can be used to correct the errors of the other,
hence they can be viewed as auxiliary protocols of each other.
Further information about the mathematical background of the
processes applied in the compression of quantum information
can be found in Elias’s work [153].

A good introduction to quantum error-correction can be
found in the work of Gottesman, for details see [186]. A paper
about classical data compression with quantum side informa-
tion was published by Devetak and Winter [132]. We note that
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there is a connection between the compression of quantum
information and the concentration of entanglement, however
the working method of Schumacher’s encoding and the pro-
cess of entanglement concentrating are completely different.
Benjamin Schumacher and Richard Jozsa published a very
important paper in 1994 [451]. Here, the authors were the
first to give an explicit proof of the quantum noiseless cod-
ing theorem, which was a milestone in the history of quantum
computation. Further information on Schumacher’s noiseless
quantum channel coding can be found in [451].

The basic coding theorems of quantum information the-
ory were summarized by Winter in 1999 [531]. In this work,
he also analyzed the possibilities of compressing quantum
information. A random coding based proof for the quan-
tum coding theorem was shown by Klesse in 2008 [274].
A very interesting article was presented by Horodecki
in 1998 [237], about the limits for the compression of
quantum information into mixed states. On the properties
of indeterminate-length quantum coding see the work of
Schumacher and Westmoreland [448].

The quantum version of the well-known Huffman coding
can be found in the work of Braunstein et al. from 2000 [87].
Further information about the compression of quantum infor-
mation and the subspaces can be found in [167], [220],
and [221]. The details of quantum coding for mixed states
can be found in the work of Barnum et al. [41].

3) Quantum Entanglement: Entanglement is one of the
most important differences between the classical and the quan-
tum worlds. An interesting paper on communication via one-
and two-particle operators on Einstein-Podolsky-Rosen states
was published in 1992, by Bennett and Wiesner [57]. About
the history of entanglement see the paper of Einstein et al.
from 1935 [151]. In this manuscript, we did not give a com-
plete mathematical background of quantum entanglement—
further details on this topic can be found in Nielsen’s
book [393] or by Hayashi [217], or in an very good article pub-
lished by the four Horodeckis in 2009 [236]. We have seen
that entanglement concentration can be applied to generate
maximally mixed entangled states. We also gave the asymp-
totic rate at which entanglement concentration can be made,
it is called the entropy of entanglement and we expressed it
in an explicit form. A very important paper on the commu-
nication cost of entanglement transformations was published
by Hayden and Winter, for details see [218]. The method
of entanglement concentration was among the first quantum
protocols, for details see the work of Bennett et al. from
1996 [62]. The method of Bennett’s was improved by Nielsen
in 1999, [395]. A very important work on variable length uni-
versal entanglement concentration by local operations and its
application to teleportation and dense coding was published
by Hayashi and Matsumoto [214]. The entanglement cost of
antisymmetric states was studied by [313].

The calculation of entanglement-assisted classical capacity
requires a superdense protocol-like encoding and decod-
ing strategy, we did not explain its working mecha-
nism in detail, further information can be found in the
work of Bennett et al. [53]. A paper about the compres-
sion of quantum-measurement operations was published by
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Winter and Massar in 2001 [527]. Later, in 2004, Winter
extended these results [528]. Here we note, these results are
based on the work of Ahlswede and Winter [8].

The definition of a conditionally typical subspace in quan-
tum information was given by Schumacher and Westmoreland
in 1997 [456]. Holevo also introduced it in 1998 [230].

We did not explain in detail entanglement
concentrating [62], entanglement transformations [395],
or entanglement generation, entanglement distribution and
quantum broadcasting, further information can be found
in [214], [218], [238], [526], [539], and [540]. About the
classical communication cost of entanglement manipulation
see the work of Lo and Popescu from 1999 [303]. The fact
that noncommuting mixed states cannot be broadcast was
shown by Barnum et al. in 1995, see [43].

Lo and Popescu also published a work on concentrating
entanglement by local actions in 2001, for details see [301].
About the purification of noisy entanglement see the article of
Bennett et al. from 1996 [61]. The entanglement purification
protocol was a very important result, since it will have great
importance in the quantum capacity of a quantum channel.
(However, when the authors have developed the entanglement
purification scheme, this connection was still not completely
cleared.)

About the quantum networks for concentrating entangle-
ment and the distortion-free entanglement concentration, fur-
ther information can be found in the paper of Kaye and Mosca
from 2001 [259]. In 2005, Devetak and Winter have shown,
that there is a connection between the entanglement distilla-
tion and the quantum coherent information, which measure
has tremendous relevance in the quantum capacity of the
quantum channels, for details see [135], [135]. An interesting
paper about distortion-free entanglement concentration was
published by Blume-Kohout ef al. in 2009 [278]. The method
presented in that paper gives an answer to streaming univer-
sal. We did not mentioned the inverse protocol of entanglement
concentration which is called entanglement dilution, for fur-
ther details see the works of Lo and Popescu from 1999 [303]
and 2001 [301], and Harrow and Lo’s work from 2004 [210].
Harrow and Lo have also given an explicit solution of the
communication cost of the problem of entanglement dilution,
which was an open question until 2004. Their results are based
on the previous work of Hayden and Winter from 2003, for
details see [218]. The typical entanglement in stabilizer states
was studied by Smith and Leung, see [481]. The teleportation-
based realization of a two-qubit entangling gate was shown by
Gao et al. [171].

4) Quantum Channels: About the statistical properties of
the HSW theory and the general HSW capacity, a very
interesting paper was published by Hayashi and Nagaoka
in 2003 [215]. As we have seen, some results of quan-
tum information theory are similar to the results of classical
information theory, however many things have no classical
analogue. As we have found in this section, the Holevo
theorem gives an information-theoretic meaning to the von
Neumann entropy, however it does not make it possible to
use it in the case of the interpretation of von Neumann
entropy of physical macrosystems. Further properties of the
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von Neumann entropy function was studied by Audenaert in
2007 [24].

The concept of quantum mutual information mea-
sures the classical information which can be transmitted
through a noisy quantum channel (originally introduced by
Adami and Cerf [4]) however it cannot be used to measure the
maximal transmittable quantum information. The maximized
quantum mutual information is always additive, however this
is not true for the Holevo information. In this case, the entan-
glement makes non-additive the Holevo information, but it has
no effect on the quantum mutual information. Further infor-
mation about the mathematical background of these ‘strange’
phenomena can be found in the work of Adami from 1996 [4]
or in the book of Hayashi from 2006 [217]. A very good book
on these topics was published by Petz in 2008 [415].

For the properties of Holevo information and on the capac-
ity of quantum channels see the works of Holevo [228], [230],
Schumacher et al. [451]-[456], Horodecki et al. [234],
Datta et al. [125], and Arimoto [17]. On the geometri-
cal interpretation of the maps of a quantum channel see
the works of Cortese [113], Petz [414]-[420], [422], and
Hiai and Petz [226].

On physical properties of quantum communication chan-
nels the work of Levitin [291], on the -capacities of
quantum communication channels see Bennett et al. [63],
DiVincenzo et al. [140], Schumacher and Westmoreland [456],
Fuchs et al. [163]. In 1997, Barnum et al. also summarized
the actual results on quantum channel, see [46].

The mathematical background of distinguishing arbi-
trary multipartite basis unambiguously was shown by
Duan et al. [144].)

In 2010, Dupuis et al. [146] published a paper in which they
described a protocol for quantum broadcast quantum channel,
then Yard et al. published a paper on quantum broadcast chan-
nels [541]. Before these results, in 2007, an important practical
result on broadcasting was shown by Guha et al. [190], [191],
who demonstrated the classical capacity of practical (bosonic)
quantum channels. General quantum protocols—such as super-
dense coding and teleportation—are not described in this
article. Further information about these basic quantum pro-
tocols can be found in the book of Hayashi from 2006 [217],
in the book of Nielsen and Chuang [393], or in the paper of
Bennett and Wiesner [57], [58], (both papers from 1992), and
Bennett’s paper from 1993 [59].

A very good overview of the capacity of quantum chan-
nels was presented by Smith in 2010, see [490]. About
the information tradeoff relations for finite-strength quantum
measurements, see the works of [161]. On the mathemati-
cal background of quantum communication see the works of
Hayashi et al. [216], Petz and Sudar [422], Ruskai et al. [438],
and Vedral and Plenio [509]. The generalized Pauli channels
are summarized by Ohno and Petz [398].

The relative entropy function was introduced by Kullback
and Leibler in 1951 [282]. Another interpretation of the rel-
ative entropy function was introduced by Bregman, known
as the class of Bregman divergences [88]. A very important
paper about the role of relative entropy in quantum informa-
tion theory was published by Schumacher and Westmoreland
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in 2000 [450]. The quantum relative entropy function was
originally introduced by Umegaki, and later modified versions
have been defined by Ohya et al. [399]. Some possible appli-
cations of quantum relative entropy in quantum information
processing were introduced by Vedral [508].

About the negativity of quantum information see the works
of Horodecki et al. [234], [235]. About the use of entangle-
ment in quantum information theory, see the work of Li et al.
from 2010, [293], [295]. A method for measuring two-qubit
entanglement by local operations and classical communication
was shown by Bai ef al. in 2005 [39]. About the additivity of
the capacity of quantum channels see [165], [271], [474]. A
very good paper on the Holevo capacity of finite dimensional
quantum channels and the role of additivity problem in quan-
tum information theory was published by Shirokov [472]. A
great summary of classical and quantum information theory
can be found in the book of Desurvire from 2009 [130]. The
bounds for the quantity of information transmittable by a quan-
tum communication channel was analyzed by Holevo in 1973,
see [228]. About sending classical information via noisy quan-
tum channels, see the works of Jozsa and Schumacher [451],
Schumacher from 1996 [454], [455], and
Schumacher and Westmoreland from 1997 [456] and
Smith’s summarize [490]. The mathematical background of
classical relative entropy function can be found in the works
of Kullback er al. [282]-[284]. For the details of Bregman
distance see [40], [88]. Further information about the Kraft-
McMillan inequality can be found in [115], [281], and [315].

For research on satellite quantum communications,
see [34]-[37], [170]. For research results on quantum
repeaters see [31], [73], [89], [148], [251], [285], [305],
[326]-[328], [442], [504]-[507], and [547]. For some
further research topic on quantum channels see [33],
[192]-[204], [243], [407], [408].

5) Comprehensive Surveys: A reader who is interested
in the complete mathematical background of quantum
information theory can find the details for example in
Nielsen and Chuang’s book [393]. For a general introduc-
tion to the quantum information theory and its applications
see the excellent book of Hayashi [217]. We also suggest
the book of Imre and Baldzs from 2005, see [241]. A very
good introduction to quantum information theory was pub-
lished by Bennett and Shor, for details see [64]. Also in 1998,
Preskill summarized the actual state of quantum information
theory in the form of lecture notes [430]. Preskill also summa-
rized the conditions of reliable quantum computers, for details
see [431]. Also in 1998, al1998, a good work on the basics of
quantum computations and the mathematical formalism was
published by Vedral and Plenio [509] and by Nielsen [394].
On the mathematical background of quantum information pro-
cessing, see the works of Shor [473], [475], [477]-[480]. The
description of classical data compression can be found in the
very good book of Cover and Thomas [115], or in the book of
Berger [70]. We also suggest the work of Stinespring [496].
A very important result regarding the compression of clas-
sical information was published by Csiszar and Korner in
1978 [116], and later the authors published a great book
about coding theorems for discrete memoryless systems [117].
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Fig. 6. The formal model of a noisy quantum communication channel. The output of the channel is a mixed state.

A work on the non-additivity of Renyi entropy was pub-
lished by Aubrun et al. [23]. On the connection of quantum
entanglement and classical communication through a depo-
larizing channel see [92]. Regarding the results of quantum
Shannon theory, we suggest the great textbook of Wilde [522].
The structure of random quantum channels, eigenvalue statis-
tics and entanglement of random subspaces are discussed
in [109] and [110]. Finally, for an interesting viewpoint on
‘topsy turvy world of quantum computing’ see [325].

III. CLASSICAL CAPACITIES OF A QUANTUM CHANNEL

Communication over quantum channels is bounded by the
corresponding capacities. Now, we lay down the fundamental
theoretic results on classical capacities of quantum channels.
These results are all required to analyze the advanced and
more promising properties of quantum communications.

This section is organized as follows. In the first part, we
introduce the reader to formal description of a noisy quan-
tum channel. Then we start to discuss the classical capacity of
a quantum channel. Next, we show the various encoder and
decoder settings for transmission of classical information. We
define the exact formula for the measure of maximal transmit-
table classical information. Finally, we discuss some important
channel maps.

The most relevant works are included in Section I'V-H.

A. Extended Formal Model

The discussed model is general enough to analyze the
limitations for information transfer over quantum channels.
However, later we will investigate special quantum channels
which models specific physical environment. Each quantum
channel can be represented as a CPTP map (Completely
Positive Trace Preserving), hence the process of information
transmission through a quantum communication channel can
be described as a quantum operation.

The general model of a quantum channel describes the trans-
mission of an input quantum bit, and its interaction with the
environment (see Fig. 6. Assuming Alice sends quantum state
p4 into the channel this state becomes entangled with the

environment pg, which is initially in a pure state |0). For
a mixed input state a so called purification state P can be
defined, from which the original mixed state can be restored
by a partial trace (see the Appendix) of the pure system psP.
The unitary operation Usg of a quantum channel A entangles
pAP with the environment pg, and outputs Bob’s mixed state
as pp (and the purification state as P). The purification state is
a reference system, it cannot be accessed, it remains the same
after the transmission.

The output of the noisy quantum channel is denoted by
oB, the post state of the environment by pr, while the post-
purification state after the output realized on the channel output
is depicted by P.

B. Capacity of Classical Channels

Before we start to investigate quantum channels, we sur-
vey the results of transmitting information over classical noisy
channels. In order to achieve reliable (error-free) information
transfer we use the so called channel coding which extends the
payload (useful) information bits with redundancy bits so that
at the receiver side Bob will be able to correct some amount
of error by means of this redundancy.

The channel is given an input A, and maps it probabilisti-
cally (it is a stochastic mapping, not a unitary or deterministic
transformation) to an output B, and the probability of this
mapping is denoted by p(B|A).

The channel capacity C(N) of a classical memoryless com-
munication channel N gives an upper bound on the number of
classical bits which can be transmitted per channel use, in reli-
able manner, i.e., with arbitrarily small error at the receiver.
As it has been proven by Shannon the capacity C(N) of a
noisy classical memoryless communication channel N, can be
expressed by means of the maximum of the mutual informa-
tion I(A:B) over all possible input distributions p(x) of random
variable X

C(N) = max I(A:B). (106)
px)

In order to make the capacity definition more plausible let
us consider Fig. 7. Here, the effect of environment E is
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Alice

Fig. 7.

represented by the classical conditional entropies H(A:E|B) >
0 and H(B:E|A) > 0.

Shannon’s noisy coding theorem claims that forming K dif-
ferent codewords m = logK of length from the source bits
and transmitting each of them using the channel n times (m
to n coding) the rate at which information can be transmitted
through the channel is

log(K
g = Lo
n

(107)

and exponentially small probability of error at this rate can
be achieved only if R < C(N), otherwise the probability of
the successful decoding exponentially tends to zero, as the
number of channel uses increases. Now, having introduced the
capacity of classical channel it is important to highlight the
following distinction. The asymptotic capacity of any channel
describes that rate, which can be achieved if the channel can
be used n times (denoted by N®") where n — oco. Without
loss of generality, in case of n = 1 we speak about single-
use capacity. Multiple channel uses can be implemented in
consecutive or parallel ways, however from practical reasons
we will prefer the latter one.

C. Transmission of Classical Information Over Noisy
Quantum Channels

As the next step during our journey towards the quantum
information transfer through quantum channels (which is the
most general case) we are leaving the well-known classical
(macro) world and just entering into the border zone. Similar
to the ancient Romans - who deployed a sophisticated wide
border defense system (called the limes which consisted of
walls, towers, rivers, etc.), instead of drawing simply a red line
between themselves and the barbarians — we remain classical
in terms of inputs and outputs but allow the channel operating
in a quantum manner.
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Bob

Environment

The effects of the environment on the transmittable information and on the receiver’s uncertainty.

Quantum channels can be used in many different ways to
transmit information from Alice to Bob. Alice can send classi-
cal bits to Bob, but she also has the capability of transmitting
quantum bits. In the first case, we talk about the classical
capacity of the quantum channel, while in the latter case, we
have a different measure - the quantum capacity. The map of
the channel is denoted by N, which is trace preserving if

Tr(N (p)) = Tr(p) (108)

for all density matrices p, and positive if the eigenvalues of
N (p) are non-negative whenever the eigenvalues of p are non-
negative.

Compared to classical channels — which have only one def-
inition for capacity — the transmittable classical information
and thus the corresponding capacity definition can be differ-
ent when one considers quantum channels. This fact splits
the classical capacity of quantum channels into three cate-
gories, namely the (unentangled) classical (also known as
the product-state classical capacity, or the HSW (Holevo-
Schumacher-Westmoreland) capacity) capacity C(N), private
classical capacity P(N') and entanglement-assisted classical
capacity Cg(N).

The (unentangled) classical capacity C(N') is a natural
extension of the capacity definition from classical channels
to the quantum world. For the sake of simplicity the term
classical capacity will refer to the unentangled version in the
forthcoming pages of this paper. (The entangled version will
be referred as the entanglement-assisted classical capacity. As
we will see, the HSW capacity is defined for product state
inputs; however it is possible to extend it for entangled input
states)

The private classical capacity P(N) has deep relevance in
secret quantum communications and quantum cryptography.
It describes the rate at which Alice is able to send classical
information through the channel in secure manner. Security
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here means that an eavesdropper will not be able to access
the encoded information without revealing her/himself.

The entanglement-assisted classical capacity Cg(N) mea-
sures the classical information which can be transmitted
through the channel, if Alice and Bob have already shared
entanglement before the transmission. A well-known example
of such protocols is ‘superdense coding’ [241]. Next, we dis-
cuss the above listed various classical capacities of quantum
channels in detail.

As the first obvious generalization of classical channel
capacity definition is if we maximize the quantum mutual
information over all possible input ensembles

CN) = max I(A:B).

(109)
allp;, pi

Next, we start to discuss the classical information transmission
capability of a noisy quantum channel.

1) The Holevo-Schumacher-Westmoreland Capacity: The
HSW (Holevo-Schumacher-Westmoreland) theorem defines
the maximum of classical information which can be transmit-
ted through a noisy quantum channel N if the input contains
product states (i.e., entanglement is not allowed, also known as
the product-state classical capacity) and the output is measured
by joint measurement setting (see the second measurement
setting in subsection III-C2a). In this setting, for the quantum
noisy communication channel )V, the classical capacity can be
expressed as follows

CN) = Jnax x = max [S(w) - Z piS(o—»]
= a%%,— |:S (N<zi:pi,0i>> - zj:PiS(N(,Oi))i|
= x(\), (110)

where the maximum is taken over all ensembles {p;, p;} of
input quantum states, while for o,,, see (14), while x(N\) is
the Holevo capacity of A. Trivially follows, that the x(N)
capacity reaches its maximum for a perfect noiseless quantum
channel N = 1.

If Alice chooses among a set of quantum codewords, then
is it possible to transmit these codewords through the noisy
quantum channel A to Bob with arbitrary small error, if

R<CWN) = nax {S <N<Xi:pipi)) - ;PiS(N(pi))j|§
(111)

if Alice adjusts R to be under maxyyp, p; X » then she can trans-
mit her codewords with arbitrarily small error. If Alice chooses
R > C(/N), then she cannot select a quantum code of arbitrary
size, which was needed for her to realize an error-free commu-
nication. The HSW channel capacity guarantees an error-free
quantum communication only if R<C(N) = maxap, o X i8
satisfied for her code rate R.

2) Various Classical Capacities of a Quantum Channel:
The asymptotic channel capacity is the ‘true measure’ of the
various channel capacities, instead of the single-use capac-
ity, which characterizes the capacity only in a very special
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case. The three classical capacities of the quantum channel of
quantum channels will be discussed next.

In the regularization step, the channel capacity is computed
as a limit. In possession of this limit, we will use the following
lower bounds for the single-use capacities. In Section III-C1
we have also seen, the Holevo-Schumacher-Westmoreland the-
orem gives an explicit answer to the maximal transmittable
classical information over the quantum channel. Next, we
show the connection between these results. As we will see
in subsection III-C2a, four different measurement settings can
be defined for the measurement of the classical capacity of
the quantum channel. Here we call the attention of the reader
that Holevo bound (90) limits the classical information stored
in a quantum bit. HSW theorem can be regarded a similar sce-
nario but a quantum channel deployed between Alice and Bob
introduces further uncertainty before extracting the classical
information. Obviously if we assume an ideal channel the two
scenarios become the same.

Now, we present an example allowing the comparison of
classical capacity of a simple channel model in classical and
quantum context. The binary symmetric channel inverts the
input cbits with probability p and leaves it unchanged with
(1-p). The equivalent quantum bit flip channel (see Section V)
applies the Pauli X and the identity transforms 1.

Considering the worst case p= 0.5 all the sent informa-
tion vanishes in the classical channel C(N) = 1 — H(p) = 0.
However, the HSW theorem enables the optimization not only
over the input probabilities but over input ensembles {p;, p;}.
If we set p; to the eigenvectors of Pauli X deriving them from
its spectral decomposition

X = 1+) (+[+(=DI=) (=], (112)

where |+) = %, C(N) =1 can be achieved. This results
is more than surprising, encoding into quantum states in cer-
tain cases may improve the transfer of classical information
between distant points, i.e., the increased degree of freedom
enables reducing the uncertainty introduced by the channel.
a) Measurement settings: Similar to classical channel
encoding, the quantum states can be transmitted in codewords
n qubit of length using the quantum channel consecutively n-
times or equivalently we can send codewords over n copies
of quantum channel N denoted by N'®". For the sake of sim-
plicity we use n= 2 in the figures belonging to the following
explanation. In order to make the transient smoother between
the single-shot and the asymptotic approaches we depicted the
scenario using product input states and single (or independent)
measurement devices at the output of the channel in Fig. 8.
In that case the C(N) classical capacity of quantum chan-
nel N with input A and output B can be expressed by the
maximization of the /(A:B) quantum mutual information as
follows:
C(N) = max I(A:B).
allpi, pi
From (113) also follows that for this setting the single-
use CD(N) and the asymptotic C(N) classical capacities are
equal:

(113)

CD(N) = C(N) = max I(A:B).
allp;, pi

(114)
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Quantum channel

Inputstates Single measurement

— A

Fig. 8. Transmission of classical information over quantum channel with
product state inputs and single measurements. Environment is not depicted.

On the other hand, if we have product state inputs but we
change the measurement setting from the single measurement
setting tojoint measurement setting, then the classical channel
capacity cannot be given by (113), hence

CN) # max I(A:B).
allp;, pi

(115)

If we would like to step forward, we have to accept the fact,
that the quantum mutual information cannot be used to express
the asymptotic version: themaximized quantum mutual infor-
mation isalways additive (see Section II) - but not the Holevo
information. As follows, if we would take the regularized form
of quantum mutual information to express the capacity, we
will find that the asymptotic version is equal to the single-use
version, since:

lim l max I(A:B) = max I(A:B).
n—00 n allp;, pi allp;, pi
From (116) follows, that if we have product inputs
andjoint measurement at the outputs, we cannot use the
maxgjip;, p; 1(A:B) maximized quantum mutual information
function to express C(N). If we would like to compute the
classical capacity C(N) for that case, we have to leave the
quantum mutual information function, and instead of it we
have to use the maximized Holevo information maxgp;, p; X -
This new C(N) capacity (according to the Holevo-
Schumacher-Westmoreland theorem) can be expressed by
the Holevo capacity x(N\), which will be equal to the
maximization of Holevo information of channel N:

CN) = x(N) = max y.

allpi, pi

(116)

(117)

The Holevo capacity and the asymptotic channel capacity will
be equal in this case.

The HSW theorem gives an explicit answer for the classical
capacity of the product state input with joint measurement
setting, and expresses C(N\) as follows:

CN) = xWN)
= arl};)g)/()v|:s (N(ZPiPi)) - ZPiS(N(:Oi))]-
l l (118)

The relation discussed above holds for the restricted channel
setting illustrated in Fig. 9, where the input consists of product
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Fig. 9. Transmission of classical information over quantum channel with

product state inputs and joint measurements. Environment is not depicted.

states, and the output is measured by a joint measurement
setting.

However, if entangled inputs are allowed with the joint
measurement setting - then this equality does not hold any-
more. As a conclusion, the relation between the maximized
Holevo information x (N) of the channel of the channel and
the asymptotic classical channel capacity C(N):

xWN) < CN). (119)

This means that we have to redefine the asymptotic formula
of C(N) for entangled inputs and joint measurement setting,
to measure the maximum transmittable classical information
through a quantum channel.

In the 1990s, it was conjectured that the formula of (118)
can be applied to describe the channel capacity for entan-
gled inputs with the single measurement setting; however
it was an open question for a long time. Single measure-
ment destroys the possible benefits arising from the entangled
inputs, and joint measurement is required to achieve the
benefits of entangled inputs [272].

In 2009 Hastings have used entangled input states and
showed that the entangled inputs (with the joint measurement)
can increase the amount of classical information which can
be transmitted over a noisy quantum channel. In this case,
C(WN) # x(N) and the C(NV) can be expressed with the help
of Holevo capacity as follows, using the asymptotic formula
of y(N):

1
CWN) = lim —x(N®"). (120)
n—oon
The channel construction for this relation is illustrated in
Fig. 10. The entangled input is formally denoted by Wi,.

We also show the channel construction of the fourth possi-
ble construction to measure the classical capacity of a quantum
channel. In this case, we have entangled input states, how-
ever we use a single measurement setting instead of a joint
measurement setting.

To our knowledge, currently there is no quantum channel
model where the channel capacity can be increased with this
setting, since in this case the benefits of entanglement vanish
because of the joint measurement setting has been changed
into the single measurement setting. We illustrated this setting
in Fig. 11.
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Fig. 10. Transmission of classical information over quantum channel with

entangled inputs Wi, and joint measurements. Environment is not depicted.

Quantum channel
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Fig. 11.  Transmission of classical information over quantum channel with

entangled inputs and single measurements. Environment is not depicted.

We have seen in (118), that if we have product input states
and we change from a single to a joint measurement setting,
then the classical capacity of A/ cannot be expressed by the
maximized quantum mutual information function, because it
is always additive, hence

CN) # lim 1 max /(A:B).

n—0o0 n allp;, p;

(121)

If we allow entangled input states andjoint measurement
(see (120)), then we have to use the C(N) asymptotic for-
mula of the previously derived Holevo capacity, x (N) which

yields
CN) = lim lX(/\/®”) £ x(N). (122)

n—oon

3) Brief Summary: The Holevo quantity measures the clas-
sical information, which remains in the encoded quantum
states after they have transmitted through a noisy quantum
channel. During the transmission, some information passes to
the environment from the quantum state, which results in the
increased entropy of the sent quantum state. The HSW theo-
rem states very similar to Holevo’s previous result. As in the
case of the Holevo quantity, the HSW capacity measures the
classical capacity of a noisy quantum channel - however, as
we will see in Section IV, the Holevo quantity also can be
used to express the quantum capacity of the quantum chan-
nel, which is a not trivial fact. The HSW capacity maximizes
the Holevo quantity over a set of possible input states, and
expresses the classical information, which can be sent through
reliably in the form of product input states over the noisy
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Fig. 12. The model of private classical communication of a quantum channel.

quantum channel, hence HSW capacity is also known as prod-
uct state channel capacity. In this case, the input states are
not entangled; hence there is no entanglement between the
multiple uses of the quantum channel. As we have seen in
this section, if the input of the channel consists of product
states and we use single measurement setting, then the classi-
cal capacity can be expressed as the maximized of the quantum
mutual information. On the other hand, if the single measure-
ment has been changed to joint measurement, this statement is
not true anymore; - this capacity will be equal to HSW capac-
ity, see (118). Moreover, if we step forward, and we allow
entanglement among the input states, then we cannot use any-
more the HSW capacity, which was defined in (110). In this
case we have to take its asymptotic formula, which was shown
in (120).

Next we discuss the private classical capacity of quantum
channels.

D. The Private Classical Capacity

The private classical capacity P(N) of a quantum channel
N describes the maximum rate at which the channel is able
to send classical information through the channel reliably and
privately (i.e., without any information leaked about the orig-
inal message to an eavesdropper). Privately here means that
an eavesdropper will not be able to access the encoded infor-
mation without revealing her/himself, i.e., the private classical
capacity describes the maximal secure information that can be
obtained by Bob on an eavesdropped quantum communication
channel.

The generalized model of the private communication over
quantum channels is illustrated in Fig. 12. The first out-
put of the channel is denoted by op = AN (pa), the second
‘receiver’ is the eavesdropper E, with state og. The single-
use private classical capacity from these quantities can be
expressed as the maximum of the difference between two
mutual information quantities. The eavesdropper, Eve, attacks
the quantum channel, and she steals /(A:E) from the infor-
mation /(A:B) sent by Alice to Bob, therefore the single-use
private classical capacity (orprivate information) of N can be
determined asl

PYN) = max (I(A:B) — I(A:E)).
allp;, pi

(123)
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The entanglement-assisted capacity of a quantum channel. This capacity measures the maximum of transmittable classical information through a

quantum channel, if shared a priori entanglement between the parties is allowed.

while the asymptotic private classical capacity is

lim lP“)(/\/‘X’")

n—oon

lim lmax (I(A:B) — I(A:E)).

n—0o0 nall p;, p;

PN)

(124)

The private classical capacity can be expressed as the differ-
ence of two quantum mutual information functions, see (124).
Here, we give an equivalent definition for private classical
capacity P(N) and show, that it also can be rewritten using
the Holevo quantity X', as follows:

.1
PN) = lim — max (Xap — Xap), (125)
n—00 n allp;, pi
where
Xap = S(Nag(pag)) — Y piSNas(pi)) (126)
and
Xpg = SWar(par) — ) piSNae(p))  (127)

measure the Holevo quantities between Alice and Bob,
and Alice and the eavesdropper Eve, respectively, while
PAB = Zi pipi and pAp = Zi pipi- An important corollary
from (124), while the quantum mutual information itself is
additive (see the properties of quantum mutual information
function in Section II), the difference of two quantum mutual
information functions is not (i.e., we need the asymptotic
version to compute the ‘true’ private classical capacity of a
quantum channel.)

E. The Entanglement-Assisted Classical Capacity

The last capacity regarding classical communication over
quantum channels is called entanglement-assisted classical
capacity Cg(N'), which measures the classical information

which can be transmitted through the channel, if Alice and
Bob have shared entanglement before the transmission, i.e.,
entanglement is applied not between the input states like in
case of the HSW (i.e., the product-state capacity) theorem.
This capacity measures classical information, and it can be
expressed with the help of the quantum mutual information
function (see Section II) as

Ce(N) = max I(A:B).

(128)
allp;, pi

The main difference between the classical capacity C(N') and
the entanglement-assisted classical capacity Cg(N), is that
in the latter case the maximum of the transmittable classical
information is equal to the maximized quantum mutual infor-
mation, - hence the entanglement-assisted classical cagacity
Ce(N) can be derived from the single-use version Cg N).
From (128) the reader can conclude, there is no need for
the asymptotic version to express the entanglement-assisted
classical capacity, i.e.:

CeN) = C (V) = max I(A:B). (129)

allp;, pi
It also can be concluded, that shared entanglement does not
change the additivity of maximized quantum mutual informa-
tion - or with other words, it remains true if the parties use
shared entanglement for the transmission of classical informa-
tion over /. In Fig. 13 we illustrate the general model of
entanglement-assisted classical capacity Cg(N).

We note an important property of shared entanglement:
while it does not provide any benefits in the improving of
the classical capacity of the quantum channel, (see (128)), it
can be used to increase the single-use classical capacity. It was
shown, that with the help of shared entanglement the trans-
mission of a single quantum bit can be realized with higher
success probability, - this strategy is known as the CHSH
(Clauser-Horne-Shimony-Holt) game, for details see [241].
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Fig. 14. A quantum zero-error communication system.

a) Brief summary of classical capacities: Here, we give
a brief summarization on the classical capacities. For the
asymptotic capacity of a quantum channel, we have

CN) = x(N). (130)

According to the results of Holevo-Schumacher-
Westmoreland, the asymptotic classical capacity is not
equal to the single-use classical capacity. The asymptotic
formula of the classical capacity C(N) can be expressed by
the help of the Holevo capacity x () as
CN) = lim lX(/\/®”). (131)
n—oo n
The difference between the single-use formula and the asymp-
totic formula holds for the private capacity P(N). Unlike these
capacities, in the case of entanglement-assisted classical capac-
ity Cg(N), we will find something else in the expression. In
this case, we have

CeEN) = CW) = max [(A:B). (132)

allp;, pi
and so we can conclude, there is no regularization. Since
there is no regularization needed, it also means that the
entanglement-assisted classical capacity Cg(N') will always be
additive. This makes it easier to compute the entanglement-
assisted capacity than the other formulas, in which regulariza-
tion is needed.

Originally, it was conjectured that in the general case, the
Holevo information x is additive too, for the same channels.
Later, a counterexample was found by Hastings. As has been
shown, in this case the additivity of the Holevo information
fails.

Similarly, for the P(N) private classical capacity, - which
also measures classical information we have

PN) > max (I(A:B) — I(A:E)), (133)
allp;, pi
and finally, for the classical capacity C(N) of N/
1
max [(A:B) < C(N) < lim —x(N®"). (134)
allpi, pi n—oon
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As can be seen, in case of the classical and private classical
capacities the regularization is needed, since the asymptotic
and the single-use formulas are not equal.

F. The Classical Zero-Error Capacity

Shannon’s results on capacity [463] guarantees transmission
rate only in average when using multiple times of the chan-
nel. The zero-error capacity of the quantum channel describes
the amount of (classical or quantum) information which can
be transmitted perfectly (zero probability of error) through a
noisy quantum channel. The zero-error capacity of the quan-
tum channel could have an overriding importance in future
quantum communication networks.

The zero-error capacity stands a very strong requirement
in comparison to the standard capacity where the informa-
tion transmission can be realized with asymptotically small but
non-vanishing error probability, since in the case of zero-error
communication the error probability of the communication has
to be zero, hence the transmission of information has to be
perfect and no errors are allowed. While in the case of clas-
sical non zero-error capacity for an n-length code the error
probabilities after the decoding process are Prerror] — 0 as
n — 00, in case of an n-length zero-error code, Pr[error] = 0.

In this subsection we give the exact definitions which
required for the characterization of a quantum zero-error
communication system. We will discuss the classical and
quantum zero-error capacities and give the connection
between zero-error quantum codes and the elements of graph
theory.

1) Classical Zero-Error Capacities of Quantum Channels:
In this section we review the background of zero-error capacity
Co(N) of a quantum channel . Let us assume that Alice
has information source {X;} encoded into quantum states {p;}
which will be transmitted through a quantum channel N (see
Fig. 14). The quantum states will be measured by a set of
POVM operators P = {Mj,..., My} at the receiver (see
Section II). The classical zero-error quantum capacity Co(N)
for product input states can be reached if and only if the input
states arepure states, similarly to the HSW capacity C(N).
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The zero-error transmission of quantum states requires
perfect distinguishability. To achieve this perfect distinguisha-
bility of the zero-error quantum codewords, they have to be
pairwise orthogonal. Non-adjacent codewords can be distin-
guished perfectly. Two inputs are called adjacent if they can
result in the same output. The number of possible non-adjacent
codewords determines the rate of maximal transmittable clas-
sical information through N.

In the d dimensional Hilbert space (e.g., d = 2 for qubits)
at most d pairwise distinguishable quantum states exist, thus
for a quantum system which consist of n pieces of d dimen-
sional quantum states at most d" pairwise distinguishable
n-length quantum codewords are available. Obviously if two
quantum codewords are not orthogonal, then they cannot be
distinguished perfectly. We note, if we would like to distin-
guish between K pairwise orthogonal quantum codewords (the
length of each codewords is n) in the d" dimensional Hilbert
space, then we have to define the POVM set

P= {M“), ...,M(K)}, (135)

where M are set of d-dimensional projectors on the indi-
vidual quantum systems (e.g., qubits) which distinguish the
n-length codewords

MD = (M, ..., My} (136)

where m = d". The probability that Bob gives measurement
outcome j from quantum state p; is

Pr[jlpi] = Tr(MiN ().

The i-th codeword |yx;) encodes the n-length classical code-
word X; = {x;1,Xi2,...,Xin} consisting of n product input
quantum states:

|vx,) = [|¥i1) ® | i) ® |Wis) -+ ®|Win)] i=1--K,

(137)

(138)
where p; = [x,) (¥x, -
The quantum block code consist of codewords
[vx,) = [[v11) ® [¥12) ® |v13) - @ [¥r1a) ]
|Vx) = [|Vk.1) ® |Vk2) @ |Yk3) - ® | V)],
(139)

where K is the number of classical (n length) messages.

The decoder will produce the output codeword X =
{xéﬁl, xg’z, . ,xg’n} generated by the POVM measurement
operators, where the POVM M can distinguish m messages
{X].X},...X;,} (n-length) at the output. Bob would like to
determine each message i € [1, K] with unit probability. The
zero probability of error means that for the input code |yx;)
the decoder has to identify the classical output codeword X';
with classical input codeword X; perfectly for each possible
i, otherwise the quantum channel has no zero-error capacity;
that is, for the zero-error quantum communication system

Pr[X/|Xi] = 1. (140)
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2) Formal  Definitions  of  Quantum  Zero-Error
Communication: In this subsection we review the most
important definitions of quantum zero-error communication
systems.

The non-adjacent elements are important for zero-error
capacity, since only non-adjacent codewords can be distin-
guished perfectly. Two inputs are called adjacent if they can
result in the same output, while for non-adjacent inputs,
the output of the encoder is unique. The number of possi-
ble non-adjacent codewords determines the rate of maximal
transmittable classical information through quantum channels.

Formally, the non-adjacent property of two quantum states
p1 and po> can be given as

SetiNSetr = @, (141)

where Set; = {Pr[X;|X;] = Tr(M;N(IYx,){(¥x, D)) > 0},j €
{1,...,m},i = 1,2, and P = {My,..., M} is a POVM
measurement operator. In a relation of a noisy quantum chan-
nel V, the non-adjacent property can be rephrased as follows.
Two input quantum states p; and pp are non-adjacent with
relation to N, if A (p1) and N'(py) are perfectly distinguish-
able. The notation ,oljj\_[ p2 also can be used to denote the

non-adjacent inputs of quantum channel A

A quantum channel N has greater than zero zero-error
capacity if and only if a subset of quantum states 2 = {pi}ﬁzl
and POVM P = {My, ..., M,,} exists where for at least two
states p1 and p, from subset €2, the relation (141) holds; that
is, the non-adjacent property with relation to the POVM mea-
surement is satisfied. For the quantum channel N, the two
inputs p; and pp are non-adjacent if and only if the quan-
tum channel takes the input states p; and pp into orthogonal
subspaces

N(m)/%[/\f(pz); (142)

that is, the quantum channel has positive classical zero-error
capacity Co(/N) if and only if this property holds for the output
of the channel for a given POVM P = {My, ..., M,,}. The
previous result can be rephrased as follows. Using the trace
preserving property of the quantum channel, the two quantum
states p; and p, are non-adjacent if and only if for the channel
output states N (1), N'(02),

Tr(N (p)N (p2)) = 0, (143)
and if p; and py are non-adjacent input states then
Tr(p102) = 0. (144)

Let the two non-adjacent input codewords of the N be
denoted by |¥x,) and |¥x,). These quantum codewords
encode messages X1 = {x;1,x12,...,Xx1,} and Xp =
{x2,1,x2.2, ..., x2,,). For this setting, we construct the follow-
ing POVM operators for the given complete set of POVM
P ={Mi,..., My} and the two input codewords |vx,) and
[Vx,) as follows

MWD =My, .. M) (145)

and
MP = (Mg, ...

s M} (146)
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The groups of operators, M and M@, will identify and
distinguish the input codewords [v/x,) and [{x,). Using this
setting the two non-adjacent codewords [x,) and [¥y,) can
be distinguished with probability one at the output since

Pr[X/|X,] =1, i=1,....k

Pr[X/|X;] =1, i=k+1,....m (147)

where X' l’ is a number between 1 and m, (according to the possi-
ble number of POVM operators) which identifies the measured
unknown quantum codeword and consequently

Pr(X{[Xi] =0, i=k+1,....m

Pr{X/|IX2] =0, i=1,....k (148)

For input message |x,) and [x,) with the help of set MO
and M® these probabilities are

P 1X1] = Tr(MON () (¥ ])) = 1
Tr(MON (| yc) () = 1.

where M and M® are orthogonal projectors, M) and
M@ are defined in (145) and (146)), and MDD + M® 4
MCHD = [ to make it possible for the quantum chan-
nel to take the input states into orthogonal subspaces; that
is, N(|1¥x, ) (¥x, DLN (|¥x,) (¥x,]) has to be satisfied. The
POVM measurement has to be restricted to projective measure-
ment. As follows, the P = {M©D M@} POVM measurement
can be replaced with the set of von Neumann operators,
Z = {73(1),73(2)}, where PO + P@ = . This result also
can be extended for arbitrarily number of operators, depend-
ing on the actual system. The non-adjacent property also can
be interpreted for arbitrary length of quantum codewords. For
a given quantum channel A, the two n-length input quan-
tum codewords |vx,) and |Yx,), which are tensor products of
n quantum states, then input codewords [Yy,) and [¥y,) are
non-adjacent in relation with A if and only if at least one
pair of quantum states {|v;), [{2,;)} from the two n-length
sequences is perfectly distinguishable. Formally, at least one
input quantum state pair {|y;), [Y2:)} with i, 1 < i < n,

Pr[X5 X, ] = (149)
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Comparison of single (a) and joint (b) measurement settings. The joint measurement is necessary to attain the quantum zero-error communication.

exists in |Yx,) and |¥x,), for which N'(|¢1;)(.¢1,]) is non-
adjacent to N (|¥2.;)(¥2.i]). Because we have stated that the
two codewords can be distinguished at the channel output, the
following relation has to be hold for their trace, according
to (143), and their non-adjacency can be verified as follows:

Tr(N (| ) (v N ([ ) (s |))
= TV((&’ N ¢1,i)(¢1,i|)> (él N Eﬁz,i)(%,i”))

—HTr

As follows from (150), a quantum channel A/ has non-zero
zero-error capacity if and only if there exists at least two
non-adjacent input quantum states p; and p. These two non-
adjacent quantum states make distinguishable the two, n-length
quantum codewords at the output of quantum channel A/, and
these input codewords will be called as non-adjacent quantum
codewords. The joint measurement of the quantum states of an
output codeword is necessary and sufficient to distinguish the
input codewords with zero-error. Necessary, because the joint
measurement is required to distinguish orthogonal general (i.e.,
non zero-error code) tensor product states [66]. Sufficient,
because the non-adjacent quantum states have orthogonal
supports at the output of the noisy quantum channel, i.e.,
Tr(pipj) = 0 [316]. (The support of a matrix A is the orthog-
onal complement of the kernel of the matrix. The kernel of
A is the set of all vectors v, for which Av = 0.) In the joint
measurement, the {M;},i = 1, ..., m projectors are d" x d"
matrices, while if we were to use a single measurement then
the size of these matrices would be d x d.

In Fig. 15 we compared the difference between single and
joint measurement settings for a given n-length quantum code-
word [Yx) = [|¥1) ® [¥2) ® |¥3) -+ ® [¥n)]. In the case
of single measurement Bob measures each of the n quantum
states of the i-th codeword states individually. In case of the
joint measurement Bob waits until he receives the n quantum
states, then measures them together.

(v (i )N (|2 (v2.i])) = 0. (150)
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Next we study the achievable rates for zero error classical
communication over quantum channels.

3) Achievable Zero-Error Rates in Quantum Systems:
Theoretically (without making any assumptions about the
physical attributes of the transmission), the classical single-
use zero-error capacity C(()l) (N) of the noisy quantum channel
can be expressed as

Co () = log(K(\), (151)
where K () is the maximum number of different messages
which can be sent over the channel with a single use of N
(or in other words the maximum size of the set of mutually
non-adjacent inputs).

The asymptotic zero-error capacity of the noisy quantum
channel NV can be expressed as

Co(N) = lim 11og(1<(/\/®”)), (152)
n—oo n
where K(N®") is the maximum number of n-length classical
messages that the quantum channel can transmit with zero
error and N'®" denotes the n-uses of the channel.

The Co(N) asymptotic classical zero-error capacity of a
quantum channel is upper bounded by the HSW capacity, that
is,

Ch W) = CoW) < CW), (153)
Next, we study the connection of zero-error quantum codes
and graph theory.

4) Connection With Graph Theory: The problem of find-
ing non-adjacent codewords for the zero-error information
transmission can be rephrased in terms of graph theory. The
adjacent codewords are also called confusable, since these
codewords can generate the same output with a given non-zero
probability. Since we know that two input codewords [y, )
and |Y,) are adjacent if there is a channel output codeword
|Yrx7). which can be resulted by either of these two, that is
Pr[X’|1X;] > 0 and Pr[X’'|X>] > O.

The non-adjacent property of two quantum codewords can
be analyzed by the confusability graph G,, where n denotes
the length of the block code.

Let us take as many vertices as the number of input mes-
sages K, and connect two vertices if these input messages
are adjacent. For example, using the quantum version of the
famous pentagon graph we show how the classical zero-
error capacity Co(N) of the quantum channel A changes
if we use block codes of length n=1 and n=2. In the pen-
tagon graph an input codeword from the set of non-orthogonal
qubits {|0), 1), 12),]3), |4)} is connected with two other adja-
cent input codewords, and the number of total codewords is
5 [307].

The G confusability graph of the pentagon structure for
block codes of length n = 1 is shown in Fig. 16. The vertices
of the graph are the possible input messages, where K = 5.
The adjacent input messages are connected by a line. The non-
adjacent inputs |2) and |4) are denoted by gray circles, and
there is no connection between these two input codewords.
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Fig. 16. The confusability graph of a zero-error code for one channel use.
The two possible non-adjacent codewords are denoted by the large shaded
circles.
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Fig. 17. The graph of a zero-error code for two channel uses of a quantum
channel. The possible zero-error codewords are depicted by the thick lines
and dashed circles.

For the block codes of length n = 1, the maximal

transmittable classical information with zero error is

Co(N) =log(2) =1, (154)
since only two non-adjacent vertices can be found in the graph.
We note, other possible codeword combinations also can be
used to realize the zero-error transmission, in comparison with
the confusability graph, for example |1) and |3) also non-
adjacent, etc. On the other hand, the maximum number of
non-adjacent vertices (two, in this case) cannot be exceeded,
thus Co(N') = 1 remains in all other possible cases, too.

Let assume that we use n = 2 length of block codes. First,
let us see how the graph changes. The non-adjacent inputs
are denoted by the large gray shaded circles. The connections
between the possible codewords (which can be used as a block
code) are denoted by the thick line and the dashed circle. The
confusability graph G, for n = 2 length of block codes is
shown in Fig. 17. The two half-circles together on the left
and right sides represent one circle and the two half circles
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Fig. 18.
The number of non-adjacent inputs is two.

at the top and bottom of the figure also represent one circle;
thus there are five dashed circles in the figure.

It can be seen that the complexity of the structure of the
graph has changed, although we have made only a small mod-
ification: we increased the lengths of the block codes from
n = 1 ton = 2. The five two-length codewords and zero-
error quantum block codes which can realize the zero-error
transmission can be defined using the computational basis
{10y, |1}, 12), 13), |4)}. The classical zero-error capacity which
can be achieved by n = 2 length block codes is

CO(N®2) - %log(S) = 1.1609. (155)

From an engineering point of view this result means, that for
the pentagon graph, the maximum rate at which classical infor-
mation can be transmitted over a noisy quantum channel N
with a zero error probability, can be achieved with quantum
block code length of two.

For the classical zero-error capacities of some typical
quantum channels see Section V.

G. Entanglement-Assisted Classical Zero-Error Capacity

In the previous subsection we discussed the main proper-
ties of zero-error capacity using product input states. Now, we
add the entanglement to the picture. Here we discuss how the
encoding and the decoding setting will change if we bring
entanglement to the system and how it affects the classical
zero-error capacity of a quantum channel.

If entanglement allowed between the communicating par-
ties then the single-use and asymptotic entanglement-assisted
classical zero-error capacities are defined as

iV W) = log(KEW)) (156)
and
Co(N) = lim l1og(KE(/\f®”)). (157)
n—oon
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(b)

The hypergraph and the confusability graph of a given input system with four inputs. The hyperedges of the hypergraph are labeled by the output.

where K (N®") is the maximum number of n-length mutually
non-adjacent classical messages that the quantum channel can
transmit with zero error using shared entanglement.

Before we start to discuss the properties of the
entanglement-assisted zero-error quantum communication, we
introduce a new type of graph, called the hypergraph Gy. The
hypergraph is very similar to our previously shown confus-
ability graph G,,. The hypergraph contains a set of vertices and
hyperedges. The vertices represent the inputs of the quantum
channel \V, while the hyperedges contain all the channel inputs
which could cause the same channel output with non-zero
probability.

We will use some new terms from graph theory in this
subsection; hence we briefly summarize these definitions:

1) maximum independent set of G,: the maximum number

of non-adjacent inputs (K),

2) cligue of G,: ki, the set of possible inputs of a given out-
put in a confusability graph (which inputs could result
in the same output with non-zero probability),

3) complete graph: if all the vertices are connected with
one another in the graph; in this case there are no
non-adjacent inputs; i.e., the channel has no zero-error
capacity.

In Fig. 18(a) we show a hypergraph Gy, where the inputs
of the channel are the vertices and the hyperedges represent
the channel outputs. Two inputs are non-adjacent if they are
in a different loop. The two non-adjacent inputs are depicted
by the greater grey shaded vertices. In Fig. 18(b) we give the
confusability graph G, for a single channel use (n = 1), for
the same input set. The cliques in the G, confusability graph
are depicted by «;.

Both the hypergraph and the confusability graph can be used
to determine the non-adjacent inputs. However, if the num-
ber of inputs starts to increase, the number of hyperedges in
the hypergraph will be significantly lower than the number
of edges in the confusability graph of the same system. In
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short, the entanglement-assisted zero-error quantum commu-
nication protocol works as follows according to Fig. 19 [122].
Before the communication, Alice and Bob share entangle-
ment between themselves. The d-dimensional shared system
between Alice and Bob will be denoted by pap = |Pag)(Pasl,
where

1 d—1

|Pan) = 7= ;0 1) ali) 5 (158)
is a rank-d maximally entangled qudit state (also called as
edit). If Alice would like to send a message ¢ € {1, ..., K},
where K is the number of messages, to Bob, she has to measure
her half of the entangled system using a complete orthogonal
basis B, = {|¥v)}, X' € Ky, where x’ is a vertice in the hyper-
graph Gy from clique «,. The orthonormal representation of a
graph is a map: the vertice x’ represents the unit vector |.y,)
such that if xand x’' are adjacent then (Y| Yv) = 0 (i.e., they
are orthogonal in the orthonormal representation) and iy is
the clique corresponding to message ¢ in the hypergraph Gp.
The hypergraph has K cliques of size d, {«1, ..., kx} (i.e., each
message g € {l,..., K} is represented by a d-size clique in
the hypergraph Gy.) After the measurement, Bob’s state will
collapse to |)*. Bob will measure his state in B, = {|)} to
get the final state |/)*. Bob’s output is denoted by y. Bob’s
possible states are determined by those vertices x/, for which
p(y|x') > 0, and these adjacent states are mutually orthogonal,
i.e., for any two x| and x}, (¥ [y, ) = 0. Finally, Alice makes
her measurement using B; = {|{v)}, then Bob measures his
state [y,)* in B, = {|¥y)} to produce | )*.

In order to make the above explanations more plausible, let
us provide an example. Supposed Alice’s set contains K = 6
codewords and she shares a rank-four (i.e., d = 4) maximally
entangled qudit state with Bob

3
1 :
Dpp = _ﬁ iéo [9) alD) B, (159)

entangled system

N

Classical channel

Vel
l
| yug 8, ~{lv.)}

Measurement basis
*
‘ ‘r// ’ >
X

qe{l,...,K}

Output message

The steps of the entanglement-assisted zero-error quantum communication protocol.

however, in the general case d can be chosen as large as Alice
and Bob would like to use. Alice measures her system from
the maximally entangled state, and she chooses a basis among
the K possible states, according to which message g she wants
to send Bob. Alice’s measurement outcome is depicted by x,
which is a random value. Alice sends g and x to the classical
channel N. In the next phase, Bob performs a projective mea-
surement to decide which x value was made to the classical
channel by Alice. After Bob has determined it, he can answer
which one of the possible K messages had been sent by Alice
with the help of the maximally entangled system. Alice makes
her measurement on her side using one of the six possible
bases B, = {|x)} on her half of the state psap. Her system
collapses to |y,) € B,, while Bob’s system collapses to |1/,)*,
conditioned on x. Alice makes x to the classical channel N;
Bob will receive classical message y. From the channel output
y = N(x), where N is the classical channel between Alice and
Bob, Bob can determine the mutually adjacent inputs (i.e.,
those inputs which could produce the given output). If Bob
makes a measurement in basis B; = {[/,)}, then he will get
[ )*, where these states for a given set of X' correspond-
ing to possible x are orthogonal states, so he can determine
x and the original message g. The channel output gives Bob
the information that some set of mutually adjacent inputs were
used on Alice’s side. On his half of the entangled system, the
states will be mutually orthogonal. A measurement on these
mutually orthogonal states will determine Bob’s state and he
can tell Alice’s input with certainty.
Using this protocol, the number of mutually non-adjacent
input messages is
KE > 6, (160)
while if Alice and Bob would like to communicate with
zero-error but without shared entanglement, then K = 5. As
follows, for the single-use classical zero-error capacities we
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get

clV =log(5) (161)

and

¢V = log(KF) = log(6), (162)

while for the asymptotic entanglement-assisted classical zero-
error capacity,

C§ > log(K*) = log(6). (163)

According to Alice’s KX = 6 messages, the hypergraph can be
partitioned into six cliques of size d= 4. The adjacent vertices
are denoted by a common loop. The overall system contains
6 x 4 = 24 basis vectors. These vectors are grouped into
KE = 6 orthogonal bases. Two input vectors are connected in
the graph if they are adjacent vectors; i.e., they can produce
the same output. The hypergraph Gy of this system is shown
in Fig. 20. The mutually non-adjacent inputs are denoted
by the great shaded circles. An important property of the
entanglement-assisted classical zero-error capacity is that the
number of maximally transmittable messages is not equal to
the number of non-adjacent inputs. While the hypergraph has
five independent vertices, the maximally transmittable mes-
sages are greater than or equal to six. The confusability graph
of this system for a single use of quantum channel N would
consist of 6 x 4 x 9 = 216 connections, while the hypergraph
has a significantly lower number (6 x 6 = 36) of hyperedges.
The adjacent vertices are depicted by the loops connected by
the thick lines. The six possible messages are denoted by the
six, four dimensional (i.e., each contains four vertices) cliques
{«1, ..., kk}. The cliques (dashed circles) show the set of those
input messages which could result in the same output with a
given probability p > 0.

We note, the cliques are defined in the G, confusabil-
ity graph representation, but we also included them on the
hypergraph Gy. The adjacent vertices which share a loop rep-
resent mutually orthogonal input states. For these mutually
orthogonal inputs the output will be the same.

The complete theoretical background of this example, i.e.,
the proof of the fact, that entanglement can increase the asymp-
totic classical zero-error capacity Co(N) of a quantum channel
was described in [122].

We have seen in this subsection that shared entanglement
between Alice and Bob can help to increase the maximally
transmittable classical messages using noisy quantum channels
with zero error probability. According to the Cubitt-Leung-
Matthews-Winter theorem (CLMW theorem) [122] there
exist entanglement-assisted quantum communication protocol
which can send one of K messages with zero error; hence
for the entanglement-assisted asymptotic classical zero-error
capacity

log(K) < Co = lim l1og(1((j\/‘?3’”))
n—oon
<C§= lim llogKE(/\/@”) > log(K®). (164
— n

Entanglement is very useful in zero-error quantum commu-
nication, since with the help of entanglement the maximum
amount of perfectly transmittable information can be achieved.
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Fig. 20. The hypergraph of an entanglement-assisted zero-error quantum
code. The non-adjacent inputs are depicted by the great shaded circles. The
adjacent vertices are depicted by loops connected by the thick lines.

As was show by Leung er al. [290], using special input
codewords (based on a special Pauli graph), entanglement
can help to increase the classical zero-error capacity to the
maximum achievable HSW capacity; that is, there exists a spe-
cial combination for which the entanglement-assisted classical
Zero-error capacity Cg W) is

Cy\) = log(9), (165)
while the classical zero-error capacity is
Co(N) = log(7), (166)

i.e., with the help of entanglement-assistance the number of
possible input messages (K) can be increased.

Another important discovery is that for this special input
system the entanglement-assisted classical zero-error capac-
ity, COE (N), is equal to the maximal transmittable classical
information over A that is

CE(N) = C(N) = log(9). (167)

In the asymptotic setting the maximum achievable capacities
as functions of block code length are summarized in Fig. 21.
The maximal amount of transmittable classical information
which can be sent through a noisy quantum channel N without
error increases with the length of the input block code, and
with the help of EPR input states (for this special Pauli graph-
based code) the classical HSW capacity can be reached, which
is also the upper bound of the classical zero-error capacity.

H. Related Work

The classical world with the classical communication chan-
nel can be viewed as a special case of a quantum channel,
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Fig. 21. The asymptotic classical zero-error capacities without entanglement

and with entanglement assistance using a special Pauli graph.

since classical information can be encoded into the qubits—
just as into classical bits. Classical information can also be
encoded in quantum states. In this section we summarize the
most important works related to the classical capacity of the
quantum channels.

a) The early days: At the end of the twentieth cen-
tury, the capacities of a quantum channel were still an open
problem in quantum information theory. Before the several,
and rather different, capacities of the quantum channel were
recognized, the ‘academic’ opinion was that quantum channels
could be used only for the transmission of classical informa-
tion encoded in the form of quantum states [228], [229]. As
has been found later, the classical capacity of the quantum
channel can be measured in several different settings. It was
shown that the classical capacity depends on whether the input
states are entangled or not, or whether the output is measured
by single or by joint measurement setting [63], [161], [271].
In a specified manner, the classical capacity has been defined
for measuring the maximal asymptotic rate at which classical
information can be transmitted through the quantum channel,
with an arbitrarily high reliability [45], [456].

The first proposed capacity measure was the classical
capacity of a quantum channel—denoted by C(/N')—measures
the maximum transmittable classical information—in the form
of product or entangled quantum states. The idea of trans-
mitting classical information through a quantum channel was
formulated in the 1970s. The Holevo bound was introduced
by Holevo in 1973, however the theorem which describes the
classical capacity of the quantum channel in an explicit way
appeared just aboutthree decades later, in the mid 1990s.

The maximal accessible classical information from a quan-
tum source firstly has been characterized by Levitin [291] and
Holevo et al. [228], [229] in the early days, which were some
of the first and most important results in quantum information
theory regarding the classical capacity of quantum channels.
More information about the connection between the Holevo
bound and the accessible information (which quantifies the
information of the receiver after the measurement) can be
found in [228] and [229]. Later this result was developed and
generalized by Holevo, Schumacher, and Westmoreland, and
became known in quantum information theory as the HSW
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channel capacity [230], [456]. The HSW theorem uses the
Holevo information to describe the amount of classical infor-
mation which can be transmitted through a noisy quantum
channel, and it makes possible to apply different measurement
constructions on the sender and on the receiver’s side. The
proofs of the HSW theorem, such as the direct coding theo-
rem and the converse theorem, with the complete mathematical
background can be found in the work of Holevo [230] and
of Schumacher and Westmoreland [456]. About the efficiency
problems of implementation and construction of joint POVM
(Positive Operator Valued Measure) measurement setting, as
it was shown in the same works of the authors.

One of the most important result on the mechanism of
the encoding of quantum information into physical parti-
cles was discovered by Glauber in the very early years of
quantum information processing [181] and a great summa-
rize from more than four-decades later [180]. Also from this
era and field, important results on the encoding and decoding
processes of quantum information were shown in the works of
Gordon [183] and Helstrom [224]. About detection of quantum
information and the process of measurement see [155], or the
work of Helstrom from 1976 [224], or Herbert’s work from
1982 [225]. Before their results, Levitin published a paper
about the quantum measure of the amount of information in
1969 [291], which was a very important basis for further work.

b) Classical capacity of a quantum channel: The amount
of classical information which can be transmitted through a
noisy quantum channel in a reliable form with product input
states, using the quantum channel many times, was deter-
mined by the HSW theorem [230], [456]. This coding theorem
is an analogue to Shannon’s classical channel coding the-
orem, however it extends its possibilities. The inventors of
the HSW theorem—Holevo, Schumacher and Westmoreland—
proved and concluded independently the same result. Holevo’s
result from 1998 can be found in [230], Schumacher and
Westmoreland’s results can be found in [456]. They, with
Hausladen et al. in 1995 [212], and in 1996 [213], have also
confirmed that the maximal classical information which can be
transmitted via pure quantum states is bounded by the Holevo
information.

A different approach to the proof of the HSW theorem
was presented by Nielsen and Chuang in 2000 [393]. An
interesting connection between the mathematical background
of the compressibility of quantum states and the HSW theo-
rem was shown by Devetak and Winter in 2003 [132], who
proved that a part of the mathematical background constructed
for the compression of quantum information can be used to
prove the HSW theorem. Another interesting approach for
proving the HSW theorem and bounds on the error probability
was presented by Hayashi and Nagaoka in 2003 [215]. The
additivity property of qubit channels which require four inputs
to achieve capacity was analyzed by Hayashi et al. [216].

Very important connections regarding the transmission of
classical information over noisy quantum channels was derived
in the work of Schumacher and Westmoreland in 1997 [456],
and two years later, a very important work was published
on the relevance of optimal signal ensembles in the classi-
cal capacity of a noisy quantum channels [460]. (We also
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suggest their work on the characterizations of classical and
quantum communication processes [461].) The classical infor-
mation capacity of a class of most important practical quan-
tum channels (Gaussian quantum channels) was shown by
Wolf and Eisert [532] or the work of Lupo ef al. [309]. The
generalized minimal output entropy conjecture for Gaussian
channels was studied by Giovannetti et al. [178].

About the role of feedback in quantum communication,
we suggest the works of Bowen [78] and 2005 [79], the
article of Bowen and Nagarajan [80], and the work of
Harrow and Lo [210]. The works of Bowen provide a great
introduction to the role of quantum feedback on the classical
capacity of the quantum channel, it was still an open question
before. As he concluded, the classical capacity of a quantum
channel using quantum feedback is equal to the entanglement-
assisted classical capacity, the proof was given in Bowen and
Nagarajan’s paper [80].

We have also seen that the noise of a quantum channel can
be viewed as a result of the entanglement between the out-
put and the reference system called the purification state (see
purification in (77)). Some information leaks to the environ-
ment, and to the purification state, which purification state
cannot be accessed. As is implicitly woven into this sec-
tion, a noisy quantum channel can be viewed as a special
case of an ideal quantum communication channel. The prop-
erties of the general quantum channel model and the quantum
mutual information function can be found in the work of
Adami and Cerf [4].

A great analysis of completely-positive trace preserving
(CPTP) maps was published by Ruskai et al. [438]. Further
information on the classical capacity of a quantum channel
can be found in [64], [230], [271], and [393].

c) Entanglement-assisted classical capacity: In the early
1970s, it was also established that the classical capacity of a
quantum channel can be higher with shared entanglement—
this capacity is known as the entanglement-assisted classical
capacity of a quantum channel, which was completely defined
by Bennett et al. just in 1999 [65], and is denoted by Cg(N).
The preliminaries of the definition of this quantity were laid
down by Bennett and Wiesner in 1992 [57]. Later, in 2002
Holevo published a review paper about the entanglement-
assisted classical capacity of a quantum channel [227].

Entanglement-assisted classical communication requires a
super-dense protocol-like encoding and decoding strategy [53].
About the classical capacity of a noiseless quantum chan-
nel assisted by noisy entanglement, an interesting paper was
published by Horodecki et al. in 2001 [232]. In the same
work the authors have defined the ‘noisy version’ of the
well-known superdense coding protocol, which originally was
defined by Bennett and Wiesner in 1992 [57] for ideal (hence
noiseless) quantum channels. As can be found in the works
of Bennett et al. from 1999 [65] and from 2002 [53], the
entanglement-assisted classical capacity opened the possi-
bility to transmit more classical information using shared
entanglement (in case of single-use capacity). As can be
checked by the reader, the treatment of entanglement-assisted
classical capacity is based on the working mechanism of the
well-known superdense coding protocol—however, classical
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entanglement-assisted classical capacity used a noisy quantum
channel instead of an ideal one.

Bennett, in two papers from 1999 [65] and 2002 [53]
showed that the quantum mutual information function (see
Adami and Cerf’s work [4]) can be used to describe the clas-
sical entanglement-assisted capacity of the quantum channel,
i.e., the maximized quantum mutual information of a quan-
tum channel and the entanglement-assisted classical capacity
are equal. The connection between the quantum mutual infor-
mation and the entanglement-assisted capacity can be found
in the works of Bennett et al. [53] and [65]. In the latter
work, the formula of the quantum-version of the well-known
classical Shannon formula was generalized for the classical
capacity of the quantum channel. In these two papers the
authors also proved that the entanglement-assisted classical
capacity is an upper bound of the HSW channel capacity.
Holevo gave an explicit upper bound on the classical infor-
mation which can be transmitted through a noisy quantum
channel, it is known as the Holevo-bound. The Holevo-bound
states that the most classical information which can be trans-
mitted in a qubit (i.e., two level quantum system) through
a noiseless quantum channel in a reliable form, is one bit.
However, as was shown later by Bennett et al. in 1999 [65], the
picture changes, if the parties use shared entanglement (known
as the Bennett-Shor-Smolin-Thapliyal, or the BSST- theorem).
As follows, the BSST-theorem gives a closer approximation
to the maximal transmittable classical information (i.e., to the
‘single-use’ capacity) over quantum channels, hence it can be
viewed as the true ‘quantum version’ of the well known clas-
sical Shannon capacity formula (since it iS a maximization
formula), instead of the ‘non entanglement-assisted’ classical
capacity. Moreover, the inventors of the BSST-theorem have
also found a very important property of the entanglement-
assisted classical capacity: its single-use version is equal to
the asymptotic version, which implies the fact that no reg-
ularization is needed. (As we have seen in this section, we
are not so lucky in the case of general classical and private
classical capacities. As we will show in Section IV, we are
‘unlucky’ in the case of quantum capacity, too.) They have
also found that no classical feedback channel can increase the
entanglement-assisted classical capacity of a quantum channel,
and this is also true for the classical (i.e., the not entanglement-
assisted one) capacity of a quantum channel. These results
were also confirmed by Holevo in 2002 [227]. It was a very
important discovery in the history of the classical capacity
of the quantum channel, and due to the BSST-theorem, the
analogue with classical Shannon’s formula has been finally
completed. Later, it was discovered that in special cases the
entanglement-assisted capacity of a quantum channel can be
improved [209], [410]. The Holevo information can be attained
even with pure input states, and the concavity of the Holevo
information also shown. The concavity can be used to compute
the classical HSW capacity of quantum channels, since the
maximum of the transmittable information can be computed
by a local maximum among the input states. Moreover, as was
shown by Bennett et al. in 2002, the concavity holds for the
entanglement-assisted classical capacity, too [53], [56]—the
concavity, along with the non-necessity of any computation of
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an asymptotic formula, and the use of classical feedback chan-
nels to improve the capacity, makes the entanglement-assisted
classical capacity the most generalized classical capacity—
and it has the same role as Shannon’s formula in classical
information theory [56]. The fact that the classical feed-
back channel does not increase the classical capacity and the
entanglement-assisted classical capacity of the quantum chan-
nel, follows from the work of Bennett et al., and the proof
of the BSST-theorem [53]. Wang and Renner’s work [513]
introduces the reader to the connection between the single-use
classical capacity and hypothesis testing.

d) The private classical capacity: The third classical
capacity of the quantum channel is the private classical capac-
ity, denoted by P(N). The concept of private classical capacity
was introduced by Devetak and Winter in 2003 [132], and one
year later by Cai et al. in 2004 [97]. Private classical capacity
measures classical information, and it is always at least as large
as the single-use quantum capacity (or the quantum coherent
information) of any quantum channel. As shown in [136], for
a degradable quantum channel the coherent information (see
Section IV) is additive [136],—however for a general quantum
channel these statements do not hold. The additivity of private
information would also imply the fact that shared entangle-
ment cannot help to enhance the private classical capacity for
degradable quantum channels. The complete proof of the pri-
vate classical capacity of the quantum channel was made by
Devetak and Winter [132], who also cleared up the connection
between private classical capacity and the quantum capacity.
As was shown by Smith [487], the private classical capac-
ity of a quantum channel is additive for degradable quantum
channels, and closely related to the quantum capacity of a
quantum channel (moreover, Smith has shown that the private
classical capacity is equal to the quantum coherent informa-
tion for degradable channels), since in both cases we have to
‘protect’ the quantum states: in the case of private classical
capacity the enemy is called Eve (the eavesdropper), while
in the latter case the name of the enemy is ‘environment.’
As was shown in [132], the eavesdropper in private coding
acts as the environment in quantum coding of the quantum
state, and vice-versa. This ‘gateway’ or ‘dictionary’ between
the classical capacity and the quantum capacity of the quan-
tum channel was also used by Devetak and Winter [132], by
Devetak and Shor [136] and by Smith [487], using a different
interpretation.

About the coherent communication with continuous quan-
tum variables over the quantum channels a work was published
by Wilde et al. [520], [521]. On the noisy processing of pri-
vate quantum states, see the work of Renes and Smith [435].
A further application of private classical information in com-
municating over adversarial quantum channels was shown by
Leung and Smith [288]. Further information about the private
classical capacity can be found in [82], [132], [135], [292],
and [487]-[489]. Another important work on non-additive
quantum codes was shown by Smolin er al. [492]. A great
summary on the main results of Quantum Shannon Theory was
published by Wilde [522]. For further information on quantum
channel capacities and advanced quantum communications see
the book of Imre and Gyongyosi [242], and also [198]. We also
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suggest the great work of Bennett ef al. on the quantum reverse
Shannon theorem [56]. A work on the connection of secure
communication and Gaussian-state quantum Illumination was
published by Shapiro [467].

e) The zero-error classical capacity: The properties of
zero-error communication systems are discussed in Shannon’s
famous paper on the zero-error capacity of a noisy chan-
nel [464], in the work of Korner and Orlitsky on zero-error
information theory [280], and in the work of Bollobds on mod-
ern graph theory [76]. We also suggest the famous proof of
Lovasz on the Shannon capacity of a graph [307]. The proof
of the classical zero-error capacity of quantum channel can be
found in Medeiros’s work [316]. Here, he has shown, that the
classical zero-error capacity of the quantum channel is also
bounded above by the classical HSW capacity. The impor-
tant definitions of quantum zero-error communication and the
characterization of quantum states for the zero-error capacity
were given by Medeiros et al., [317]. On the complexity of
computation of zero-error capacity of quantum channels see
the work of Beigi and Shor [49]. The fact, that the zero-error
classical capacity of the quantum channel can be increased
with entanglement, was shown by Cubitt e al. in 2010 [122].
The role of entanglement in the asymptotic rate of zero-error
classical communication over quantum channels was shown
by Leung et al. in 2010 [290]. For further information about
the theoretical background of entanglement-assisted zero-error
quantum communication see [122] and for the properties of
entanglement, the proof of the Bell-Kochen-Specker theorem
in [50] and [277].

IV. THE QUANTUM CAPACITY OF A QUANTUM CHANNEL

Having discussed the general model of quantum channels
and introduced various classical capacities in this section
we focus on the quantum information transfer over quantum
channels. Two new quantities will be explained. By means
of fidelity F one can describe the differences between two
quantum states, e.g., between the input and output states
of a quantum channel. On the other hand quantum coher-
ent information represents the quantum information loss to
the environment during quantum communication similarly as
mutual information did for a classical channel N. Exploiting
this latter quantity we can define the maximal quantum infor-
mation transmission rate through quantum channels — the
quantum capacity Q(N') analogously to Shannon’s noisy chan-
nel theorem. As we have seen Section III, the classical capacity
of a quantum channel is described by the maximum of quan-
tum mutual information and the Holevo information. The
quantum capacity of the quantum channels is described by the
maximum of guantum coherent information. The concept of
quantum coherent information plays a fundamental role in the
computation of the LSD (Lloyd-Shor-Devetak) channel capac-
ity [132], [299], [473] which measures the asymptotic quantum
capacity of the quantum capacity in general.

This section is organized as follows. First, we discuss the
transmission of quantum information over a nosy quantum
channel. Next, we define the quantum coherent information
and overview its main properties. Finally the formula for the
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qubits are passed through the independent instances of the quantum channel.

measure of maximal transmittable quantum information over
a quantum channel will be introduced. The description of
the most relevant works can be found in the Related Work
subsection.

A. Preserving Quantum Information

The encoding and decoding quantum information have
many similarities to the classical case, however, there exist
some fundamental differences, as we will reveal in this sec-
tion. In the case of quantum communication, the source
is a quantum information source and the quantum infor-
mation is encoded into quantum states. When transmitting
quantum information, the information is encoded into non-
orthogonal superposed or entangled quantum states chosen
from the ensemble {p} according to a given probability {pi}.
If the states {px} are pure and mutually orthogonal, we talk
about classical information; that is, in this case the quantum
information reduces to classical.

Formulating the process more precisely (see Fig. 22) the
encoding and the decoding mathematically can be described
by the operators £ and D realized on the blocks of quantum
states. The input of the encoder consists of m pure quantum
states, and the encoder maps the m quantum states into the
joint state of n intermediate systems. Each of them is sent
through an independent instance of the quantum channel A
and decoded by the decoder D, which results in m quantum
states again. The output of the decoder D is typically mixed,
according to the noise of the quantum channel. The rate of the
code is equal to m/n.

Theoretically quantum states have to preserve their origi-
nal superposition during the whole transmission, without the
disturbance of their actual properties. Practically, quantum
channels are entangled with the environment which results in
mixed states at the output. Mixed states are classical prob-
ability weighted sum of pure states where these probabilities
appear due to the interaction with the environment (i.e., noise).

Transmission of quantum information through the quantum channel. The encoder produces a joint state of n intermediate systems. The encoded

Therefore, we introduce a new quantity, which is able to
describe the quality of the transmission of the superposed
states through the quantum channel. The fidelity (see the
Appendix) for two pure quantum states is defined as

F(lo), 1Y) = el

The fidelity of quantum states can describe the relation of
Alice pure channel input state |) and the received mixed
quantum system o = Y o pipi = o Pil¥i) (¥l at the
channel output as

(168)

n—1
F(p).0) = (Wloly) =Y pillwlyal>. (169)
i=0

Fidelity can also be defined for mixed states o and p

Fp, o) = [Tr(dﬁpﬁ)]z: Zp[Tr(W)]z
(170)

Let us assume that we have a quantum system denoted by A
and a reference system P. Initially, the quantum system A and
the reference system P are in a pure entangled state, denoted
by |™4). The density matrix p4 of system A can be expressed
by a partial trace over P, as follows

o= (3797

The entanglement between the initial quantum system and the
reference state is illustrated in Fig. 23.

In the next step, pa will be transmitted through the quan-
tum channel N, while the reference state P is isolated from
the environment (see Section II), hence it has not been not
modified during the transmission. After the quantum system
P4 1s transmitted through the quantum channel, the final state
will be

(171)

oPB = (IP ®NA)(‘ I//PA><wPAD’ (172)
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Fig. 23. [Initially, the quantum system and the reference system are in a pure
entangled state.

Prs

Fig. 24.  After system A is sent through the quantum channel N, both the
quantum system A and the entanglement between A and P are affected.

where T is the identity transformation realized on the refer-
ence system P. After the system A is sent through the quantum
channel, both the quantum system A and the entanglement
between A and P are affected, as we illustrated in Fig. 24.
The resultant output system is denoted by B.

Now, we can study the preserved entanglement between the
two systems A and P. Entanglement fidelity Fr measures the
fidelity between the initial pure system |/4) and the mixed
output quantum system ppp as follows

Fg = Fg(pa, N) = F(‘ WPA>, ,OPB)
- o) ()

It is important to highlight the fact that Fr depends on |y4),
i.e., on the reference system. The sender’s goal is to transmit
quantum information, i.e., to preserve entanglement between
A and the inaccessible reference system P. Alice can apply
many independent channel uses of the same noisy quantum
channel N\ to transmit the quantum information. Similar to
encoding classical information into the quantum states, the
quantum messages can be transmitted over copies of a quan-
tum channel. In this case, we have n copies of a quantum
channel V.

B. Quantum Coherent Information

In case of the classical capacity C(N'), the correlation
between the input and the output is measured by the Holevo
information and the quantum mutual information function. In
case of the quantum capacity Q(N), we have a completely dif-
ferent correlation measure with completely different behaviors:
it is called the quantum coherent information. There is a very
important distinction between the maximized quantum mutual
information and maximized quantum coherent information: the
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maximized quantum mutual information of a quantum chan-
nel N is always additive (see Section II), but the quantum
coherent information is not.

The Sk entropy exchange between the initial system PA and
the output system PB is defined as follows. The entropy that
is acquired by PA when input system A is transmitted through
the quantum channel A/ can be expressed with the help of the
von Neumann entropy function as follows

Se = Se(pa:N(pa)) = S(pps), (174)

or in other words the von Neumann entropy of the output
system ppp. As can be observed, the value of entropy exchange
depends on p4 and A and is independent from the purification
system P. Now, we introduce the environment state £, and we
will describe the map of the quantum channel as a unitary
transformation. The environment is initially in a pure state
|0). After the unitary transformation Us_, pg has been applied
to the initial system A|0), it becomes

Ua—e(Al0)) = BE. (175)

From the entropy of the final state of the environment pg,
the entropy exchange Sg can be expressed as

S(ppe) = S(pE) = SE. (176)

Sg measures the increase of entropy of the environment E, or
with other words, the entanglement between PA and E, after
the unitary transformation Us_.pr had been applied to the
system. This entropy exchange Sg is analogous to the clas-
sical conditional entropy; however in this case we talk about
quantum instead of classical information.

Using the notations of Fig. 24, the quantum coherent
information can be expressed as

Leon(pa:N (pa)) = SN (pa)) — SE(pa:N(pa))
= S(pB) — S(ppB)
= S(pB) — S(pE),

where Sg(pa:N'(pa)) is the entropy exchange as defined
in (174).

Using the definition of quantum coherent information (177),
it can be verified that quantum coherent information takes its
maximum if systems A and P are maximally entangled and
the quantum channel N is completely noiseless. This can be
presented easily

(177)

S(pB) = S(pa). 178)
since the input state p4 is maximally mixed, and
S(ppp) =0, 179)

because [y™) (| will remain pure after the state has been
transmitted through the ideal quantum channel. If the input
system |y™4) (¥ is not a maximally entangled state, or the
quantum channel N is not ideal, then the value of quantum
coherent information will decrease.

Considering another expressive picture, quantum coherent
information measures the quantum capacity as the difference
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The conceptional meaning of quantum coherent information. The unitary transformation represents the channel and the environment. The first

receiver is Bob, the second is the environment. The state of the environment belonging to the unitary transformation is represented by dashed line. The outputs

can be computed as the partial traces of the joint system.

between the von Neumann entropies of two channel output
states. The first state is received by Bob, while the second one
is received by a ‘second receiver’ - called the environment.
If we express the transformation of a quantum channel as the
partial trace of the overall system, then

N(on) = e (Upa "), (180)

and similarly, for the ‘effect’ of the environment E, we will get

Epa) = pe = Trg(UpaU"). (181)
The results of (180) and (181) are summarized in Fig. 25.

It can be concluded that the quantum coherent informa-
tion measures the capability of transmission of entanglement
over a quantum channel. For the exact value of quantum
coherent information of some important quantum channels see
Section V.

C. Connection Between Classical and Quantum
Information

As it has been shown by Schumacher and
Westmoreland [450], the [I.;, quantum coherent infor-
mation also can be expressed with the help of Holevo
information, as follows

Leon(pa:N (pa)) = (Xap — Xap), (182)
where
Xap = SWNag(pap)) — Y _piSNag(p))  (183)
and
Xag = SNae(par) — Y _piSWNag(p) — (184)

measure the Holevo quantities between Alice and Bob, and
between Alice and environment E, where pap = Zi pipi and
PAE = Zi pipi are the average states. The definition of (182)
also draws a very important connection: the amount of trans-
mittable quantum information can be derived by the Holevo
information, which measures classical information.

As follows, the single-use quantum capacity Q' (N) can
be expressed as

OV(N) = max (Xap — Xap)
allp;, pi

= max s(NAB (Zm(m))) — > piSNag(p)
n i=1 i=1
- S (NAE (Z Pi(Pi))) + ZPiS(NAE(Pi))»
i=1 i=1
(185)

where A (p;) represents the i-th output density matrix obtained
from the quantum channel input density matrix p;.

The asymptotic quantum capacity Q(N) can be
expressed by
1
OW) = lim -0 (NV®")
n—-oon
1
= lim — max Icoh(pA:N(Xm(PA))
n—00 n allp;,p;
1
= lim — max (Xap — Xap). (186)

n—00 n allp;, p;

The quantum capacity Q(N) of a quantum channel A can also
be expressed by Xup, the Holevo quantity of Bob’s output and
by X4g, the information leaked to the environment during the
transmission.

1) Quantum Coherent Information and Quantum Mutual
Information: Finally let us make an interesting comparison
between quantum coherent information and quantum mutual
information. For classical information transmission, the guan-
tum mutual information can be expressed according to Section
I

I(A:B) = S(pa)+S(pB) — S(paB)-

However, in case of quantum coherent information (177) the
term S(p4) vanishes. The channel transformation A modifies
Alice’s original state p4, hence Alice’s original density matrix
cannot be used to express S(p4), after Alice’s qubit has been
sent through the quantum channel N. After the channel has
modified Alice’s quantum state, the initially sent qubit van-
ishes from the system, and we will have a different density

(187)
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matrix, denoted by pp = N(ps). The coherent information
can expressed as S(pp) —S(pap), where pp is the transformed
state of Bob, and S(pap) is the joint von Neumann entropy.
As follows, we will have S(pp) —S(pap), which is equal to
the negative conditional entropy S(A|B), (see Section II) thus

Leon(pa:N (pa)) = S(pB) — S(pap) = —S(A|B).

This important result is summarized in Fig. 26.

As we have seen in this section, there is a very important dif-
ference between the maximized quantum mutual information
and the maximized quantum coherent information of a quan-
tum channel. While the former is always additive, it does not
remain true for the latter. The quantum coherent information
is defined as follows

Icoh(N) = S(pB) - S(,OE),

where pp refers to the output of the quantum channel N, while
ok is the state of the environment. The term S(pp) measures
how much information Bob has, while S(pg) measures how
much information environment has. As follows, the quantum
coherent information /.., (/') measures that ‘how much more
information Bob has than the environment’ about the original
input quantum state.

2) Quantum Coherent Information of an Ideal Channel:
Now, we have arrived at the question of whether the Q(N)
quantum capacity of N, as defined previously by the I,
quantum coherent information, is an appropriate measure to
describe the whole quantum capacity of a quantum channel.
The answer is yes for an ideal channel. If we have a com-
pletely noiseless channel, then channel Nip = I leads us to
coherent information

Q(I) = coh(l)
= S(Nag(p)) — S(NE(10)(0]))
= S(p).

This equation can be used to calculate the Q(N4p) quantum
capacity of a quantum channel (i.e., without maximization)
only when we have a completely noiseless idealistic channel
Nap = I. Tt also implies the following: to achieve the maximal
coherent information for an idealistic quantum channel Np =
I, the input quantum states have to be maximally mixed states
or one half of an EPR state, since in these cases, the von
Neumann entropies will be maximal.

On the other hand, if the environment of the communication
system interacts with the quantum state, the quantum capacity
could vanish, but not the classical capacity of the channel. In
this case, the quantum channel NVyp = I can transmit pure
orthogonal states faithfully, but it cannot transmit the super-
posed or entangled states. Furthermore, if the interaction is
more significant, it could result in an extremely noisy quan-
tum channel for which the C(Nap) classical capacity of Nap
could also vanish.

(188)

(189)

(190)

D. The Lloyd-Shor-Devetak Formula

The concept of quantum coherent information can be used
to express the asymptotic quantum capacity Q(N') of quantum
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channel A called the Lloyd-Shor-Devetak (LSD) capacity as
follows

lim lQ“)(N &)

n—-»oo n

OWN) =

o
= lim — max Ion(pa:N®"(pa))

n—00 n allp;, pi

1
lim — max (S(pp) — S(pE)), (191)

n—00 n allp;, pi

where QD () represents the single-use quantum capacity.

The asymptotic quantum capacity can also be expressed
using the Holevo information, since as we have seen
previously, the quantum coherent information can be derived
from the Holevo information

OW) = lim ! max (Xap — Xap),

n—00 n allp;, p;

(192)

where Xsp denotes the classical information sent from Alice
to Bob, and Xg describes the classical information passed
from Alice to the environment during the transmission.

Quantum coherent information plays a fundamental role
in describing the maximal amount of transmittable quantum
information through a quantum channel AV, and - as the Holevo
quantity has deep relevance in the classical HSW capacity of
a quantum channel - the quantum coherent information will
play a crucial role in the LSD capacity of N.

E. The Assisted Quantum Capacity

There is another important quantum capacity called assisted
capacity which measures the quantum capacity for a channel
pair that contains different channel models — and it will have
relevance in the superactivation of quantum channels [483]. If
we have a quantum channel N, then we can find a symmet-
ric channel A, that results in the following assisted quantum
capacity

OAN) = 0N ® A).

We note, that the symmetric channel has unbounded dimen-
sion in the strongest case, and this quantity cannot be evaluated
in general. O 4(N) makes it possible to realize the superac-
tivation of zero-capacity (in terms of LSD capacity) quantum
channels. For example if we have a zero-capacity Horodecki
channel and a zero-capacity symmetric channel, then their
combination can result in positive joint capacity [483].

(193)

E. The Zero-Error Quantum Capacity

Finally, let us shortly summarize the quantum counter-
part of classical zero-error capacity. In the case of quantum
Zero-error capacities Q(()l)(N ) and Qy(/N), the encoding and
decoding process differs from the classical zero-error capac-
ity: the encoding and decoding are carried out by the coherent
encoder and coherent POVM decoder, whose special tech-
niques make it possible to preserve the quantum information
during the transmission [209], [238].

The single-use and asymptotic quantum zero-error capacity
is defined in a similar way

0L () = log(K(N)), (194)
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5(4)

—

Alice

vanishes

Fig. 26.

and

Qp(N) = lim l1og(1<(N®")), (195)
n—oon

where K(AV®") is the maximum number of n-length mutu-
ally non-adjacent quantum messages that the quantum channel
can transmit with zero error. The quantum zero-error capac-
ity is upper bounded by LSD channel capacity Q(N); that is,
the following relation holds between the quantum zero-error
capacities:

Qo(N) < Q). (196)
G. Relation Between Classical and Quantum Capacities of
Quantum Channels

Before introducing some typical quantum channel maps let
us summarize the main properties of various capacities in con-
junction with a quantum channels. First of all, the quantum
capacity of N cannot exceed the maximal classical capacity
that can be measured with entangled inputs and joint measure-
ment; at least, it is not possible in general. On the other hand,
for some quantum channels, it is conjectured that the maximal
single-use classical capacity - hence the capacity that can be
reached with product inputs and a single measurement setting
- is lower than the quantum capacity for the same quantum
channel.

For all quantum channels

CN) = QN),

where C(N) is the classical capacity of the quantum channel
that can be achieved with entangled input states and a joint
measurement setting.

On the other hand, it is conjectured that for some quantum
channels,

(197)

CN)Y<QWN)

holds as long as the classical capacity C(N) of the quantum
channel is measured by a classical encoder and a single mea-
surement setting. (As we have seen in Section III, the classical
capacities of a quantum channel can be measured in differ-
ent settings, and the strongest version can be achieved with

(198)

1.,,=-S(4|B) I(A4:B)
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S(B) b,

S(Bl4)

The expression of quantum coherent information. The source entropy of Alice’s state vanishes after the state is passed to Bob.

the combination of entangled inputs and joint measurement
decoding.)

The fundamental differences between classical and quantum
capacities are summarized in Table I.

It can be concluded from the table that in case of a quantum
communication channel we have to count with so many capac-
ities. Each of these capacities is based on different correlation
measures: the classical correlation between the input and the
output is measured by the quantum mutual information and the
Holevo information. The private classical capacity is measured
by the private information, which is the maximization of the
difference of two quantum mutual information functions. For
entanglement assisted capacity the correlation between input
and output is also measured by the maximized quantum mutual
information, however in this case we do not have to compute
the asymptotic version to get the true capacity. Finally, the
quantum correlation between the input and output is measured
by the quantum coherent information.

H. Related Work

In this section we summarize the most important works
regarding on the quantum capacity of the quantum channels.

The quantum capacity is one of the most important result of
quantum information theory. The classical capacity of quan-
tum channels was discovered in early years, in the beginning of
the 1970s, and the researchers from this era —such as Holevo
and Levitin—suggested that physical particles can encode only
classical information [228], [229], [291]. The first step in the
encoding of quantum information into a physical particle was
made by Feynman, in his famous work from 1982 [158].
However, the researchers did not see clearly and did not
understand completely the importance of quantum capacity
until the late 1990s. As we have shown in Section III, a
quantum channel can be used to transmit classical informa-
tion and the amount of maximal transmittable information
depends on the properties of the encoder and decoder set-
ting, or whether the input quantum states are mixed or pure.
Up to this point, we have mentioned just the transmission of
classical information through the quantum channel—here we
had broken this picture. The HSW theorem was a very useful
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TABLE I
THE MEASURE OF CLASSICAL AND QUANTUM CAPACITIES

Capacity Type of information

Correlation measure

Capacity formula

Classical Classical information

Holevo information

HSW formula

Private Classical Private information

Private information

Li-Winter-Zou-Guo, Smith-Smolin formula

Entanglement Assisted Classical | Classical information

Quantum mutual information

Bennett-Shor-Smolin-Thapliyal formula

Quantum Quantum information

Quantum Coherent Information

LSD formula

tool to describe the amount of maximal transmittable classical
information over a noisy quantum channel, however we can-
not use it to describe the amount of maximal transmittable
quantum information.

1) Quantum Coherent Information: The computation of
quantum capacity is based on the concept of quantum coherent
information, which measures the ability of a quantum chan-
nel to preserve a quantum state. The definition of quantum
coherent information (in an exact form) was originally intro-
duced by Schumacher and Nielsen in 1996 [455]. This paper
is a very important milestone in the history of the quantum
capacity, since here the authors were firstly shown that the con-
cept of quantum coherent information can be used to measure
the quantum information (hence not the classical informa-
tion) which can be transmitted through a quantum channel.
The first,—but yet not complete—definitions of the quantum
capacity of the quantum channel can be found in Shor’s work
from 1995 [477], in which Shor has introduced a scheme for
reducing decoherence in quantum computer memory, and in
Schumacher’s articles from one year later [454], [455]. Shor’s
paper from 1995 mainly discusses the problem of implemen-
tation of quantum error correcting schemes - the main focus
was not on the exact definition of quantum capacity. Later,
Shor published an extended version with a completed proof in
2002 [473]. To transmit quantum information the parties have
to encode and decode coherently. An interesting engineering
problem is how the receiver could decode quantum states in
superposition without the destruction of the original superposi-
tion [520]. The quantum capacity of a quantum channel finally
was formulated completely by the LSD-theorem, named after
Devetak and Winter [132], Lloyd [299], and Shor [473], and
they have shown that the rate of quantum communication can
be expressed by the quantum coherent information. The LSD-
channel capacity states that the asymptotic quantum capacity
of the quantum channel is greater than (or equal to in some
special cases) the single-use capacity; hence it is not equal to
the quantum coherent information.

More information about the properties of fidelity and about
the connection with other distance measures can be found in
Fuch’s works [162], [164]. An important article regarding the
fidelity of mixed quantum states was published by Jozsa in
1994 [254]. Fidelity also can be measured between entangled
quantum states—a method to compute the fidelity of entangle-
ment was published by Schumacher in 1996 [454]. Here, the
upper bound of the quantum capacity was also mentioned,
in the terms of quantum coherent information. Nielsen in
2002 [386] defined a connection between the different fidelity
measures.

2) Proofs on Quantum Capacity: The exact measure of
quantum capacity was an open question for a long time. The

fact that the quantum capacity cannot be increased by classical
communication was formally proven by Bennett et al. [61],
who discussed the mixed state entanglement and quantum
error correction. Barnum et al. in 2000 [42], defined the
connection between the fidelity and the capacity of a quan-
tum channel, and here he also showed the same result as
Bennett et al. [61] did in 1996, namely that the quantum capac-
ity cannot increased by classical communication. The works of
Barnum et al. [42] and Schumacher and Westmoreland [457]
from the late 1990s gave very important results to the field of
quantum information theory, since these works helped to clar-
ify exactly the maximum amount of transmittable quantum
information over very noisy quantum channels [522].

Seth Lloyd gave the first proof in 1997 on the quantum
capacity of a noisy quantum channel. The details of Lloyd’s
proof can be found in [299], while Shor’s results in detail can
be found in [473]. On the basis of Shor’s results, a proof on the
quantum capacity was given by Hayden et al. in 2008 [221].
The next step in the history of the quantum capacity of the
quantum channel was made by Devetak [132]. Devetak also
gave a proof for the quantum capacity using the private clas-
sical capacity of the quantum channel, and he gave a clear
connection between the quantum capacity and the private clas-
sical capacity of the quantum channel. As in the case of the
discoverers of the HSW-theorem, the discoverers gave dif-
ferent proofs. The quantum capacity of a quantum channel
is generally lower than the classical one, since in this case
the quantum states encode quantum information. The quan-
tum capacity requires the transmission of arbitrary quantum
states, hence not just ‘special’ orthogonal states—which is just
a subset of a more generalized case, in which the states can
be arbitrary quantum states. On the several different encoder,
decoder and measurement settings for quantum capacity see
the work of Devetak and Winter [135], Devetak and Shor’s
work [136], and the paper of Hsieh et al. [238]. In this paper
we have not mentioned the definition of unit resource capac-
ity region and private unit resource capacity region, which
can be found in detail in the works of Hsieh and Wilde [239],
and Wilde and Hsieh [521]. In 2005, Devetak and Shor pub-
lished a work which analyzes the simultaneous transmission
of classical and quantum information [136].

On the quantum capacities of bosonic channels a work
was published by Wolf er al, see [533]. In 2007,
Wolf and Pérez-Garcia published a paper on the quantum
capacities of channels with small environment, the details
can be found in [534]. They have also determined the
quantum capacity of an amplitude damping quantum chan-
nel (for the description of amplitude damping channel, see
Section V), for details see the same paper from 2007 [534].
The properties of quantum coherent information and reverse



GYONGYOSI et al.: SURVEY ON QUANTUM CHANNEL CAPACITIES

coherent information were studied by Garcia-Patrén in
2009 [410].

The proofs of the LSD channel capacity can be found
in [132], [299], and [473]. The quantum communication pro-
tocols based on the transmission of quantum information were
intensively studied by Devetak [133], and the work of the same
authors on the generalized framework for quantum Shannon
theory, from 2008 [137].

V. QUANTUM CHANNEL MAPS AND CAPACITIES

Here, we give a brief survey of some important quantum
channel maps and study some capacity formulas. For the cor-
responding definitions related to the state-vector description
we advise to the reader to [242].

A. Channel Maps

1) The Pauli Channel: The Pauli channel model having an
input state p can be formulated [443] as

p — Cp(p) = (1 =p)p + pxXpX + pyYpY + pxZpZ,
(199)

where that X, Y and Z are single-qubit Pauli determined by

0 1

X=<1 O), (200)
0 —i

X = (i 0 ), (201)
1 0

Z:(O _1>. 202)

Note that the depolarizing probability p = py + py + p; is the
sum of py, py and p, representing the depolarizing probability
of Pauli X, Y and Z errors, respectively. The probabilities of
the errors at time instant # are dependent to relaxation time 77
and dephasing time 73 as

1
Px =Dy = Z(l — Cit/Tz),

1
M:ﬂLmWﬂ—%WM. (203)

2) The Depolarizing Channel: The last discussed unital
channel model is the depolarizing channel which performs the
following transformation

1
N(p)) =p5 + (1 =ppi, (204)

where p is the depolarizing parameter of the channel, and if
Alice uses two orthogonal states pg and p; for the encoding
then the mixed input state is

p=<§:mm)=pr+ﬂ—pwm.
i

After the unital channel has realized the transformation A/ on
state p, we will get the following result

J\/’(ZPi/Oi) = N(popo + (1 — po)p1)

(205)

1
=p5I+ A =p)popo+ (1 =po)pr). (206)
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3) The Damping Channel: Let us consider the influences
of an environment to a single qubit of a quantum system,
where for example the qubit is realised by using a two-level
atom having the ground state |0) and the excited state |1).
The atom may have a spontaneous dissipation/absorption of
energy to/from the environment, which makes the atom change
its state from the ground state |0) to the excited state |1) or
vice versa. The transition of the state is referred to as the
decoherence process. As a result, the state of the qubit when
there is no interaction with the environment is as follows [432]

(207)

where |0)g and |1)g represent the low and high basis states
of the environment. Accordingly, if the dissipation/absorption
occurs, we have

IDI0)e — 10)[1)E,

0)[1)e — 11)|0)E. (208)

The transition represented by Eq. (208) is may be formulated
as:

IDI0E = V1= piI1)10)e + /pil0) 1),
0)DE = V1 =polO)DE + V/PolD0)E,

where p; and p, is the probability of the atom losing its energy
to the environment or obtaining its energy from the environ-
ment, respectively. We may generalise the channel model of
Eq. (209) by alternating the basis states by the superposition
states to lead to

(@[0) + BI1))[0)
— («l0) + BYT=pil1) 10}z + BVPIIO) D,
(@l0) + BI1)I1)
— apal )10} + (ay/T=pol0) + BI1)) D

It should be noted that the coefficient ¢ and § may be used
representing the (N — 1) qubit states orthogonal to the states
|0) and |1) of the considered qubit. Moreover, if it can be
assumed that each qubit interacts independently with the envi-
ronment, the associated decoherence process in the N-qubit
system may be considered as temporally and spatially uncorre-
lated. Accordingly, the process where the qubit loses its energy
can be modelled by an amplitude damping channel C4p having
an input state p [175]:

(209)

p — Cap(p) = Eap1 p Ej&m + Eap2 p EZDZ’ (210)

where Kraus matrices E4p used for characterising the ampli-
tude damping channel are as follows:

1 0
Eap1 = (O \/ITIH)’ 211)
Expy = (8 @) 212)
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Influences from the environment may results in random
phase kicks on a single qubit. In such scenario, the decoher-
ence process reflecting phase changes of the qubit is modelled
as the phase damping channel Cpp(p) as

p = Crp(p) = Epp1 p Eppy + Eppy p Eppy. (213)
where we have the corresponding Kraus matrices as
1 0
Eap1 = , 214
! (o M) G
0
Eapz = (O \/0[71> (215)

In order to reflect changes of the qubit in both phase and ampli-
tude, the combination of amplitude and phase damping channel
may be used. However, in general it is not affordable to clas-
sically simulate N-qubit combined channel, which requires to
have a 2N-dimensional Hilbert space. For the sake of facilitat-
ing efficient classical simulations, the combined amplitude and
phase damping channel may be approximated using a Pauli
channel model.

4) The Dephasing Channel Model: The second type of
decoherence map discussed is unitary and results in relative
phase differences between the computational basis states: the
channel map which realizes it is called the dephasing map. In
contrast to the amplitude damping map, it realizes a unitary
transformation. The unitary representation of the dephasing
quantum channel for a given input p = Zi,j pijli) (jl can be
expressed as

N(p) =) pil Ei) (Eil, (216)
i

where |E;) are the environment states. The dephasing quantum

channel acts on the density operator p as follows

N(pi) = pozpoz + (1 —p)p;, (217)

where o7 is the Pauli Z-operator. The image of the dephasing
channel map is similar to that of the phase flip channel map,
however, the shrinkage of the original Bloch sphere is greater.
The dephasing channel transforms an arbitrary superposed
pure quantum state «|0) 4+ B|1) into a mixture

aﬁ*e_y(t)

1BI?

where y () is a positive real parameter, which characterizes
the coupling to the environment, using the time parameterz.
5) The Pancake Map: To give an example for physically not
allowed (nonphysical, non-CP) transformations, we discuss the
pancake map. The non-CP property means, that there exists
no Completely Positive Trace Preserving map, which preserves
some information along the equatorial spanned by the x and y
axes of the Bloch sphere, while it completely demolishes any
information along the z axis. This map is called the pancake
map, and it realizes a physically not allowed (non-CP) trans-
formation. The effect of the pancake map is similar to the
bit-phase flip channel, however, this channel defines a non-
CP transform: it ‘smears’ the original Bloch sphere along the
equatorial spanned by the x and y axes. On the other hand, the

|or]?
a*Ber®

N(p) = p' = [ } (218)
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pancake map—besides the fact that is a non-physical map—
can be used theoretically to transfer some information, and
some information can be transmitted through these kinds of
channel maps. The reason behind decoherence is Nature. She
cannot be perfectly eliminated from quantum systems in prac-
tice. The reduction of decoherence is also a very complex task,
hence it brings us on the engineering side of the problem: the
quantum systems have to be designed in such a way that the
unwanted interaction between the quantum states and the envi-
ronment has to be minimal [477], [478]. Currently - despite
the efficiency of these schemes - the most important tools to
reduce decoherence are quantum error-correcting codes and
decoupling methods.

B. Capacities

Next, we study the classical and quantum capacities of the
following quantum channels:

1) erasure quantum channel,

2) phase-erasure quantum channel,

3) mixed erasure/phase-erasure quantum channel,

4) amplitude damping channel.

First we derive the classical capacities of these channels
in closed forms. Then we give the quantum capacities and
compare them.

1) Erasure Quantum Channel: The erasure quantum chan-
nel , erases the input state p with probability p or transmits
the state unchanged with probability (1 — p)

Np(p) = (1 —p)p + (ple) (el),

where |e) is the erasure state. The classical capacity of the
erasure quantum channel N, can be expressed as

C(Np) = (1 = p)log(d),

where d is the dimension of the input system p. As follows
from (220), the classical capacity of A, vanishes at p = 1,
while if 0 < p < 1 then the channel j\/,, can transmit some
classical information.

The quantum capacity of the erasure quantum channel N,
is

(219)

(220)

O(Np) = (1 = 2p)log(d).

Q(N,) vanishes at p = 1/2, but it can transmit some quantum
information if 0 < p<1/2.

In Fig. 27, the classical (dashed line) and quantum capacity
(solid line) of the erasure quantum channel as a function of
erasure probability are shown.

2) Phase-Erasure Quantum Channel: The phase-erasure
quantum channel N erases the phase of the input quantum
state with probability p without causing any disturbance in
the amplitude. Using input density matrix p, the map of the
phase-erasure quantum channel can be expressed as

o+ Z,OZT
2

(221)

N(p) = (1 =p)p®0)(0] +p Q1) (1],

(222)

where Z realizes the phase transformation on the input quan-
tum system p, while the second qubit is used as a flag
qubit.
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Fig. 27. The classical and quantum capacities of the erasure quantum channel
as a function of erasure probability [242].

The classical capacity of the N phase-erasure quantum
channel using phase erasing probability g is

CNy) =1, (223)

since the phase error has no effect on the distinguishability
of orthogonal input quantum states |0) and |1). On the other
hand, if we talk about quantum capacity Q(Ns) of N the
picture changes:

OWNs) = (1 — g)log(d).

3) Mixed Erasure/Phase-Erasure Quantum Channel: From
the erasure quantum channel and the phase-erasure quantum
channel a third type of quantum channel can be constructed —
the mixed erasure/phase-erasure quantum channel. This chan-
nel erases the input quantum system with probability p, erases
the phase with probability ¢, and leaves the input unchanged
with probability 1 — p — g > 0. Using (220) and (223), the
classical capacity of the mixed erasure/phase-erasure quantum
channel, V14, can be expressed as

C(Nptg) = (1 — p)log(d) = C(N,).

(224)

(225)

Furthermore, combining (221) and (224), the quantum
capacity of the mixed erasure/phase-erasure quantum channel,
Npyq> We get

Q(Np+g) = (1 — g — 2p)log(d).

The classical (dashed line) and quantum capacities (solid line)
of the mixed erasure/phase-erasure quantum channel as a
function of total erasure probability p + ¢ are illustrated in
Fig. 28.

4) Amplitude Damping Quantum Channel: Finally, we give
the quantum capacity of the amplitude damping channel. The
classical capacity of the amplitude damping quantum channel
can be expressed as

C(Ay) = maxH(z) + [-H(z(y)) + Hx(1 = y)], (227)

(226)

where t € [0, 1] is a special parameter called the population
parameter, and H is the Shannon entropy function, and H(t) =
—tlog(r) — (I — 7)log(l — 7). As follows from (227) the
classical capacity C(A,) of the amplitude damping channel
completely vanishes if y = 1, otherwise (if 0 < y < 1) the
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Fig. 28. The classical and quantum capacities of the mixed erasure/phase-

erasure quantum channel as a function of total erasure probability [242].
Amplitude Damping Channel
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Fig. 29.  The classical and quantum capacities of the amplitude damping
quantum channel as a function of the damping parameter [242].

channel can transmit classical information. On the other hand
for the quantum capacity Q(A,) the capacity behaves differ.

The quantum capacity of this channel can be expressed as
a maximization:

0(Ay) = max[H(x(y) ~H@ (1 —y)].  (228)

The classical (dashed line) and the quantum capacity (solid
line) of the amplitude damping quantum channel as a function
of the damping parameter y are shown in Fig. 29.

It can be concluded that the working mechanism of the
amplitude damping channel is similar to the erasure channel
(see (220) and (221)), since if the damping parameter value is
equal to or greater than 0.5, the quantum capacity of the chan-
nel completely vanishes. We obtained the same result for the
erasure channel; however in that case the erasure probability
p was the channel parameter.

VI. PRACTICAL IMPLEMENTATIONS
OF QUANTUM CHANNELS

In this section, we focus on the physical and experimental
implications of quantum channels in different scenarios.

A. Realistic Material: Asymmetric Depolarising Channel

A quantum depolarizing channel characterised by the prob-
ability py,py and p, can be directly used for modelling
quantum systems employing diverse materials. In other words,
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TABLE 11
ESTIMATED ASYMMETRIC RATIO @ REPRESENTING VARIOUS
QUANTUM DEPOLARIZING CHANNELS ASSOCIATED WITH
VARIOUS QUANTUM DEVICES

System (Material) Ty T o
P:Si [329] 1 hour Ims | 108
GaAs Quantum Dots [330] 10ms | > 1us | 10%
Super conducting (flux qubits) [74] lus | 100 ns | 102
Trapped ions [256] 100 ms I ms | 102
Solid State NMR [331] >1min [ >1s | 107

the quantum depolarizing channel can be used for modelling
the imperfections in quantum hardware, namely, qubit flips
resulting from quantum decoherence and quantum gates.
Furthermore, a quantum depolarizing channel can also be
invoked for modelling quantum-state flips imposed by the real
transmission medium, including free-space wireless channels
and optical fiber links, when qubits are transmitted across these
media. For the sake of simplicity, most recent studies of the
quantum channel capacity [53], [65], [84], [523] as well as
of quantum error correction (QEC) schemes considered the
symmetric polarizing channel [33], [429], [524], where the
constituent flip probabilities obey pr = p, = p, = p/3. By
contrast, popular materials invoked for producing quantum
devices often exhibit asymmetric behaviour, where a phase flip
is orders of magnitude more likely than a bit flip [304], which
can be modelled by an asymmetric quantum depolarizing
channel [74], [256], [330], [329], [331]. In such asymmet-
ric depolarizing channels, an extra parameter « termed as the
channel’s ratio of asymmetry is introduced for reflecting the
ratio of the phase flip probability p, and the bit flip probability
px as [154], [443]

—t —t 2t

Px 1—elt

(229)

Note that the bit flip probability p, as well as the simulta-
neous bit-and-phase flip probability p, may be considered to
be equal [154], [443] while time instant f may be interpreted
as the coherent operation duration of a physical quantum
gate [525]. If the coherent operation duration ¢ is relatively
short, formulated as + << T, we can invoke the approxima-
tion of o &~ 2T,/T1 — 1 [330]. As a result, the phase flip
probability p, can be directly determined from the values of
a and p,. Note that in the case of having o = 1, the depo-
larising channel is the symmetric depolarizing channel, where
the condition of having p, = py = p, = p/3 is satisfied. In
practice the channel’s ratio of asymmetry has popular values
of @ = 102, 10%, 10° [33], [429], [524], which correspond to
the typical materials of Table II, which are used for producing
quantum devices.

B. Acting Time in Asymmetric Channels
In the asymmetric depolarizing channel, when the acting
time 2 ¢ of the channels under investigation is small, the value

2¢ is the evolution time of the quantum system with the presence of deco-

herence, which can be considered to be equal to the duration of a physical
quantum gate.
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of @ in Eq. (229) may be calculated by

1 — t/Ti(=T/T2)

o=1+2—7m5

Then, the bit flip probability p, is calculated upon the asym-
metric level o and the depolarizing probability of p as:

_ P

S a42
As a result, the phase flip probability p, can be determined
from the values of « and p,. Since, the phase flip probability
dominates over the bit flip one, the bit flip probability p, and
the bit-and-phase flip probability p, may be considered to be
equal.

We may use the precalculated « values in Table II for char-
acterising the quantum channel. Since this way does not take
in consideration the absolute values of ¢, T, 7>, it may not
closely characterise different systems manufactured by differ-
ent materials in Table II that are associated with the same
value of «. The absolute values of t, 71, 7> may be used for
calculating the depolarizing probabilities of p,, p, and p, as
follows [154]:

(230)

Px (231)

1
ieot ada ]

px(0) = py (),

1
- (233)

(1 —e%ll)

Accordingly, the encoding and decoding gate operation
times pertaining to different materials are listed in Table III.

p:(t) = (232)

C. Implementation of Quantum Channel in FSO-Based
Quantum Key Distribution

Depending on the specific form of the electromagnetic plane
wave pertaining to the monochromatic laser signal generating
photons, photons may be linearly polarized (LP) or elliptically
polarized (EP) [405]. In the context of considering Quantum
Key Distribution (QKD) systems, we only consider LP pho-
tons having polarizations of say 09,900, —459, 450 [548].
Accordingly, the basis associated with the polarization of
0°,90° can be characterised by:

10%) = 1]0%) + 0i190%,
190%) = 0]0%) + i]90°).

(234)
(235)

The relationship between the two bases can also be
expressed by:

100) = L|450> + LI —45°) (236)
V2 V2 ’
190°) = %MSO) - %I —45%). 237

An FSO quantum transmission channel is used for carrying
the photon stream to from the source (S) to the destination
(D). Since the FSO channel imposes deleterious effects, such
as diffraction, atmospheric turbulence and extinction [501],
only a certain fraction y of the photon stream transmitted
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TABLE III
MAXIMAL NUMBER OF COMPUTATIONAL STEPS THAT CAN BE PERFORMED WITHOUT LOSING COHERENCE

Quantum Systems Time per gate Operation (sec) | Coherence time | Maximal number of coherence steps
Electrons from a gold atom 10— 14 1038 10°
Trapped indium atoms 10— 14 10~ T 1013
Optical micro cavity 10— 14 10—° 109
Electron spin 10=7 1073 107
Electron quantum dot 10~° 10—3 103
Nuclear spin 103 10% 107
. . Bounds of fracti
by S arrives at D. In other words, the term y invoked for 10 oounds ol raclon v
characterising the power transfer properties of the FSO channel . — TNEUB
over a distance L imposed on the QKD system’s performance g o7 '
is approximated by [168], [440], [466] é otk S NF.LB |
—al o S D —D>- ’YFF
Yy =mpe "7, (238) o
. . . 3 N =7
where u represents the diffraction losses or the normalised S NSk us
version of the fraction y, while « is the extinction coefficient. ?8 102 F N 6 T |4
The value of n depends on the Fresnel number of 4 N N
2 &
wd 1 d2 X
Dy =77 - 239 E s N
40L £ 10 B |
where d; is the transmit aperture diameter and d» is the L;S %\
receiver’s aperture diameter, while A is the wavelength of the ®
optical signal. 10'40 2 ;1 é é 1‘0 1‘2 M
' In the near-field region having D; >> 1, the parameter u Distance L [km]
is bounded by [465], [466]
UNF,LB = I = UNF,UB, (240) Fig. 30. Bounds of y characterised by Eq. (247) for a transition region of

where the upper bound uyr yp can be calculated by [466]
punF,up = min(DY, 1), (241)
while the lower bound puyr 1p is given by [466]
0
Sybr (—D(dzx)>
exp| ———

MUNF LB = —
/4 0 2

X (arccos(x) —xv/1= x2>11 (4x\/D>]9>dx, (242)

where Ji(.) is the first-order Bessel function. The spherical-
wave structure function D(p) of Eq. (242) is calculated for the
worse-case scenario of having dy = d» as [466]:

5/12
D(p) = 5102 (D}’) 053, (243)
where GI% is the Rytov variance [258] of
27\ 7/6
o2 = 1.24(7”) M, (244)

with C,% ranging from 10713 to 107 representing the altitude-
dependent index of the refractive structure parameter [550].

By contrast, in the far-field region having D,? << 1, the
value of i can be calculated by [465]

8. /DY 1 _
\/7 exp( D(dyc))

wrr =, 2

X (arcos*] (x) —xv1— x2)11 <4x\/;]9)dx, (245)

where the spherical-wave structure function D(p) of Eq. (245)
can be calculated by

) 2
D(p) = 1.09(7”) Lo 3. (246)

(Tar = 0.5 < D} < Tnear = 5).

As a result, when a more accurate value range of y is
sought, the following bounds should be used (see Fig. 30)

YLB <Y < Yyus, (247)
where the upper bound yyp is determined by:
YNF,UB: if Dj(f) > Thear
YUB = (VNF, UB + VFF)/Z: if Tfar =< D}) < Thear , (248)
VFF: if D}) < Tfar
while the lower bound y;p is calculated by:
VYNF,LB- if D}) > Thear
vy = { (WNF.LB + VFF)/2: if Tfar = Dj(r) < Thear , (249)
VFF: if DJQ < Tfar

where the region having Ty, < DY < T4 is the transition
region between the near-field and far-field regimes.

D. Quantum Channel Codes for Approaching Quantum
Channel Capacity

The appealing parallelism of quantum computing relying
on quantum bits has inspired researchers to consider various
quantum-related applications in the area of quantum commu-
nications [141], [260], [309], [310], [409], [444]. However, a
crucial obstacle to the practical realisation of quantum com-
munications systems is the presence of quantum perturbations.
Their deleterious effects can be mitigated by Quantum Error
Correction Codes [53]. It was suggested that the employment
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of entanglement assistance is capable of further improv-
ing the performance of QECCs [429], [524] in the context
of the so-called symmetric depolarizing channel, which has
been routinely used in theoretical studies. In the symmetric
depolarizing channel characterised by the gross depolarizing
probability p, each transmitted qubit may independently expe-
rience either a bit flip (X), a phase flip (Z), or both (Y) at a
probability of p, = py, = p, = p/3. By contrast, the mate-
rials considered at the time of writing for building quantum
devices, including trapped ions [447] and solid state Nuclear
Magnetic Resonance [331], exhibit asymmetric depolarization
property defined as the ratio of the phase flip probability over
the bit flip probability, where the grade of asymmetry is in the
range spanning from o = 10% to o = 10° [329]-[331]. QECCs
designed for the asymmetric depolarizing channel were termed
as asymmetric QECCs in [304]-[335], where a limited range
of « values was assumed and no entanglement assistance
was addressed. In [336], a more general framework cover-
ing both symmetric and asymmetric depolarizing channels was
proposed for Entanglement Assisted QECCs (EAQECC:sS).

To benchmark the design of the EAQECCs, the
Entanglement Assisted Quantum Channel’s (EAQC) capacity
was investigated in [84] and [523]. Accordingly, the so-called
Hashing bound is advocated for setting a lower limit on the
achievable quantum depolarizing channel capacity, which
has been used for benchmarking the performance of various
QECC schemes in [33], [337], and [524]. Furthermore, the
powerful Extrinsic Information Transfer (EXIT) chart tech-
nique [338]-[342] that was originally introduced for analysing
the convergence behaviour of iterative decoding and detection
in conventional communication systems was recently further
developed for analysing the iterative decoding convergence
of QECCs [337]. In [336], entanglement assisted quantum
coding schemes and the associated quantum depolarizing
channel capacity were considered for both asymmetric and
symmetric quantum depolarizing channels.

E. Quantum Network Coding for Entanglement
Distribution

In the classical domain, network coding [343], [344] is capa-
ble of increasing the throughput, while minimising the amount
of energy required per packet as well as the delay of packets
travelling through the network [345], [346]. This is achieved
by allowing the intermediate nodes of the network to combine
multiple data packets received via the incoming links before
transmission to the destination [347]. Due to its merits, the
concept of the network coding has been applied in diverse
disciplines [348].

Inspired by its classical counterpart [344], [349], [350],
the question arises if the quantum version of network coding
exists. Due to the inherent nature of quantum communications,
namely that cloning is impossible, negative answers to this car-
dinal question were suggested in [351] and [352]. However,
further studies of Quantum Network Coding (QNC) confirm
that given the availability of extra resources, such as preshared
entanglement [353]-[358] or the abundance of low-cost clas-
sical communications [352], [359]-[361], QNC can indeed be
made feasible.
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Entanglement constitutes a valuable enabler of various
quantum protocols that are essential for various applications
of quantum communications, such as quantum teleporta-
tion [362], remote state preparation [363], quantum remote
measuring [364] and secret sharing [365]. Entanglement refers
to the fact that two or more photons have a very special con-
nection, whereby changing for example the spin of a photon
will instantaneously change that of its entangled couterpart.
Anecdotally, this phenomenon is referred to as a ‘“‘spooky
action at a distance” by Einstein [151] due to the fact that
unlike in electromagnetism, interactions between entangled
photons occur instantaneously, regardless of how far apart
the photons are. By contrast, electromagnetic interactions are
bounded by the speed of light [243].

In such quantum protocols, the entangled qubits have to
be distributed to distant nodes. A particularly popular applica-
tion of the entanglement distribution is QKD [366], which has
been gradually finding its way into different practical scenar-
i0s, such as satellite communications [367], [368], terrestrial
communications [369], [370] and over handheld communi-
cation [371], [372]. These advances lay the foundations of
the quantum Internet [373]-[375]. Entanglement distribution
over a large-scale network consisting of multiple-hops and
multiple-nodes can be realised by Entanglement Swapping
(ES) [376]-[378] or by QNC [354], [356], [379]. ES may be
deemed to be similar to the classic Decode-and-Forward (DF)
techniques, which is outperformed by the classical Network
Coding (NC) in a number of practical scenarios [380]-[382].
This leads to another intriguing and crucial question, namely
whether the QNC is similarly capable of providing a better
performance than ES. In order to answer the second question,
Satoh et al. [354] provided quantitative comparisons between
the QNC and the ES. Explicitly, it was shown that the fidelity-
performance of the ES-based system is superior to that of
the QNC-based system in a quantum communication network
having M = 2 pairs of source-to-target users that are con-
nected via a backbone link having N = 1 hop. However,
Nguyen et al. [383] generalised the QNC of [354] and [356]
to large-scale quantum communication networks, in order to
demonstrate the benefits of large-scale QNC over ES.

VII. CONCLUSION

Quantum channels extend the possibilities of classical com-
munication channels allowing us to transmit classical infor-
mation, entanglement assisted classical information, private
classical information and quantum information. Contrary to
classical channels, quantum channels can be used to con-
struct more advanced communication primitives. Quantum
entanglement or the superposed states carry quantum informa-
tion, which cannot be described classically. Quantum channels
can be implemented in practice easily, e.g., via optical fiber
networks or by wireless optical channels, and make it pos-
sible to send various types of information. The errors are a
natural interference from the noisy environment, and the can
be much diverse due to the extended set of quantum channel
models. In the near future, advanced quantum communication
and networking technologies driven by quantum information
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processing will revolutionize the traditional methods. Quantum
information will help to resolve still open scientific and tech-
nical problems, as well as expand the boundaries of classical
computation and communication systems.

APPENDIX
A. Partial Trace

If we have a density matrix which describes only a subset
of a larger quantum space, then we talk about the reduced
density matrix. The larger quantum system can be expressed
as the tensor product of the reduced density matrices of the
subsystems, if there is no correlation (entanglement) between
the subsystems. On the other hand, if we have two subsys-
tems with reduced density matrices p4 and pp, then from the
overall density matrix denoted by psp the subsystems can be
expressed as ps = Trp(pap) and pp = Tra(pap), where Trp
and Try refers to the partial trace operators. So, this partial
trace operator can be used to generate one of the subsystems
from the joint state pap = |¥a) (V4| ® |¥p)(¥pl|, then

pa = Trp(pap) = Trp(| ¥a) (Val ® |¥g) (¥Bl)
= [ Ya) (Yal Tr(l ) (¥Bl) = [¥a) (V¥al (¥B | ¥B).
(A.1)

Since the inner product is trivially (¥p|¥p) = 1, therefore

Trp(pap) = (U | ¥B)| Ya) (Val = |¥a) (¥al = pa.

In the calculation, we used the fact that Tr(|y)(¥n]) =
(Y2|¥1). In general, if we have to systems A = |i)(k| and
B = |j)(l|, then the partial trace can be calculated as

(A2)

Trp(A ® B) = ATr(B), (A.3)
since
Tra(17) (k| @ 1) (1) = 1) (kI @ Tr(]j) (1])
= [0) (k| & (L))
= (L[ )]0} (kl, (A.4)

where i) (k| ® [j) (I = [i)j) (k) 1)
In this expression we have used the fact that (ABT) ®
(D)= A®C)B'®D") =A®C)(BD).

B. Quantum Entanglement

A quantum system p4p is separable if it can be written
as a tensor product of the two subsystems pap = p4 ® pp.
Beside product states p4 ® pp which represent a composite
system consisting of several independent states merged by
means of tensor product ® similarly to classical composite
systems, quantum mechanics offers a unique new phenomenon
called entanglement. For example the so called Bell states (or
EPR states, named after Einstein, Podolsky and Rosen) are
entangled ones:

1

= —(]00 11)),

[ Boo) ﬁﬂ ) +111))
1

[Bor) = —=(|01) +[10)),

2
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1B10) = —=(100) — [11))
10 _ﬁ 9
1
= —(|01) —|10)). A5
1Bi) = —5001) = 10) (AS)

C. Fidelity

Theoretically, quantum states have to preserve their origi-
nal superposition during the whole transmission, without the
disturbance of their actual properties. Practically, quantum
channels are entangled with the environment which results in
mixed states at the output. Mixed states are classical prob-
ability weighted sum of pure states where these probabilities
appear due to the interaction with the environment (i.e., noise).
Therefore, we introduce a new quantity, which is able to
describe the quality of the transmission of the superposed
states through the quantum channel. The quantity which mea-
sures this distance is called the fidelity. The fidelity for two
pure quantum states is defined as

F(g), W) = Hely)*.

The fidelity of quantum states can describe the relation of

Alice pure channel input state |¢) and the received mixed
—1 —1

quantum system o = Y o pip; = ¥ g pilvi)(¥il at the

channel output as

(A.6)

n—1

F(p).0) = (Wloly) = Y pillwlyal®. (A7)
i=0

Fidelity can also be defined for mixed states o and p

v o] - o )]

(A.8)

Next we list the major properties of fidelity
0<F(o,p) =1, (A.9)
F(o,p) =F(p,0), (A.10)
F(p1 ® p2,01 ® 02) = F(p1, 01)F(p2, 02), (A.11)
F(UpUT, UaUT) — F(p, o), (A.12)

F(p,ao1+(1-a)o2) = aF(p, o)) +(1-a)F(p, 02),
ae [0, 1]. (A.13)
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