IEEE COMMUNICATIONS SURVEYS & TUTORIALS, VOL. 19, NO. 4, FOURTH QUARTER 2017

2985

Adaptive Bitrate Selection: A Survey

Yusuf Sani, Andreas Mauthe, and Christopher Edwards

Abstract—HTTP adaptive streaming (HAS) is the most recent
attempt regarding video quality adaptation. It enables cheap and
easy to implement streaming technology without the need for a
dedicated infrastructure. By using a combination of TCP and
HTTP it has the advantage of reusing all the existing technologies
designed for ordinary web. Equally important is that HAS traffic
passes through firewalls and works well when NAT is deployed.
The rate adaptation controller of HAS, commonly called adaptive
bitrate selection (ABR), is currently receiving a lot of attention
from both industry and academia. However, most of the research
efforts concentrate on a specific aspect or a particular methodol-
ogy without considering the overall context. This paper presents
a comprehensive survey of the most significant research activities
in the area of client-side HTTP-based adaptive video streaming.
It starts by decomposing the ABR module into three subcom-
ponents, namely: resource estimation function, chunk request
scheduling, and adaptation module. Each subcomponent encap-
sulates a particular function that is vital to the operation of an
ABR scheme. A review of each of the subcomponents and how
they interact with each other is presented. Furthermore, those
external factors that are known to have a direct impact on the
performance of an ABR module, such as content nature, CDN,
and context, are discussed. In conclusion, this paper provides an
extensive reference for further research in the field.

Index Terms—HTTP adaptive streaming, adaptive bitrate
selection, rate adaptation.

I. INTRODUCTION

IDEO streaming over data networks has been addressed
Vas a research topic since the 1980s. In the early 1990s,
video started to be transmitted over the Internet [1]. Since
then, both the quality of the content and the variety of the
video services have continued to grow. Nowadays, video is the
most popular service on the Internet [2]. Cisco predicts that
by 2019 global video consumption will account for 80%-90%
of the entire data traffic traversing the Internet [3].

A typical video streaming service must accommodate a
heterogeneous set of requirements due to the variety of
contents and content sources, user contexts and interests,
devices, and network limitations etc. Several video deliv-
ery schemes have been developed that can be categorised
according to the type of network management used for the

Manuscript received May 29, 2016; revised January 26, 2017 and April
12, 2017; accepted June 19, 2017. Date of publication July 12, 2017; date of
current version November 21, 2017. The work of Y. Sani was supported by
Petroleum Technology Development Fund, Nigeria. (Corresponding author:
Yusuf Sani.)

The authors are with the School of Computing and
Communications, InfoLab2l, Lancaster University, Lancaster LAl 4WA,
U.K. (e-mail: y.sani@lancaster.ac.uk; a.mauthe @lancaster.ac.uk; c.edwards@
lancaster.ac.uk).

Digital Object Identifier 10.1109/COMST.2017.2725241

set-up and transmission of the video, i.e., a video deliv-
ery service is either implemented over managed or unman-
aged networks [4]. Managed services are provided over a
dedicated network infrastructure! that ensures Quality of
Service (QoS). For instance, provided through techniques
such as DiffServ [5], [6]. A typical example of the managed
video service is Television over the Internet (IPTV), which is
defined by the ITU-T as ‘multimedia services such as tele-
vision/video/ audio/text/graphics/data delivered over IP based
networks managed to provide the required level of QoS/QoE,
security, interactivity and reliability’. The video quality of the
managed services is usually high® [10]. Nevertheless, man-
aged networks are expensive to setup and maintain. Hence,
those applications that depend on it, are typically provided by
big organisations such as ISP, Telecom, or cable companies.
Video services that are delivered over unmanaged networks are
called over-the-top (OTT) services. The unmanaged services
are mostly delivered to the end users via the best-effort Internet
either by the content providers directly or through third par-
ties. Since OTT services require no specialised or dedicated
infrastructure their set-up and maintenance costs are relatively
low. Another way of categorising video streaming service is
whether it is live or on-demand. A live streaming service oper-
ates over events that ‘take place over a defined time interval
with defined start and end time’. As such, a user has no con-
trol over the session [11]. However, video on demand (VoD)
provides a user with a stored pre-recorded content. This gives
users the power to select which content they like, and watch
it when the like [11].

Initially, it was assumed that video applications would not
be able to achieve a good enough performance over the
best-effort Internet because video transmission is a band-
width intensive exercise and has a strict timing requirement.
This has motivated research on quality assured video delivery
services based on specialised network architectures and pro-
tocols [12], [13]. However, these efforts have not resulted in
a wider deployment within the standard networks. Possibly,
because of their complexity; the increase in capacity, as well
as the wider penetration of broadband; improvement in the
efficiency of the video compression techniques; and the preva-
lence of adaptive video access and delivery mechanisms.
Today, video is usually streamed over the Internet without any
change in the way the Internet classically works.

When streaming video over the best effort Internet, either
TCP or UDP has to be used as the transport layer protocol.
TCP is designed to ensure a byte-oriented reliable service.
Additionally, TCP retransmits lost or corrupted packets and

INote, these can be virtual networks as well as physical networks.
2For more details on the IPTV service see [71-19].

1553-877X © 2017 IEEE. Translations and content mining are permitted for academic research only. Personal use is also permitted, but republication/
redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

mailto:y.sani@lancaster.ac.uk
mailto:a.mauthe@lancaster.ac.uk
mailto:c.edwards@lancaster.ac.uk
mailto:c.edwards@lancaster.ac.uk
http://www.ieee.org/publications_standards/publications/rights/index.html

2986

has an inbuilt congestion control mechanism, which allows
it to ensure that a fast client does not overwhelm a slower
server [14]. However, these protocol features result in an
increase in delay and jitter. For video streaming, this results in
frames arriving late, causing video freeze or rebuffering. On
the other hand, UDP is a connectionless protocol that provides
unreliable delivery service. It has no flow control mechanism,
hence suitable for applications that put more emphasis on
promptness over reliability. However, UDP is prone to packet
loss. On the other hand, modern video compression techniques,
such as H.264 [15], rely on compensation prediction algo-
rithms, which in turn rely on the interdependence between
successive frames. Imagine a lost in I-frame, it will be dif-
ficult for a player to successfully reconstruct the affected
group-of-picture. Therefore, for UDP-based video streaming
packet loss results in a degradation of the visual fidelity of
the video.

The choice of transport layer protocol depends on the trade-
off between visual degradation and video stall [16]. This fact
notwithstanding, for OTT services research has shown that if
the available TCP throughput is twice the bitrate of the media
the negative impact of the protocol induced impairments can
be ameliorated [17]. In fact, it has been shown that ‘given
any bottleneck bandwidth® OTT video streaming with TCP
outperform UDP in terms of visual fidelity [16], [18]. Other
advantages of TCP are: firewalls do not block its traffic, and
it works well when NAT is deployed [19], [20]. Hence, TCP
has developed into the dominant video transport protocol for
the OTT services [21].

There are still challenges, especially considering the grow-
ing video resolution, and the resulting increase in bandwidth
requirements. According to [22], a 720p video is encoded at
an average of 2.5-3.5 Mbps, a 1080p at 5-6 Mbps and a 4K
within a range of 18-20 Mbps—all having 30fps and using
H.264 [15]. Obviously, provisioning bandwidth twice these
encoding rates as suggested by the work of Wang et al. [17],
especially in wireless environments where bandwidth is both
scarce and expensive, is economically infeasible and often
impractical considering current network infrastructures. One
solution is to improve the compression efficiency as proposed
in [23]. However, even when H.265 becomes widely avail-
able we can only expect about 40%-45% improvement in the
compression efficiency [24].

The second approach, which is the focus of this paper, is
to tailor the video quality to the device and network context.
To achieve this, an adaptation mechanism is needed that will
allow applications to gracefully adapt to the changing envi-
ronment. To do this, the adaptation logic can be either located
at the server-side [25]-[27], at the client-side [28], [29],
or somewhere in-between [30], [31]. Server-side protocols
are not considered scalable, though they might result in
better network utilisation [11]. Client-side protocols are con-
sidered as being scalable and can be implemented using
commodity servers. This makes them cheaper both finan-
cially and in terms of implementation complexity. However,
client-side mechanisms are known to result in poorer network
utilisation [11].

IEEE COMMUNICATIONS SURVEYS & TUTORIALS, VOL. 19, NO. 4, FOURTH QUARTER 2017

HTTP Adaptive Streaming (HAS) [32] is currently one
of the most prominent video quality adaptation mechanisms,
which is considered cheap and easy to implement [33]. Using
HTTP over TCP provides additional incentives for adopting
this technology. For example, HAS can be built on top of
the existing content delivery technologies designed for ordi-
nary Web usage [34]. In its standard form, HAS divides a
video file into a number of chunks. Each chunk is encoded
into multiple video rates and stored together with a descrip-
tion file called Media Presentation Description (MPD) [35].
A client continuously monitors and estimates its capabili-
ties. It then requests a chunk with the highest video rate
that is sustainable given the estimated capacity. The pro-
cess, through which a client decides the profile and sched-
ule of a chunk to download, is called Adaptive Bitrate
Selection (ABR).
The first generation of ABR techniques strictly relied
on throughput estimation for the video rate selection deci-
sions [19], [36]. More recently, throughput based mechanisms
have been enhanced and other parameters such as buffer occu-
pancy, power level, cost etc. are also being used in the decision
process [37], [38]. All these different approaches try to satisfy
a set of general requirements, such as:
o Ensuring video is streamed with minimal number
rebuffering events [39], [40].

o Maximising both the minimum and the average video
quality level [41]-[43].

o Ensuring a consistent experience by minimising the num-
ber of quality level switches [44]-[46].

To fulfil these requirements, or any other objective set
by the ABR designer, such as fairness [47], power saving
(see Section III-C for more detail) and others, the vari-
ous subcomponents of an ABR system must not only work
well individually but also have to collectively function as a
well-defined unit. At the same, the ABR scheme must be
designed in such way that it takes advantage of the speci-
ficity of the context it operates in. Currently, most research
only looks at a particular aspect or methodology and do not
sufficiently consider the overall context [48]. For instance,
research has investigated aspects such as improved bandwidth
estimation [49], [50], buffer management [38], energy con-
sumption [51], adaptation logic [37], [5S0] among others. This
paper takes a more comprehensive approach and argues that
to understand the video quality adaptation problem in HAS,
research needs to pay attention to all the relevant aspects of
ABR. Some of surveys related to HAS exist. For example,
in [52] a review of the past two decades of video stream-
ing, which includes HAS, are presented. In [35] and [53]
a brief survey of some existing HAS standards and imple-
mentations are presented. Some other surveys that focus on
QoE issues related to HAS are [54]-[57]. At least to the
best of our knowledge, at the point of writing this paper,
no survey exclusively focusing on the ABR scheme currently
exist.

This paper presents a comprehensive survey of the client-
side video quality adaptation mechanism for a video on
demand service delivered over the best effort Internet, and the

SANI et al.: ABR: SURVEY

related issues.> It starts by dividing the factors affecting ABR
system into two classes, namely, external and internal factors.
A taxonomy of the factors that influence the performance of
ABR is presented in Fig. 1. The external factors are repre-
sented by aspects that are exogenous to the ABR algorithm
and are known to have an impact on the performance of the
ABR scheme. And the internal factors are composed of those
elements that an ABR designer has complete control over.

First, how ABR internally operates is presented by ini-
tially introducing a framework that decomposes ABR func-
tionally into three subcomponents, and then discusses the
relevant interfaces between them. The three components are
resource estimation, chunk scheduling and adaptation module.
Subsequently, factors related to the content nature (e.g., chunk
size and the encoding used - AVC or SVC), CDN, and operat-
ing context are presented. The objective is to understand how
external factors affect the working of a typical ABR algorithm.
The contributions of this paper are as follows:

1) The paper presents a review of the adaptive bitrate selec-
tion problem, as a whole, in an accessible form for those
not familiar with the field.

2) It also presents a review of the individual components
of ABR scheme addressed by the research commu-
nity in a self-contained manner, which is designed to
help researchers get a better understanding of a specific
aspect in relation to the overall context.

The rest of the paper is arranged as follows. Section II
presents an overview of the HAS system and ABR framework
used throughout the paper. Section III covers resource estima-
tion and Section IV introduces a review of different techniques
for scheduling chunk requests. In Section V the adaptation
function is detailed. While Section VI presents a discussion
on how these various components interact each other, with
Section VII discussing the impact of chunk preparation on the
effectiveness of ABR. In Section VIII the impact of operat-
ing context on the effectiveness of an ABR scheme is talked
about. In Section IX CDN and its impact on ABR is cov-
ered. Section X presents a summary of the most important
lessons learnt, and some of the challenges facing the com-
munity. Finally, a summary and conclusions are presented in
Section XI.

II. ADAPTIVE STREAMING
A. Overview of HTTP Adaptive Steaming

HTTP Adaptive Streaming (HAS) [47] allows content
providers to cater for the requirements of multitude devices
and different contexts. It was first introduced by Move
Networks in 2007 [58], [59]. Presently, almost all the stan-
dardisation bodies that have an interest in media delivery
over the Internet have either separately or jointly standardised
it: IEFT [47], 3GPP [60], MPEG [32] and the Open IPTV

31t should be noted that out of necessity we consider some aspects of either
server-side or network-assisted ABR. However, this is only done when it is
very clear that they directly enhance the efficiency of the client-side function
and not act as self-contained independent protocols. This restriction is by
no means intended to reduce the importance of these paradigms, but rather
because we believe that they are now matured and broad enough to deserve
an independent attention.

2987
Throughput
Resource

Estimation Function A

Power
Sequential

Scheduling
Internal = Funetion
parallel
Heuristic
Control Theory
Adaptation Module

ABR Optimisation

Artificial
Intelligence
Chunk Size

Content Nature
Chunk Type
External Context
CON

Fig. 1. Taxonomy of the Factors Influencing the Performance of ABR as
Used in the Paper.

Forum (OIPF) [61]. Further, major IT companies also provide
implementations or versions of it as part of their products, e.g.,
Microsoft Smooth Streaming (MSS) [33], Apple’s HTTP live
Streaming (HLS) [47] and Adobe OSMF [62]. Additionally,
many commercial content providers are increasingly adopting
it, for example, Netflix [38] and YouTube [63].

2988

Client CDN Server
R1 >
f«— — — — — — — — — — — — — — —D1:MPD- — — —
R2: C11 >
jl«- — — — D2: C11- — — —]
je- — — — — B2: G141+ — — — —
R2: C22
e — — — — D3: C22- — — — — |
A J \J \

Fig. 2. HAS Event Sequence Diagram.

In its standard form, HAS divides a media file into frag-
ments, conventionally of equal size in terms of playtime.*
Each fragment is called a chunk or segment (this paper uses
both interchangeably). Each chunk is encoded in multiple
video rates to satisfy the requirements of different devices
and network conditions. The criteria for providing an opti-
mal set of video quality representations are discussed in detail
in [64]. The chunks are all stored together with a description
file called Media Presentation Description (MPD) [65] on one
or more servers (which can be any Web server). MPD is an
XML metadata file containing a description of the available
chunks. It usually provides information such as the number
of different video rates per chunk and the duration of each
chunk in seconds. As can be seen in Fig. 2, when a client
first requests a video file, e.g., using an HTTP GET request,
the server responds by sending an MPD. The client will then
use the information contained in it to construct the Uniform
Resource Identifier (URI) for the subsequent requests.”> The
parsing and processing of the MPD are handled by the media
presentation module. The detail of MPD is outside the scope
of this paper but has been well documented elsewhere (for
more detail see [47], [60], [65], [66]). After the MPD has
been received and the subsequent construction of the URI, a
client progressively sends requests for the next available chunk
until the end of the video. The schedule and the video rate
of each of the requested segment are purely decided based
on the client’s estimation of its available system and network
resources. For example, Fig. 2 shows how for each subsequent
request a client specifies both the sequence number and the
quality level. In this example, R2 requests C22, which stands
for a chunk number two with the second highest quality level.

The number of response-request between client and server
in HAS depends on the chunk size, in fact, it was found,
in [67], there is an inverse proportional relationship between
them. In a delay intolerant service, such as live streaming

“In Section VII-B a detailed discussion is presented on variable chunk sizes
and their impact on the performance of an ABR scheme.

SNote, the URI may be directly provided or has to be constructed from a
template.

IEEE COMMUNICATIONS SURVEYS & TUTORIALS, VOL. 19, NO. 4, FOURTH QUARTER 2017

service, this can result in a degraded experience. To solve this
problem schemes that employ HTTP 2.0 server push capabil-
ities have been proposed [67]-[69]. A server either pushes
k number of chunks after the receipt of a request from a
HAS client or continuously sends chunks back-to-back until
requested otherwise by a client [68]. However, in their sub-
sequent work [70] they found the k-push scheme negatively
affecting network adaptability and wastes network resource
by over-pushing chunks which may be abandon by user. They
then propose a scheme that dynamically adapts the value of
k depending on the client context. Their result shows the
adaptive-push scheme has alleviated the earlier reported issues.
One important aspect of HAS as can be seen from Fig. 2
is its ability to seamlessly work with Content Distribution
Networks (CDN) or any proxy server technology used by stan-
dard HTTP services. This means a content provider can cache
its video content on a third party CDN infrastructure to save
costs and reduce download latency [71], [72]. This should nor-
mally be transparent to clients. A client only makes an HTTP
GET request, whereas it is then the task of server-side mecha-
nisms to redirect the request to the appropriate proxy. Another
aspect to note is that HAS is video encoding type agnostic.

B. Adaptive Bitrate Selection

A typical HAS system is divided into two different parts,
that is, media presentation and the Adaptive Bitrate Selection
ABR. While the media presentation module of HAS has been
successfully standardised [33], [60], how the actual adaptation
logic works is left to the individual developers to decide. This
open nature is intended to encourage innovation.

In order to adaptive video quality to a context, network
and other system performance parameters such as CPU, dis-
play size or battery life are measured. The choice of which
parameter becomes a situational indicator depends on the QoE
metric that an ABR intends to optimise. The ABR then uses
the measurement result in making a decision on the schedule
and profile of the chunks to be downloaded.

A typical ABR scheme operates in two
states [36], [73], [74]: Buffering and Steady state. At
the buffering state, conventionally, a player starts requesting
the lowest video rate. Thereafter, the ABR may try to fill
its buffer as quickly as possible [38], [75], raise the video
quality as fast as possible [36], [73], or combine the two
approaches [29]. If the goal is to fill the buffer, the chunk
request rate has to be maximised by aggressively downloading
low bitrate chunks. This technique is meant to reduce the
start-up delay and protect a player from buffer under-run [74].
However, throughput based ABRs (see Section III-A for a
detailed discussion on throughput based ABRs) assume that
a HAS system can sustain a video rate up to the measured
throughput. Therefore, try to match the video rate, as close as
possible, to the estimated network capacity, and hence from
the start of streaming such approaches continuously raise
the video rate. In [29] and [76], a video rate is increased
non-linearly, such that after every chunk request the video
rate is increased by a factor until the sustainable bitrate
is reached. The approach gradually raises the quality level

SANI et al.: ABR: SURVEY

without increasing the risk of buffer depletion. The buffering
phase is activated when there is an imminent possibility of
buffer depletion. This is typically the case at the start of
a streaming session. It is important to note that a player
normally does not wait until the end of the buffering phase
before a playback begins. All that is required is enough
content in the buffer. This can be achieved when either a
certain amount of content is downloaded or the buffer size
reaches a predefined target [77]. For example, the MSS has
a playback buffer of about 20 seconds but starts playing
when the buffer contains just about 10 second worth of
download [36], [77]. Likewise, Netflix has a buffer size of
300s worth of content but begins playback 13s after receiving
the first packet [36]. The duration of the buffering phase is
called convergence time.

When the buffer size reaches a particular threshold, the
steady state mode is activated. In this phase, the goal is to max-
imise the video rate of the requested chunks and ensure buffer
over-flow does not occur. It should be noted that the buffer
contains a sufficient amount of content to absorb network
instability and the chances of under-run are low. Therefore,
only chunks having the highest video rate the available system
capacity can sustain are requested. One important feature of
the steady state phase is called periodic download. The peri-
odic download is a technique that allows a client to download
a chunk and then pause for some time before downloading the
next chunk. At the ON period, the speed of a download is only
constrained by the TCP throughput, while at the OFF period
no data is downloaded.® The periodic download guarantees an
inflow of content into the playback buffer without causing a
buffer overflow.

To better manage the complexity of ABR, Jiang et al. [49]
propose a general framework. The framework divides an ABR
module into three subcomponents, each unit is associated with
a function that an ABR is expected to render. It is worth noting
that the subcomponents need not to be necessarily co-located.
In fact, any of the modules can be located on separate systems.
However, in this paper, we will concentrate on the case where
all the subcomponents are co-located on the client device. Here
are the subcomponents:

e resources estimation,

o chunk request scheduling,

« adaptation.

As can be seen in Fig. 3, the chunk scheduling function
takes as inputs the time the last chunk download finished
in conjunction with the buffer level and is responsible for
deciding when a chuck is going to be requested. The adap-
tation module decides which profile of the chunk should be
downloaded, based on feedback from the resource estima-
tion module. An obvious shortcoming of this framework is
that it treats the ABR module as if it exist in isolation of
its context. Simply put, it does not consider the external fac-
tors affecting the performance of an ABR. In this paper, we
present an improved framework that takes a system view of the
ABR module. As shown in Fig. 4, this framework explicitly

OExtensive experiments have confirmed the presence of this ON-OFF traffic
characteristic in both commercial and experimental players [36], [49].

2989

Estimated Capacity

N N
'l Function

Buffer Level

Next Video Rate

>

A 4

k| Request

Function

Time for the
Next Download

End of the Last
Download

Fig. 3. ABR Framework.

considers external factors such as delivery and content format,
context or user requirements.

A lot of effort has been put into understanding both the
impact of the interaction between the internal components
and the influence of the external component (i.e., operat-
ing environment) on the performance of HAS services. The
research in this spaces addresses both, theoretical and experi-
mental aspects, which includes several detailed performance
evaluations of some of the existing services. For instance,
in [36], a performance analysis is conducted to determine
the impact of throughput fluctuation on the performance of
some of the most prominent commercial implementations of
HAS services. Furthermore, Akhshabi er al. [42] investigate
the impact of competition for the available bandwidth between
multiple adaptive streaming clients. In a similar vein, the
work discussed in [78] presents a comprehensive evaluation of
the impact of competing flows on a typical adaptive stream-
ing player. Other researchers [74], [79] have looked into the
effect of the scheduling policy. However, Timmerer et al. [80]
investigated what benefit, if any, is obtained by the use of
different adaptation mechanisms. How to properly select the
representation set that is presented to clients is the topic of
the research outlined in [81]. While this is not an exhaustive
list, it summarises the major research related to theoretical
and experimental performance evaluation on how the differ-
ent internal components impacted on one another and their
external environment. However, more performance evaluation
work will be introduced in the relevant sections throughout
the paper.

III. RESOURCES ESTIMATION FUNCTION

Resources and their availability define the capabilities of
a HAS client. Therefore, it is crucial to understand the way
they are monitored and measured, and how they affect the
efficiency of an adaptation module.

Typically, a resource estimation function is expected to
monitor and measure the resource of interest. This task
can be implemented at the server-side, the client-side, or
somewhere inbetween. The appropriate location depends on
which performance parameter an ABR scheme relies on. The
client-side ABRs distribute the task of resource observation,
hence are more scalable than server-side implementations.

2990

Content Nature

ABR

IEEE COMMUNICATIONS SURVEYS & TUTORIALS, VOL. 19, NO. 4, FOURTH QUARTER 2017

CDN

Resource Function

Adaptation Module

Scheduling Function

-
User
Requirement

I

Context

Sub-components

External Components

Internal Components System Boundary

Fig. 4. System Representation of ABR Module.

Because content providers target a large number of clients,
and on top of this, most of the important parameters may be
better observed closer to the client (e.g., last-mile bandwidth,
buffer occupancy and power level), monitoring and resource
estimation is usually implemented at the client-side. However,
solely relying on client-side observations results in an oppor-
tunistic ABR. In other words, an ABR that only optimises
the performance of a single client [40]. To address this chal-
lenge, a central control plane has been proposed in [82], which
aggregates measurements from many clients. This ensures that
ABR scheme is globally optimising the performance across
all clients. In [83], a control plane was used to orchestrate the
monitoring and measurement process of video streams in a
network. The goal here is to ensure network-wide QoE fair-
ness. Cofano et al. [30] also propose a network control plane
with the goal of maximising network-wide QoE and band-
width utilisation. They rely on bandwidth reservation on a
per-flow basis to achieve this. Also [31] propose a software
defined networking (SDN) based architecture that allocates
bandwidth to competing clients based on both content com-
plexity of requested video and the buffer status of individual
clients.

Selecting which resource is used as a situational indicator
in video rate adaptation is context dependent [28]. The first
generation of ABRs principally relied on throughput estima-
tion and always selected the highest video rate lower than
the measured throughput [36], [87]. It was assumed that this
strategy can avoid rebuffering while at the same time provid-
ing high quality video. It later became obvious that throughput

TABLE I
CLASSIFICATION OF ABR BASED ON THE RESOURCE DEPENDENCE

Resource Research Work

Throughput [19], [28], [37], [49], [501, [59], [77],
[84], [85], [86]. [87], [88], [89], [901,
[91], [79], [92], [93], [94], [95], [96],
[97], [98]

Buffer [28], [371, [38], [99], [100], [101], [78],
[75]

Power [102], [103], [104], [105], [106], [51],
[107], [108], [109], [108] , [110], [109],
[111], [112], [113]

estimation alone is not a sufficient parameter for designing effi-
cient ABR scheme [49], [78]. This is due to the inadequacy
of the network state information to capture the requirements
of the variety of devices and the different contexts that HAS
is expected to operate under. For example, a user with limited
battery power watching European Champions League finals
using his smartphone perhaps will be more concerned with his
battery life (in order to prolong his viewing) than the quality
of the video. In this context, it may be more appropriate for an
ABR scheme to make a decision based on power consump-
tion rather than aiming at delivering the highest video rate.
Nowadays, various parameters are used to adapt video to the
multitude of requirements of different clients. Table I presents
a summary of the parameters and the respective work that have

SANI et al.: ABR: SURVEY

R(t)=8(t)

R(=BHC(Y)

R(O=2(0B(Y G¢)z(t)
K

R@=C(t) -

Rit)=z(t) | Rt=zce)

Fig. 5. The set of all possible representations of R(¢). The C(¢),B(t) and
Z(t) axes represent R(¢)s that rely on one metric. While points J, K, and L
represent R(¢)s with one main factor and one adjustment factor. M is R(f) that
works with three and above factors.

used them as factors in deciding the most appropriate video
rate to stream.

For the purpose of resource utilisation, ABR can be rep-
resented as a function R(f) according to which the video
rate is selected. Fig. 5 captures the different representations
of R(#) that are theoretically possible. A typical R(r) takes
various parameters as inputs, for example, throughput [49],
buffer occupancy [38], power level [51] and cost [113], each
weighted depending on the desired outcome. The principal
parameter an ABR relies on is called the main factor with
weight y, other factors are then adjustment factors, with a
combined weight of (1 — y). When no parameter dominates,
all should be considered as adjustment factors. C(¢) denotes
throughput, B(f) represents buffer occupancy and Z(r) is any
other parameter that may be used in modelling R(f) (e.g., cost
or battery life).

The C(#), B(¢r) and Z(t) axes represent R(7)s relying on
one parameter only. On any plane between any two axes,
there are various possibilities of mixed-mode ABRs. For
example, point K, where R(t) = yB(t).(1 — y)Z(t), repre-
sents an ABR that relies on both the buffer occupancy and
another factor (e.g., battery level) while the point L, where
R() = yB().(1 — y)C(t), is an ABR that relies on both
throughput estimation and buffer occupancy. Any one of the
two parameters can be the main factor or the adjustment fac-
tor. Point M with R(t) = yB(t).(1—y —B)C().(1—y —0)Z(¢)
where y + B + 6 = 1 represents a typical R(7) that relies on
more than two parameters, for instance as discussed in [86].
ABRs that have throughput estimation as their main factor
are called Throughput-based ABRs, while those using buffer
occupancy as their main factor are called Buffer-based ABRs.
Power-based ABR uses battery level as their main factor. It
should be noted that an ABR that relies on only one factor is a
special case of a mixed-mode ABR with the potential adjust-
ment factors having zero weight. Researchers have mainly
focused on cases where C(¢), B(f) and P(t) are used either

2991

as the main or adjustment factor. Thus, in the following, the
paper will also concentrate on these cases.

A. Throughput Based ABRs

Throughput-based ABRs try to estimate the available
network capacity, which is the average unutilised capacity
over a specific time interval [114]. However, regardless of
the underlying technology or the transport protocol used for
any content transmission, the available bandwidth is time-
varying [115]. When TCP is employed as the transport layer
protocol (as in the case of HAS) the variability is exacerbated
by the protocol specific characteristics (e.g., TCP slow start
and congestion control).

Usually, throughput-based ABRs equate the available band-
width with the measured TCP throughput. Furthermore, the
monitoring and the estimation of the available network capac-
ity are often done above the HTTP layer, which results in
not very accurate information [78]. Moreover, because of the
discrete nature of HAS based systems, a resource estimation
function can only estimate per-chunk throughput. This can eas-
ily be obtained by dividing the amount of data (the size of a
chunk in bytes) downloaded by the duration of the download.
The idea is to use the throughput of a recently downloaded
chunk as a rough estimate of the current network conditions.
However, the instant throughput derived from a single chunk
is hardly used since it is prone to short-term fluctuations as
result of, for instance, the time-varying nature of the available
bandwidth, or the dynamics of TCP. Regardless of the cause
of fluctuations, the per-chunk estimated throughput can cause
significant variability in the video quality. Due to this and the
difficulty in accurately estimating throughput above the HTTP
layer various techniques are used to improve the quality of the
measurement. Table II gives a summary of the techniques and
the corresponding proposed solutions.

1) Estimation Techniques: In order to overcome the prob-
lems related to per-chunk estimation and the instability this
creates, a variety of methods has been used to estimate the
available bandwidth. In [19], w is multiplied by the video
rate of the currently received chunk, where n is the quo-
tient of Media Segment Duration (MSD) and Segment Fetch
Time (SFT). The SFT is the time the last bit of a requested
chunk is received minus the instant of sending the request.
Where MSD is the media playtime contained in a chunk. And
the result is used as the estimated throughput. However, the
algorithm relying on this estimate was found to lead to oscilla-
tory video quality. In their follow-up work [84] they proposed
a method for finding an optimum value of MSD involving
a number of chunks. Simulation results showed that using
the optimum value of MSD can smooth-out the oscillation
previously observed in [19].

Long before HAS was proposed, Prasad et al. [115] argued
that any meaningful available bandwidth estimation technique
requires a time averaging of the instantaneous estimates over
a time interval. Several ABR research has used different types
of averaging techniques in estimating the available throughput.
Akhshabi et al. [36] experimentally evaluated some players.
For MSS, they found that it is using a kind of a running

2992

IEEE COMMUNICATIONS SURVEYS & TUTORIALS, VOL. 19, NO. 4, FOURTH QUARTER 2017

TABLE 1T
SUMMARY OF THE VARIOUS EFFORT TO IMPROVE THE THROUGHPUT ESTIMATION

Dimensions of research Main findings

Solutions

Estimate Techniques

-Instant throughput results in video quality fluctuations.

-Averaging of instantaneous estimates is needed.

Reliability of Estimate

-Accurate bandwidth estimation above the HTTP layer is hard.
-Inaccurate estimation causes underutilisation and rate oscillation

-Improving the information from TCP to HTTP.
-Using lager chunks size.

The Impact of TCP Dynamics

-TCP congestion control dynamics has an impact on video quality.

-TCP congestion control mechanism needs improvement.
-Increasing video Chink size .

The Impact of Traffic Pattern

-The ON-OFF traffic pattern has an impact on video quality.

Delaying the OFF until after ramping-up phase.

Resource Pooling

-Resource pooling techniques -Increase the available bandwidth.

-The Use of multiple interfaces simultaneously.

average (MSS is a propriety system). This conclusion was
reached since the player does not instantly react to a change in
the available bandwidth. This is the case regardless of whether
the player is stepping up or down the video quality level of
the recently downloaded chunk.

In [49], the harmonic mean is used to smooth-out the esti-
mated instantaneous throughput. One reason for this choice
is the robustness of the harmonic mean to large outliers.
Qiu er al. [50] employed an exponentially weighted moving
average. By doing so, they are not only able to incorporate
historical estimates into the current estimate but also expo-
nentially reduce the significance of the historical data as time
passes. Gouache et al. [85] compute the average and variance
of the estimated throughput of a number of chunks using a
low-pass filter (moving average). The current throughput is
then obtained by subtracting the product of the variance and a
constant from the calculated running average. The constant
controls the conservativeness of the adaptation logic. They
found the algorithm estimate close to the maximum capac-
ity and is robust to network errors. To improve the stability
of ABR that relies on this type of history-based throughput
prediction, a safety factor is sometimes applied to the estimate,
for example, as discussed by [77] and [86].

It is a well-known fact that smoothing techniques have a
tendency of inhibiting the responsiveness of an algorithm.
This may cause a late reaction to a significant variability that
perhaps requires an urgent action. In the context of video
rate adaptation, this may result in a late response to a large
throughput decrease and subsequent video freeze. To remedy
this lack of responsiveness, in [87] and [88] the use of an
adaptive coefficient (weight) for the weighted moving aver-
age is proposed. The approach was found to increase the
responsiveness of ABR without causing unnecessary video
rebuffering.

2) Reliability of the Estimate: Still an open issue in ABR
research is the extent to which the throughput estimates reflect
the true state of the available bandwidth.

Any throughput measurement done at the application layer
is at best only the throughput of the underlying TCP. However,
Jain and Dovrolis argue that equating available bandwidth
with bulk TCP throughput is a fallacy since TCP through-
put depends on many factors (including socket buffer sizes at
the sender and receiver, nature of the competing cross traf-
fic, round-trip time, loss rate, the nature of TCP congestion
control etc.) [114].

‘Measurement Module)
(Middleware e.g., Javascript)

HTTP Layer

C)

TCP Layer

C

Fig. 6. HAS Protocol Stack.

)

Similarly, an argument against equating the TCP throughput
observed at the application layer with the available bandwidth
is presented in [59]. The paper has shown that when clients
compete at the bottleneck link, the presence of a competing
application and the discrete nature of the HAS downloads
make it difficult for a player to estimate its fair share of the
available bandwidth correctly. As a consequence, there is an
under-subscription of the available bandwidth and video rate
oscillation. The latter is known to negatively impact user expe-
rience [42]. As a remedy, the paper proposes PANDA: a probe
and adapt technique. The algorithm somehow mimics the con-
gestion control of TCP but at the application layer. It uses TCP
throughput as an input when it is an accurate indicator of the
fair-share of bandwidth. The paper argues that this happens
when the network is congested, and the off-interval is absent.
Otherwise, it probes the network by incrementing the sending
rate and backing off when congestion is detected.

Fig. 6 presents the classic protocol stack of HAS. As can
be seen, because the measurement module sits on top of a
middleware, e.g., Javascript, which in turn sits on top of the
HTTP layer, its result will hardly be the actual TCP through-
put. This is confirmed in [78]. The paper investigated three
video streaming services, that is, Hulu, Netflix and Vudu, and
found that an accurate client-side bandwidth estimation above
the HTTP layer is hard. The authors proceed to argue that
any rate selection decision done on the of such an inaccurate
estimate will trigger a feedback loop that leads to an unde-
sirable variability and unnecessary reduction in video quality.
Furthermore, they observe that the root cause is lack of infor-
mation, because the HTTP layer does not get a continuous

SANI et al.: ABR: SURVEY

high-fidelity feedback about the fair share at the bottleneck.
The paper stresses that determining the fair share of the band-
width available at a bottleneck link is precisely the role of
TCP. To deal with these issues, the paper suggests that an
ABR scheme either improves the information flow from TCP
to the HTTP layer to ensure that TCP has a chance to reach its
steady-state (e.g., by increasing the segment size), or to just
strictly rely on buffer state changes for video rate selection
decisions.

Application layer based schemes are not the only tech-
niques used in predicting the achievable throughput. Many
attempts were made on cross-layer throughput estimation.
In [37] machine learning technique developed in [116] is used
to predict the achievable throughput. The method uses the
support vector regress algorithm [117] to train the throughput
prediction model with network layer information like packet
loss, delay, and RTT. In [89] and [90], physical layer ‘good-
put’ is used to complement the application layer estimate. This
results in an improvement in the perceived video quality and
a reduction in the rebuffering frequency.

3) Impact of TCP Dynamics: The extent to which a
throughput measurement module fails to provide an accurate
estimate is not the only reason for the failure of clients to
estimate their fair share of the available bandwidth. TCP con-
gestion control dynamics also plays a significant role. The
effect of TCP becomes more evident in the wireless context.
This is because of the well-known fact that wireless com-
munication systems are characterised by high latencies, high
bit-error rates and protocols that have to cope with handling
user mobility. The solution to this is either to modify the con-
gestion control mechanism of TCP (as recommended in [79])
or to reduce the causes of the unnecessary activation of the
congestion control mechanism. ABR researchers tend to prefer
the latter option.

In [118], multiTCP is proposed, an application layer algo-
rithm that improves resilience against short-term TCP through-
put fluctuation. The authors of the paper demonstrate that for
any single packet loss event, the reduction in throughput when
two TCP connections are used is four times less than if one
TCP connection only is used. In summary, the amount of TCP
throughput reduction is inversely proportional to the number
of TCP connections employed

In [92] multiple HTTP/TCP connections are used to stream
HAS content. The scheme is found to be insensitive to packet
loss and therefore, reduces throughput fluctuation. In brief,
the scheme works as follows: it downloads multiple (but fixed
number) of chunks from a server. Each stream requests chunks
in the order of playback. But the chunks that are needed soon
are prioritised. When a chunk stalls and reaches time-out, it is
retransmitted by two HTTP streams. While in [92] and [118]
all streams share a bottleneck link, in [85] an attempt to
improve the resilience of the system by concurrently fetching
chunks from multiple servers are made. The scheme con-
tinuously estimates the bandwidth of each stream from all
servers. A software agent decides which representation will
be requested based on the smoothed version of the estimate.
The agent requests a slice of the chosen chunk from each
server concurrently in proportion to the estimated capacity of

2993

the corresponding server. The result of their experiment shows
a reduction in the video rate variability at no extra bandwidth.

4) Impact of Traffic Pattern: Apart from the capacity esti-
mation performed at a wrong layer and the TCP dynamics.
Another cause of the inability of a client to estimate its fair
share of available bandwidth is nature of HAS traffic pattern.

Usually, an ABR requests chunks discretely. Furthermore,
when the buffer reaches a threshold download ceases until
a certain amount of content has been consumed to free
up buffer space. This results in an ON-OFF traffic pattern,
which is obviously bursty. Fine-tuning bursty traffic is a
well-established technique used in many bandwidth estima-
tion applications [119]. This is the case since most bandwidth
estimation techniques work best under the assumption that the
network traffic has fluid flow characteristics [95]. It should
be noted that this assumption may not be always correct.
Jain and Dovrolis [114] have argued that disregarding the
bursty nature of traffic is one of the pitfalls of bandwidth esti-
mation. Nonetheless, since HAS traffic does not appear as a
continuous flow one needs to evenly space the traffic to give it
the appearance of a fluid flow. One technique used to achieve
this is traffic shaping. Traffic can be shaped at the server, the
gateway, or the client.

Akhshabi et al. [93] implement a server-side traffic shaping
technique that is not player-specific. It is aimed at neutral-
ising the OFF period in a steady state. The first thing the
shaping module does is to detect oscillation. This happens
when the profile of contiguous requests frequently alternate.
The next step is to limit the throughput of a chunk to its encod-
ing rate. In other words, the download duration of the chunk
will now be equal to the chunk playout duration. Meanwhile,
they have already set the inter-arrival time to the chunk dura-
tion. Limiting the chunk throughput will therefore effectively
remove the OFF period. Hence, the player remains in the ON
period even though it is in a steady state. The results of exper-
iments show that the mechanism extenuated the instability. In
summary, the clients are better able to estimate their fair share
of the available bandwidth. Though the authors argue that this
is a reactive mechanism and hence would have a reduced exe-
cution overhead on the server, the Web server still requires
modification.

In [94], a traffic shaping mechanism implemented at the
home gateway is proposed. The technique allows for band-
width arbitration by first determining the bandwidth require-
ment of each of the streaming clients and then constrains
the clients to stay within their allocated limit. The authors
are of the opinion that implementing a bandwidth manager
at the gateway has a number of advantages. For example,
the gateway has a global view of the network and can
allocate bandwidth based on factors such as device roles,
characteristics, and content value.

In [95], it is argued that traffic shaping at a gateway is not a
good alternative since it involves the participation of a network
operator, and may require additional functionalities and per-
missions that broadband operators are not always willing to
provide. They propose a client-side traffic shaping technique
that does not involve the server or the gateway in any way. The
technique is based on their earlier work [96], where they used

2994

different segment durations to randomised chunk inter-arrival
time (see Section IV). They interleave requests from differ-
ent clients. When traffic consists of low profile chunks, the
effect of shaping was realised by increasing the inter-arrival
time, while when the traffic consists of high profile chunks
the traffic shaping is achieved by increasing the segment fetch
duration.

5) Resource Pooling: Over-provisioning could be an option
in dealing with issues related to bandwidth estimation above
the TCP. However, this is not always possible since band-
width is an expensive resource, and in some instances (e.g., in
wireless environments) it can be quite scarce. Nonetheless, a
number of researchers have attempted to improve the available
bandwidth through various resource pooling techniques [120],
whereby a collection of resources belonging to a system is
treated as a single pool. The idea is to exploit the different
communication resources a device has access to, e.g., today
wireless devices are equipped with multiple network interfaces
which can be easily aggregated.

Wang er al. [121] investigate a scenario where a client
streams over multiple paths, which may or may not share a
bottleneck link. Their goal is to determine under what con-
ditions multipath TCP provide satisfactory performance, and
what are the potential benefits of using multiple TCP connec-
tions. The results of an extensive simulation show that the use
of multiple TCP connections provide satisfactory performance
when the achievable aggregated throughput is 1.6 times the
bitrate of the video rate with few seconds of start-up delay.
This represents a reduction in the bandwidth requirements of
a single TCP connection, which according to the authors’ ear-
lier work requires 2 times the video bitrate [17]. Additionally,
they found that with proper design the aggregate throughput
of the multiple paths can be equal to (or perhaps greater than)
the sum of the throughput of the individual paths.

Also in [97] an attempt has been made to efficiently aggre-
gate available bandwidth from multiple heterogeneous network
interfaces. The authors use HTTP range retrieval requests
to logically segment a chunk, then simultaneously download
each logical chunk over the various interfaces. They found an
increase in performance compared to a single link, and con-
sequently a significant increase in video quality. However, to
achieve an optimal performance there is a need for a large
buffer size to compensate for link variability. In their sub-
sequent work [98], the sub-segment approach is improved,
so that chunks are dynamically segmented in proportion to
the estimated link capacity. This avoids idle periods and large
buffer requirements by allocating the right amount of data to
each link.

B. Buffer-Based ABRs

Buffer serves many purposes in streaming systems. Initially,
it is introduced to absorb throughput variability [122] so
as to ensure that the time restrictions of continuous media
(i.e., deadlines) are met. Moreover, for a player not to run
out of content the rate at which it consumes data should be
at least equal to the rate at which the content arrives, which
is not always the case. Hence, to avoid buffer under-run a

IEEE COMMUNICATIONS SURVEYS & TUTORIALS, VOL. 19, NO. 4, FOURTH QUARTER 2017

Input Rate
Throughput/Video rate

»
>

Buffer Occupancy (Seconds)

Buffer Size (Seconds)

&

<
<
<

Output Rate
(1 Second)

Fig. 7. Buffer Dynamics.

certain amount of data is buffered. This ensures that the HAS
client will continue playing from the pre-buffered content for
at least a time equivalent to the duration of the buffered video.
Therefore, there is an inverse relationship between buffer size
and the probability of video under-runs, i.e., the bigger the size
of a buffer the longer it takes to run out of content. However,
in a practical system, there is a limit to the size of the buffer
that can be used [123].

1) Buffer Dynamics: In the early days of video streaming,
before scalable video or HAS video streaming services were
available, a video was required to have a uniform quality. In
these systems, a buffer capacity is specified in bytes. To derive
the temporal size of a buffer occupancy, one just divides the
size in byte by the average video playback rate.” However,
with the introduction of video services where the video rate
could be adapted to the changing conditions (e.g., scalable
video coding or HAS services), this is not necessarily the case
anymore. For instance, the buffer of a HAS client (as can be
seen from Fig. 7) at any given time can store multiple chunks
of which each chunk can be of any video rate between the low-
est and the highest available. Nonetheless, the video chunks
usually are of equal size in terms of playtime. The relation-
ship between the buffer size in terms of storage capacity (or
spatial size) depends on several parameters such as the num-
ber of chunks buffered, their bitrates and the encoding scheme
used (VBR or CBR) [75]. This complicates the process of con-
verting the buffer occupancy in bytes to time. To the best of
our knowledge, currently, there is no straightforward method
of doing this conversion. Hence, buffer in HAS is generally
calibrated in time [29], [37], [49]. This greatly simplifies the
tracking of the buffer occupancy as a player only needs to
multiply the temporal chunk size by the number of chunks
contained in the buffer. This is further aided by the fact that
memory is not a critical issue any more.

7Considering the fact that the variable bit rate coding is the most widely
used encoding scheme. The average video playback rate is used.

SANI et al.: ABR: SURVEY

R max

Video rate

Rmin

Bmax

Buffer Occupancy

Fig. 8. Buffer Evolution Map.

In summary, the rate at which content is fed into the buffer
depends on both the download rate and the video rate of the
chunk being downloaded (see Fig. 7). Furthermore, the buffer
is drained at the rate of one second of playback every second of
real time. Hence, if the ratio of the download rate to the video
rate is greater than one (i.e., the play-out-rate) buffer occu-
pancy grows, if it is less than one it shrinks. This effectively
means that to maintain the buffer occupancy at a certain level,
before a chunk is played the next chunk must have arrived.
If the ABR continuously requests chunks that are above what
the network can sustain the buffer depletes, and consequently
there will be a playback freeze at one stage. Moreover, the
lower the current buffer occupancy becomes the more likely it
is that the video will freeze. In fact, Xu et al. [99] have found
that the probability of buffer starvation decreases exponen-
tially with respect to the initial buffer level. Thus, to improve
a player’s resilience against rebuffering events a client does not
instantly start playing but waits for some time to fill the buffer
until a threshold (also called low watermark) is reached. This
period is called start-up period. It was observed in [124] that
a large initial buffer occupancy increases a streaming applica-
tion’s tolerance to network variability but at the expenses of a
start-up delay. However, users are not willing to wait longer
than few seconds before the start of a playback [125]. In fact,
it has been found in [126] that viewers start to abandon a
streaming session if the start-up delay takes more than few
seconds. To solve this trade-off, at the start of a streaming
session ABR algorithms start requesting the chunks with low
representation because downloading a low quality level results
in fewer data, and hence reduced buffer requirement and faster
content transfer.

2) Buffer As a Feedback Signal: Until recently, ABR
algorithms wusually divided buffer into logical segments
So0,S1,...,8:,—1 with Bj < B, < --- < Bj,ux as thresholds,
where a buffer occupation with low segment numbers (i.e., a
segment number close to zero) indicates an increasing likeli-
hood of buffer depletion. The least number a buffer can be
segmented into is two. The first segment Sy is an area from
when the buffer contains no data to a threshold point B;.3

8Note, this may be any point less than the maximum buffer size.

2995

Second segment S is an area from the threshold to the maxi-
mum buffer level (B,,qy). An example is [37]. However, others
such as [28] and [73] divide the playback buffer into three seg-
ments, called panic, low, and upper level. The logic behind
the segmentation is to allow the pertinent ABR algorithms to
behave differently at each buffer segment [28], [37], [127].

In [38], a video rate map that continuously maps the video
rate to buffer occupancy is presented. It starts by separat-
ing the buffering phase (called reservoir), in which only the
lowest available video rate is downloaded from the ramping-
up period where the video quality is linearly incremented.
However, Sani er al. [29], [76] argue that this creates a dis-
connected flow. Furthermore, the linear evolution of video
quality level prolongs the convergence period. They propose
a logistic rate evolution map that tries to unify all stages of
streaming. In Fig. 8 a video quality evolution map [29], [76]
is presented where the horizontal axis represents the buffer
occupancy in seconds and the vertical axis shows the video
rate (Ryin and Ry, being the minimum and maximum video
rate respectively). As can be seen from the curve, the rate at
which video quality changes relative to the buffer occupancy
is non-linear. The amount of buffer needed to change the video
rate at the start is relatively higher, then becomes increasingly
smaller as the value of the video rate increases. Before finally
it starts increasing again as the video rate approaches the max-
imum level. Their argument is that at the start of a streaming
session ABR should be conservative with respect to quality
change because the risk of video freeze is high. But when
the buffer contains enough content to allay this fear the ABR
can exponentially increase the video rate. Furthermore, the
authors reasoned, from a point where the video quality level
is relatively high a rise in the current rate does not necessarily
translate into an equivalent improvement in the user-perceived
quality [128]. Hence, the rate at which the video quality level
changes is slowed down by increasing buffer needed to change
to a high video rate. This not only helps raise the video
rate to the maximum without any increase in the number of
rebuffer events but also protects the system from video quality
fluctuation.

In [129], the relationship between buffer state change and
video rate is modelled using a bio-inspired approach. The
paper assumed that the buffer is a habitat with a limited caring
capacity, with the video rate being an animal species whose
increase in population an ABR is interested in. Furthermore,
they assume that the rate at which the content arrives is the
birth rate and the rate at which a player consumes content
is the death rate of the species. With this information, they
used Verhulst-Pearl equation to represent the video rate map.
Results of experiments show and improvement in the average
value, and the stability of the video rate compared to [38].

Another important feedback signal that can be derived from
the buffer occupancy is the trend of the buffer evolution [37].
Fig. 9 presents three different buffer evolution trends. In this
example, a buffer of size B is divided into two equal parts,
B and Bj, and a line marked T that divides them repre-
sents a threshold mark. Fig. 9(a) presents a scenario when
the buffer refill rate is increasing rapidly, and the buffer occu-
pancy is greater than the threshold point. This implies that the

2996

Buffer Size

4
Y

4
Y
4
v

(a) Buffer level above the threshold and growing

Buffer Size

A
A 4

(b) Buffer level below the threshold and growing

Buffer Size
T

4
Y

4
v
4
v

(c) Buffer level at the threshold

Fig. 9. Playback Buffer Evolution Trends.

video rate that is being downloaded is conservative, the ABR
algorithm may decide to switch to a higher quality level. In
Fig. 9(b), the buffer level is below the threshold, and the buffer
is growing slowly, which means that the ABR algorithm is too
aggressive with its video rate. Thus, it needs to switch down
the quality level of its chunk except if the current level is
the minimum representation in which case there is nothing
an ABR can do. However, when the rate of the buffer occu-
pancy evolution is neutral (as can be seen in Fig. 9(c)) an
ABR scheme may opt to maintain its current representation.

The use of buffer as an adjustment factor is based on the
assumption that the main factor in any rate adaptation is chan-
nel capacity. However, the knowledge of network capacity (as
discussed in Section III-A) is at best imprecise. Upon realising
that solely relying on TCP throughput only results in an ABR
that is unstable [59], unnecessarily rebuffering [78], request-
ing sub-optimal video rates [42], and unfair [78] researchers
started prioritising buffer occupancy when making adaptation
decision. The work presented in [37] is an important mile-
stone in shifting towards buffer-based ABR, it uses the buffer
occupancy as the main factor with TCP throughput as an
adjustment factor. The algorithm the paper proposes relies
on three buffer related properties, i.e., (i) buffer size adjust-
ment factor, (ii) buffer trend adjustment factor, and (ii) video
chunk size adjustment. Other research that prioritised buffer
occupancy over TCP throughput are [100] and [101].

To the best our knowledge, the first ABR that solely relies
on buffer state changes for the purpose of rate selection is the
work of Huang et al. [38]. The authors argue that the ulti-
mate purpose of any rate adaptation algorithms is controlling
a playback buffer. And the most important task for any ABR

IEEE COMMUNICATIONS SURVEYS & TUTORIALS, VOL. 19, NO. 4, FOURTH QUARTER 2017

is the prevention of rebuffing. Furthermore, buffer occupancy
contains a lot of information that is sufficient for an ABR
to make decisions without recourse to any other parameter.
Therefore, they conclude ‘if it is the playback buffer we are
controlling, then why not measure and control its occupancy
directly?” [38].

The algorithm proposed in [38] works as follows: (1) pro-
vided the start-up period is passed, the current chunk quality
level is increased to the next level if the rate suggested by
the rate map exceeds the next higher available video qual-
ity level; (2) the current representation is reduced to the next
lower quality if the video rate suggested by rate map is
lower than the next available quality level lower than the cur-
rent level, (3) otherwise the current video rate is maintained.
Furthermore, the authors of the paper suggest that a segment
of the buffer is reserved for the start-up period: the called a
“reservoir”. While filling the reservoir only chunks with the
lowest video rate are requested. They analytically show that the
algorithm will never rebuffer provided that the network capac-
ity is greater than the minimum video rate, and will always
converge at the video rate that matches the network capacity.

The above buffer-based ABR is initially analytically evalu-
ated. In their subsequent work [75], a large scale experiment
is conducted a with millions of randomly selected users from
the Netflix streaming service. The result of the experiment was
encouraging, even a simple buffer-based algorithm like the one
proposed at [38] was able to reduce the number of rebuffering
events by 20% compared to the one of the best commercial
offering. However, the algorithm’s performance with regard to
average video quality and the stability of the switching logic
could be improved. Thus, they propose a number of additional
of improvements, such as the dynamic selection of the reser-
voir size (based on current chunk size), a rate map based on
the chunk size not video rate to account for the VBR nature
of chunks and the extension of the reservoir to help improve
the algorithm’s reliance against temporary network outages.

C. Power-Based ABRs

Delivering high quality video content to a mobile wireless
device is a challenging issue because of the limited resources
of the access technologies. Furthermore, mobile terminals are
usually energy constrained and video streaming is a power
intensive exercise. Various researchers have found a significant
increase in energy usage when streaming video [102]-[104]. In
fact, video streaming can consume as much as twice the energy
of playing the same content offline [102]. Understandably, this
shortens the battery life and consequently increases the prob-
ability of the battery running low in the middle of a streaming
session [102].

In general, power consumption is known to be application
dependent [130], [131]. Several adaptation techniques have
been used to match the application performance to energy
requirements. A detailed survey of the various approaches that
use content adaptation to manage the energy consumption of
the wireless mobile devices is presented in [105]. Inspired by
the context sensitivity of energy consumption, researchers have
investigated the relationship between video quality and battery

SANI et al.: ABR: SURVEY

energy depletion rate. In [132], the impact of streaming differ-
ent video formats and spatial resolutions, stored on a server, is
investigated. The authors found that low fidelity video, in most
cases, consumes less energy. Recently, it was found in [106]
that the power consumption of mobile devices heavily depends
on the video rate of the content being streamed. For instance,
they discovered that changing the video resolution from 1080p
to 360p reduces the power consumption by half. It was also
observed in [102] that decreasing the video quality level can
significantly reduce energy expenditure.

Non-HAS streaming services have attempted to pro-
long battery life by taking advantage of the differen-
tial energy consumption of the video. This is mainly
done through dynamically balancing energy conservation
and video quality [133]-[135]. Recently, HAS research has
started to look at using power as a factor for rate selec-
tion [51], [86], [107], [108]. A typical power-based ABR
either employs techniques that are known to save energy or
use the battery level for rate selection.

Many factors are known to increase power consumption. To
save energy, most network interfaces periodically go inactive
when not transmitting or receiving data. It is worth noting
that the inactivity timer is technology specific. When using
HTTP/TCP for video streaming, usually, a persistent connec-
tion is established. Hence, even if not downloading any data,
the wireless radio remains active, which results in the inactiv-
ity period being too short for the interface to enter the sleep
mode. In an attempt to reduce energy consumption various
ABRs schedule requests in such way that the sleep modes are
not unnecessarily reduced, or worse done away with. In [108],
a scheme that makes the length of the sleep mode context
dependent is proposed. The paper adaptively sets the inactiv-
ity timer base on transmission constraints so that the energy
saving is maximised. In [109], it has been observed that since
users tend to watch about 60% of streaming video to the
end [136], pre-fetching may result in energy wastage. Hence,
they proposed a scheme that minimises such wastage.

Li et al. [51] optimise power consumption by minimising
unnecessary active periods while streaming over 3G/4G. They
achieve this through the dynamic management of the buffer
while relying on the user’s view history and network state.
In [86], a bundled chunk download strategy is presented. Put
simply, a client downloads a set of chunks (as bundle), and
then waits until its buffer is depleted to a certain threshold
before requesting another bundle. Kim et al. [110] propose
a similar approach where a client pre-fetches a large amount
of video content then enters an OFF period until the buffer
shrinks to a predefined threshold.

Hosseini et al. [111] use an energy specification for each
chunk stored at the server. However, this requires an additional
attribute to the MPD. The energy specification is derived from
the chunk size, which usually depends on the quality level
together with the decoding and the rendering complexity of
the chunk. The proposed framework maps a client’s energy
estimation to the right energy specification for each represen-
tation. In [112], an energy-aware ABR adapts video quality
based on the remaining battery capacity of the mobile client
thereby prolonging the battery life.

2997

TABLE III
TYPES OF SCHEDULING USE IN ABR

Types of Scheduling | Research Work

Sequential [19], [28], [36], [37], [38], [49], [51],
[74], [109], [84], [96], [98], [138],
[139], [40], [140], [141], [142].

Parallel [98], [138],, [143], [144], [145]

IV. CHUNK REQUEST SCHEDULING FUNCTION

Chunk scheduling is the process of deciding when to dis-
patch a chunk request. Generally, a scheduler takes as input a
set of parameters, such as the buffer size, target buffer level,?
and the time the previous download ends. Its output is the time
to dispatch the next request to the server.

Scheduling of a chunk requests can either be sequential or
parallel [71]. A sequential scheduler request chunks one at a
time. It is worth noting that this does not in any way imply
that the request must be made immediately after receiving a
response from a server. In contrast, there can be an inactiv-
ity interval between subsequent requests. A parallel scheduler
dispatches multiple chunk requests at the same time. However,
this does not necessarily imply that each request is for a
separate chunk. Because in some cases multiple requests are
targeted at the same chunks with each request targeting a sub-
segment. A parallel scheduler is mainly used when a client
intends to use multiple interfaces and/or wants to access con-
tent from multiple locations. Table III presents a summary of
the research that employs either of the discussed scheduling
methods.

A. Sequential Schedule

The most basic of all sequential scheduling techniques used
in HAS services is called progressive dispatch. In the pro-
gressive dispatch, a request is made as soon as a response
is received, this aggressively ramps up a buffer. Incidentally,
if allowed to continue unabated progressive dispatch can
easily overwhelm a client that has limited playback buffer.
During the start-up period or when the buffer level is below a
predefined target (i.e., when a player is at the buffering state),
the progressive dispatch is the most appropriate scheduling
mode. Commercial players such as MSS, Netflix [36] and
YouTube [74], as well as some non-commercial players (e.g.,
DAVVI [137], and FESTIVE [49] are known to use progres-
sive dispatch to fill up their buffer. Furthermore, it is argued
in [40] that for a client to get its fair share of the available
bandwidth, progressive dispatch should always be used before
the download of the maximum available video quality level.

When the network conditions fluctuate, a rate adaptation
logic is used to match every request to the available resource.
Hence, it is highly desirable for the scheduling logic to be flex-
ible. Periodic dispatch is one such a flexible approach. It sends
a request to a server in a specified time interval after receiv-
ing a response. In addition, periodic dispatch can be used to
avoid buffer overflow [38], or to save energy when streaming

9Note this depends on the implementation.

2998

t13
t1

t1 12

(©

Fig. 10. Unstable, Unfair and underutilised scenario.

in mobile environments [51], [138]. This effectively results in
an ON and OFF traffic pattern. Most implementations derive
the time interval between requests (i.e., the duration of the
OFF period) from the chunk size [36], [74].

In [79], the performance of periodic dispatch is investigated.
The paper found that the use of periodic dispatch can cause
a deterioration in TCP throughput. The authors then suggest
the use of a long video segment as a remedy. While [42]
look at the behaviour of periodic dispatch scheduling when
multiple players are trying to share a bottleneck link and
observe that there are issues with instability, unfairness, and
underutilisation of resources. The examples shown in Fig. 10
illustrate the problems. As can be seen in Fig. 10(a), at R1,
the two competing players have non-overlapping downloads,
as a result of which each player overestimated the available
bandwidth. Therefore, when making the subsequent request
(shown through R2) both players request a higher video rate
than the network can sustain (¢12 + 122 > T). This situation
results in congestion, which forces both players to reduce the
quality level of their next request. However, in the subsequent
round (R3) the sum of the bitrates of the requested chunks is
less the capacity of the network, i.e, (12 + 122 < T). They
found this cycle repeating, hence causing video rate instability.

Another scenario is when the ON period of one player
lies within the ON period of the of another player as can be
seen in Fig. 10(b). This normally happens when players are
requesting unequal video rates and the two players have a false
estimate of the available bandwidth. Consequently, the player

IEEE COMMUNICATIONS SURVEYS & TUTORIALS, VOL. 19, NO. 4, FOURTH QUARTER 2017

downloading the higher rate estimates more than the one
downloading lower video rate. Therefore, the players remain
in a stable but unfair equilibrium. The third problem mani-
fests itself when the players’ downloads are perfectly aligned,
but both are requesting a low video rate (see Fig. 10(c)).
In this case, they reach a stable and fair estimate but with
video rates less than their fair share of the available band-
width, i.e., 11 + 21 < T, t12 + 122 < T. This situation
results in the underutilisation of the network. The cause of
these problems observed by Jiang et al. [49] is synchronised
scheduling.

In [96], three likely solutions to both the unfairness and
the oscillatory nature of the above switching logic is identi-
fied. The first approach is to randomise chunks inter-arrival
time, and secondly, a back-off period is introduced. Whenever
a client switches down the quality level of its download, it
should not increase its OFF period for some time. Finally,
rather than using a fixed range within which the inter-arrival
time of chunks is determined, a threshold should be set, which
will determine when a system should operate aggressively or
otherwise. The authors tested the first approach and found
through simulation an improvement in the players’ fairness.
In their later work [139], they investigated a scenario whereby
each of the competing sessions is assigned a fixed but unique
inter-arrival time. They report a similar performance as in the
case of the randomisation of the inter-arrival time. However,
applying this in a practical system will require having the
video stream available in multiple segment sizes. In [49], the
value of the target buffer is randomised. The paper shows that
by doing this the scheduling is still periodic but individual peri-
ods are independent of the player’s start time and the issues
reported by [42] are mitigated.

For any video streaming application, avoiding rebuffer-
ing and streaming the best possible video quality are the
two main objectives of any rate adaptation algorithm [144].
However, live streaming sessions have an additional require-
ment, i.e., liveliness. The concept of liveness means late
chunks are skipped if the stream lags too far behind its dead-
line. It is noteworthy that for live streaming the buffer is small
by necessity in order to avoid long delays. Consequently, live
streaming has stricter deadlines [98]. Additionally, scheduling
in live streaming also has to take into consideration the fact
that a client’s arrival time decides at which point its session
begins. So far none of the discussed scheduling algorithms
considers these additional requirements of live streaming.
While periodic dispatch trades timeliness for efficiency in
buffer management, progressive dispatch is a greedy algorithm
that may request chunks not yet available. Hence, an algo-
rithm is required that can cope with ‘deadline-misses’ and has
a notion of ‘first request’. Kupka et al. [140] evaluate a series
of segment streaming strategies, with each strategy being a
possible outcome of a set of the combinations of the follow-
ing four options (each option has two values so there are 16
possible combinations in the set):

« First request: a client may request the most recent chunk

or wait for next available chunk.

o Play-out start time: a client may start play-out immedi-

ately or delay the play-out.

SANI et al.: ABR: SURVEY

o Next request: a client may request a chunk before down-
load finishes or before the play-out finishes.

o Deadline miss handling: a client may start playing from
the beginning of the download or skip a portion equal to
the deadline-miss from the download.

The result of extensive experiments [140] shows that the
best combination is when a client requests the most recent
chunk in its first request, starts play-out immediately, dis-
patches requests before play-out finishes and start playing each
chunk downloaded from the beginning. This combination is
found to avoid the synchronisation of client requests resulting
in a high-quality request and short delays.

A different approach is taken in [68], [69], and [145], they
advocate for a server push strategy. HTTP 2.0 allows a server
to push content to a receiver directly without the need of an
explicit request. Wei and Swaminathan [68], [146] presented
three push strategies that exploit the server push feature of the
HTTP 2.0, namely no-push, pull-push and K-push. In pull-
push, after the initial request, the server sequentially sends
chunks to a client without any break, and stop only when
explicitly asked by the client. While in the k-push, a client
initiates a request for a block of k chunks after receiving the
initial request, and then the server responds by sending then
back-to-back except where the client terminates the request.
Obviously, no-push is when no server push is allowed. The
push strategies were found to reduce live latency and improve
link utilisation [68].

B. Parallel Schedule

Parallel scheduling is required when a client has multiple
network interfaces and uses some or all the interfaces simulta-
neously for a streaming session. Another case where parallel
scheduling is required is when a client is streaming from
multiple servers using one or more connections. Without
appropriate scheduling, using multiple network interfaces does
not necessarily guarantee a high quality streaming service.
In fact, poor performance is the expectation [98]. In [141],
the case where HTTP range retrieval is used to sequen-
tially request chunks by a multi-homed client is studied. The
performance of the technique is found to be dependent on
segment size. The authors found that using small segments
increases the overhead, which results in a reduction of aggre-
gate throughput. A large segment size is found to significantly
increase both the start-up delay and the buffer requirements.
The authors proposed two possible solutions, i.e., either to get
an optimal segment size or to parallelise the scheduling. In
their follow-up work [142], they investigate parallelising the
schedule since finding an optimal segment size, they argued,
imposes a trade-off between the throughput and the start-up
latency. They proposed a technique based on an HTTP pipeline
that allows a client to send a request without the need to wait
for a response. The technique starts by interleaving byte range
requests, thereafter each interface may send a request imme-
diately after receiving a response. The reason for interleaving
at the start-up is to prevent interfaces from sending requests
in sync. By ensuring that the server is always busy process-
ing and responding to requests the efficiency of throughput

2999

aggregation is found to be close to the optimal level. However,
the work was done in the context of progressive download.
In [97], a similar approach but within a HAS by extend-
ing DAV VI [137] with multi-homing capability [137] is used.
Experimental results show that the scheduler reduces video
interruption and improves average video quality, even when
using heterogeneous multiple wireless interfaces.

In contrast to the approaches that use the HTTP range
retrieval [143] proposes a scheduling scheme that enables a
client to request multiple chunks in parallel using indepen-
dent HTTP sessions. The client side scheduler first sends an
HTTP GET request to a server, while the client is still receiv-
ing the requested chunk it dispatches another request. Each
chunk received is indexed. And the index is appropriately
updated whenever a new chunk arrives or when a chunk down-
load is finished. The system must not download more than a
predefined upper limit of allowable parallel threads. Before
requesting a chunk, the scheduler calculates the ratio of the
duration of a sub-segment downloaded and the duration of the
whole chunk. This is done for each of the chunks that are
currently being downloaded in parallel. It then compares the
ratio to a threshold value (for detail on how to get the threshold
see [71], [143]). If the ratio of all the parallel HTTP threads
is larger than the threshold and the buffer level is less than
the upper limit a new chunk is requested in parallel. However,
no new request is dispatched in case one the following three
conditions holds: (i) the calculated ratio is less than thresh-
old value in at least one of the parallel downloads; (ii) the
maximum allowable parallel sessions have been reached; and
(iii) buffer level is equal or greater that the set upper bound.

V. ADAPTATION FUNCTION

The adaptation function is the element within the ABR
scheme that decides the profile of a chunk to be requested
(also called adaptation logic or switching logic). The adap-
tation logic usually takes information regarding the available
resources, the schedule of the next chunk, and the set of all the
possible representations, as its inputs. Then returns a represen-
tation of a chunk to be downloaded. However, when a server
presents to a client some video representations that the client is
not capable of supporting, the adaptation logic should not con-
sider them. For example, if a client does not support HD any
video rate approaching HD resolution should be disregarded.

In its most basic form, the adaptation logic just chooses
a chunk with the highest video rate the estimated available
resource can accommodate. This basic algorithm is hardly in
use (even though it is simple to implement). Because it is very
sensitive to the time-varying nature of the resources that ABR
schemes commonly rely on, which can make its outcome oscil-
latory, abrupt [42], [74], and unfair in allocating bandwidth to
competing clients [78].

Traditionally, most HAS players rely on an adaptation logic
that mimics the concept of an additive increase multiplicative
decrease (AIMD) control scheme. This is because AIMD eas-
ily converges to an efficient and fair state regardless of the
starting point [14]. It helps in reducing the fluctuation of
video quality and abrupt change in video quality that are

3000

TABLE IV
DIFFERENT TYPES OF METHOD USE FOR ADAPTATION MODULE

Types of Scheduling Research Work

Heuristic Based [19], [28], [46], [49], [77], [150].

[30], [37], [100], [151], [152], [153],
[154].

[501, [87], [155], [156], [157].

[158], [159], [160], [161], [162], [163],
[164], [165]

Control Theory

Optimisation Techniques

Artificial
Techniques

Intelligence

not appreciated by users [46]. Further, it was demonstrated
in [83], [128], and [147] that when the video quality is high
an aggressive increase in the current rate does not necessarily
translate into an improvement in the user-perceived quality.
With AIMD-like approaches, a client increases the video rate
of a chunk request in a stepwise manner after each request-
response transaction. When the system resources dwindle, the
video rate is aggressively reduced to avoid buffer starvation.
As discussed in Section IV, the download of low video rate
chunks allows for a rapid refill of a buffer. However, it has been
shown in [80] that the simpler the adaptation logic, the better,
regardless of the approach used in building an adaptation mod-
ule. Table IV presents the summary of some of the techniques
commonly used in implementing and adaptation logic.

A. Heuristic Based Adaptation

Most of the early ABR schemes are based on heuristics.
For instance, Liu et al. [19] heuristically implemented an
AIMD-like adaptation logic that employs a stepwise switch-
up and aggressive switch-down logic. They argue that this
technique prevents video artefacts that might happen if the
switch-up is more aggressive, and with an aggressive switch-
down rate of buffer refill becomes faster. Thus, preventing
video interruption. However, the algorithm was found to inter-
mittently chose suboptimal representation and is unstable as it
oscillates between different video quality levels.

Another player with a heuristic based adaptation module
is FESTIVE [49]. The player gradually switches to the high-
est video level with the rate of switching decreasing as the
video rate of the chunk increases. It is assumed that this will
mitigate the unnecessary oscillation between different video
representations. Additionally, the paper introduces a notion of
delayed update. The delayed update is a score that measures
a trade-off between efficiency/fairness and stability, which
allows a player to improve its stability. In [46], the effect
of video quality transition on QOoE, is studied. The authors
report that a sudden drop in video rate has a negative impact
on the user experience. To improve the QoE they propose a
heuristically designed ABR called QDASH-qoe (a QoE-aware
DASH system). The scheme switches down the video rate
to an intermediate level even when the target video rate is
lower. Although this may result in a suboptimal choice, by
improving stability they are able to enhance the subjective
user experience. Experiments in [36] found that the MSS ser-
vice is using a somewhat similar approach. Though, for MSS

IEEE COMMUNICATIONS SURVEYS & TUTORIALS, VOL. 19, NO. 4, FOURTH QUARTER 2017

the upward transition is faster than its downward trajectory,
in either case the switching is not immediate. Other players
that employ a heuristic based adaptation logic are the player
proposed in [28], AdapTech Streaming [77], and the Akamai
HD Video Streaming services [148].

B. Control Theory Based Adaptation

It is difficult to use heuristics to design an algorithm that
is predictable and mathematically describable. Thus, recently
there has been many attempts to design an adaptation logic
that is not only performing well but also based on descrip-
tive and predictable models. Control theory is used to model
dynamical systems that are stable, accurate and settle quickly
into a steady state [164]. The controller is the part of the
control system that manipulates input to produce the desired
output. A typical controller computes the difference between
a measured variable and a target point as a process error. The
goal is to reduce this error by adjusting the process input
parameters.

De Cicco et al. [149] propose an adaptation logic based on
feedback control. The video rate adaptation controller takes a
target buffer as an input and returns the video rate of the
chunk to be downloaded. The goal of the controller is to
ensure that the buffer is always maintained at the target level.
It achieves this by calculating the error between the target
buffer and the measured buffer level. The error is then passed
to the Proportional Integral (PI) controller that outputs a video
rate that matches the estimated available bandwidth. However,
since HAS works with discrete quality levels the value is
passed to a quantizer, which returns the highest representation
that is less than the output of the PI controller. Experiments
confirm that the controller selects the highest video rate that
the available bandwidth can maintain, though the measurement
is done server side. In [37], a control theoretic client side rate
adaptation that makes a trade-off between the stability in video
rate and bandwidth utilisation has been proposed. In [152],
model predictive control (MPC) is employed to predict the
expected throughput of the next couple of chunks, and then
combine it with the buffer state information in making decision
on which bitrate is the most optimal in maximising QoE. Other
papers that propose adaptation functions that are implemented
using control theory are [30], [100], [150], and [151].

C. Optimisation Based Adaptation

In [50], a different approach has been tried. The paper
uses an optimisation technique for rate adaptation algorithm
(called Intelligent Bitrate Switching based Adaptive Video
Streaming). And modelled the adaptation logic as an optimisa-
tion problem, which maximises benefit and minimises penalty.
The quality level of a chunk represents the benefit, with higher
video rate having a higher benefit value. However, a maxi-
mum penalty is assigned to a video freeze. Interestingly, the
user can adjust the penalty based on his viewing desires. The
algorithm can also use subjective metrics like PSNR to assess
the QoE. An optimal solution is expected to select a chunk
with the highest video rate among all the chunks that sat-
isfy the given constraint of a minimum number of rebuffers.

SANI et al.: ABR: SURVEY

Another adaptation logic based on optimisation techniques is
presented in [87].

At the network provider side, there is a need to arbitrate
the allocation of network resource among competing clients.
Hence, according to [153] and [154], the support for coor-
dinated management and global optimisation is imperative.
They employ an integer linear programming (ILP) model to
manage policies to either maximise the QoE of all users or
minimise the penalties incurred for violating the subscription
contract. Joseph and de Veciana [155] propose NOVA to solve
the multi-user joint resource allocation and quality adaptation
problem employing optimisation techniques. The algorithm
attempts to maximise the average video quality and minimise
the quality variability of HAS streaming session subject to
network constraints.

D. Artificial Intelligence Based Adaptation

In [156], it is argued that since a change in video quality
affects the user’s subjective perception of the overall streaming
quality. And the user perceived quality is not easily described
in precise language, control theory and other mathematical
models that rely on a precise definition of input and out-
put are not necessarily the best options for implementing an
adaptation logic. They propose an adaptation module based
on fuzzy logic, called Network-Bandwidth-Aware Streaming
Version Switcher. The system has three parts, a sensor, a con-
troller, and an actuator. The sensor is equivalent to a resource
estimation module. The controller is the part that is responsi-
ble for the adaptation, while the actuator realises the controller
decision. The fuzzy controller is in turn made up of three com-
ponents, fuzzifier, fuzzy interface engine, and defuzzifier. The
fuzzifier takes input (in this case is the estimated throughput)
and converts it into a format that the controller understands.
The fuzzy interface engine takes the fuzzified input and pro-
duces an output based on rules generated from the domain
knowledge and expert experience. The defuzzifier converts the
output produced by the fuzzy interface engine to a form other
parts of the system will understand, i.e., the video rate of the
chunk to be downloaded (for more detail on how each part
works see [156]). They experimentally found the technique to
be responsive to changes in network conditions. However, the
results show unnecessary instability even in the presence of
stable instant throughput.

In [157], fuzzy logic is employed to adapt the video rate to
the changing network conditions, but unlike [156] their fuzzy
controller uses buffer state changes as input. The aim of the
algorithm is to prevent buffer overflow and unnecessary fluctu-
ation in the video quality. However, the algorithm suffers from
a high amplitude variation in video quality changes. To remedy
this shortcoming Sobhani et al. [158] propose an AIMD-like
fuzzy controller that considers both the estimated throughput
and buffer occupancy and returns the appropriate video rate
to be requested.

Using fuzzy logic requires the use of domain expert knowl-
edge, which is difficult to get. Even where it is available, it
is difficult to define a set of linguistic rules based on it [165].
Another artificial intelligence (AI) technique used in the video

3001

rate adaptation that requires no expert input is machine learn-
ing (ML) [159]-[162]. With ML techniques, a client can learn
to adapt its video quality to the changing context without the
need for any human intervention. In [161] a decision tree
based random forest classification (i.e., a composite classifica-
tion algorithm) is used to map network related features onto
the video rate. Rather than proposing a new algorithm they
opted to use the scheme in improving the accuracy of exist-
ing adaptation algorithms. In summary, the scheme trained the
classification model using a dataset provided in [166]. The
classifier is then used to predict the current request or any
future video request. The training can be done either on-line
or off-line. Simulation results show an improvement in the
prediction accuracy of the baseline algorithms.

Classification schemes generally require a training dataset.
However, in highly dynamical system like HAS it is difficult
to get a training set that is both correct and representative for
all possible situations. Reinforcement Learning (RL) allows an
agent to discover the right action to take within a specific con-
text based on a feedback from its environment. To do this an
adaptation module interacts with its environment by sensing
factors that are expected to influence it decision. For example,
van der Hooft er al. [163] use the average and the mean abso-
lute difference in bandwidth, while [159] and [160] use both
the information about buffer state changes and available band-
width. Then the agent acts typically by changing the video rate
to incrementally maximise its reward (such as improving the
Mean Opinion score and reducing the rebuffering) [163].

VI. INTERACTIONS OF COMPONENTS

ABR module, like most complex systems, is composed of
a number of components, which can be grouped into three
elements. Furthermore, it can be observed that these compo-
nents are mostly treated independently from one another. This
allows us to treat them in greater detail. However, as can be
seen from Fig. 11 these components of ABR exhibit non-trivial
interactions.

Generally, the relationship and interaction between through-
put estimation subsystem and buffer management function
receive the highest attention [36], [74], [78]. It has been
found that the more the available network capacity, the faster
the chunk download [37], therefore, the faster the replen-
ishment rate of the buffer. However, many algorithms such
as [28] and [59], try to maintain their buffer at a predefined
level. For this, the scheduling function activates the periodic
dispatch, which results in an ON-OFF traffic pattern. As dis-
cussed in Section III-A4, this traffic pattern results in the drop
of TCP throughput, which in turn reduces the speed of the
buffer replenishment. Obviously, this creates a cyclic relation-
ship that goes in an opposite direction. To ensure that the client
perceives the accurate available bandwidth, the scheduling pro-
cess has to take this into account when deciding the time of
the next request. In [38], [40], and [75] it is recommended that
the periodic dispatch is only activated when a buffer is full or
nearly full. In other words, while ABR scheme is ramping-
up its video rate only the progressive dispatch is used. They
argue that this will ensure that provided the highest video rate

3002 IEEE COMMUNICATIONS SURVEYS & TUTORIALS, VOL. 19, NO. 4, FOURTH QUARTER 2017
Content Nature CDN
! ABR !
. /e
)]

1 mmmmm==- .
- Resource Function '
LY o) ’
' 1 1
' 1 1
' 1 1
o .
1 ! Buffer Power :
: :
' 1
1 [] 1
1
' v J 1
1 1 L}
1
A N — i |
1 L} 1
. : (:
- Adaptation Module |« . (S-cheduling Function '
- . " ' '
1 L}

: 1 : [] e s e - | :
sssssssissssss'sbssssssssssnssssssnsssssasssasnesssasnasea
L] 1 1
L] 1 1

e - 1
; v R
Developer Context
Requirement ontex
External Components Sub-components
Internal Components == === System Boundary
Fig. 11. Interaction of ABR Components.

is not reached the OFF period is not activated. However, this
may not completely solve the problem since a back-to-back
strategy introduces at least one RTT delay between contigu-
ous chunk requests, which understandably has an impact on
the TCP throughput.!® A better strategy will be to send the
next chuck request to the server, perhaps through the uplink,
before the current chunk download finishes.

Another cyclic relationship is between power consump-
tion and the throughput. As outlined in Section III-C,
power consumption is proportional to the network utilisa-
tion. Furthermore, to control power consumption [102]-[104],
devices usually employ the inactivity period, which may or
may not correspond to the off-period of the periodic dis-
patch scheduling scheme. One solution to this trade-off as
proposed in [167], is the employ of a mechanism that opti-
mises video chunk size in order to minimise the energy of
wireless interface. The authors’ reason that since bigger chunk
(i.e., with longer duration) allows the throughput estimation

10This is because of the well-known fact that TCP throughput is inversely
proportion to RTT.

module to better estimate the available capacity , while at the
same time saving tail energy.

However, these two subcomponents (buffer and power man-
agement units) of the resource estimation function are not
the only subsystems interacting with throughput estimation
module, others are: content nature, CDN, and the streaming
context. Usually, these are outside the control of most ABR
designers. For example, an ABR algorithm developer has no
control over the impact of weather (humidity) on the wire-
less channels, or where CDN providers may locate their data
centres.

Adaptation Module takes the output of both the resource
estimation function and the scheduling modules as its input,
and then decides on the next video rate to request, subject
to the designers constraints and policies. For example, video
oscillation should not exceed a certain threshold [37], or the
start-up delay must be within a particular range [29], [77].
Therefore, the adaptation logic must ensure that the selected
video rate does not result in the violation of any of the con-
straints. It should be noted that some of these constraints may
evolve with time. For instance, in [29] and [76] the adaptation

SANI et al.: ABR: SURVEY

3003

TABLE V
IMPACT OF CHUNK SIZE ON THE BEHAVIOR OF ABR

Effect on ABR

Large Chunk Size

Small Chunk Size

Rebuffering

More rebuffers [170].

Less rebuffers [170].

Encoding Efficiency

Low overhead [171].

High overhead [171].

Adaptability

Low adaptability[170].

High adaptability [170].

Quality Fluctuation

Reduce fluctuation [84].

Increase fluctuation [84].

Bandwidth Utilisation

Improves utilisation [79].

reduce utilisation [79].

Start-up Delay

Long delay [172].

Short delay [172].

Fairness

Improve fairness [78].

Reduce fairness [78].

module most evolves the output video rate in a logistic manner,
and in [38] and [75] it has to start with lowest video rate and
maintains it until the ‘reservoir is filled’ (see Section III-B for
detail). In this sort of situation, the current action of the adap-
tation module decides the next thing to do; hence interaction
becomes two-way.

Another thing to note is that while an adaptation mod-
ule does not directly affect the scheduling function, it does
interact with it through its interactions with the various sub-
systems of the resource estimation function. Which video rate
is requested has an impact on all the subcomponents of the
resource estimation function discussed. The most obvious of
these interactions are between buffer replenishment rate and
the video rate of the requested chunk since chuck with lower
video rate contains less data and vice versa. Hence, assum-
ing a constant available bandwidth, the buffer replenishment
rate has an inverse relationship with video rate. However, the
throughput perceived has a proportional relationship with the
video rate. As discussed in Section III-A, there is a feedback
loop between the data downloaded and the TCP mechanism,
with longer download allowing TCP to have a better chance
of reaching a steady state. The next section will talk more on
the impact of chunk type on the throughput perceived by the
estimation module.

VII. IMPACT OF CONTENT PREPARATION

One basic requirement of HAS is that a video file has to
be segmented, with each chunk being independently decod-
able. Equally important is that multiple encoded versions of
each of the chunks are to be provided at the server [32], [47].
Thus, determining the optimal size of the segments and appro-
priate set of representations becomes a critical challenge.
Furthermore, since any technique that guarantees fine gran-
ularity, at least in theory, can be used to provide video file
segmentation, it is interesting to look at how other encoding
techniques affect the effectiveness of ABR scheme. In this
paper, we concentrate on multi-layered coding, i.e., Scalable
Video Coding (SVO).

A. Chunk Characteristics

Various segment sizes have been used by a number of HAS
implementations reported in the literature, e.g., Apple HLS

uses 10s [47], Adobe HDS uses 2-5s [170], MSS uses 2s [33],
and Is is used in [68]. In [171], a dataset is provided with
segment sizes of 2, 4, 6, 10 and 15s. Other datasets that
provide video with multiple segments sizes are the YouTube
Mpeg-Dash dataset [172] and 4Ever project ultra-high defini-
tion HEVC DASH dataset [173]. In [174] a dataset is provided
in both H.264 and H.265 with encoding rates similar to those
provided by commercial content distribution providers such as
Netflix and YouTube. BITMOVIN maintains a list of the free
and public MPEG-DASH test streams and datasets [175].

Several performance evaluation studies have been conducted
to ascertain the impact of chunk size on the behaviour of
ABR [79], [168], [171]. In [79], it was found that the larger
the segment size, the higher the network resource utilisation.
This is because larger chunks take longer to download, and
hence are more likely to ensure that TCP reaches the steady
state. Similarly, it was shown in [84] that small chunk sizes
result in an inaccurate estimation of the available bandwidth.
However, Yao et al. [168] noted that the use of large chunks
sizes comes at the expense of the adaptability of ABR algo-
rithm when the bandwidth rapidly fluctuates. Once a chunk
is in transit and the system condition changes, a client typi-
cally has only two options, i.e., either to continue and suffer
suboptimal performance or to abort the download and waste
valuable bandwidth. Larger chunk sizes are also found to
increase the end-to-end delay in live streaming [66]. In con-
trast, small chunk sizes increase encoding overhead [169],
video quality fluctuation [84], and unfairness among compet-
ing clients [78]. Table V presents a summary of the impact
of chunk size on the performance of ABR. By employing
server push technique [69], the authors of the paper are able to
reduce the number of request-response associated with small
chunk size, which allows them to use ‘“‘super-short” chunks
with sub-second duration.

The selection of appropriate video chunk size has to con-
sider several competing factors. Lederer et al. [171] attempt
to find the optimal video chunk for a network setting. They
found it to be dependent on the nature of the connection estab-
lished (i.e., either persistent or not). Instead of finding the
optimal segment size Liu et al. [84], Lievens et al. [169],
and Jeong and Chung [176] attempt a different approach by
opting for variable chunk sizes. In [169] chunks with differ-
ent sizes are provided, with low quality chunks having small

3004

segment sizes and high video rate chunks having large sizes.
Liu et al. [84] monitor the network and then request a chunk
size based on the variance of the TCP congestion window.
Similarly, in [176] the segment duration determination algo-
rithm called S-DASH is proposed. The scheme determines the
chunk size to be downloaded based on the TCP throughput
variation.

Usually, a client is presented with a set of chunks of dif-
ferent quality levels from which to choose from. Two things
become obviously important (i) the cardinality of the set of
the available video representations (e.g., in [171] and [173]
a number of datasets have been proposed with varying car-
dinality), and (ii) the difference in bitrate between successive
profiles. For example, in [87] equally spaced profiles have
been used. The high cardinality of a set of video rates allows
a provider to cater for more contexts but at the cost of higher
storage overhead. From an ABR perspective, a large set of
representations means higher switching rates at the benefit of
improved adaptability [81]. Thang et al. [165] have shown
that different sets of representations have varying effects on
the behaviour of ABR. For example, equally spaced chunk
profiles are found to decrease the user perceived experi-
ence by increasing the variation in the distortion difference
between contiguous video quality switching. As a solution
to this, they propose a set of representations whose elements
are spaced based on just noticeable differences (JND). They
found that this can achieve an improved QoE and buffer sta-
bility. Correspondingly, Lederer et al. [171] rely on PSNR
based heuristic to derive the distance between representations.
Toni et al. [64] presented criteria and practical guidelines of
finding an optimal set of representations that maximises QoE.
However, it was found in [81], through simulation, that the set
of representations provided by most of the commercial con-
tent providers, e.g., Netflix and YouTube and the one proposed
in [64] do not provide enough flexibility for heterogeneous
clients when a network is overloaded.

B. Layered Coding in HAS

So far, we have assumed that every chunk is self-
contained and independently encoded. To some extent, this
is a valid assumption since H.264/AVC is the most widely
used video encoding technique. However, having each chunk
self-contained has its downsides. For each representation, all
chunks have to be encoded and stored separately. For instance,
a lhr 30min video file is segmented into 2s chunks, with five
(5) different quality levels will result in 5400 x 5 chunks.
According to [177] the MSS service incurs between 200% to
300% storage overhead compared to having only the highest
quality level available. More so, they claim that if intermediate
systems such as a CDN is employed, to get a similar cache
hit-ratio as in the case of a single representation additional 3
to 4 times storage space is needed. de la Fuente et al. [178]
also confirm the suboptimal performance of chunk-based HAS
in terms of caching efficiency. Furthermore, with the storage
overhead comes the need for additional bandwidth to transport
the additional chunks [179].

The essence of an ABR is to enable clients to adapt the
video quality to different or changing contextual conditions.

IEEE COMMUNICATIONS SURVEYS & TUTORIALS, VOL. 19, NO. 4, FOURTH QUARTER 2017

In chunk-based HAS services, a segment must be delivered in
its entirety or not. Certainly, this will affect the adaptability of
an ABR logic. One way of solving this dilemma is to employ
small chunks. However, it was found that [84] this inaccurately
estimate the available bandwidth, which results in a fluctuat-
ing rate adaptation since small chunks do not allow TCP to
reach a steady state. A better solution argued [178] is to use
the layered coding. Scalable Video Coding (SVC) [180] is an
extension of H.264/AVC for layered video coding. Layered
coding allows the encoding of a video into a number of layers,
composed of a base layer (representing the least quality level)
and a number of enhancement layers, with each enhancement
layer improving the viewing quality. With SVC, a video is
encoded once and decoded based on a frame rate, resolution,
and/or fidelity requirements. It enables the encoder to remove
a ‘part of the video bit stream in order to adapt it to the various
needs or preferences of the end users as well as the varying
terminal capabilities or network conditions’ [180]. SVC allows
for three different kinds of scalability, i.e., temporal, spatial
and quality. With temporal scalability, the base layer repre-
sents the source content with a reduced frame rate, while in the
case of spatial scalability the resolution is reduced. The qual-
ity scalability presents a scenario where the base layer has the
least fidelity (mostly measured in signal-to-noise ratio). Any
addition of the enhancement layer to a base layer increases
the frame rate, the resolution or the fidelity as the case may
be. Nevertheless, any combination of the three approaches is
equally possible. A detail discussion on SVC can be found
in [180]-[182].

Intuitively, with encode once and decode multiple times the
issue of storage overhead can be mitigated. HAS is designed to
be encoding technology agnostic. It should not matter whether
AVC is used or not. However, it is worth noting that every
technology has specific characteristics. Therefore, researchers
always attempt to exploit such differences to enhance a system.
The initial discussion has concentrated on implementations
that incorporate SVC into some of the existing ABR schemes
without taking into account the peculiarity of its multi-layered
nature.

Even with layered coding, a video file needs to be chopped
into segments to better suit HAS. There are various chunk
creation strategies proposed in the literature. In [183], a video
file is segmented into self-decodable units. Each unit is the
equivalent to a chunk, which is made-up of blocks with each
block representing a layer. Xiang et al. [184] take a different
approach, they segment the encoded video along the layers,
and then chop each layer into segments. Therefore, a call for a
chunk implies a request for a particular layer. Grafl ef al. [185]
use multiple independent groups of chunks, with each group
of chunks having the same class of base layer such that they
represent a particular resolution, and layers within a chunk are
used for quality adaptation. They called the approach a hybrid
SVC-HAS.

Theoretically, SVC video chunks can easily substitute AVC
chunks in any of the plethoras of the traditional rate adap-
tive schemes discussed. Famaey et al. [186] use SVC chunks
with the open source version of the MSS rate adaptation algo-
rithm [73]. The quality selection is based on selecting a base

SANI et al.: ABR: SURVEY

3005

Number of Layers
»
-
©
Number of Layers

v
Number of Layers
/

Time

(@ (b)

Fig. 12. Tllustration of How SVC layers are downloaded in HAS.

layer and the required enhancement layers. For example, an
ABR decides to request the third quality level, the base layer
and the subsequent two enhancement layers are downloaded.
Miiller et al. [187] and Sieber et al. [188] successfully adapted
SVC chunks to the ABR scheme proposed in [41], which is
originally designed for a single layered AVC.

The techniques discussed so far are based on vertical adap-
tation. In the vertical adaptation, a base layer and the entire
required enhancement layers are downloaded within a time
slot allocated to a chunk. As can be seen in Fig. 12(a), only
after all the required enhancement layers are downloaded will
a new base layer be requested. The vertical adaptation is
mostly employed when the intention is to maximise the video
quality. Sieber er al. [188] propose a horizontal adaptation,
i.e., a fixed number of base layers are first buffered, (see
Fig. 12(b)) and then in subsequent rounds the enhancement
layers are downloaded (with each round requesting only a par-
ticular enhancement layer). The logic behind this is to ensure
consistent quality viewing.

Both the vertical and the horizontal adaptation schemes do
not take advantage of the enhanced features of SVC. For the
duration of each chunk, while using SVC, multiple requests are
made. In the case of the vertical heuristics, the base layer and
the individual enhancement layers are separately downloaded,
while in the horizontal schemes the contiguous layers are indi-
vidually downloaded. When the latter feature is exploited an
improved granularity of rate adaptation is obtained, and the
rate adaptation module can abort download midway without
much penalty.

To get the best of both worlds, Andelin efr al. [189] pro-
pose a diagonal heuristic. The rate adaptation decisions are
now made after each layer is downloaded. In the diagonal
scheme, a client can either download enhancement layers of
the current chunk (therefore increasing the current quality) or
download the next segment and ensure better quality in future.
The heuristic uses a slope to determine how a client alternates
between backfilling and pre-fetching (see Figure 12(c)). When
backfilling, the quality of the current base layer is enhanced,
while pre-fetching downloads a layer that may be required
in the near future. The gradient of the slope is configurable.
When pre-fetching is desired the slope is made flatter, and a
steeper slope used when the goal is to enhance the current
segment.

Many researchers have investigated the performance of
SVC in HAS. Amongst the earliest work is [178]. The paper

Time Time

(©)

investigated the effect the two encodings schemes have on
caching efficiency and found SVC to be more efficient due to
the fact that the base layer is always available. Another advan-
tage of the use of SVC is an improved responsiveness to the
change in network conditions [177]. Because SVC allows for
finer granularity since it works at layer boundary, this enables
a client to abort a download without much overhead.

However, layered downloads substantially increase the num-
ber of request-response transactions. This is because after each
request-response cycle there is a waiting period of at least one
RTT. Consequently, SVC based ABRs are more vulnerable to
higher RTTs. This has been confirmed by both [177], [186]. It
should be noted that RTT is inversely proportional to through-
put. This means SVC will perform badly in low throughput
conditions.

We have earlier seen that SVC-based HAS services can sub-
stantially reduce storage requirements. Nevertheless, for each
addition of an enhancement layer in SVC video, there is at
least 10% encoding overhead [180]. This results in the demand
for more bandwidth by SVC-based services. Kalva et al. [190]
have compared the financial cost of the storage reduction to the
cost of the increase in bandwidth requirement by SVC-based
services, and found that the latter outweighs the former.

VIII. CONTEXT MANAGEMENT

Until recently, video quality adaptation decisions have
been mostly based on the system level factors discussed
in Section III. However, it is becoming increasingly clear
that to ensure a high level of user satisfaction system level
information needs to be complemented by context-dependent
information [191]-[195]. Context is defined as ‘any infor-
mation that assists in determining a situation(s) related to
a user, network or device’ [191]. As observed in [192] the
first requirement towards exploiting context, in improving user
experience, is to identify the set of parameters that together
defined a specific context, such that a change in any parame-
ter results in a change of context. Though ‘context’ is a very
complex and loaded term, it is obvious that the more parame-
ters used, the more precise its definition is. However, this will
be difficult to manage and model. Therefore, to better manage
this complexity Mitra et al. [191] grouped these parameters
into four dimensions:

1) Device related parameters, e.g., screen size and layout.

2) User and environmental parameters, e.g., location,

weather.

3006

3) Application based parameters, e.g., type.

4) Network level parameters, e.g., throughput, packet loss,

and RTT.

A context vector, CV = {1...n}, is a set of combination of
parameters from the above groups, which uniquely identify a
context. When the CV consists of parameters from one group,
for example, device related parameters. We call it a uni-group
context, otherwise it is called multi-group context. A uni-group
context relying on network level parameters has received most
of the attention of the HAS community (see Section III for
detail). But this is gradually changing. The first generation of
multi-group context-based ABR schemes, use network level
parameters as the main factors, while other factors are used
either as adjustment factors or for improving the accuracy of
the network level parameters.

A. Context as Complementary Parameter

In a wireless environment, the channel capacity is inher-
ently varying and difficult to estimate because of the variation
in signal strength, interference from other devices, environ-
ment induced noise, and user mobility. These context induced
impairments, which manifest as an increase in bit error
rate, packet loss, and delay, complicate the task of TCP.
Because TCP traditionally views all packet loss as a sign
of congestion, and when this is not the case, an unneces-
sary reduction in end-to-end throughput and increased delays
occur.

Another solution to this challenge, in addition to those out-
lined in Section III, is to incorporate environmental parameters
in the process of throughput prediction. The current location
of a streaming device is the most prominent environmental
parameter currently, but more factors are expected to be used
in future. This is mostly because, as shown in [192] and [196],
location can be a better indicator of the actual link capac-
ity when the characteristic of the streaming environment
changes often. Several attempts have been made to improve
the accuracy of TCP throughput estimation by incorporating
location-based data [91], [197]-[200].

In [198], a location-based bandwidth lookup service is
proposed to help streaming clients better predict the avail-
able bandwidth. The authors use video receivers equipped with
GPS capturing capability to collect the bandwidth of popu-
larly commute routes in Norway, which they used to build
a bandwidth lookup database. A client streaming while com-
muting along the mapped route can query the database with
its current location. The service responds with the near-future
available bandwidth, which the client may use to adapt the
video rate. In [200], a crowdsourcing technique is used to col-
lect the location-bandwidth information from different devices
running a variety of applications. The authors observed that
this presents a challenge because frequently the participating
devices are in an idle state. Hence, the data collected may
not be the accurate available link capacity. To improve the
accuracy of the lookup data, for a given route interval, they
multiply the size of each record of the downloaded data by the
corresponding record of the data throughput and then summed
up all the reading before dividing the result by the total size

IEEE COMMUNICATIONS SURVEYS & TUTORIALS, VOL. 19, NO. 4, FOURTH QUARTER 2017

of downloaded data. They argue this gives more weight to the
high throughput data.

In [91], it is streaming clients that send data about their
geolocation and bandwidth estimates to a server, which are
kept in a repository. When a new or an already participating
client desires to stream a video, in a particular location, it first
sends a query to the server, which will use the client’s GPS
to predicts the future path of the client. Thereafter, the server
determines the possible bandwidth along the predicted path
and sends it to the client.

In [201] it is argued that location is not the only contex-
tual parameter that can be used to enhance the accuracy of
throughput estimation. Another important parameter they sug-
gested is the time of the day. This is since wireless channels are
always shared, so the allocation of bandwidth will normally
depend on the number of active connections, which varies at
different time of the day. Relying on the geostatistical meth-
ods, the authors analyse the impact of both space and time
on bandwidth prediction. They then used the spatio-temporal
model derived from using variogram to capture the relation-
ship between distances among sample, time, and semivariance,
together with an interpolation method to predict the future
available bandwidth in an unknown location. Their result
shows a more accurate estimate of the available bandwidth.

B. Context As an Adjustment Factor

So far, we have seen contextual information only being used
to improve the accuracy of the estimated network capacity. In
other words, the contextual information is not directly used
by the adaptation logic in making a rate selection decision.
Though at an early stage of development, using contextual
parameter directly as adjustment factor is increasingly becom-
ing common. First, context is monitored and measured. Then
the result, usually a multi-group context vector, is fed into the
adaptation module.

In [199], CV = {Network type, humidity, location, speed,
time, throughput} is used as input the adaptation logic. The
network interface can either be 4G LTE or 3G. The authors
first investigate how these factors affect the available through-
put of the two types of the network technologies. Their
findings show that humidity and location are the dominant
factors when streaming over 3G, while speed and time are
more important factors when streaming over 4G. To request
a video chunk, a client sends its current measured CV, the
server then matches the client CV to an entry in its database,
and retrieves bandwidth attribute of the tuple that matches the
client’s CV. Based on the current throughput in the client’s
CV and the retrieved bandwidth, the server determines the
appropriate video rate to send.

In [192] and [202], location information is used to find
the ‘close-to-optimal’ buffering strategy that prevents video
stalling in an area of limited connectivity. Basically, the adap-
tation logic adjusts its buffer based on how close it is from a
coverage hole, such as a tunnel; and how long the hole is. The
closer to or the longer is the tunnel the more the buffer space
that is allocated, and the lower the video rate of the requested
chunks. However, for the scheme to work the authors assumes

SANI et al.: ABR: SURVEY

Web Server DNS Server

Fig. 13. Typical architecture of a CDN.

that a client has the ability to predict its path and knows where
the areas of interest are located.

IX. CONTENT DELIVERY NETWORK

To increase content availability, scalability, and reduce
access latencies video content providers are increasingly rely-
ing on CDN providers (e.g., Akamai, Limelight) for video
content distribution. A CDN is ‘a collaborative collection
of network elements spanning the Internet, where content is
replicated over mirrored Web servers, located at the edge of
Internet services provider’s network to which end user is con-
nected’ [203]. As can be seen in Fig. 13, in its most basic
form, a CDN is composed of a number of edge servers that
are geographically distributed and redirection nodes, e.g., DNS
servers. Content is cached at the edge servers, which are
responsible for content delivery to a client. A client first gets
the URI of the desired chunk from MPD, and typically sends a
GET request for it. The CDN, on receipt of the client request,
using its redirection mechanism reroutes it to the most appro-
priate edge server. The process of edge server selection is a
challenging task, since as observed in [203], some nodes may
be unavailable, or overloaded. However, to make a redirec-
tion decision, a typical CDN relies on the following metrics:
(1) proximity which measures the distance between client and
edge servers; (20 load, which indicates the status of bandwidth
and CPU; (3) and the possibility of content availability at the
edge server [71], [204].

Recall from Fig. 11, CDNs do have an impact on the
performance of an ABR schemes that request content cached
by it. In fact, it has been suggested in [19] and [205] that CDN
infrastructure is more likely to be the bottleneck than the last
mile connection in services that use CDN. This challenge may
manifest as a result of either the content distribution across the
edged servers (caching) and/or latencies incurred as a result
of request redirection [206].

A. Impact of Caching

Caching is widely used to reduce latencies by bringing con-
tent closer to the users. However, since in most situation the

3007

Internet

available content is more than the capacity of the cache, con-
tent acquisition and replacement mechanisms are critical to the
effectiveness of a caching system. Content is either dynami-
cally acquired, that is, content is only requested from an origin
server when a cache miss occurred; or proactively pushed to
the cache by the CDN [207]. In either case, the link between
the origin server and edge server can be the new bottleneck.
Lee ef al. [72], Zhou et al. [205], Liang er al. [208], and
Juluri and Medhi [209] investigate the impact of either a
congested or slow link between the origin and edge servers.
In [72], it was found that when the available bandwidth
between a client and the edge server is more than between
the edge-origin link, an ABR scheme overestimates the avail-
able path bandwidth when requesting a cached video chuck.
If the ABR adaptation module uses the throughput estimate
derived from downloading a cached chunk to request a chunk
that is not available on the edged server, a high latency that
manifests as a reduction in throughput is experienced by the
client. This happens because the edge server has to get the
chunk from the origin server before sending it to the client
over a link with a capacity less than the requested video rate.
The authors found this scenario keep on reoccurring, hence,
causing the video rate oscillation. To prevent this, the authors
use a traffic shaping technique to ensure that an ABR scheme
does request chunks with video higher than the path capacity.

In [209], a different approach is proposed. The proposed
scheme reduces the chances of the cache miss by pre-fetching
video chunks. Through using the knowledge of the available
path capacity and the adaptation logic, the proposed scheme is
able to predict the video rate of likely chunk to be requested
next and then pre-fetch it. In [208], a similar approach that
requires no knowledge of the ABR running on a video player
is proposed. However, in this case, only the information about
the capacity of the origin-edge link is used. The result shows
that by improving the hit ratio, the impact of the edge-origin
link is reduced. Hence, an overall improvement of the video
rate is achieved.

Another source of a drop in capacity at a the edge-origin
link is the ability of origin server to serve all the requests
from the different edge servers since naturally, it has a limited

3008

fan-out. Even in more advanced CDNs where the edge server
is served by intermediate level servers, which are in turn
served by the origin server, the intermediate node fan-out can
be overwhelmed. To prevent a scenario whereby the capac-
ity of either the edge or the intermediate nodes is exceeded,
Zhou et al. [205] propose a support network that ensures that
the nodes that receive chunks from the origin server cooperate
to boost the capacity of the origin server.

B. Impact of Redirection

The URI obtained by a client after parsing an MPD file
usually points to the origin server [207]. When CDN is in the
employ the client’s request has to be redirected to the appropri-
ate CDN, which then reroutes the request to the selected edge
server, typically using DNS mechanism [210]. The edge server
selection protocols are outside the scope of this paper, for more
detail see [203]. The selected edge server will then begin the
process of responding to the client request. The cost of this
process observed [206], [207] is an increase in delay, which
reduces the throughput perceived by the throughput estimation
module.

In [206] and [207], two solutions are proposed to the request
redirection problem. Both solutions rely on writing the MDP.
In the first proposal, the MDP is rewritten to point at the
request router that then reroutes the client request to the right
edge server. In the second solution, the MDP is rewritten to
point directly at the appropriate edge server, which allows the
client to directly get content without any redirection. The result
of simulation shows a reduction in the start-up delay and the
number of video stalls. Additionally, an increase in the video
quality is also observed. However, it is noted in [211] that
when using the MDP-rewriting scheme, a node may be over-
loaded or even be out of reach without the knowledge of the
client, such that only after sending a request would it receive
the ‘404’ error, which may result in video stall. To prevent this,
the authors of the paper proposed a mechanism that allows the
CDN to either push a new MDP or trigger a request new MPD
event at the client when node become unavailable.

X. LESSONS LEARNED

The HAS service ecosystem is composed of various stake-
holders each with its own set of requirements that are often
at odds with each other. Hence, while designing an ABR
scheme that meets these, possibly divergent requirements, is
a non trivial exercise. Various design paradigms, such as
network-assisted and server-side schemes, have been proposed.
The choice of a design paradigm dictates which stakeholder
becomes an active or a passive participant.

However, regardless of the paradigm used, users are mostly
passive stakeholders. In other words, they passively con-
sume whatever video quality the system provides them with.
Nonetheless, this does not reduce the importance of their
concerns. It rather implies that while the HAS service is run-
ning a user has little or no control in how an ABR operates.
Furthermore, when a client-side design paradigm is employed,
as in this paper, a network operator becomes more or less a
passive stakeholder too. Even in the case whereby a content

IEEE COMMUNICATIONS SURVEYS & TUTORIALS, VOL. 19, NO. 4, FOURTH QUARTER 2017

provider decides to locate its cache at the ISP location, for
example, Netflix currently partners with ISPs to localise it
content using Open Connect Appliance [212], this can only
help an ISP localise its traffic but does not give any control
over the ABR scheme running at the client-side. This fact has
resulted in a number ISPs throttling traffic originating from
content providers [213]. The other two stakeholders are an
ABR algorithm designer and a content provider.

A. Summary of Important Points

In order to build an effective HAS service, ABR design-
ers have to consider the requirements of both the active
and the passive stakeholders. The following are some lessons
derived from our earlier discussions that can help ABR algo-
rithms designer to build services that satisfy multitude of
requirements.

e Resource estimation:

* The choice of scheduling policy is as important as the
throughput estimation technique used in improving
the perceived throughput [40], [78].

* Scheduling policy can be used to reduce the power
consumption a mobile device [51], [138].

* A good ABR scheme requires a main factor and at
least one adjustment factor.

o Scheduling function:

* Employing the progressive dispatch at the ramping-
up stage makes it easier for the client’s TCP through-
put to converge [40], [59].

* Parallel scheduling policy can be used to improve
system utilisation [142], [143].

o Adaptation function:

* The technique used in realising the adaptation logic
has no significant impact on the performance of an
ABR scheme [80].

* The simpler the adaptation logic, the better [80].

* To perform effectively, an adaptation logic requires
the input of the evolving state of QoE metrics in
addition to the conventional resource metrics.

o External factors:

* The use of CDN can be a source of delay and
reduction in throughput [19], [205].

* Contextual information are excellent source of TCP
throughput improvement [91], [197]-[199].

* Chunk size and nature has a significant impact on
many QoE metrics [84], [179], [189].

B. Current Challenges

Feedback about the evolving state of the quality of video
transmission is certainly a prerequisite to building an effective
ABR algorithms. One of the most urgent challenges currently,
is how to monitor, measure, and incorporate the various QoE
metrics into video quality selection decision. QoE feedback
mechanisms can help a client in ensuring that the require-
ments of the various stakeholder are met. Another challenge
that does require the attention of ABR researcher is modelling
the relationship between the various components of an ABR.
For example, when building a buffer-based player, an ABR

SANI et al.: ABR: SURVEY

algorithm designer requires the exact relationship between
video quality and the buffer state changes.

The size and the nature of video chunks can affect a num-
ber of system and QoE level parameters. More work is needed
in formalising the relationship between the various parameters
and chunk size. This can help content providers to optimise
the video chunks presented to ABR clients, and in the pro-
cess helps in reducing storage requirements as well as traffic
in the network. Using the contextual information to improve
the performance of ABR is still in its infancy. However,
this promising field requires the understanding of the context
information that is most relevant to the effectiveness of the
ABR scheme. The modelling and analysis of the interrelation
between the identified elements, and the various subsystems
of the ABR module, is also desirable. With these an ABR
designer can build a service that is both truly adaptive and
effective.

XI. CONCLUSION

In the past five years, tremendous amount of effort has
been put in standardising and improving the HTTP adaptive
streaming (HAS). However, little or no effort has been
dedicated to systematically analysing and structuring the
research space and different solutions. In this survey, we
present a comprehensive review of the client-side adaptive
bitrate selection (ABR), the part of the HAS technology that
decides the profile and schedule of a chunk to be downloaded
by a video streaming client. The paper starts by presenting a
framework that divides an ABR module into three subcom-
ponents, i.e., resource estimation module, chunk scheduling
function, and adaptation logic. Then an exposition of the
benefits, issues, and challenges of locating, monitoring and
measuring various resources (e.g., throughput) that different
ABR schemes rely on for their decision-making is presented.
Furthermore, the paper classifies the chunk-scheduling
algorithms into sequential and parallel schedules and then
discusses where and when it is most appropriate to employ
either of them. Because the technique used in implementing
rate adaptation dictates the limit of achievable optimisation,
the paper presented a detailed discussion of the various
approaches e.g., machine learning or control theory, used in
designing and implementing ABR in literature. How these
subcomponents interact with each other is then covered. We
then concluded by a talk on other relevant aspects related to
content nature, CDN, and operating context, which are known
to have direct impact on the efficiency of an ABR scheme.

REFERENCES

[1] G. J. Conklin, G. S. Greenbaum, K. O. Lillevold, A. F. Lippman,
and Y. A. Reznik, “Video coding for streaming media delivery on the
Internet,” IEEE Trans. Circuits Syst. Video Technol., vol. 11, no. 3,
pp- 269-281, Mar. 2001.

[2] “Sandvine global Internet phenomena report,” White Paper,
Sandvine, Waterloo, ON, Canada, Jun. 2013. [Online]. Available:
http://www.sandvine.com/downloads/documents/Phenomena_1H_2013/
Sandvine_Global_Internet_Phenomena_Report_1H_2013.pdf

[3] “Cisco visual networking index: Forecast and methodology,
2014-2019,” White Paper, Cisco, San Jose, CA, USA, Apr. 2016.
[Online]. Available: http://www.cisco.com/c/en/us/solutions/collateral/
service-provider/ip-ngn-ip-next-generation-network/white_paper_c11-
481360.pdf

(4]

[3]
(6]

(71

(8]

[9]

[10]

[11]

[12]

[13]

[14]

[15]

[16]

[17]

[18]

[19]

[20]

[21]

[22]

[23]

[24]

[25]

[26]

[27]

3009

A. Begen, T. Akgul, and M. Baugher, “Watching video over the Web:
Part 1: Streaming protocols,” IEEE Internet Comput., vol. 15, no. 2,
pp- 54-63, Mar./Apr. 2011.

S. Blake et al., “An architecture for differentiated services,” Internet
Eng. Task Force, Fremont, CA, USA, RFC 2475, Dec. 1998.

N. Bouten et al., “Deadline-based approach for improving delivery of
SVC-based HTTP adaptive streaming content,” in Proc. IEEE Netw.
Oper. Manag. Symp. (NOMS), Krakéw, Poland, May 2014, pp. 1-7.
X. Hei, C. Liang, J. Liang, Y. Liu, and K. W. Ross, “A measurement
study of a large-scale P2P IPTV system,” IEEE Trans. Multimedia,
vol. 9, no. 8, pp. 16721687, Dec. 2007.

H. Ketmaneechairat, “A survey and comparison of some popular
IPTV applications,” in Proc. 8th Int. Conf. Comput. Technol. Inf.
Manag. (ICCM), vol. 1. Seoul, South Korea, 2012, pp. 58-63.

T. Hossfeld and K. Leibnitz, “A qualitative measurement survey of
popular Internet-based IPTV systems,” in Proc. 2nd Int. Conf. Commun.
Electron. (ICCE), 2008, pp. 156-161.

M. Ellis, “Understanding the performance of Internet video over res-
idential networks,” Ph.D. dissertation, School Comput. Sci., Univ. at
Glasgow, Glasgow, U.K., 2012.

M. Van der Schaar and P. A. Chou, Multimedia Over IP and Wireless
Networks: Compression, Networking, and Systems. Boston, MA, USA:
Academic Press, 2011.

H. Schulzrinne, S. Casner, R. Frederick, and V. Jacobson, “A transport
protocol for real-time applications,” Internet Eng. Task Force, Fremont,
CA, USA, RFC 3550, Jul. 2003.

H. Schulzrinne, A. Rao, and R. Lanphier, “Real time streaming proto-
col (RTSP),” Internet Eng. Task Force, Fremont, CA, USA, RFC 2326,
1998.

D.-M. Chiu and R. Jain, “Analysis of the increase and decrease algo-
rithms for congestion avoidance in computer networks,” Comput. Netw.
ISDN Syst., vol. 17, no. 1, pp. 1-14, 1989.

T. Wiegand, G. J. Sullivan, G. Bjontegaard, and A. Luthra, “Overview
of the H.264/AVC video coding standard,” IEEE Trans. Circuits Syst.
Video Technol., vol. 13, no. 7, pp. 560-576, Jul. 2003.

T. HoBfeld, R. Schatz, and U. R. Krieger, “QoE of YouTube
video streaming for current Internet transport protocols,” in
Measurement, Modelling, and Evaluation of Computing Systems and
Dependability and Fault Tolerance. Cham, Switzerland: Springer, 2014,
pp. 136-150.

B. Wang, J. Kurose, P. Shenoy, and D. Towsley, “Multimedia streaming
via TCP: An analytic performance study,” in Proc. 12th Annu. ACM
Int. Conf. Multimedia, New York, NY, USA, 2004, pp. 908-915.

T. HoBfeld, M. Seufert, C. Sieber, T. Zinner, and P. Tran-Gia,
“Identifying QoE optimal adaptation of HTTP adaptive streaming based
on subjective studies,” Comput. Netw., vol. 81, pp. 320-332, Apr. 2015.
C. Liu, I. Bouazizi, and M. Gabbouj, “Rate adaptation for adaptive
HTTP streaming,” in Proc. 2nd Annu. ACM Conf. Multimedia Syst.,
Santa Clara, CA, USA, 2011, pp. 169-174.

L. Popa, A. Ghodsi, and 1. Stoica, “HTTP as the narrow waist of the
future Internet,” in Proc. 9th ACM SIGCOMM Workshop Hot Topics
Netw., Monterey, CA, USA, 2010, p. 6.

K. Sripanidkulchai, B. Maggs, and H. Zhang, “An analysis of live
streaming workloads on the Internet,” in Proc. 4th ACM SIGCOMM
Conf. Internet Meas., 2004, pp. 41-54.

H.265/HEVC Ratification and 4K Video Streaming. (Jan. 2014).
[Online]. Available: https://blogs.iis.net/alexzam/archive/2013/01/28/
h-265-hevc-ratification-and-4k-video-streaming.aspx

G. J. Sullivan, J. Ohm, W.-J. Han, and T. Wiegand, “Overview of the
high efficiency video coding (HEVC) standard,” IEEE Trans. Circuits
Syst. Video Technol., vol. 22, no. 12, pp. 1649-1668, Dec. 2012.

B. Bross, H. Schwarz, and D. Marpe, “The new high-efficiency video
coding standard,” SMPTE Motion Imag. J., vol. 122, no. 4, pp. 25-35,
2013.

Y. Shuai, G. Petrovic, and T. Herfet, “Server-driven rate control for
adaptive video streaming using virtual client buffers,” in Proc. IEEE 4th
Int. Conf. Consum. Electron. Berlin (ICCE-Berlin), Berlin, Germany,
2014, pp. 45-49.

S. Wilk, D. Stohr, and W. Effelsberg, “VAS: A video adaptation ser-
vice to support mobile video,” in Proc. 25th ACM Workshop Netw.
Oper. Syst. Support Digit. Audio Video (NOSSDAV), Portland, OR,
USA, 2015, pp. 37-42.

S. Wilk and W. Effelsberg, “The content-aware video adaptation service
for mobile devices,” in Proc. 7th Int. Conf. Multimedia Syst. (MMSys),
Klagenfurt, Austria, 2016, pp. 1-4.

http://www.sandvine.com/downloads/documents/Phenomena_1H_2013 /Sandvine_Global_Internet_Phenomena_Report_1H_2013.pdf
http://www.sandvine.com/downloads/documents/Phenomena_1H_2013 /Sandvine_Global_Internet_Phenomena_Report_1H_2013.pdf
http://www.cisco.com/c/en/us/solutions/collateral/service-provider/ip-ngn-ip-next-generation-network/white_paper_c11-481360.pdf
http://www.cisco.com/c/en/us/solutions/collateral/service-provider/ip-ngn-ip-next-generation-network/white_paper_c11-481360.pdf
http://www.cisco.com/c/en/us/solutions/collateral/service-provider/ip-ngn-ip-next-generation-network/white_paper_c11-481360.pdf
https://blogs.iis.net/alexzam/archive/2013/01/28/h-265-hevc-ratification-and-4k-video-streaming.aspx
https://blogs.iis.net/alexzam/archive/2013/01/28/h-265-hevc-ratification-and-4k-video-streaming.aspx

3010

[28]

[29]

[30]

[31]

[32]

[33]

[34]

[35]

[36]

[37]

[38]

[39]

[40]

[41]

[42]

[43]

[44]

[45]

[46]

[47]

[48]

[49]

[50]

IEEE COMMUNICATIONS SURVEYS & TUTORIALS, VOL. 19, NO. 4, FOURTH QUARTER 2017

K. Miller, E. Quacchio, G. Gennari, and A. Wolisz, “Adaptation algo-
rithm for adaptive streaming over HTTP,” in Proc. 19th Int. Packet
Video Workshop (PV), Munich, Germany, 2012, pp. 173-178.

Y. Sani, A. Mauthe, and C. Edwards, “Modelling video rate evolution in
adaptive bitrate selection,” in Proc. IEEE Int. Symp. Multimedia (ISM),
Miami, FL, USA, Dec. 2015, pp. 89-94.

G. Cofano, L. De Cicco, and S. Mascolo, “A control architecture for
massive adaptive video streaming delivery,” in Proc. Workshop Design
Qual. Deployment Adapt. Video Streaming, Sydney, NSW, Australia,
2014, pp. 7-12.

S. Ramakrishnan, X. Zhu, F. Chan, and K. Kambhatla, “SDN based
QoE optimization for HTTP-based adaptive video streaming,” in Proc.
IEEE Int. Symp. Multimedia (ISM), Miami, FL, USA, Dec. 2015,
pp. 120-123.

“MPEG DASH specification (ISO/IEC 23009-1:2012) dynamic adap-
tive streaming over HTTP (DASH)—Part 1: Media presentation
description and segment formats,” ISO/IEC Standard 23009-1:2012,
Mar. 2012.

A. Zambelli, “IIS smooth streaming technical overview,” Microsoft
Corporat., Redmond, WA, USA, Tech. Rep., 2009.

D. Robinson, “Live streaming ecosystems,” in Advanced Content
Delivery, Streaming, and Cloud Services. Hoboken, NJ, USA: Wiley,
2014, pp. 33-49.

1. Sodagar, “The MPEG-DASH standard for multimedia streaming over
the Internet,” IEEE MultiMedia, vol. 18, no. 4, pp. 62—-67, Apr. 2011.
S. Akhshabi, A. C. Begen, and C. Dovrolis, “An experimental evalua-
tion of rate-adaptation algorithms in adaptive streaming over HTTP,” in
Proc. 2nd Annu. ACM Conf. Multimedia Syst., Santa Clara, CA, USA,
2011, pp. 157-168.

G. Tian and Y. Liu, “Towards agile and smooth video adaptation in
dynamic HTTP streaming,” in Proc. 8th Int. Conf. Emerg. Netw. Exp.
Technol., Nice, France, 2012, pp. 109-120.

T.-Y. Huang, R. Johari, and N. McKeown, “Downton abbey without the
hiccups: Buffer-based rate adaptation for HTTP video streaming,” in
Proc. ACM SIGCOMM Workshop Future Human Centric Multimedia
Netw., Hong Kong, 2013, pp. 9-14.

J. Research. (Jun. 2013). The Importance of Delivering
a Great Online Video Experience. [Online]. Available:
http://www.akamai.com/dl/reports/jupiter_onlinevideoexp.pdf

T.-Y. Huang, “A buffer-based approach to video rate adaptation,” Ph.D.
dissertation, Dept. Comput. Sci., Stanford Univ., Stanford, CA, USA,
2014.

C. Miiller, S. Lederer, and C. Timmerer, “An evaluation of dynamic
adaptive streaming over HTTP in vehicular environments,” in Proc. 4th
Workshop Mobile Video, 2012, pp. 37-42.

S. Akhshabi, L. Anantakrishnan, A. C. Begen, and C. Dovrolis, “What
happens when HTTP adaptive streaming players compete for band-
width?” in Proc. 22nd Int. Workshop Netw. Oper. Syst. Support Digit.
Audio Video, Toronto, ON, Canada, 2012, pp. 9-14.

O. Oyman and S. Singh, “Quality of experience for HTTP adaptive
streaming services,” IEEE Commun. Mag., vol. 50, no. 4, pp. 20-27,
Apr. 2012.

D. Z. Rodriguez, Z. Wang, R. L. Rosa, and G. Bressan, “The impact of
video-quality-level switching on user quality of experience in dynamic
adaptive streaming over HTTP,” EURASIP J. Wireless Commun. Netw.,
vol. 2014, no. 1, p. 216, 2014.

Z. Li et al., “Streaming video over HTTP with consistent quality,” in
Proc. 5th ACM Multimedia Syst. Conf., Singapore, 2014, pp. 248-258.
R. K. P. Mok, X. Luo, E. W. W. Chan, and R. K. C. Chang, “QDASH:
A QoE-aware DASH system,” in Proc. 3rd Multimedia Syst. Conf.,
Chapel Hill, NC, USA, 2012, pp. 11-22.

R. Pantos, “HTTP live streaming draft-pantos-
HTTP-live-streaming-11,” Internet Draft, Internet
Engineering Task Force, Apr. 2012. [Online]. Available:

http://tools.ietf.org/html/draft- pantos-http-live-streaming- 11

X. Yin, V. Sekar, and B. Sinopoli, “Toward a principled framework
to design dynamic adaptive streaming algorithms over HTTP” in
Proc. 13th ACM Workshop Hot Topics Netw., Los Angeles, CA, USA,
2014, p. 9.

J. Jiang, V. Sekar, and H. Zhang, “Improving fairness, efficiency, and
stability in HTTP-based adaptive video streaming with festive,” in
Proc. 8th Int. Conf. Emerg. Netw. Exp. Technol., 2012, pp. 97-108.
X. Qiu et al., “Optimizing HTTP-based adaptive video stream-
ing for wireless access networks,” in Proc. 3rd IEEE Int. Conf.
Broadband Netw. Multimedia Technol. (IC-BNMT), Beijing, China,
2010, pp. 838-845.

[51]

[52]

[53]

[54]

[55]

[56]

[57]

[58]

[59]

[60]

[61]

[62]

[63]

[64]

[65]

[66]

[67]

[68]

[69]

[70]

[71]

[72]

[73]

[74]

X. Li, M. Dong, Z. Ma, and F. C. A. Fernandes, “GreenTube: Power
optimization for mobile videostreaming via dynamic cache manage-
ment,” in Proc. 20th ACM Int. Conf. Multimedia (MM), Nara, Japan,
2012, pp. 279-288.

B. Li, Z. Wang, J. Liu, and W. Zhu, “Two decades of Internet video
streaming: A retrospective view,” ACM Trans. Multimedia Comput.
Commun. Appl., vol. 9, no. 1s, pp. 1-20, Oct. 2013.

N. Zong, “Survey and gap analysis for HTTP streaming standards and
implementations,” Internet Eng. Task Force, Fremont, CA, USA, Netw.
Working Group, 2011.

M. Seufert et al., “A survey on quality of experience of HTTP adaptive
streaming,” IEEE Commun. Surveys Tuts., vol. 17, no. 1, pp. 469-492,
Ist Quart., 2015.

H. Luo and M.-L. Shyu, “Quality of service provision in mobile
multimedia—A survey,” Human Centric Comput. Inf. Sci., vol. 1, no. 1,
pp. 1-15, 2011.

Y. Chen, K. Wu, and Q. Zhang, “From QoS to QoE: A tutorial on
video quality assessment,” [EEE Commun. Surveys Tuts., vol. 17, no. 2,
pp. 1126-1165, 2nd Quart., 2015.

M. A. Hoque, M. Siekkinen, J. K. Nurminen, M. Aalto, and
S. Tarkoma, “Mobile multimedia streaming techniques: QoE and
energy saving perspective,” Pervasive Mobile Comput., vol. 16,
pp. 96114, Jan. 2015.

MoveNetworks. (Jun. 2013).
http://www.movenetworks.com/history.html
Z. Li et al., “Probe and adapt: Rate adaptation for HTTP video stream-
ing at scale,” IEEE J. Sel. Areas Commun., vol. 32, no. 4, pp. 719-733,
Apr. 2014.

“3rd generation partnership project; technical specification group ser-
vices and system aspects; transparent end-to-end packet-switched
streaming service (PSS); protocols and codecs (release 12) 3GPP TS
26.234 v12.0.0,” 3rd Gener. Partnership Project, Sophia Antipolis,
France, Tech. Rep. V10.3.0, Mar. 2013.

“30IPF release 2 release 2 specification HTTP adaptive streaming
[V2...0],” Open IPTV Forum, Sophia Antipolis, France, Tech. Rep.
V2.3, Sep. 2010.

OSMF Player, Adobe, Mountain View, CA, USA, Jun. 2013. [Online].
Available: http://www.osmf.org

F. Wamser et al., “YoMoApp: A tool for analyzing QoE of YouTube
HTTP adaptive streaming in mobile networks,” in Proc. Eur. Conf.
Netw. Commun. (EuCNC), Paris, France, Jun. 2015, pp. 239-243.

L. Toni et al, “Optimal selection of adaptive streaming represen-
tations,” ACM Trans. Multimedia Comput. Commun. Appl., vol. 11,
no. 2s, pp. 1-26, Feb. 2015, doi: 10.1145/2700294.

T. Stockhammer, “Dynamic adaptive streaming over HTTP—Standards
and design principles,” in Proc. 2nd Annu. ACM Conf. Multimedia Syst.,
Santa Clara, CA, USA, 2011, pp. 133-144.

T. Lohmar, T. Einarsson, P. Frojdh, F. Gabin, and M. Kampmann,
“Dynamic adaptive HTTP streaming of live content,” in Proc. IEEE Int.
Symp. World Wireless Mobile Multimedia Netw. (WoWMoM), Lucca,
Italy, Jun. 2011, pp. 1-8.

V. Swaminathan and S. Wei, “Low latency live video streaming
using HTTP chunked encoding,” in Proc. IEEE 13th Int. Workshop
Multimedia Signal Process. (MMSP), Hangzhou, China, Oct. 2011,
pp. 1-6.

S. Wei and V. Swaminathan, “Low latency live video streaming over
HTTP 2.0,” in Proc. Netw. Oper. Syst. Support Digit. Audio Video
Workshop (NOSSDAV), Singapore, 2014, pp. 37-42.

R. Huysegems et al., “HTTP/2-based methods to improve the live
experience of adaptive streaming,” in Proc. 23rd Annu. ACM Conf.
Multimedia Conf. (MM), Brisbane, QLD, Australia, 2015, pp. 541-550.
M. Xiao, V. Swaminathan, S. Wei, and S. Chen, “Evaluating and
improving push based video streaming with HTTP/2,” in Proc. 26th Int.
Workshop Netw. Oper. Syst. Support Digit. Audio Video (NOSSDAV),
Klagenfurt, Austria, 2016, pp. 1-6.

C. Liu, I. Bouazizi, M. M. Hannuksela, and M. Gabbouj, “Rate adapta-
tion for dynamic adaptive streaming over HTTP in content distribution
network,” Signal Process. Image Commun., vol. 27, no. 4, pp. 288-311,
2012.

D. H. Lee, C. Dovrolis, and A. C. Begen, “Caching in HTTP adaptive
streaming: Friend or foe?” in Proc. Netw. Oper. Syst. Support Digit.
Audio Video Workshop, Singapore, 2014, p. 31.

SLExtensions Adaptive Streaming. (Mar. 2014). [Online]. Available:
https://slextensions.svn.codeplex.com/svn/trunk/SLExtensions/
AdaptiveStreaming

A. Rao et al., “Network characteristics of video streaming traffic,” in
Proc. 7th Conf. Emerg. Netw. Exp. Technol., Tokyo, Japan, 2011, p. 25.

[Online]. Available:

http://www.akamai.com/dl/reports/jupiter_onlinevideoexp.pdf
http://tools.ietf.org/html/draft-pantos-http-live-streaming-11
http://www.movenetworks.com/history.html
http://www.osmf.org
https://slextensions.svn.codeplex.com/svn/trunk/SLExtensions/AdaptiveStreaming
https://slextensions.svn.codeplex.com/svn/trunk/SLExtensions/AdaptiveStreaming

SANI et al.: ABR: SURVEY

[75]

[76]

[77]

[78]

[79]

[80]

[81]

[82]

[83]

[84]

[85]

[86]

[87]

[88]

[89]

[90]

[91]

[92]

[93]

[94]

[95]

[96]

T.-Y. Huang, R. Johari, N. McKeown, M. Trunnell, and
M. Watson, “A buffer-based approach to rate adaptation: Evidence
from a large video streaming service,” in Proc. ACM Conf.
SIGCOMM (SIGCOMM), Chicago, IL, USA, 2014, pp. 187-198.

Y. Sani, A. Mauthe, and C. Edwards, “On the trajectory of video qual-
ity transition in HTTP adaptive video streaming,” Multimedia Syst.,
pp. 1-14, Jun. 2017.

S. Akhshabi, S. Narayanaswamy, A. C. Begen, and C. Dovrolis, “An
experimental evaluation of rate-adaptive video players over HTTP,”
Signal Process. Image Commun., vol. 27, no. 4, pp. 271-287, 2012.
T.-Y. Huang, N. Handigol, B. Heller, N. McKeown, and R. Johari,
“Confused, timid, and unstable: Picking a video streaming rate is hard,”
in Proc. ACM Conf. Internet Meas. Conf., Boston, MA, USA, 2012,
pp. 225-238.

T. Kupka, P. Halvorsen, and C. Griwodz, “Performance of on—off traffic
stemming from live adaptive segmented HTTP video streaming,” in
Proc. LCN, Clearwater, FL, USA, 2012, pp. 401-409.

C. Timmerer, M. Maiero, and B. Rainer, “Which adaptation logic?
An objective and subjective performance evaluation of HTTP-based
adaptive media streaming systems,” arXiv, 2016.

C. Kreuzberger, B. Rainer, H. Hellwagner, L. Toni, and P. Frossard,
“A comparative study of DASH representation sets using real user
characteristics,” in Proc. 26th Int. Workshop Netw. Oper. Syst. Support
Digit. Audio Video (NOSSDAV), Klagenfurt, Austria, 2016, pp. 1-6.
X. Liu et al., “A case for a coordinated Internet video control plane,” in
Proc. ACM SIGCOMM Conf. Appl. Technol. Archit. Protocols Comput.
Commun., Helsinki, Finland, 2012, pp. 359-370.

P. Georgopoulos, Y. Elkhatib, M. Broadbent, M. Mu, and N. Race,
“Towards network-wide QoE fairness using OpenFlow-assisted adap-
tive video streaming,” in Proc. ACM SIGCOMM Workshop Future
Human Centric Multimedia Netw. (FhMN), Hong Kong, 2013,
pp- 15-20.

C. Liu, I. Bouazizi, and M. Gabbouj, “Segment duration for rate adapta-
tion of adaptive HTTP streaming,” in Proc. IEEE Int. Conf. Multimedia
Expo (ICME), Barcelona, Spain, 2011, pp. 1-4.

S. Gouache, G. Bichot, A. Bsila, and C. Howson, “Distributed &
adaptive HTTP streaming,” in Proc. IEEE Int. Conf. Multimedia
Expo (ICME), Barcelona, Spain, 2011, pp. 1-6.

G. Tian and Y. Liu, “On adaptive HTTP streaming to mobile devices,”
in Proc. 20th Int. Packet Video Workshop (PV), San Jose, CA, USA,
Dec. 2013, pp. 1-8.

T. C. Thang, Q.-D. Ho, J. W. Kang, and A. T. Pham, “Adaptive stream-
ing of audiovisual content using MPEG DASH,” IEEE Trans. Consum.
Electron., vol. 58, no. 1, pp. 78-85, Feb. 2012.

T. C. Thang, A. T. Pham, H. X. Nguyen, P. L. Cuong, and
J. W. Kang, “Video streaming over HTTP with dynamic resource
prediction,” in Proc. 4th Int. Conf. Commun. Electron. (ICCE), 2012,
pp. 130-135.

V. Ramamurthi and O. Oyman, “Link aware HTTP adaptive streaming
for enhanced quality of experience,” in Proc. IEEE Glob. Commun.
Conf. (GLOBECOM), Atlanta, GA, USA, Dec. 2013, pp. 1675-1680.
V. Ramamurthi, O. Oyman, and J. Foerster, “Using link awareness for
HTTP adaptive streaming over changing wireless conditions,” in Proc.
Int. Conf. Comput. Netw. Commun. (ICNC), Garden Grove, CA, USA,
Feb. 2015, pp. 727-731.

J. Hao, R. Zimmermann, and H. Ma, “GTube: Geo-predictive video
streaming over HTTP in mobile environments,” in Proc. 5th ACM
Multimedia Syst. Conf. (MMSys), Singapore, 2014, pp. 259-270.

R. Kuschnig, I. Kofler, and H. Hellwagner, “Improving Internet
video streaming performance by parallel TCP-based request-response
streams,” in Proc. 7th IEEE Consum. Commun. Netw. Conf. (CCNC),
Las Vegas, NV, USA, 2010, pp. 1-5.

S. Akhshabi, L. Anantakrishnan, C. Dovrolis, and A. C. Begen,
“Server-based traffic shaping for stabilizing oscillating adaptive stream-
ing players,” in Proc. 23rd ACM Workshop Netw. Oper. Syst. Support
Digit. Audio Video, Oslo, Norway, 2013, pp. 19-24.

R. Houdaille and S. Gouache, “Shaping HTTP adaptive streams for a
better user experience,” in Proc. 3rd Multimedia Syst. Conf. (MMSys),
Chapel Hill, NC, USA, 2012, pp. 1-9.

B. J. Villa and P. E. Heegaard, “Group based traffic shaping for adap-
tive HTTP video streaming by segment duration control,” in Proc.
IEEE 27th Int. Conf. Adv. Inf. Netw. Appl. (AINA), Barcelona, Spain,
Mar. 2013, pp. 830-837.

B. J. Villa and P. E. Heegaard, “Improving perceived fairness and
QoE for adaptive video streams,” in Proc. 8th Int. Conf. Netw.
Services (ICNS), 2012, pp. 149-158.

[971

[98]

[99]

[100]

[101]

[102]

[103]

[104]

[105]

[106]

[107]

[108]

[109]

[110]

[111]

[112]

[113]

[114]

[115]

[116]

[117]

[118]

[119]

[120]

3011

K. Evensen, T. Kupka, D. Kaspar, P. Halvorsen, and C. Griwodz,
“Quality-adaptive scheduling for live streaming over multiple access
networks,” in Proc. 20th Int. Workshop Netw. Oper. Syst. Support Digit.
Audio Video, Amsterdam, The Netherlands, 2010, pp. 21-26.

K. Evensen et al., “Using bandwidth aggregation to improve the
performance of quality-adaptive streaming,” Signal Process. Image
Commun., vol. 27, no. 4, pp. 312-328, 2012.

Y. Xu, Y. Zhou, and D.-M. Chiu, “Analytical QoE models for bit-rate
switching in dynamic adaptive streaming systems,” IEEE Trans. Mobile
Comput., vol. 13, no. 12, pp. 2734-2748, Dec. 2014.

C. Zhou, C.-W. Lin, X. Zhang, and Z. Guo, “Buffer-based smooth rate
adaptation for dynamic HTTP streaming,” in Proc. Asia—Pac. Signal
Inf. Process. Assoc. Annu. Summit Conf. (APSIPA), 2013, pp. 1-9.

H. T. Le, D. V. Nguyen, N. P. Ngoc, A. T. Pham, and T. C. Thang,
“Buffer-based bitrate adaptation for adaptive HTTP streaming,” in Proc.
IEEE Int. Conf. Adv. Technol. Commun. (ATC), 2013, pp. 33-38.

R. Trestian, A.-N. Moldovan, O. Ormond, and G.-M. Muntean, “Energy
consumption analysis of video streaming to android mobile devices,”
in Proc. IEEE Netw. Oper. Manag. Symp. (NOMS), Apr. 2012,
pp. 444-452.

M. Hosseini, J. Peters, and S. Shirmohammadi, “Energy-budget-
compliant adaptive 3D texture streaming in mobile games,” in Proc. 4th
ACM Multimedia Syst. Conf. (MMSys), Oslo, Norway, 2013, pp. 1-11.
M. A. Hoque, M. Siekkinen, J. K. Nurminen, and M. Aalto, “Dissecting
mobile video services: An energy consumption perspective,” in Proc.
IEEE 14th Int. Symp. Workshops World Wireless Mobile Multimedia
Netw. (WoWMoM), Madrid, Spain, 2013, pp. 1-11.

M. N. Ismail, R. Ibrahim, and M. F. M. Fudzee, “A survey on con-
tent adaptation systems towards energy consumption awareness,” Adv.
Multimedia, vol. 2013, p. 3, Jan. 2013.

N. Zsak and C. Wolff, “Impact of video quality and wireless network
interface on power consumption of mobile devices,” arXiv preprint
arXiv:1407.7667, 2014.

X. Chen, Y. Chen, Z. Ma, and F. C. A. Fernandes, “How is energy
consumed in smartphone display applications?” in Proc. 14th Workshop
Mobile Comput. Syst. Appl. (HotMobile), 2013, pp. 1-6.

S. Khan, D. Schroeder, A. El Essaili, and E. Steinbach, “Energy-
efficient and QoE-driven adaptive HTTP streaming over LTE,” in
Proc. IEEE Wireless Commun. Netw. Conf. (WCNC), Istanbul, Turkey,
Apr. 2014, pp. 2354-2359.

W. Lee, J. Koo, S. Jin, and S. Choi, “EQ-video: Energy and quota-aware
video playback time maximization for smartphones,” IEEE Commun.
Lett., vol. 19, no. 6, pp. 1045-1048, Jun. 2015.

S. Kim, H. Oh, and C. Kim, “ePF-DASH: Energy-efficient prefetching
based dynamic adaptive streaming over HTTP,” in Proc. Int. Conf. Big
Data Smart Comput. (BigComp), Feb. 2015, pp. 124-129.

M. Hosseini, A. Wang, and R. Etesami, “Towards energy-aware
DASH for mobile video,” in Proc. 7th ACM Int. Workshop Mobile
Video (MoVid), Portland, OR, USA, 2015, pp. 7-8.

L. Zou, R. Trestian, and G.-M. Muntean, “eDOAS: Energy-aware
device-oriented adaptive multimedia scheme for Wi-Fi offload,” in
Proc. IEEE Wireless Commun. Netw. Conf. (WCNC), Istanbul, Turkey,
Apr. 2014, pp. 2916-2921.

J. Chen, A. Ghosh, J. Magutt, and M. Chiang, “QAVA: Quota aware
video adaptation,” in Proc. 8th Int. Conf. Emerg. Netw. Exp. Technol.,
Nice, France, 2012, pp. 121-132.

M. Jain and C. Dovrolis, “Ten fallacies and pitfalls on end-to-end
available bandwidth estimation,” in Proc. 4th ACM SIGCOMM Conf.
Internet Meas., 2004, pp. 272-277.

R. Prasad, C. Dovrolis, M. Murray, and K. Claffy, “Bandwidth estima-
tion: Metrics, measurement techniques, and tools,” IEEE Netw., vol. 17,
no. 6, pp. 27-35, Nov./Dec. 2003.

M. Mirza, J. Sommers, P. Barford, and X. Zhu, “A machine learning
approach to TCP throughput prediction,” ACM SIGMETRICS Perform.
Eval. Rev., vol. 35, no. 1, pp. 97-108, 2007.

C. Cortes and V. Vapnik, “Support-vector networks,” Mach. Learn.,
vol. 20, no. 3, pp. 273-297, 1995.

T. Nguyen and S.-C. S. Cheung, “Multimedia streaming using multiple
TCP connections,” in Proc. 24th IEEE Int. Perform. Comput. Commun.
Conf. (IPCCC), Phoenix, AZ, USA, 2005, pp. 215-223.

M. H. Alizai, O. Landsiedel, J. A. B. Link, S. Go6tz, and K. Wehrle,
“Bursty traffic over bursty links,” in Proc. 7th ACM Conf. Embedded
Netw. Sensor Syst. (SenSys), Berkeley, CA, USA, 2009, pp. 71-84.
D. Wischik, M. Handley, and M. B. Braun, “The resource pooling
principle,” ACM SIGCOMM Comput. Commun. Rev., vol. 38, no. 5,
pp. 47-52, 2008.

3012

[121]

[122]

[123]

[124]

[125]

[126]

[127]

[128]

[129]

[130]

[131]

[132]

[133]

[134]

[135]

[136]

[137]

[138]

[139]

[140]

[141]

[142]

[143]

for Ecommerce

IEEE COMMUNICATIONS SURVEYS & TUTORIALS, VOL. 19, NO. 4, FOURTH QUARTER 2017

B. Wang, W. Wei, Z. Guo, and D. Towsley, “Multipath live streaming
via TCP: Scheme, performance and benefits,” ACM Trans. Multimedia
Comput. Commun. Appl., vol. 5, no. 3, p. 25, 2009.

J. G. Apostolopoulos, W.-T. Tan, and S. J. Wee, “Video streaming:
Concepts, algorithms, and systems,” HP Lab., Palo Alto, CA, USA,
Tech. Rep. HPL-2002-260, 2002.

A. Dua and N. Bambos, “Buffer management for wireless media
streaming,” in Proc. Glob. Telecommun. Conf. (GLOBECOM),
Washington, DC, USA, 2007, pp. 5226-5230.

T. Kim and M. H. Ammar, “Receiver buffer requirement for video
streaming over TCP,” in Proc. Electron. Imag., San Jose, CA, USA,
2006, Art. no. 607718.

Akamai Reveals 2 Seconds As the New Threshold of Acceptability
Web Page Response Times, Akamai Technol.
Inc., Cambridge, MA, USA, Sep. 2009. [Online]. Available:
http://www.akamai.com/html/about/press/releases/2009/press_
091409.html

S. Krishnan and R. K. Sitaraman, “Video stream quality impacts
viewer behavior: Inferring causality using quasi-experimental designs,”
IEEE/ACM Trans. Netw., vol. 21, no. 6, pp. 2001-2014, Dec. 2013.
A. El Essaili, D. Schroeder, E. Steinbach, D. Staehle, and M. Shehada,
“QoE-based traffic and resource management for adaptive HTTP video
delivery in LTE,” IEEE Trans. Circuits Syst. Video Technol., vol. 25,
no. 6, pp. 988-1001, Jun. 2015.

N. Cranley, P. Perry, and L. Murphy, “User perception of adapting video
quality,” Int. J. Human Comput. Stud., vol. 64, no. 8, pp. 637-647,
2006.

Y. Sani, A. Mauthe, C. Edwards, and M. Mu, “A bio-inspired HTTP-
based adaptive streaming player,” in Proc. IEEE Int. Conf. Multimedia
Expo Workshops (ICMEW), Seattle, WA, USA, Jul. 2016, pp. 1-4.

F. Jason and S. Mahadev, “Energy-aware adaptation for mobile applica-
tions,” SIGOPS Oper. Syst. Rev., vol. 33, no. 5, pp. 48-63, Dec. 1999.
J. Flinn and M. Satyanarayanan, ‘“Managing battery lifetime with
energy-aware adaptation,” ACM Trans. Comput. Syst., vol. 22, no. 2,
pp. 137-179, May 2004.

S. Chandra and A. Vahdat, “Application-specific network management
for energy-aware streaming of popular multimedia formats,” in Proc.
USENIX Annu. Tech. Conf. Gen. Track, 2002, pp. 329-342.

A. Seema, L. Schwoebel, T. Shah, J. Morgan, and M. Reisslein,
“WVSNP-DASH: Name-based segmented video streaming,” /EEE
Trans. Broadcast., vol. 61, no. 3, pp. 346-355, Sep. 2015.

M. A. Hoque, M. Siekkinen, and J. K. Nurminen, “Using crowd-
sourced viewing statistics to save energy in wireless video stream-
ing,” in Proc. 19th Annu. Int. Conf. Mobile Comput. Netw., 2013,
pp. 377-388.

H. Abou-Zeid, H. S. Hassanein, and S. Valentin, “Energy-efficient
adaptive video transmission: Exploiting rate predictions in wireless
networks,” IEEE Trans. Veh. Technol., vol. 63, no. 5, pp. 2013-2026,
Jun. 2014.

Y. Chen, B. Zhang, Y. Liu, and W. Zhu, “Measurement and modeling of
video watching time in a large-scale Internet video-on-demand system,”
IEEE Trans. Multimedia, vol. 15, no. 8, pp. 2087-2098, Dec. 2013.
D. Johansen et al., “DAVVI: A prototype for the next generation
multimedia entertainment platform,” in Proc. 17th ACM Int. Conf.
Multimedia, Beijing, China, 2009, pp. 989-990.

N. Gautam, H. Petander, and J. Noel, “A comparison of the cost
and energy efficiency of prefetching and streaming of mobile video,”
in Proc. 5th Workshop Mobile Video (MoVid), Oslo, Norway, 2013,
pp. 7-12.

B. J. Villa, P. E. Heegaard, and A. Instefjord, “Improving fairness for
adaptive HTTP video streaming,” in Information and Communication
Technologies. Heidelberg, Germany: Springer, 2012, pp. 183-193.

T. Kupka, P. Halvorsen, and C. Griwodz, “An evaluation of live adaptive
HTTP segment streaming request strategies,” in Proc. IEEE 36th Conf.
Local Comput. Netw., Bonn, Germany, Oct. 2011, pp. 604—-612.

D. Kaspar et al., “Enhancing video-on-demand playout over multiple
heterogeneous access networks,” in Proc. 7th IEEE Consum. Commun.
Netw. Conf. (CCNC), Las Vegas, NV, USA, 2010, pp. 1-5.

D. Kaspar, K. Evensen, P. Engelstad, and A. F. Hansen, “Using HTTP
pipelining to improve progressive download over multiple heteroge-
neous interfaces,” in Proc. IEEE Int. Conf. Commun. (ICC), 2010,
pp. 1-5.

C. Liu, I. Bouazizi, and M. Gabbouj, “Parallel adaptive HTTP
media streaming,” in Proc. IEEE 20th Int. Conf. Comput. Commun.
Netw. (ICCCN), 2011, pp. 1-6.

[144]

[145]

[146]

[147]

[148]

[149]

[150]

[151]

[152]

[153]

[154]

[155]

[156]

[157]

[158]

[159]

[160]

[161]

[162]

[163]

[164]

M.-N. Garcia et al., “Quality of experience and HTTP adaptive stream-
ing: A review of subjective studies,” in Proc. 6th Int. Workshop Qual.
Multimedia Exp. (QoMEX), Singapore, 2014, pp. 141-146.

W. Cherif, Y. Fablet, E. Nassor, J. Taquet, and Y. Fujimori, “DASH
fast start using HTTP/2,” in Proc. 25th ACM Workshop Netw. Oper.
Syst. Support Digit. Audio Video (NOSSDAV), Portland, Oregon, 2015,
pp. 25-30.

S. Wei and V. Swaminathan, “Cost effective video streaming using
server push over HTTP 2.0,” in Proc. IEEE 16th Int. Workshop
Multimedia Signal Process. (MMSP), Jakarta, Indonesia, 2014, pp. 1-5.
M. Mu, S. Simpson, A. Farshad, Q. Ni, and N. Race, “User-level
fairness delivered: Network resource allocation for adaptive video
streaming,” in Proc. IEEE 23rd Int. Symp. Qual. Service (IWQoS),
Portland, OR, USA, Jun. 2015, pp. 85-94.

L. De Cicco and S. Mascolo, “An experimental investigation of the
Akamai adaptive video streaming,” in HCI in Work and Learning, Life
and Leisure. Heidelberg, Germany: Springer, 2010, pp. 447-464.

L. De Cicco, S. Mascolo, and V. Palmisano, “Feedback control
for adaptive live video streaming,” in Proc. 2nd Annu. ACM Conf.
Multimedia Syst., Santa Clara, CA, USA, 2011, pp. 145-156.

C. Zhou, X. Zhang, and Z. Guo, “A control theory based rate adaption
scheme for DASH over multiple servers,” in Proc. IEEE Vis. Commun.
Image Process. (VCIP), Kuching, Malaysia, 2013, pp. 1-6.

K. Miller, D. Bethanabhotla, G. Caire, and A. Wolisz, “A control-
theoretic approach to adaptive video streaming in dense wireless
networks,” IEEE Trans. Multimedia, vol. 17, no. 8, pp. 1309-1322,
Aug. 2015.

X. Yin, A. Jindal, V. Sekar, and B. Sinopoli, “A control-theoretic
approach for dynamic adaptive video streaming over HTTP,” in Proc.
ACM Conf. Special Interest Group Data Commun. (SIGCOMM),
London, U.K., 2015, pp. 325-338.

N. Bouten et al., “QoE optimization through in-network quality adap-
tation for HTTP adaptive streaming,” in Proc. 8th Int. Conf. Workshop
Syst. Virtual. Manag. (SVM) Netw. Service Manag. (CNSM), Las Vegas,
NV, USA, Oct. 2012, pp. 336-342.

N. Bouten, S. Latré, J. Famaey, W. Van Leekwijck, and F. De Turck,
“In-network quality optimization for adaptive video streaming ser-
vices,” IEEE Trans. Multimedia, vol. 16, no. 8, pp. 2281-2293,
Dec. 2014.

V. Joseph and G. de Veciana, “NOVA: QoE-driven optimization of
DASH-based video delivery in networks,” in Proc. IEEE INFOCOM,
Toronto, ON, Canada, 2014, pp. 82-90.

P. Xiong et al., “NBS: A network-bandwidth-aware streaming version
switcher for mobile streaming applications under fuzzy logic control,”
in Proc. IEEE Ist Int. Conf. Mobile Services (MS), Honolulu, HI, USA,
2012, pp. 48-55.

D. J. Vergados, A. Michalas, A. Sgora, and D. D. Vergados, “A control-
based algorithm for rate adaption in MPEG-DASH,” in Proc. 5th
Int. Conf. Inf. Intell. Syst. Appl. (IISA), Chania, Greece, Jul. 2014,
pp. 438-442.

A. Sobhani, A. Yassine, and S. Shirmohammadi, “A fuzzy-based rate
adaptation controller for DASH,” in Proc. 25th ACM Workshop Netw.
Oper. Syst. Support Digit. Audio Video (NOSSDAV), Portland, Oregon,
2015, pp. 31-36.

M. Claeys et al., “Design of a Q-learning-based client quality selection
algorithm for HTTP adaptive video streaming,” in Proc. Conf. Auton.
Agents Multiagent Syst., May 2013, pp. 30-37.

M. Claeys, S. Latre, J. Famaey, and F. De Turck, “Design and evalu-
ation of a self-learning HTTP adaptive video streaming client,” /IEEE
Commun. Lett., vol. 18, no. 4, pp. 716-719, Apr. 2014.

Y.-L. Chien, K. C.-J. Lin, and M.-S. Chen, “Machine learning based
rate adaptation with elastic feature selection for HTTP-based stream-
ing,” in Proc. IEEE Int. Conf. Multimedia Expo (ICME), Jun. 2015,
pp. 1-6.

V. Menkovski and A. Liotta, “Intelligent control for adaptive video
streaming,” in Proc. IEEE Int. Conf. Consum. Electron. (ICCE),
Las Vegas, NV, USA, Jan. 2013, pp. 127-128.

J. van der Hooft, S. Petrangeli, M. Claeys, J. Famaey, and F. De Turck,
“A learning-based algorithm for improved bandwidth-awareness of
adaptive streaming clients,” in Proc. IFIP/IEEE Int. Symp. Integr. Netw.
Manag. (IM), May 2015, pp. 131-138.

T. Abdelzaher, Y. Diao, J. L. Hellerstein, C. Lu, and X. Zhu,
“Introduction to control theory and its application to computing
systems,” in Performance Modeling and Engineering. Boston, MA,
USA: Springer, 2008, pp. 185-215.

http://www.akamai.com/html/about/press/releases/2009/press_091409.html
http://www.akamai.com/html/about/press/releases/2009/press_091409.html

SANI et al.: ABR: SURVEY

[165]

[166]

[167]

[168]

[169]

[170]

[171]

[172]

[173]

[174]

[175]

[176]

[177]

[178]

[179]

[180]

[181]

[182]

[183]

[184]

[185]

[186]

T. C. Thang, H. T. Le, A. T. Pham, and Y. M. Ro, “An evaluation
of bitrate adaptation methods for HTTP live streaming,” IEEE J. Sel.
Areas Commun., vol. 32, no. 4, pp. 693-705, Apr. 2014.

S. Basso, A. Servetti, E. Masala, and J. C. De Martin, “Measuring
DASH streaming performance from the end users perspective using
neubot,” in Proc. 5th ACM Multimedia Syst. Conf. (MMSys), Singapore,
2014, pp. 1-6.

S. Di, Y. Zhao, C. Li, and Y. Guo, “An energy-aware chunk selection
mechanism in HTTP video streaming,” in Proc. IEEE 8th Int. Conf.
Wireless Commun. Signal Process. (WCSP), 2016, pp. 1-5.

J. Yao, S. S. Kanhere, I. Hossain, and M. Hassan, “Empirical evaluation
of HTTP adaptive streaming under vehicular mobility,” in Proc. Int.
Conf. Res. Netw., 2011, pp. 92-105.

J. Lievens, S. M. Satti, N. Deligiannis, P. Schelkens, and A. Munteanu,
“Optimized segmentation of H.264/AVC video for HTTP adaptive
streaming,” in Proc. IFIP/IEEE Int. Symp. Integr. Netw. Manag. (IM),
Ghent, Belgium, May 2013, pp. 1312-1317.

HTTP Dynamic Streaming on the Adobe Flash Platform: Enabling
High-Quality, Network-Efficient HITTP Streaming for Media Delivery.
(Aug. 2010). [Online]. Available: https://bugbase.adobe.com/
index.cfm?event=file.view&id=2943064 seqNum=6 name=
httpdynamicstreaming_wp_ue.pdf

S. Lederer, C. Miiller, and C. Timmerer, “Dynamic adaptive stream-
ing over HTTP dataset,” in Proc. 3rd ACM Multimedia Syst.
Conf. (MMSys), 2012, pp. 89-94.

YouTube MPEG-DASH/Media Source Demo. (Aug. 2015). [Online].
Available: http://dash-mse-test.appspot.com/media.html

Ultra High Definition HEVC DASH Data Set. (Aug. 2015).
[Online]. Available: http://download.tsi.telecom-paristech.fr/gpac/
dataset/dash/uhd/

J. J. Quinlan, A. H. Zahran, and C. J. Sreenan, “Datasets for AVC
(H.264) and HEVC (H.265) evaluation of dynamic adaptive stream-
ing over HTTP (DASH),” in Proc. ACM 7th Int. Conf. Multimedia
Syst. (MMSys), Klagenfurt, Austria, 2016, pp. 1-6.

17 Free & Public MPEG-DASH and HLS Example Test
Streams —and Datasets. (Apr. 2017). [Online]. Available:
https://bitmovin.com/mpeg-dash- hls-examples- sample- streams/

U. Jeong and K. Chung, “Video quality adaptation to improve the
quality of experience in DASH environments,” Int. J. Comput. Sci.
Netw. Security, vol. 14, no. 8, pp. 22-29, 2014.

R. Huysegems, B. De Vleeschauwer, T. Wu, and W. Van Leekwijck,
“SVC-based HTTP adaptive streaming,” Bell Labs Tech. J., vol. 16,
no. 4, pp. 25-41, 2012.

Y. S. de la Fuente ez al., “iDASH: Improved dynamic adaptive stream-
ing over HTTP using scalable video coding,” in Proc. 2nd Annu. ACM
Conf. Multimedia Syst., San Jose, CA, USA, 2011, pp. 257-264.

Y. Sanchez, C. Hellge, T. Schierl, W. Van Leekwijck, and
Y. Le Louédec, “Scalable video coding based DASH for efficient usage
of network resources,” in Proc. 3rd W3C Web TV Workshop, 2011,
pp. 19-20.

H. Schwarz, D. Marpe, and T. Wiegand, “Overview of the scal-
able video coding extension of the H.264/AVC standard,” IEEE
Trans. Circuits Syst. Video Technol., vol. 17, no. 9, pp. 1103-1120,
Sep. 2007.

H. Schwarz and M. Wien, “The scalable video coding extension of
the H.264/AVC standard,” IEEE Signal Process. Mag., vol. 25, no. 2,
pp. 135-141, Mar. 2008.

I. Unanue et al., “A tutorial on H.264/SVC scalable video coding and
its tradeoff between quality, coding efficiency and performance,” Recent
Adv. Video Coding, vol. 13, pp. 1-24, Jul. 2011.

K. Tappayuthpijarn, T. Stockhammer, and E. Steinbach, “HTTP-
based scalable video streaming over mobile networks,” in Proc. 18th
IEEE Int. Conf. Image Process. (ICIP), Brussels, Belgium, 2011,
pp- 2193-2196.

S. Xiang, L. Cai, and J. Pan, “Adaptive scalable video streaming
in wireless networks,” in Proc. ACM 3rd Multimedia Syst. Conf.,
Chapel Hill, NC, USA, 2012, pp. 167-172.

M. Grafl, C. Timmerer, H. Hellwagner, W. Cherif, and A. Ksentini,
“Evaluation of hybrid scalable video coding for HTTP-based adap-
tive media streaming with high-definition content,” in Proc. IEEE
14th Int. Symp. Workshops World Wireless Mobile Multimedia
Netw. (WoWMoM), 2013, pp. 1-7.

J. Famaey et al., “On the merits of SVC-based HTTP adaptive stream-
ing,” in Proc. IFIP/IEEE Int. Symp. Integr. Netw. Manag. (IM), Ghent,
Belgium, 2013, pp. 419-426.

[187]

[188]

[189]

[190]

[191]

[192]

[193]

[194]

[195]

[196]

[197]

[198]

[199]

[200]

[201]

[202]

[203]

[204]

[205]

[206]

[207]

[208]

3013

C. Miiller, D. Renzi, S. Lederer, S. Battista, and C. Timmerer,
“Using scalable video coding for dynamic adaptive stream-
ing over HTTP in mobile environments,” in Proc. 20th Eur.
Signal Process. Conf. (EUSIPCO), Bucharest, Romania, 2012,
pp. 2208-2212.

C. Sieber, T. HoB}feld, T. Zinner, P. Tran-Gia, and C. Timmerer,
“Implementation and user-centric comparison of a novel adaptation
logic for DASH with SVC,” in Proc. IFIP/IEEE Int. Symp. Integr.
Netw. Manag. (IM), Ghent, Belgium, 2013, pp. 1318-1323.

T. Andelin, V. Chetty, D. Harbaugh, S. Warnick, and D. Zappala,
“Quality selection for dynamic adaptive streaming over HTTP with
scalable video coding,” in Proc. ACM 3rd Multimedia Syst. Conf.,
Chapel Hill, NC, USA, 2012, pp. 149-154.

H. Kalva, V. Adzic, and B. Furht, “Comparing MPEG AVC and SVC
for adaptive HTTP streaming,” in Proc. IEEE Int. Conf. Consum.
Electron. (ICCE), Las Vegas, NV, USA, 2012, pp. 158-159.

K. Mitra, A. Zaslavsky, and C. Ahlund, “Context-aware QoE mod-
elling, measurement, and prediction in mobile computing systems,”
IEEE Trans. Mobile Comput., vol. 14, no. 5, pp. 920-936, May 2015.
F. Metzger, E. Liotou, C. Moldovan, and T. Hoflifeld, “TCP video
streaming and mobile networks: Not a love story, but better with
context,” Comput. Netw., vol. 109, pp. 246-256, Nov. 2016.

T. HoBfeld et al., “Can context monitoring improve QoE? A case study
of video flash crowds in the Internet of services,” in Proc. IFIP/IEEE
Int. Symp. Integr. Netw. Manag. (IM), 2015, pp. 1274-1277.

T. HoBfeld, M. Seufert, C. Sieber, and T. Zinner, “Assessing effect sizes
of influence factors towards a QoE model for HTTP adaptive stream-
ing,” in Proc. 6th Int. Workshop Qual. Multimedia Exp. (QoMEX),
Singapore, 2014, pp. 111-116.

Y. Zhu, I. Heynderickx, and J. A. Redi, “Understanding the role of
social context and user factors in video quality of experience,” Comput.
Human Behav., vol. 49, pp. 412426, Aug. 2015.

J. Yao, S. S. Kanhere, and M. Hassan, “Improving QoS in high-speed
mobility using bandwidth maps,” IEEE Trans. Mobile Comput., vol. 11,
no. 4, pp. 603-617, Apr. 2012.

X. K. Zou et al., “Can accurate predictions improve video streaming in
cellular networks?” in Proc. 16th Int. Workshop Mobile Comput. Syst.
Appl. (HotMobile), Santa Fe, NM, USA, 2015, pp. 57-62.

H. Riiser, T. Endestad, P. Vigmostad, C. Griwodz, and P. Halvorsen,
“Video streaming using a location-based bandwidth-lookup service
for bitrate planning,” ACM Trans. Multimedia Comput. Commun.
Appl. (TOMM), vol. 8, no. 3, p. 24, 2012.

D. Han et al., “MASERATI: Mobile adaptive streaming based on envi-
ronmental and contextual information,” in Proc. 8th ACM Int. Workshop
Wireless Netw. Testbeds Exp. Eval. Characterization (WIiNTECH),
Miami, FL, USA, 2013, pp. 33-40.

R. Dubin et al., “Adaptation logic for HTTP dynamic adaptive stream-
ing using geo-predictive crowdsourcing for mobile users,” Multimedia
Syst., pp. 1-13, Feb. 2016.

B. Taani and R. Zimmermann, “Spatio-temporal analysis of bandwidth
maps for geo-predictive video streaming in mobile environments,” in
Proc. ACM Multimedia Conf., Amsterdam, The Netherlands, 2016,
pp. 888-897.

E. Liotou et al., “Enriching HTTP adaptive streaming with con-
text awareness: A tunnel case study,” in Proc. IEEE Int. Conf.
Commun. (ICC), Kuala Lumpur, Malaysia, 2016, pp. 1-6.

M. Pathan, “Cloud-based content delivery and streaming,” in Advanced
Content Delivery, Streaming, and Cloud Services. Hoboken, NJ, USA:
Wiley, 2014, pp. 1-31.

J. Dilley et al., “Globally distributed content delivery,” IEEE Internet
Comput., vol. 6, no. 5, pp. 50-58, Sep./Oct. 2002.

F. Zhou, S. Ahmad, E. Buyukkaya, R. Hamzaoui, and G. Simon,
“Minimizing server throughput for low-delay live streaming in content
delivery networks,” in Proc. ACM 22nd Int. Workshop Netw. Oper. Syst.
Support Digit. Audio Video, Toronto, ON, Canada, 2012, pp. 65-70.
J. Famaey, S. Latré, R. van Brandenburg, M. O. van Deventer, and
F. De Turck, “On the impact of redirection on HTTP adaptive streaming
services in federated CDNSs,” in Proc. IFIP Int. Conf. Auton. Infrastruct.
Manag. Security, 2013, pp. 13-24.

R. V. Brandenburg, F. L. Faucheur, O. V. Deventer, and K. Leung,
“Models for HTTP-adaptive-streaming-aware content distribution
network interconnection (CDNI),” Internet Eng. Task Force, Fremont,
CA, USA, RFC 6983, 2013.

K. Liang, J. Hao, R. Zimmermann, and D. K. Y. Yau, “Integrated
prefetching and caching for adaptive video streaming over HTTP: An
online approach,” in Proc. 6th ACM Multimedia Syst. Conf., 2015,
pp. 142-152.

https://bugbase.adobe. com/index.cfm?event=file.view&id=2943064 seqNum=6 name= httpdynamicstreaming_wp_ue.pdf
https://bugbase.adobe. com/index.cfm?event=file.view&id=2943064 seqNum=6 name= httpdynamicstreaming_wp_ue.pdf
https://bugbase.adobe. com/index.cfm?event=file.view&id=2943064 seqNum=6 name= httpdynamicstreaming_wp_ue.pdf
http://dash-mse-test.appspot.com/media.html
http://download.tsi.telecom-paristech.fr/gpac/dataset/dash/uhd/
http://download.tsi.telecom-paristech.fr/gpac/dataset/dash/uhd/
https://bitmovin.com/mpeg-dash-hls-examples-sample-streams/

IEEE COMMUNICATIONS SURVEYS & TUTORIALS, VOL. 19, NO. 4, FOURTH QUARTER 2017

[209] P. Juluri and D. Medhi, “Cache’n DASH: Efficient caching for DASH,”

ACM SIGCOMM Comput. Commun. Rev., vol. 45, no. 4, pp. 599-600,
2015.

[210] L. Peterson, B. Davie, and R. van Brandenburg, “Framework for con-

tent distribution network interconnection (CDNI),” Internet Eng. Task
Force, Fremont, CA, USA, RFC 7336, 2014.

[211] E. Thomas et al., “Applications and deployments of server and network

assisted DASH (SAND),” in Proc. IBC, 2016, p. 22.

[212] “Netflix open connect,” White Paper, Netflix, Los Gatos, CA, USA,

Jan. 2017. [Online]. Available: https://openconnect.netflix.com/en/

[213] Netflix: Were the Ones Throttling Video Speeds on AT&T and

Verizon. (Jan. 2017). [Online]. Available: https://www.cnet.com/
news/netflix-admits-throttling-video-speeds-on-at-t-verizon/

Yusuf Sani received the bachelor’s degree in com-
puting and information systems from the University
of London, U.K., and the master’s degree in dis-
tributed computing from Universiti Putra Malaysia.
He is currently pursuing the Ph.D. degree at
Lancaster University. His research interests lie at the
intersection of mobile networking and multimedia
systems. He is also a Lecturer at the Kano University
of Science and Technology, Wudil, Nigeria.

Andreas Mauthe is a Reader in networked systems
with Lancaster University. He has been lead-
ing networking and systems projects in academia
and industry for over 15 years. He has authored
over 150 peer-reviewed papers. His research focus
is in network management, and autonomic and
resilient systems, alongside multimedia systems,
content networking, and adaptive networks. He is
an Associate Editor of Multimedia Systems.

Christopher Edwards received the B.Sc.
(First Class Hons.) degree in computer studies from
Liverpool John Moores University, UK., in 1995
and the Ph.D. degree in computer science from
Lancaster University, U.K., in 2000. Since 2000,
he has been involved in leading Lancaster’s input
into various EPSRC and EU funded initiatives. He
is a Senior Lecturer with the School of Computing
and Communications, Lancaster University, where
he teaches in the areas of advanced network and
operating systems. He is also the Postgraduate
Studies Associate Dean with the Faculty of Science and Technology, and the
Education Theme Lead of the Lancaster University Data Science Institute.
His research interests are in the areas of network mobility, and the efficient
provision of rural Internet access.

https://openconnect.netflix.com/en/
https://www.cnet.com/news/netflix-admits-throttling-video-speeds-on-at-t-verizon/
https://www.cnet.com/news/netflix-admits-throttling-video-speeds-on-at-t-verizon/

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles false
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo false
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
 /Arial-Black
 /Arial-BoldItalicMT
 /Arial-BoldMT
 /Arial-ItalicMT
 /ArialMT
 /ArialNarrow
 /ArialNarrow-Bold
 /ArialNarrow-BoldItalic
 /ArialNarrow-Italic
 /ArialUnicodeMS
 /BookAntiqua
 /BookAntiqua-Bold
 /BookAntiqua-BoldItalic
 /BookAntiqua-Italic
 /BookmanOldStyle
 /BookmanOldStyle-Bold
 /BookmanOldStyle-BoldItalic
 /BookmanOldStyle-Italic
 /BookshelfSymbolSeven
 /Century
 /CenturyGothic
 /CenturyGothic-Bold
 /CenturyGothic-BoldItalic
 /CenturyGothic-Italic
 /CenturySchoolbook
 /CenturySchoolbook-Bold
 /CenturySchoolbook-BoldItalic
 /CenturySchoolbook-Italic
 /ComicSansMS
 /ComicSansMS-Bold
 /CourierNewPS-BoldItalicMT
 /CourierNewPS-BoldMT
 /CourierNewPS-ItalicMT
 /CourierNewPSMT
 /EstrangeloEdessa
 /FranklinGothic-Medium
 /FranklinGothic-MediumItalic
 /Garamond
 /Garamond-Bold
 /Garamond-Italic
 /Gautami
 /Georgia
 /Georgia-Bold
 /Georgia-BoldItalic
 /Georgia-Italic
 /Haettenschweiler
 /Helvetica
 /Helvetica-Bold
 /HelveticaBolditalic-BoldOblique
 /Helvetica-BoldOblique
 /Impact
 /Kartika
 /Latha
 /LetterGothicMT
 /LetterGothicMT-Bold
 /LetterGothicMT-BoldOblique
 /LetterGothicMT-Oblique
 /LucidaConsole
 /LucidaSans
 /LucidaSans-Demi
 /LucidaSans-DemiItalic
 /LucidaSans-Italic
 /LucidaSansUnicode
 /Mangal-Regular
 /MicrosoftSansSerif
 /MonotypeCorsiva
 /MSReferenceSansSerif
 /MSReferenceSpecialty
 /MVBoli
 /PalatinoLinotype-Bold
 /PalatinoLinotype-BoldItalic
 /PalatinoLinotype-Italic
 /PalatinoLinotype-Roman
 /Raavi
 /Shruti
 /Sylfaen
 /SymbolMT
 /Tahoma
 /Tahoma-Bold
 /Times-Bold
 /Times-BoldItalic
 /Times-Italic
 /TimesNewRomanMT-ExtraBold
 /TimesNewRomanPS-BoldItalicMT
 /TimesNewRomanPS-BoldMT
 /TimesNewRomanPS-ItalicMT
 /TimesNewRomanPSMT
 /Times-Roman
 /Trebuchet-BoldItalic
 /TrebuchetMS
 /TrebuchetMS-Bold
 /TrebuchetMS-Italic
 /Tunga-Regular
 /Verdana
 /Verdana-Bold
 /Verdana-BoldItalic
 /Verdana-Italic
 /Vrinda
 /Webdings
 /Wingdings2
 /Wingdings3
 /Wingdings-Regular
 /ZapfChanceryITCbyBT-MediumItal
 /ZapfChancery-MediumItalic
 /ZapfDingBats
 /ZapfDingbatsITCbyBT-Regular
 /ZWAdobeF
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 200
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 200
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 400
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create PDFs that match the "Recommended" settings for PDF Specification 4.01)
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

