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Abstract—In recent years, several research studies have
investigated the identification of electronic devices through their
physical components and properties, both from a theoretical point
of view and through extensive experimental studies. Results have
shown that, in many cases, a very high identification accuracy
can be obtained by exploiting imperfections and small differences
in the electronic components, which are called fingerprints in this
context. Part of these studies have focused on a specific category
of electronic device, the mobile phone or smartphone, which is
usually equipped with components, such as radio frequency front-
ends, cameras, micro-electro-mechanical systems, microphones,
and speakers that are likely to reveal fingerprints in their dig-
ital outputs and then allow the identification of the component
and of the mobile phone itself. Keeping the focus on mobile
phones, this paper provides a survey of the different techniques
for mobile phone identification on the basis of their built-in com-
ponents. This paper describes the methodology, the classification
algorithms, and the types of features that are typically used in
literature. Outstanding challenges and research issues are also
identified and described, together with an overview of the poten-
tial applications of mobile phone fingerprinting. In addition, this
paper analyzes the potential privacy risks associated to the track-
ing of the mobile phone on the basis of its fingerprints and the
related mitigation techniques. Finally, it summarizes the main
issues and identifies research opportunities and potential future
trends for mobile phone fingerprinting.

Index Terms—Fingerprint recognition, machine learning,
radiofrequency identification, counterfeiting, security, telephone
equipment.

I. INTRODUCTION

THE IDENTIFICATION of electronic devices on the basis
of their physical features has possible applications in dif-

ferent domains. In particular, if the device is a mobile phone,
the capability to uniquely identify it by analysing the digi-
tal output of its components constitutes a powerful way to
authenticate, but also to track, the device and its user. For
these reasons, this topic has recently gained the attention of
many research studies that have proposed several techniques
for the identification of mobile phones using the physical char-
acteristics of their built-in components. All these techniques
are the focus of this survey.
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In this context, the physical features exploited for the identi-
fication of a specific device are called (hardware) fingerprints,
while the term fingerprinting refers to the process through
which these observable characteristics are extracted from the
device in order to make it identifiable and distinguishable from
another one of the same brand or even of the same model. The
observation of these characteristics can be performed in sev-
eral ways, and the aim of the paper is to show how a mobile
phone can be identified and authenticated through different
means and with different levels of accuracy on the basis of
the physical fingerprints of its components.

The fingerprints are usually generated in the preparation
of the base materials of the components and in the manu-
facturing process, and their insertion is accidental or intrinsic
to the process itself. However, they can also be inserted on
purpose like, for example, the Physical Unclonable Functions
(PUF), physical entities embodied in the physical structure of
a component [1]. In both cases, fingerprints are usually tiny
variations in the electronic components which can be exploited
for the identification of a mobile phone if they can generate
observable characteristics that can be collected and analyzed
with an adequate level of precision. The term adequate is rel-
ative to the type of imperfections and the way the observables
are collected and evaluated.

The fingerprinting of electronic components has many
similarities to the fingerprinting of human beings in biomet-
rics. Indeed, some requirements for the fingerprinting defined
in the biometrics domain [2] can also be adopted for the
fingerprinting of mobile phones:

1) universality, which means that every mobile phone or
its electronic components should have the characteristics
that are used for its identification;

2) uniqueness, which indicates that no two components
should have the same fingerprinting or physical char-
acteristics;

3) permanence, which means that the characteristic should
be invariant with time or with the environment condi-
tions;

4) collectability, which indicates that the characteristics can
be measured quantitatively.

Not all the requirements can be satisfied at the same time
or to the same degree for all the components of a mobile
phone. As we will see in the following sections of this
paper, the current state of art of the identification techniques
may allow only a limited degree of fingerprints permanence
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(e.g., the features can vary in time or depending on the envi-
ronment) or they may not be unique because the physical
features are not specific enough to uniquely identify the mobile
phone.

An important clarification has to be done about the terminol-
ogy, in particular for terms identification, authentication and
verification that, in the literature and papers we surveyed, are
sometimes used with slightly different meanings. For this rea-
son we provide the following definitions, which we will be
used in the rest of this paper:

1) Authentication: is the process of confirming the claimed
identity of a phone. Most of the techniques described
in this paper have the objective to authenticate a phone
through the physical fingerprints of their components,
which are difficult or impossible to clone.

2) Validation or Verification: are synonyms of authentica-
tion as the concept is to verify or validate the claimed
identity of the phone.

3) Identification: is the process by which a recognition
system determines the identity of a device by compar-
ing a captured device fingerprint with a set of reference
fingerprint templates of known devices. The identifi-
cation process requires a one-to-many comparison and
it is more difficult than verification. Note that the
identification in this context has a different meaning
than in other contexts, where the identification is the
process by which an entity claims to have a certain
identity.

4) Classification: is the process by which mobile phones
are classified in different classes or categories.

In the rest of this paper, we also distinguish between
inter-model and intra-model classification. In inter-model clas-
sification, two mobile phones of different brand and model
are classified in two different categories. In intra-model clas-
sification, two mobile phones of the same brand and model
(but different serial numbers of course) are classified in two
different entities. Obviously, intra-model classification is more
difficult to achieve than inter-model classification, since differ-
ent manufacturers may use different materials and components
for different models.

While other papers have separately investigated the fin-
gerprinting techniques and approaches for the specific com-
ponents of a mobile phone, this is the first survey (to the
knowledge of the authors) that identifies and describes the
techniques for the whole set of built-in components in a com-
prehensive way. The goal is not only to describe the state of
art but also to identify potential synergies among the differ-
ent classification techniques and components and to propose
new classification techniques, which exploit the combination
of different components to improve accuracy or to address the
outstanding challenges in identification and verification. An
additional objective of this survey is to highlight the com-
mon identification elements and algorithms, which can be
reused among different components. For example, the appli-
cation of specific features and algorithms that are common
in radio frequency fingerprints could also be employed in
digital camera or micro-electro-mechanical systems (MEMS)
fingerprinting.

The structure of the paper is the following: in Section II we
identify and describe the main applications of mobile phone
identification. In Section III we describe the main structure of a
generic mobile phone for the consumer market with the aim to
describe which components can be exploited for identification.
Section IV describes the main techniques for identification
of a mobile phone component (e.g., camera, RF front-end),
identifying strengths and weaknesses. Due to the fact that
many techniques use machine learning algorithms to classify
and identify mobile phones, an introductory subsection on the
main machine learning algorithms is presented. In the same
section we also discuss how different techniques and compo-
nents can be combined to improve the accuracy identification.
Section V discusses the privacy risks, which can originate from
the identification of mobile phones and describes ways to mit-
igate these risks (e.g., by adding noise to the digital output
of the components). The section also discusses the potential
trade-offs. Section VI summarizes the lesson learned from the
analysis in the previous sections. Section VII analyzes future
trends and potential new applications. Finally, Section VIII
concludes the paper.

II. APPLICATIONS OF MOBILE PHONE FINGERPRINTS

In this section, we identify and discuss the main applica-
tions of mobile phone identification on the basis of built-in
components.

A. Fight Against Counterfeiting

As described in [3], the authentication of an electronic
device, component or system is an important function in the
fight against counterfeiting and Intellectual Property Rights
(IPR) infringement in the electronics market. Guin et al. [3]
have defined a taxonomy of the counterfeit Integrated Circuits
(IC)s in different categories where the device identification
methods described in this article can be useful. These cat-
egories include remarked, recycled, out-of-spec/defective or
overproduced components. Recycled components are used IC
components, which are remarked and repackaged, and then
sold in the market as new. Because they are old and used, recy-
cled components could have a different fingerprints than brand
new components due to time wear or degradation. The remark-
ing process includes the removal of markings on the package
(or even on the die) and remarking with forged information.
The reason for remarking is to obtain a higher specification
(e.g., from commercial grade part to industrial or defense
grade) and resell a cheaper component for a higher price.
In this case, the difference in quality between high specifi-
cation and low specification components could be identified
through the techniques described in this article. For examples,
Zhou et al. [4] show that clock stability in oscillators is directly
related to the quality of hardware components. The application
of radio frequency (RF) fingerprinting to fight counterfeiting
is also described in [5]. Still further research work and studies
are needed to evaluate how recycled and remarked electronic
components produce different fingerprints from newly pro-
duced components. Out-of-spec or defective products can be
subject to a similar analysis of remarked products because
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Fig. 1. Pictorial description of the main built-in components of a mobile phone, which can be used for fingerprinting.

they are built with components out of specifications or even
defective. A key element for the identification of counterfeit
electronic components in this category is the knowledge on
how defects can modify the fingerprint of the component. For
example, the research community could provide hints to inves-
tigators (e.g., a customs officer) that specific defects or low
grade electronics modify the RF emissions or the data col-
lected from the sensors in the mobile phone and that these
differences can be detected by the application of specific sta-
tistical features. In another example, a low grade RF amplifier
can have a distinct RF signature in comparison to a high
grade amplifier and this can be detected by the analysis of
the spectral response [6]. The final counterfeiting category of
overproducing could be the more difficult to identify through
fingerprints. Overproducing means that the electronic com-
ponents are produced in the same foundry and with similar
materials of proper components outside the proper contract
as described in [3]. In this case, the counterfeiters gain is
due to the infringement of the Intellectual Property Rights
rather than use cheaper components and materials. As a con-
sequence, the fingerprints due to material or features of the
manufacturing line would not be usable to detect counterfeit
products.

To summarize, the fight against the distribution of counter-
feit products can exploit the techniques described in this paper
for identification purposes: the goal is to find features and algo-
rithms which can distinguish between counterfeit and proper
mobile phones. Both supervised and unsupervised machine
learning algorithms (see Section IV-D2) could be used for this
purpose. The first set of algorithms could be used to identify
if a mobile phone is a non-counterfeit item on the basis of a
previously created reference library, while the second set of
algorithms could be used to generate clusters of proper and
counterfeit phones to support the identification (e.g., on the
basis of the similarity to one of the clusters) of new mobile
phones to be identified. Note that the focus in this case is both
on identification and validation.

B. Authentication

Beyond fight against counterfeiting, the identification of the
mobile phone has also other applications in the field of secu-
rity. Multi-factor authentication using fingerprints has been
proposed by many research papers like in [7] using built-
in accelerometers or based on RF emissions in [8]. Here,
we can distinguish between an implementation of the multi-
factor authentication based on the digital output generated by
the components of the mobile phone acquired externally by
another device or the digital output generated by the compo-
nents of the mobile phone acquired internally (see Figure 1).
In the latter case, the multi-factor authentication can be more
difficult than the former case because a compromised mobile
phone could fabricate specific fingerprints. In this case, the
integrity of the generated fingerprints must be protected using
other means (e.g., cryptographic schemes) or the mobile phone
could be cleaned from the malicious software before executing
the test. In the case of an external device checking the finger-
prints (e.g., RF emissions) the multi-factor authentication can
be more effective because the processing of the observables
is done by a device external to the mobile phone, which is
not affected by a compromised mobile phone. An example of
the authentication which exploits the RF physical fingerprints
of WiFi device is demonstrated in [9]. The registration of RF
fingerprints of specific wireless devices, which are allowed to
operate in a specific system, could be an useful authentica-
tion mechanism in systems, where other authentication means
are difficult to implement and it could be used prevent intru-
sion attacks. For example, RF fingerprints could be used to
generate a ‘white list’ of authenticated wireless devices in
MANETs and it could be used to implement intrusion detec-
tion (i.e., the intruder would have a different fingerprint from
the ‘white list’). See [10] for an example of the applicability
of this approach in MANETs for intrusion detection where
multimodal biometrics could be replaced or enhanced with
RF fingerprints or other fingerprints. Beyond the exploitation
of native fingerprints, specific fingerprints could be created
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on purpose to enhance the identification and authentication
as in the case of the PUF concept where specific physical
structures, which are easy to evaluate but hard to predict,
are inserted on purpose. There is an extensive literature on
the design and deployment of the PUF concept. For example,
Potkonjak and Goudar [11] provide a survey of the main PUF
solutions to implement an authentication system. We note that
cloning attacks on the PUF have been recently demonstrated
even in a short time in [12]. The PUF concept can be applied
to any component of the mobile phone even if it is mostly
used in the RF based fingerprints. More details on the appli-
cation of the PUF concept to mobile phone identification are
provided in Section VII-A. A subcase of this security type
of application is the concept of virtual proofs presented by
Rührmair et al. [13]. The idea is that certain external physical
properties of the mobile phone can be converted into digital
data for authentication without any secret keys or tamper-proof
hardware. This physical property is called Virtual Proof (VP)
and is constructed from the response bits generated from an
input image collected with the help of a light sensor. This can
be applied to contexts like the Internet of Things (IOT) appli-
cations where conventional cryptographic algorithms can have
limited use because of the computing and storage constraints.

To summarize, the use of the techniques described in this
survey for this specific application are more focused on the
validation of a specific mobile phone (e.g., the serial number)
rather than the model identification. In comparison to tradi-
tional authentication schemes like the ones based on Public
Key Infrastructure (PKI), an authentication approach provides
the advantage that the authentication information is already
embedded (i.e., as a physical property) in the mobile phone,
while the implementation of a PKI scheme would require
the set-up of a trust model and a distribution of crypto-
graphic materials (e.g., private keys or certificates). Even if
authentication based on PKI is well understood and it is cur-
rently implemented in many mobile communication systems,
its set-up still requires considerable effort. The disadvantage
of authentication based on fingerprints is that the fingerprint
could be cloned or modified as written above. For these rea-
sons, we recommend a combination of the two approaches
with multi-factor authentication.

C. Criminal Investigation and Forensics

Another application of the mobile phone identification
through its built-in components is for the criminal investiga-
tion and forensics. In this case the criminal investigators want
to identify the mobile phone through collected digital output to
understand if it is the same phone used in a criminal activity.
One example is provided in [14], where the photos describ-
ing child abuse and collected from a Web-site or a computer
are compared to the photos collected by a specific camera. By
applying a camera identification technique based on the Sensor
Pattern Noise (SPN) it is possible to confirm the identity of the
camera under specific conditions and if the pictures have good
quality. This can be a powerful tool for criminal investigation
because it is not impacted by manipulation of the phone itself
(e.g., removing the serial number of the phone). Additional

details on this specific technique are provided in Section IV. In
this application, the focus is again on the verification that the
mobile phone is the one that collected and processed the digital
artifact (e.g., image or accelerometer trace). Note that there is
no control where the initial digital artifacts are collected and
disturbances from the environment (e.g., background noise)
could impact the validation accuracy.

D. Tracking

Another set of applications can exploit phone identifica-
tion by tracking the activities of the users of a mobile phone
(e.g., if (s)he is involved in illegal activities). For example, the
collection and analysis of the radio frequency emissions of a
mobile phone can be used by a law enforcer to track the move-
ments of the mobile phone and his/her owner. The tracking of
user through his/her mobile phone has already been inves-
tigated in literature by various authors with different means
(see [15] for a description of a possible implementation and
a survey on the topic). The possibility of using the RF emis-
sions of the mobile phone for tracking has been described by
Hunag et al. [16] where the system used to collect the RF
observables is quite similar to the one described in this paper.
In this application, the focus is both on the verification that
the tracked phone is indeed the right one and the identifica-
tion of a mobile phone among various phones in an area. In
comparison to the other applications described in this section,
some issues for mobile phone identification become more rel-
evant. In particular, observables must be collected almost in
real time to support tracking and, in the case of RF based
identification, they may be subjected to attenuation or distur-
bances due to the distance where the observables are collected.
Techniques based on the collection of internal acquired digi-
tal artifacts may not be appropriate because the phone’s user
may not desire to be tracked and the mobile phone may be
configured to provide false fingerprints. In this case, similar
considerations to the fight against counterfeiting application
can be adopted. Externally based artifacts are preferable (e.g.,
RF emissions) even if they may be hampered by attenuation
or fading effects as previously described. Note that the pos-
sibility of tracking an individual through the phone can also
have negative implications for what concerns privacy risks.
This will be discussed more in detail in Section V.

E. Quality Control

Finally, mobile phone identification could be used for the
quality control of the mobile phone. In this case, fingerprints
are collected from a mobile phone after the production phase
to ensure that they are not dissimilar from the reference tem-
plate of a specific model. If the fingerprints have a high
degree of dissimilarity, this may point out to defects in the
sensors or the electronic components or even the process-
ing components of the mobile phones. After the production
phase, the techniques described in this paper could also be
used to give an indication of the status of the wear of the
mobile phone. For example, an RF amplifier which gener-
ates fingerprints quite different from the reference template
could be degraded and not able to support in a efficient way
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TABLE I
SUMMARY OF THE APPLICATIONS

the mobile communications. Then the service provider may
request it to be removed from the market. In this application,
the focus is on validation against the reference template of the
model.

F. Summary of the Applications

A summary of the analysis of this section is provided in
Table I.

III. THE MOBILE PHONE COMPONENTS

The components of a typical mobile phone for the consumer
market that may be exploited for identification purposes are the
following ones (see also Figure 1 for a pictorial description):

• RF components for transmission and reception of
different cellular communication standards: Global
System for Mobile Communications (GSM), Universal
Mobile Telecommunications System (UMTS), Long Term
Evolution (LTE);

• RF components for the transmission and reception of
short range communications like Wi-Fi or Bluetooth;

• digital cameras to collect pictures and videos. Modern
mobile phones usually have digital cameras capable to
capture high resolution pictures;

• Global Navigation Satellite Systems (GNSS) receiver to
process signals from various GNSS constellations like
Global Positioning Systems (GPS), GLObal NAvigation
Satellite System (GLONASS), the European system
Galileo, the Chinese Baidou and others

• MEMS components, namely accelerometers, gyroscopes
and magnetometers;

• Liquid-Crystal Display (LCD) screen;
• audio components like the microphone and loudspeaker.
Each of these components can have unique fingerprints

which are due to the manufacturing process of the materi-
als used to built them. They have also specific characteristics,
which can support a higher or lower degree of accuracy in

the identification and validation process. Fingerprints can be
difficult to be generated if the component in the list only
provides pre-processed data to the mobile phone, where the
physical fingerprints have been somewhat filtered or degraded.
For example, compression algorithms can degrade the finger-
prints of a digital camera to a certain extent. In a similar way, a
GNSS receiver may not provide the raw data of the GNSS sig-
nal but rather position, velocity and time information, which is
not useful for fingerprint generation. From this point of view,
the evolution of GNSS receivers and the future Android N
operating systems for smartphones to support the provision of
raw GNSS measurements [17] can facilitate the fingerprint-
ing of GNSS receivers. In addition, some components can be
highly sensitive to the environmental conditions (e.g., magne-
tometers in presence of magnetic material like iron) or have
specific bias which change in time and therefore impacts the
stability of the fingerprints in time (e.g., clock skew).

On the basis of the listed components, the approaches to
classify and identify a mobile phone through their fingerprints
are basically two:

1) the digital output generated by the components of the
mobile phone is acquired externally by another device
(receiver or sensor) that processes and analyzes those
data in order to extract the fingerprints;

2) the digital output generated by the components of the
mobile phone is acquired internally by a software mod-
ule or a physically connected device, and then processed
either internally or externally in order to extract the
fingerprints.

The first category includes the analysis of the RF emis-
sions (e.g., WiFi) where an external RF receiver can collect
the emission and process them to extract the fingerprints. This
approach is often called or considered a passive method from
the mobile phone point of view, in the sense that the mobile
phone might be totally unaware of the fact that its emissions
are captured and processed for fingerprinting, since there is
no need of a physical contact or interaction with the device.
In this case, there is the risk that the external receiver or sen-
sor introduces its own fingerprint as described in the rest of
this paper (see a discussion on the problem of portability in
Section IV).

In the second category, we include the analysis of a camera,
where the generated images can be processed by an external
system (or by the mobile phone itself if it is capable) to extract
the fingerprints. Here, the raw data should be copied directly
from the mobile, either with a physical connection or with a
software that collects them. In this case, there is the risk that a
manipulated or compromised (from a security point of view)
mobile phone can provide false digital output to avoid detec-
tion. The user of a mobile phone may have an interest for
not being tracked either legitimately (e.g., for privacy reasons
as described in Section V) or because (s)he means to imple-
ment a malicious activity. For example, the timestamps of the
digital output of the sensors can be manipulated. See [18]
for the implementation of time manipulations of the records
stored in a mobile phone. In addition, the software module,
which processes the raw data from the sensor can introduce
its own fingerprints. For example, the timing or format of the
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digital output can change from a version of the software mod-
ule to another. In other words, two mobile phones with same
hardware (same brand and model and different serial number)
may generate different fingerprints if the software processing
the sensor data applies different algorithms (e.g., compression
algorithms for images). This can be an issue for some applica-
tions or it may be an advantage to identify the mobile phone as
a system composed by hardware and software. It is also pos-
sible to select features that are robust (i.e., constant) against
different software processing algorithms. For example, features
based on timing could be avoided in the selection of finger-
prints if different versions of software introduce differences in
time processing.

In the rest of the paper, we will call observables, the sam-
ples of digital output generated by the built-in components
of the mobile phone, which are collected either externally or
internally.

IV. SURVEY OF THE TECHNIQUES FOR DIFFERENT

COMPONENTS OF THE MOBILE PHONE

Following the categorization described in the previous
Section, here we identify the main techniques for mobile
phone fingerprinting which have been reported by the research
community until now.

A. Generic Methodology

The objective of this section is to describe the common
methodology used to collect and process the observables from
a mobile phone. Note that various papers have used different
approaches for different components of the mobile phone and
the presented methodology may not be applicable to all the
cases and references identified in this paper. Still, it is useful
to provide an overview of the most common approaches for
identification and verification from a tutorial point of view.

The overall work-flow is presented in Figure 3 and each
phase is described in the following steps:

1) Data Collection. The initial phase is to collect the
observables or digital output from the mobile phone
either internally (e.g., camera images) or externally (e.g.,
the RF signals in space) as described previously. In the
first case the samples must be digitized from the analog
observables, while in the second case the observables are
usually already in a digitized form. In RF fingerprinting
collection the signal must also be down-sampled from
the carrier frequency to the base-band frequency.

2) Filtering. In both cases (internally or externally), the
digital artifacts must often be subject to a filtering pro-
cess to remove bias, noise, interferences or unwanted
elements, which may pollute the fingerprints.

3) Synchronization and Normalization. There may be the
need to normalize in power and synchronize the digital
artifacts unless the wanted features are not removed by
these processes. For example, an identification approach
based on the time differences would not require syn-
chronization (and actually it can compromise the identi-
fication itself). In most cases, normalization is needed to
remove differences related to the environment where the
observables were collected (e.g., brightness in images

Fig. 2. Variance Trajectory applied to a GSM burst for synchronization.

taken from the camera or different distances between
mobile phone and receiver in the collection of the RF
signals). While normalization of the response is usually
straightforward, the synchronization of the responses
must be precise and this can be difficult in noise con-
ditions. A common approach used by various authors
(see [19], [20]) is to detect the start of the transient
in RF fingerprinting using variance trajectory, which is
the variance calculated on a sliding window of the time
series. An example of a GSM burst and the related vari-
ance trajectory is shown in Figure 2 (the image has been
produced by the authors on basis of their experimental
work on GSM fingerprinting). Other statistical features
and approaches can also be used for synchronization
(e.g., Rényi dimension trajectory in [21]).

4) Content removal. If the digital artifacts still contain
content-related information this must be removed, oth-
erwise the fingerprint creation process will be based
on the content (e.g., voice in a GSM burst) rather than
the physical characteristics of the built-in component in
the mobile phone. The removal of the content can be
achieved either by considering only parts of the observ-
ables, which are content independent or by averaging a
large number of observables or by removing the content
itself through an additional signal processing phase.

5) Fingerprinting generation. At this stage, different
approaches (described in this section) can be used to
generate the fingerprints or to perform the identification
and verification: a) an instance based approach (e.g.,
correlation or mutual distance among digital artifacts
generated from different mobile phones) or b) a feature
based approach, where features are generated either by
selection or extraction from the digital artifacts (e.g.,
variance of a GSM burst). A more detailed description
of these two approaches is provided in Section IV-D1.
Since the process of fingerprint generation is quite spe-
cific for each component of the mobile phone, the
following sections will describe in detail the processes
adopted in literature for each component.

B. Techniques Based on Signal Emitted by the Components
of the Mobile Phone and Processed by an External System

In this category we investigate the verification and identifi-
cation techniques based on external emissions of the mobile
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Fig. 3. Generic methodology for identification and verification.

phone, which are collected and processed by an external
system. A considerable part of scientific literature has investi-
gated the use of the emissions from the RF components of
a mobile phone to identify the phone itself. As described
in a recent survey on this topic [22], signal transmission in
wireless communication provides various features that can be
used for mobile phone fingerprinting. Similar conclusions are
also provided by another survey on physical layer identifica-
tion [23]. Relevant features for identification and verification
can be found at all layers of the protocol stack, so that our
analysis will be conducted for each layer starting from the
physical one.

1) Analysis of the Radio Frequency Physical Layer of
the Emitted Signal: Device identification based on the RF
fingerprinting has been applied to many different wireless
communication standards including:

• Wireless Local Area Network (WLAN) standards, i.e.,
Wi-Fi version 802.11a, 802.11b and 802.11n;

• GSM;
• UMTS;
• ZigBee;
• Bluetooth.
All these techniques exploit the imperfections and small dif-

ferences in the radio frequency chain of the transmitter, which
are present in the implementation of the various standards.
A visual representation of these imperfections is visible in
Figure 4 where the GSM bursts from different mobile phones
are shown after the normalization and synchronization process
(the image has been produced by the authors on the basis of
their experimental work on GSM fingerprinting). Each mobile
phone is represented by a different color. From the figure, we

can see that physical imperfections generate small variations
in the ramp up, midamble (the central part of the burst in
Figure 4) or the ramp down. The content related parts of the
GSM burst are usually not used for fingerprinting (the sec-
tion between the central midamble and the ramps) because
they contain the transmitted content (e.g., voice) and they are
quite different among the various mobile phones. If the con-
tent related sections of the bursts are used, there is the risk that
the fingerprint is based on the content rather than the physi-
cal fingerprints. From Figure 4, it is possible to see that each
mobile phone has specific differences especially in the initial
ramp up part, which can be used to distinguish the phones.
In comparison, the differences in the central part of the burst
(i.e., the midamble) are not so relevant and they provide lower
classification accuracy. This analysis for the fingerprinting of
the GSM phones is not novel and it is only provided here for
tutorial purpose. A detailed experimental analysis is provided
in [23].

These differences are reflected on the signals and they
can be detected using the techniques described here.
Wang et al. [24] have highlighted that any specific wireless
protocol, which uses specific modulation schemes, bandwidths
and Power Spectrum Density (PSD), can stimulate the RF
frequency components in a different way and thus generate
a different fingerprint. This means that the RF component
implemented for a specific standard may generate a different
fingerprint if the parameters of the transmitter change within
the standard specifications. For example, the same transmis-
sion system implemented for the LTE can be requested to
change the modulation scheme or the bandwidth due to envi-
ronmental conditions or requests from the base station (e.g.,



1768 IEEE COMMUNICATIONS SURVEYS & TUTORIALS, VOL. 19, NO. 3, THIRD QUARTER 2017

Fig. 4. GSM bursts from different phones collected by an external RF
receiver.

to support higher traffic capacity). As a consequence the same
transmission system and the same mobile phone could pro-
duce different fingerprints even if the same standard is used
depending on the configuration and the context. Two examples
from literature are provided in the following paragraphs.

Dubendorfer et al. [25], Reising et al. [26], and
Patel et al. [27] have developed an identification framework
based on the intrinsic characteristics of the devices in the radio
frequency emissions which is called RF-DNA to associate
them to the unique genetic features of a human being. The
identification framework is based on Multiple Discriminant
Analysis (MDA)/Maximum Likelihood (ML) and it has been
applied to 802.11a in [28] and to GSM in [23]. The technique
is based on the selection of statistical features of the collected
and processed radio frequency signals emitted by the device.
The collection of the signal in space is performed using a spec-
trum analyzer (E3238S), then the signals are down-converted,
digitized and stored as complex in-phase and quadrature (I-Q)
components. A filter is applied to the samples to remove
unwanted interference and only the non-content sections of
the bursts are used for fingerprinting. Then the statistical fea-
tures of variance, skewness and kurtosis are applied to the
bursts.

Dolatshahi et al. [29] have exploited the imperfections of
the power amplifier to identify wireless devices. In particu-
lar the authors use the nonlinear characteristics of the power
amplifiers and they model them with a Volterra series represen-
tation. The fingerprints are directly derived from the identified
Volterra coefficients.

A significant issue in device identification based on the
radio frequency physical layer is the quality of the receiver
used to collect the radio frequency samples (e.g., observ-
ables). While the majority of the papers (e.g., [26]) have
used high-end receivers like expensive spectrum analyzers and
oscilloscopes, some authors have recently investigated the fea-
sibility of fingerprinting with relatively low-cost receivers.
An analysis of the impact on the identification accuracy
between low-end and high-end receivers was recently reported
in [27], where six different ZigBee devices of the same brand
were analyzed using a high-cost receiver (i.e., NI PXIe-108)
and a low cost software defined radio (i.e., the Universal
Software Radio Peripheral (USRP) 2921 model). The cost
ratio between the most expensive receiver and the low cost

receiver was at least four. The results show a difference of
accuracy approximately between 6% and 8% especially where
Gaussian noise is present. Similar results were achieved in [20]
with the 802.11a standard, where the high-end equipment is
a PSA Agilent E4448A spectrum analyzer and the low-end
are USRP receivers. In this case the cost ratio for the equip-
ment was at least 10. The differences in accuracy are also
higher: between 10% and 20% even in the presence of limited
Gaussian noise (i.e., 10 dB for Signal Noise Ratio (SNR)). In
addition, Rehman et al. [20] have noted a significant discrep-
ancy in the accuracy results and suggested the use of more than
one low-end receiver for the evaluation and validation of the
RF fingerprinting techniques. The conclusion shown by these
preliminary studies is the receivers can significantly impact the
identification and verification accuracy. On the other hand, we
note that both studies and similar studies by some of the same
authors (see [30]) have not explored in detail how the different
statistical features are less or more robust against the quality
of the receivers.

Another important issue is related to portability, which is
based on the consideration that a receiver used to collect
the samples does also introduce a fingerprint in the mea-
sured observables. The receiver’s fingerprint can negatively
affect the use of samples collected using a specific receiver
(e.g., for training) with other receivers (e.g., for identifica-
tion and verification). In other words, the bias introduced by
a receiver can compromise the portability of the fingerprints
from one receiver to another. This issue has been experimen-
tally investigated in [30] and [31] for 802.11a. The conclusion
by both papers is not reassuring as it is demonstrated for the
specific class of features used in the evaluation that the finger-
prints cannot be re-used from high-end receivers to low-end
receivers, and even with low-end receivers the risk of mis-
classification is very high. Both issues are very serious and
they limit the practical applicability of RF fingerprinting for
the applications identified in Section II. An example of the
portability issue due to the discrepancies created by different
receivers is shown in Figure 5, where the authors of this paper
have collected the RF emissions from ZigBee devices using
three difference receivers. The image represents a scatter plot
in the bi-dimensional space on the two statistical features of
variance and entropy. Different colors and shapes represent
different receivers, which collect data from the same ZigBee
device. The portability issue is also identified in the section
of open research problems and future directions in the recent
survey [22].

Different approaches could be proposed to overcome these
problems. One approach is to evaluate more in detail which
features are more or less robust against the quality of the
receivers. To the knowledge of the authors of this paper, this
approach has not been investigated in detail yet even if [22]
suggests that features in modulation domain are typically more
robust than those in waveform domain. Another approach
proposed by [24] is that the bias introduced by the receivers
could be filtered out in a subsequent phase, once the receiver
features have been properly characterized. Wang et al. [24]
propose to use the research results in wireless communica-
tion to mitigate the receiver’s non-linearities and remove or
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Fig. 5. Example of the portability issue for fingerprinting.

mitigate the receiver’s fingerprints. In particular the following
references are cited: [32] to mitigate non-linearities, [33] to
mitigate non-linearities of the power amplifier and for exper-
imental work in [34]. Still further studies and research are
needed to investigate if this issue can be solved or mitigated.

Future lines of research are also related to the selection of
features. Most of the identified papers use similar sets of sta-
tistical features (e.g., variance, skewness, kurtosis, Shannon
entropy, coefficients of the spectrum representation of the sig-
nal) and few papers have explored and compared the different
features. While techniques to reduce the dimension of the fea-
ture space, or project the features to a transformed space have
been investigated in some papers like [35] for ZigBee and [26]
for WiFi, there is still considerable work to do in this area.
For instance, it would be useful to re-use work done in other
areas or more general studies like [36], which investigates
thousands of interpretable features from time series in liter-
ature. The selection of the features can also take advantage of
the structure of the signal embedded in the observables. For
example, the cyclostationary components of the signal in [37],
where Nguyen et al. exploit the fact that, in OFDM sig-
nals, second-order cyclostationary statistics or Second-Order
Cyclostationary Feature (SOCF) can be used for identifica-
tion. This is only applicable if the signal emitted from the RF
component has cyclostationary components, but this is often
the case in wireless communication standards as described
in [38]. Another approach would be to transform the signal
in another space, where the extraction of significant features
could be easier. For example, this is investigated in [39] where
the Hilbert-Huang Transform is used.

An additional concern is that not many research papers
have investigated the effective cost of the fingerprints in terms
of complexity, requested processing power and size of the
database of fingerprints.

We note that most of the reviewed papers perform an exper-
imental analysis but there are minor and limited attempts to
define a theoretical model for fingerprints which can be vali-
dated with the experimental results. In a similar way, the type
of noise applied to simulate realistic conditions for identifica-
tion and verification is usually Gaussian noise and this is often
applied in the post processing phase (e.g., in MATLAB). One
of the main reasons for these limitations in the surveyed papers
is the difficulty to model the hardware imperfections in the
different components (e.g., filters, amplifiers), which compose
the front end of a mobile phone and therefore the fingerprints.

In an effort to overcome this limitation, the authors in the
recent paper [24] acknowledge this issue and present a theo-
retical model, which identifies the main components both in
the transmission/emission chain and the environment.

Finally, another potential challenge for RF fingerprinting
is related to the future evolutions of wireless communica-
tion standards like 5G and cognitive radio [40]. For example,
the complexity of the communications structure in future
communication systems can hamper the extraction of useful
information from the RF emissions. While, the GSM bursts
or the WiFi standards produce very clear bursts to which fea-
ture extraction can be easily applied, this may not be true in
the future. In addition, the implementation of cognitive radio
networks with underlay spectrum usage (where signals with a
very low spectral power density can coexist, as a secondary
user, with the primary users of the frequency band(s)) can
also make difficult the process of feature extraction. Further
research is needed in this area.

2) Techniques Based on the Analysis of the Medium Access
Control (MAC) and Above Layers: Various references have
reported the use of the MAC and above layers to identify
or verify the identity of a device. One of the initial works
was [41] where Kohno et al. have exploited the Transport
Communication Protocol (TCP) timestamps option from RFC
1323 to estimate a device’s clock skew and, thereby, fingerprint
a physical device including wireless devices. The approach can
be applied without the device’s cooperation, and it doesn’t
require any modifications of the applications running on the
device.

Radhakrishnan et al. [42] have proposed GTID:
A Technique for Physical Device and Device Type
Fingerprinting, which is based on information leaked
by a device through its network traffic to identify a device
and a device’s type. The authors use statistical techniques to
capture time-variant behavior of network traffic. The objective
is to identify devices through the generated traffic and the
difference in timing like clock skews using Artificial Neural
Networks (ANN) for classification. The approach is validated
with a very large experimental study with 300 GB of collected
traffic, where realistic effects like MAC congestion were
also analyzed. Finally, the authors have also investigated the
robustness of the approach against specific attacks like the
emulation of a valid device.

Cristea and Groza [43] exploit the Internet Control Message
Protocol (ICMP) timestamp-based fingerprinting to identify
mobile phones over a WLAN. As in the previous references,
the authors uses the small differences in timing and they com-
pute the clock skew of the device with linear programming
techniques. The authors exploited the possibility that the ICMP
timestamp option is often enabled in mobile phones and very
likely there is only a small minority of users that are aware of
this setting. The authors suggest that the problem can be allevi-
ated by the user, which can either disable the ICMP timestamp
requests or change the slope of the offset.

3) Techniques Based on Display Identification: The dis-
play of a mobile phone could also be used for fingerprinting
even if there are no reported works on this area for mobile
phones. The possibility to identify monitors through their RF
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emissions has been demonstrated by Mo et al. [44], where
an accuracy of more than 98% was achieved for LCD mon-
itors. Two machine learning techniques were used: the ANN
and the Support Vector Machine (SVM). The SVM provided
much better results compared to ANN. The RF emissions were
captured with a near field probe in a frequency range between
0 and 600 MHz and a spectrum analyzer. This equipment is
rather expensive for a practical use of the applications identi-
fied in Section II. In addition, only LCD screens for computers
and laptop were analyzed in [44], while the focus of this paper
is on mobile phones’ displays. Modern mobile phones use dif-
ferent technologies to build the display, which may indicate
that the same fingerprinting approach may not be valid for
all the different types of mobile phones. The fingerprinting of
the display has also a limited use for some of the applications
identified in Section II but it may be valuable in the application
of fight against counterfeiting because the display is a signif-
icant part of the cost of a mobile phone on the basis of the
published bill of materials of many mobile phone manufactur-
ers. A producer of counterfeit phones may use lower quality
materials for the display and an identification algorithm could
help to identify counterfeit mobile phones.

We also note that modern displays for mobile phones do
also have a touchpad function, which could be stimulated to
produce unique fingerprints of the capacitive display but no
work has been reported so far, even if authors have demon-
strated the possibility to generate fingerprints of users thanks
to the touchpad function in [45], which indicates that a high
level of granularity is possible.

4) Techniques Based on Clock Differences: Another tech-
nique is to evaluate the clock drift of the mobile phone. While
recent mobile phones have a very precise clock, which could
also be synchronized with the GNSS, subtle clock differences
could be used to differentiate mobile phones and their models.
The clock differences can be extracted from various digi-
tal artifacts already examined in the previous sections. For
example, from the radio frequency observables collected by
an external receiver. In comparison to the techniques already
described before, the generation of the fingerprints based on
the clock is slightly different. In the example of the radio
frequency fingerprinting, it is the timing of the occurrence of
the bursts that generates the fingerprints rather than the statisti-
cal features extracted from the bursts or the mutual correlation
among the bursts. The clock differences can be applied to any
of the previous techniques and digital observables, where a
difference in clock is relevant enough for identification and
verification. As described in Section IV-B2, many techniques
used the clock skew calculated from ICMP [43], TCP [41] or
for various protocols as in [42].

Another approach to identify a wireless device proposed
in [46] is based on the analysis of the unique character-
istics of the phase noise of the transmitter’s RF oscillator.
In these papers, the authors have used the autocorrela-
tion function of the Phase Lock Loop (PLL) output in 8
devices obtaining a good identification accuracy. In addition,
Polak and Goeckel [46] have repeated the measurements at
a distance of months to investigate the stability of the fin-
gerprints and the impact of aging. The advantage claimed by

Polak and Goeckel [46] in comparison to approaches based
on the characteristics of RF power amplifiers is that these lat-
ter fingerprints can change when the transmitter’s power-mode
changes, while this is not the case for the PLL.

C. Techniques Based on the Internal Digital Output
Generated by the Electronic Components of the
Mobile Phone

1) Techniques Based on the Camera Identification:
Identification of mobile phones with image acquisition capa-
bility (e.g., with digital cameras) can be achieved by char-
acterizing the image artifacts caused by the Complementary
Metal Oxide Semiconductor (CMOS) sensor [47] and/or by
any of the post-processing steps (de-mosaicing filter [48], Joint
Photographic Experts Group (JPEG) compression [49], etc.).
This process is also called image source identification.

The overall image acquisition process in digital cameras
is shown in Figure 6. Here we provide a brief descrip-
tion of the image acquisition and processing flow before
the storage of the images themselves. Similar schemas and
descriptions have been provided by Orozco et al. [50] and
Swaminathan et al. [51], and the schema adopted in this paper
is derived from them. Even if different manufacturers may
implement in a slightly different way the various elements of
the overall flow, the basic schema is similar.

The first element of the flow are the lens or lens system, as
it may be more complex than a simple lens. The lens system
can introduce aberrations in the stored image, which can be
used to fingerprint the camera. Aberrations can include astig-
matism, spherical, coma, radial distortion, field curvature and
chromatic aberration as described in [50]. In addition, there
may be components or functions to regulate the focal length
of the lens, the shutter speed or the aperture size. All these
functions are considered part of the lens element. Dust on
the lens can also be used for fingerprinting but obviously the
dust is not a permanent fingerprinting, so it is not a reliable
identification feature.

The second element in the flow is usually represented by
a filter like an antialiasing filter, which has the function to
clean and smooth the signal prior to the analogue to digital
conversion.

As described in [50], when an image is captured, it is nec-
essary to measure three or more bands for each pixel. This
may require a sensor for each band. Many camera manufac-
turers prefer to use a Color Filter Array (CFA) in front of
the sensor. The CFA is a set of color sensors. Each sensor in
the CFA blocks out a certain portion of the spectrum, allow-
ing each pixel to detect only one specific color. In the case
that a CFA is implemented in the camera, the digitized sensor
output must be interpolated in a subsequent phase by using
color interpolation algorithms to obtain all three basic col-
ors for each pixel (see [52]). After interpolation, the images
may be subject to different processing operations, which might
include color correction, white balancing, gamma correction,
lens distortion removal, lens vignetting correction, denoising
and other functions. All these operations produce the final non-
compressed raw image SR. The raw image is then compressed
(e.g., JPEG format) to produce SC and then stored.
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Fig. 6. Process for acquisition, processing and storage of image in a digital camera in a mobile phone.

All the components described before can contribute to gen-
erate fingerprints, which can be used to identify a specific
model or brand or a specific camera (i.e., serial number from
a model or brand). As described in the pioneering work by
Lukas et al. [52], there are various sources of imperfections
and noise, which can be present into the different stages of
the image acquisition process. For example, even if the sensor
takes a picture of an uniformly lit scene, the resulting digital
image can still exhibit minor changes in intensity among the
pixels. These changes are due to various hardware imperfec-
tions or differences among cameras, which include lens radial
distortion, chromatic aberrations, dust on the lens, sensor pat-
tern noise, high-International Organization for Standardization
(ISO) sensitivity noise (especially at very high values, up to
ISO 6400 or 12800 in modern digital cameras), white noise
and shot noise. Some of these noises (e.g., high-ISO noise,
white noise and shot noise) have a random distribution and
if a large number of frames are used and they are added or
averaged together, the noises tend to cancel out.

Here we describe the various identification techniques for
each of the components. See also [53] for a recent survey on
camera identification.

Lens. Low quality wide angle lenses, which are widely used
for cost reasons can introduce radial distortion which has been
used by Choi et al. [54] to obtain a 91.28% accuracy for iden-
tifying the camera source. The dust particles present in front of
the imaging sensor can also create a pattern in all the captured
images. Dirik et al. [55] exploit the presence of the dust parti-
cles for a camera identification method based on detection and
matching of these dust-spot characteristics. In [55], the dust
spots in the image are detected using a Gaussian intensity loss
model. The authors are able to perform camera identification
with low false positive rates, even under heavy compression
and down-sampling. A potential issue is the permanence of
these fingerprints in time, which limits the application of this
technique.

CFA. The CFA and the digital image processing block in
Figure 6 can employ particular sets of algorithms, which may
be proprietary to the camera manufacturer, brand, or model.
Because these algorithms impact all the processed images, they
can be used as a fingerprint. It is obvious that these algo-
rithms are not related to the specific camera but rather to the
model, so they can be used for inter-model identification but
not intra-model identification.

Sensor. The specific fingerprints of the sensor are the most
used by the research community. The two most common types
of imaging sensors in digital cameras are (at the time of writing
this paper) a Charge Coupled Device (CCD) and a CMOS. As
described in [56] and other sources, both consist of large num-
ber of photo detectors, which are commonly called pixels. The
pixels (made of silicon) convert the photons in electrons using
the photoelectric effect. The amount of electrons generated
by each pixel depends on the dimension of the photosensitive
areas, the homogeneity of the silicon material and the presence
of imperfections. While, the dimension of the photosensitive
area can be directly linked to the model and brand of the digi-
tal camera in the mobile phone, the imperfections generated in
the pixel manufacturing process can be used for intra-model
identification in a very similar way to radio frequency compo-
nents for RF fingerprinting. In addition, other types of noise
can be present or generated by the sensor: the shot noise,
which represents random variations in the number of photons
processed by the pixel or the readout noise, which is created
in the sensor readout. These random components can be aver-
aged out and they are not likely to be used to uniquely identify
the camera or model. In addition to the pixel imperfections,
other systematic defects can be used for fingerprinting includ-
ing hot and dead pixels and dark-currents, which are noiselike
patterns collected by the camera when the lenses are covered.

In his preliminary work on SPN [52], Lukas et al. suggested
that not all the non-random noises or disturbances are rec-
ommended for camera identification. In relation to the noises
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and imperfections identified above, Lukas et al. distinguish
between photo-response non-uniformity noise (PRNU) which
includes all the non-random noises and its main component
Pixel Non-Uniformity (PNU), which is defined as the differ-
ent sensitivity of pixels to light caused by the inhomogeneity
of silicon wafers and imperfections during the sensor produc-
tion process [52]. Here we note the similarity of the camera
identification approach to the RF identification approach also
based on imperfections during the manufacturing process. The
advantage of PNU is that it is not much affected by ambient
temperature or humidity and it is quite stable in time, while
other non-random noises can change in time. For example,
new dead pixels can appear in the camera as a consequence
of its use. As a consequence only PNU is recommended for
camera identification.

The most common technique based on PNU is the SPN,
which is based on the non-uniformity of each sensor pixel
sensitivity to light, which can be used as inherent fingerprint
of a video capture device and therefore of the mobile phone.
In comparison to other types of noise or imperfections having
random distribution, the sensor pattern noise is a determinis-
tic component, which stays the same for different frames and
it is strengthened after being added up. Due to this property,
sensor pattern noise can be used for camera identification. As
described in [56], the PRNU factor can be estimated separately
for each color channel (e.g., red, green and blue), thus it is
possible to obtain three fingerprints of the same dimensions.
As these fingerprints are highly correlated, the three finger-
prints are usually converted to a single gray fingerprint using
the RGB to obtain gray scale conversion.

The process to extract the SPN has been thoroughly inves-
tigated in recent years. A summary of the process is provided
here, and we refer the reader to [52] and [56] and other
sources. The goal is to determine if an image has been taken
with a specific camera of a mobile phone. From a set of
images, the SPN noise residual is extracted. The images which
are more adapt to the extraction of the SPN based fingerprint
are the ones with high luminance and smooth content [56].
For example, the out-of-focus image of a cloudy sky or a
white wall could be optimal. It is reported that tens of images
are usually enough to get a good SPN. Then, a hypothesis
testing problem is formulated for camera identification, which
is used to link the identity of the mobile phones. Note that
the hypothesis testing problem can be based on previously
recorded images. For the application of fight against coun-
terfeiting of electronic products, a set of images in optimal
conditions (as described above) can be used to create a refer-
ence library. Then, the mobile phone under test can be used
to get pictures to be evaluated.

Kulkarni and Mane [57] have improved the basic SPN
approach by applying Gray level Co-occurrence Matrix
(GLCM) to the sensor noise from the images. Then fea-
tures like Contrast, Homogeneity, Entropy and Correlation are
extracted. The authors have shown that the hybrid system
used for the SPN extraction along with the GLCM feature
extraction yields better results than the basic SPN. Another
improvement to the basic SPN identification has been proposed
by Li and Li [58], where it is noted that during the image

acquisition process not every color component of each pixel
is physically captured. Instead, the authors interpolate the
missing color components by involving the adjacent pixels
according to the CFA. The assumption is that physical compo-
nents are more reliable than virtual components to identify the
fingerprints. Then, Li and Li [58] propose a Couple-Decoupled
PRNU (CD-PRNU) approach where the physical and vir-
tual color components are decoupled in the processed and
stored images collected by the mobile phone. The goal is to
prevent the interpolation error of the virtual components from
contaminating the physical components during the discrete
wavelet transformation process. The results show the improve-
ment of this approach in comparison to the conventional SPN
extraction approach.

Compression algorithms. A compression algorithm can be
implemented in slightly different ways among different brands
and models. Choi et al. [49] have exploited the differences
in compression algorithms to differentiate camera models. As
in similar cases, this technique can be used for inter-models
identification rather than intra-model identification.

Combination of elements. In addition to the use of spe-
cific components in the pipeline shown in Figure 6, some
researchers have also used all the components together. For
example, Xu et al. [59] have applied an image statistical
model to the whole image formation pipeline. In particular,
the authors have applied moments of 1-D characteristic func-
tions generated from the given image, their prediction-error
2-D arrays, its JPEG 2-D array and moments of 2-D char-
acteristic functions generated only from JPEG 2-D array. We
note that this approach is similar to the application of sta-
tistical analysis to the RF fingerprinting, even if the type of
features is clearly different.

Video based identification. The camera and consequently
the mobile phone can also be identified by video recordings.
As described in [60], the camera identification based on videos
can be performed by applying the sensor pattern noise to each
frame of a video. However, videos can be contaminated by
blocking and blurring, which can decrease the identification
or verification accuracy. Chen et al. [60] have calculated that
even with a rate of about 500 kbps, more than 20 minutes of
video are needed to get a decent accuracy. For this reason the
authors have proposed additional identification methods based
on the mitigation of the blocking and blurring effects (e.g.,
by using the part of the frame not subject to blurring) and the
combination with the wireless fingerprints of the video-camera
on the basis of the consideration that wireless cameras often
capture the scene and stream to another device or a sink in
real time. These new identification methods perform signifi-
cantly better than the previous ones in term of accuracy. Even
if this is a good example on the power of combining dif-
ferent techniques to improve accuracy in camera and mobile
phone identification, this may not be applied to all types of
mobile phones where the video will be stored in the mobile
phone itself. The combination of the techniques based on dif-
ferent components of a mobile phone will be discussed more
in details in Section VII-D.

2) Techniques Based on the Microphone Identification:
This technique is similar to the identification of mobile phones
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Fig. 7. Components of the audio processing.

with the image acquisition capability described before; how-
ever, it is applied to audio samples instead of images or video.
As for other components, the differences in the production cre-
ate microphones with slightly different transfer functions for
the audio signal collected in the space.

Verification and identification of mobile phones with audio
acquisition capability (e.g., mobile phones, tablets, webcams,
camcorders, cordless phones) can be achieved by analysing
the response of the audio circuit to a standard stimulus (e.g., a
standard tone). Because of the nominal values of the electronic
components and the different designs employed by the various
manufacturers, the microphones of the different mobile phones
introduce a different convolution distortion of the input audio
signal (i.e., frequency response), which becomes part of the
recorded audio.

Some work [61]–[64] has been already done in this direction
in the context of digital forensics to exploit such phenomena,
which will be described in detail here.

The typical design of a microphone system and the trans-
fer functions used in the audio collection and recording are
well described in literature. Here we use the descriptions and
definitions from [65], which gives an overview of the whole
chain as described in Fig. 7. We use the signal representation
in frequency.

The initial audio signal is represented by the function S1(f ).
This audio can be created by an electronic source or by a
natural source. The original signal S1(f ) is influenced by Echo
impact or by the environment in general. As a consequence, the
signal S2(f ) captured by the microphone can be expressed as:

S2(f ) = S1(f ) • FEcho + SEnv(f ) (1)

where FEcho represents the effect due to the presence of
echoes and reverberations. SEnv(f ) generally represents the
other environment effect or the presence of background noise.

The signal S2 is then collected and processed by the
microphone itself and its components, which may include
the diaphragms, pre-amplifiers, AD components and others.
Indeed, the most common microphones for mobile phones are
MEMS today, even if the technology is still evolving.

The combination of the analog audio processing and the AD
processing can be represented by the following functions:

S3(n) = Quantization(Nbits, sampling(fs, S3(t))); (2)

S3(f ) =
∫

Fmic(f ) • S2(f ) + Nmicf + NENF(f )df (3)

where S3(f ) is obviously the Fourier transform of S3(t).
S3(n) is the quantization of S3(t) by the Analog Digital
Converter (ADC) with a sampling frequency of fs. Note, that

a quantization error should also be introduced in the equa-
tions above. On the other side, Marco and Neuhoff [66] show
that the quantization error can be modeled as additive white
noise and it has negligible correlation with the signal and an
approximately flat power spectral density especially with high
resolution quantization. As a consequence, in most cases, it
can be considered as non-relevant for the identification of
the microphone fingerprints even if this assumption could
be challenged by future research and for specific types of
audio signals. In our model, it is included in FMIC. NENF

is the Electric Network Frequency (ENF) influence, which is
considered constant and negligible for classification and iden-
tification [65]. Fmic is the transfer function of the microphone
and its components (including pre-amplifiers and ADC). This
is the transfer function most commonly used for classification
and identification as it usually contains the specific finger-
prints of the microphone. Nmic denotes the thermal noise that
the microphone generates and it is usually understood that it
does not contain fingerprints.

S3(n) is then processed through encoding where several
encoder options are available: Pulse Code Modulation (PCM),
MPEG-2 Audio Layer 3 (MP3) or Advanced Audio Coding
(AAC). The encoding algorithm usually does not introduce
fingerprints but it can introduce an impact on the fingerprints
in FMIC. Finally, S3(n) is stored in the memory of the mobile
phone. Usually, this last step is not considered in the detection
of fingerprints.

As written before, the efforts by the researchers is to identify
relevant fingerprints in Fmic and to mitigate the impact of the
external environment noise and echoes SEnv(f ) and FEcho or
internal noise, which can degrade the fingerprints at different
levels.

Kraetzer et al. [67] have investigated the impact of the envi-
ronment where the mobile phone is present and they propose
that the environment used for the collection of the fingerprints
for training is mostly similar to the environment used to collect
the samples for verification and identification. This approach
may not be applicable in some of the applications described in
Section II. Another mitigating approach is based on the appli-
cation of de-reverberation algorithm, which can mitigate the
impact of the echoes FEcho, but this would require the appli-
cation of this algorithm in the collection phase, which is again
a strong limitation for some applications.

The most common approach to identify the fingerprints
is through the application of features to the recorded audio
signals. Hanilci et al. [64] use the Mel-Frequency Cepstrum
Coefficient (MFCC) for the definition of the features as it is
commonly employed as a feature to characterize speakers and,
in their paper, they apply it to the identification of the brand
and model of the mobile phone.

The motivation to choose the MFCC is because the enve-
lope of the spectrum multiplied by a filter bank is more useful
for identification in comparison to the speech spectrum itself.
Then the authors apply SVM to a set of 14 different phones.
Apart from two phones, which are of the same model and
brand, all the other phones have different brands and mod-
els, so the analysis is mostly for inter-model verification and
identification rather than intra-model. The authors point out
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that one of the most challenging problems for the applica-
tion of SVMs in speech processing is the huge amount of
data to be processed. For example, in [64], the features are
extracted from 30 ms frames with a 50% frame shift and the
training test data for a set of speech samples is a sequence
of vectors rather than a single vector. As a consequence, the
Generalized linear discriminant sequence (GLDS) kernel was
used to perform the classification. The 14 phones were submit-
ted to a recording phase with 100 different speech samples.
Then the feature extraction based on MFCC was applied to
the recorded samples. As described before, the classification
and identification was performed with SVM and the GLDS
kernel function. The resulting accuracy is quite high: around
95% for specific type of phones. The performance of SVM
was also compared to another algorithm: the Vector Quantizer
(VQ), which is a quantization technique from signal process-
ing that allows the modeling of probability density functions
by the distribution of prototype vectors. Initially used as a
compression algorithm, it has also been used for speaker clas-
sification [68]. Hanilci et al. [64] prove that SVM is superior
to VQ.

The use of MFCC as statistical features has also been
adopted in [67], where the identification is performed by
a Naive Bayes classifier at a short-time frame level on
4 microphones. Accuracies on the order of 60-75% have
been reported, which seems to indicate the SVM is a better
classifier.

Another set of features was used in [63], including the ran-
dom spectral feature. In [63], raw feature vectors of large size
are obtained through the averaging of the log-spectrogram of
a speech recording along the time axis. The parameters of
each component of the Gaussian mixture model for the speech
recorded by a specific device are stacked to compose the fin-
gerprints. A sentence from the TIMIT database (also used
by the other papers) is used as an input to 21 cell-phones
of various models from seven different brands. There were
no phones of the same model and brand (i.e., no inter-model
classification). Landlines phones were also used but they are
not considered in this survey. The features were then fed to
three distinct classifiers: the Sparse representations Classifier
(SRC), the SVM and Nearest Neighbour (NN). In a recent
paper [69], Zou et al. have used sparse representation based
classification methods for a set of 15 mobile phones applied
to the built-in microphone. As in the other papers, the authors
use MFCC based features to construct the learning dictionary.
The authors obtain a very good inter-model classification but
a limited intra-model classification.

3) Techniques Based on Accelerometers or Gyroscopes:
Modern mobile phones contain electro-mechanical compo-
nents like accelerometers and gyroscope, which do also
contain specific physical characteristics exploitable for fin-
gerprinting. Figure 8 shows the digital output generated by
the gyroscopes embedded in three different smartphones when
each smartphone is submitted to the same specific motion pat-
tern (the image has been produced by the authors on basis of
their experimental work on MEMS fingerprinting). We note
subtle differences among the three digital outputs, which can
be used to identify the specific smartphone.

Fig. 8. Gyroscope response in three mobile phones stimulated by a specific
motion pattern.

The extraction of fingerprints from accelerometers or gyro-
scopes (commonly implemented with MEMS) and their
use for device and user identification was first described
in [70] and [71]. Both studies showed how data collected from
MEMS (mainly accelerometers), also remotely by cloud appli-
cations, could actually lead to the fingerprinting of the sensor
and the device, thus allowing the identification of the user.

The analysis in [70] considers both embedded and stand-
alone sensors, from which data are collected while the device
(a mobile phone) or the stand-alone MEMS is vibrating. Traces
of 2 seconds of duration are analyzed in order to extract the
fingerprints using statistical features and supervised learning
to distinguish between different sensors. When the classifier
is trained with vibrations of at least 30 seconds, the calcu-
lated precision and recall are above 87%, but many variables
like the type of sensors (built-in or stand-alone), the pres-
ence of casing and surface on which the device is lying, may
result in different levels of accuracy for each of these cases.
For example, the casing reduces the precision and recall to
60%, while the identification of the sensors on different sur-
faces can reach almost 80%. In addition, the best results are
obtained for stand-alone sensors, thus limiting the applicabil-
ity for the identification of mobile phones. From this point
of view, [71] (which extracts fingerprints also from micro-
phone and loudspeaker) proposes a more realistic scenario in
terms of users identification from their mobile phones. Here
the data of accelerometers in mobile phones from over 10
thousand mobile devices are acquired using a JavaScript code
running on the browser. Then, the samples are collected when
the device is lying with the Z axis in vertical position (first
facing up and then down), so no vibrations or complex move-
ments are required (only the gravity force is used to measure
the acceleration on the sensor). However the results present
very different level of accuracy when only few devices in the
lab are analyzed and when data from more than three thousand
devices are collected through a webpage. In the first case the
percentage of correct identification reaches 85%, while in the
second one only 15%.

The fingerprints of accelerometers or other built-in MEMS
components can be used for multi-factor authentication as
proposed in [7], but other applications can be also for detec-
tion of counterfeit smart phones or other electronic devices.
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Baldini et al. [72] present the experimental identification of
smartphones using their built-in accelerometers and gyro-
scopes. Data are collected when the phones are subject to
repeatable movements performed by a high precision robotic
arm, so that a considerable data set from which extracting
several statistical features is obtained. Then, using a SVM clas-
sifier, phones of the same brand and model are identified with
an accuracy higher than 90% for some combination of features.
The analysis presented in [72] allows to identify which are
the best features for each sensor and so on. Results show that
built-in accelerometers and gyroscopes, if properly stimulated,
can be used to extract fingerprints that allow a very precise
intra-model identification, thus confirming the applicability for
anti-counterfeiting or other applications.

4) Techniques Based on Magnetometers: Another compo-
nent of the MEMS in the phone is the magnetometer, which
can be used as a compass. The use of the magnetometers in
the mobile phones has been exploited for navigation in [73]
and for security applications. In particular, Jin et al. [74] have
used the magnetometers to pair smartphones in close proxim-
ity by exploiting correlated magnetometer readings. In another
application, Jiang et al. [75] have used the magnetometers
to receive information from a test electromagnet system. At
the time of writing this paper, there is no published research
work, which investigates the application of magnetometers to
identify and fingerprint mobile phones through their magne-
tometers apart for a preliminary pre-print research work where
the built-in magnetometers of a mobile phone are stimulated
using an external solenoid [76]. We can envisage that a signifi-
cant challenge would be the repeatability of the fingerprints in
different times or context as the magnetometers are quite sen-
sible to the presence of magnetic fields (e.g., metallic objects)
or they would require periodic calibration.

5) Analysis on the Complexities and Performance of the
Different Techniques: Here we summarize the key differences
from the point of view of the design and deployment com-
plexities of the different techniques and their performance. A
significant difference is when the data is collected by an exter-
nal entity (e.g., RF fingerprinting) or internally by the mobile
phone itself. In the first case, the impact on the performance
of the mobile phone is negligible because all the data collec-
tion and processing is done externally. In the second case, the
impact on the mobile phone is not negligible and it can vary
according to the type of fingerprint. For the MEMS sensors
like accelerometers, gyroscope and magnetometers, a specific
application must be installed in the mobile phone to collect
the data, process it and eventually distribute it to an external
processing entity. While the collection of data from MEMS
is supported by various libraries and applications, there is the
risk that different applications provide different results and
thus different fingerprints. In addition, if the fingerprints are
used for an application, which requires on-time identification,
the impact on the run-time performance of mobile phone can
be significant both because a process will be running (e.g.,
the AndroSensor application to collect data from accelerom-
eters) and because data may be sent to an external entity
(e.g., a cloud server) for further processing, which impacts
the connectivity performance of the mobile phone. In image,

audio or video based identification, the performance impact
can be minor as the image processing and storage is usu-
ally done by built-in components of the mobile phone, even
if the connectivity can be impacted if the collected data must
be sent to an external entity. While there is no performance
impact on the mobile phone itself when the data is collected
externally to the mobile phone, there are still complexities to
address. For example, the collection of the RF signal may not
be executed in ideal conditions with presence of interference,
attenuation or fading effects that hinder the identification pro-
cess as described in [24]. A potential issue is that the presence
of such disturbances (e.g., interference) may be evident only
in the post-processing phase of the observables. A signifi-
cant issue for the applicability of mobile phone identification
in various applications is the stability of the fingerprints in
time or for different environmental conditions. While some
papers investigated the classification stability in time (e.g.,
observables taken in different months) for specific compo-
nents (e.g., accelerometers in [72] and RF oscillators [46])
and found that the impact of components aging for a dura-
tion of months is limited (i.e., classification accuracy does not
change significantly), many more studies are needed to specifi-
cally investigate the impact of aging or different environmental
conditions [77]. Additional details on this issue, which could a
potential research area are presented in Section VII. In relation
to the applications identified in Section II and Table I, each
built-in component provides advantages or disadvantages for
the different applications. A qualitative summary of the feasi-
bility of the different components for different applications is
provided in Table II. Note that this analysis is based on the
current state of art in literature and this may change on the
basis of future findings from the research activities.

D. Features and Algorithms

This section provides an overview on the features and the
algorithms used for identification and verification. In the first
subsection, we describe how the fingerprints can be extracted
from the observables collected from the different compo-
nents of the mobile phone. In the second subsection, we
describe the algorithms used for classification, identification
and verification.

1) Generation and Selection of Fingerprints: In this sec-
tion, we describe how the fingerprints can be generated from
the digital output collected either internally or externally from
the mobile phone. The goal is to identify the unique or specific
characteristics of the built-in component and/or the mobile
phone, which can be used to fingerprint the mobile phone.

There are two different approaches for fingerprinting gen-
eration, which are also mentioned in [22]: passive or active
generation of the fingerprints. In the first approach, the
entity responsible for identification or verification collects the
observables when the mobile phone is in a operating mode and
it is executing a specific function (e.g., communication). For
example, a RF receiver can extract the variance from the GSM
bursts transmitted by a mobile phone. In the second approach,
the mobile phone is stimulated by various means to trigger
a response. For example, a message can be injected, or the
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TABLE II
RELATION BETWEEN COMPONENTS AND APPLICATIONS

accelerometers of the mobile phones are stimulated by a spe-
cific motion pattern applied to the mobile phone itself. The
advantage of the first approach is that it is more covert than
the second one and it is usually easier to implement as no spe-
cific action is needed. The advantage of the second approach
is that it provides greater control for the generation of the fin-
gerprints. For example, the stimulating pattern can be chosen
to improve the specificity of the fingerprints and therefore the
overall identification or verification accuracy.

Another important element in fingerprint generation is the
selection and composition of the specific characteristics in the
observables. If we consider the digital observables as time-
series, then the research work on the analysis and classification
of time series can be used for classification purposes.

In this paper, we adopt the wide classification proposed
in [36]. When the time series of a set of observations
encode meaningful patterns that can be easily compared, new
time series can be classified by matching them to similar
instances with a known classification (supervised learning) or
by clustering them in clusters with similar patterns (unsuper-
vised learning). In [36] this approach is called instance-based
classification. Another approach is based instead on the repre-
sentation of the time series using a set of derived properties, or
features, and thereby transforming the temporal problem to a
static one. In [36] this approach is called feature-based classi-
fication. In some cases, the two approaches can be combined.
For example, the correlation of a new time-series of observa-
tions against a golden reference (e.g., a synthetic modulation
scheme) could be used as features of the new time series.

The advantages and disadvantages of two approaches are
summarized here even if we note that this summary can be a
simplification since the effectiveness of each approach depends
on the type of fingerprinting, the structure of the observables
and other factors. In addition, it is also possible to combine the
two approaches, as shown in some of the paper we identified.

The advantage of the feature based approach is that it trans-
forms a temporal problem in a static one and the classification
and identification can be therefore more computationally effi-
cient once the statistical features have been generated. Another
advantage is the presence of many statistical features that can
be used for classification. This provides a larger set of tools

for identification even if there is the risk that some statisti-
cal features are similar or correlated and they do not provide
a significant increase in accuracy. The disadvantage of the
feature based approach is that it usually requires a statistical
significant number of observables from the mobile phone to
perform an accurate identification and verification. For exam-
ples, if the number of collected RF bursts is relatively limited
in number, the feature instances may not be large enough for
a correct classification. On the contrary, the instance-based
approach can be applied even with a limited number of time
series granted that they are long enough. Another disadvan-
tage of the feature based approach is that it is not known
a-priori which are the most significant features for the com-
ponent under investigation. This justifies the large number of
papers using a feature-based approach where the most signifi-
cant effort is focused on the identification of the best features.
Another aspect, still to be investigated, is the robustness of the
two different approaches against different environmental con-
ditions (e.g., presence of RF interference, multi-path fading
and attenuation). This aspect is highlighted and further elabo-
rated in the section of Future Trends and research opportunities
Section VII.

Regarding the feature based classification, many papers
focuses on the selection of the best features from the many
available in literature. A priori knowledge of the type of time
series can provide useful insights on the type of statistical
feature to apply. For example, in wireless communication
protocols like GSM and WiFi the information is usually imple-
mented in time bursts (as described in Figure 4 for GSM). As
a consequence, skewness is an appropriate statistical features
to identify specific distortions in the symmetry of the bursts.

The identification of a small subset of features is critical
to improve the efficiency for the verification and identification
process because the calculation of statistical features requires a
big amount of time or memory storage, which actually should
be minimized. Two basic approaches, well known in literature,
are possible: feature selection and feature extraction. Feature
selection is defined in [78] as follows: “given a set of candi-
date features, select a subset that performs the best under some
classification system. This procedure can reduce not only the
cost of recognition by reducing the number of features that
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need to be collected, but in some cases it can also provide a
better classification accuracy due to finite sample size effects”.
Various algorithms have been defined in an extensive litera-
ture for feature selection. The identification of the algorithms
for feature selections is out of scope of this paper and the
reader can refer to various references for a description of the
algorithms and the various domains where they can be applied.
Starting from the initial work of [78], a more recent paper [79]
has investigated the surveyed algorithms from an experimental
point of view. Even more recently, Fulcher and Jones [36] have
investigated the performance of thousands of time-series fea-
tures collected from literature. The authors have introduced
a method that compares across these features to construct
feature-based classifiers automatically. The other approach is
feature extraction where a new set of features is built from
the original feature set. One well know feature extraction tech-
nique is the Principal Component Analysis (PCA), whose goal
is to find an orthonormal, ordered basis such that i-th dimen-
sion represents as much variance as possible while keeping
the orthonormality with the other dimensions. Note that fea-
ture extraction involves a transformation of the features, which
often is not reversible because some information is lost in the
process of dimensionality reduction. This could be an issue
for fingerprint identification, because the relationship between
the feature and its physical meaning may be lost. For exam-
ple, the skewness may represent the distortion of a WiFi burst
while a synthetic feature generated with PCA may not have
a clear physical meaning. This difference can be relevant for
fingerprinting collection when the observables are measured
and collected in a noisy environment that impacts the differ-
ent features in a different way. For example, it may be possible
to define theoretical models to evaluate the impact of fading
effects on specific RF features like variance, but the same
approach would be quite difficult to apply for extracted fea-
tures. In the following paragraph, we describe how the authors
in literature have applied the approaches identified before.

Regarding feature-based classification, in radio frequency
physical layer fingerprinting, statistical features such as vari-
ance, skewness and kurtosis are used in various papers
like [25] for ZigBee standard, in [28] for WiFi and in [23]
for GSM. In all these papers MDA with maximum likeli-
hood ML estimation is used as a supervised classification
algorithm. As described in [28], MDA is an extension of
Fisher linear discriminant (FLD) process for more than two
classes. For a 3-class problem, the Fisher-based MDA process
projects higher dimensional data onto a 2-dimensional Fisher
plane to maximize the inter-class distances and to minimize
the intra-class distances. Even if MDA/ML has proven to be
effective in many classification problems, Klein et al. [28]
report that it does not provide implicit insight into the rele-
vance of each feature for fingerprinting. This issue prevents
the identification and removal of features, which provide little
or even conflicting information to the classifier. As a con-
sequence, the authors have adopted in [26] the Generalized
Relevance Learning Vector Quantization Improved (GRLVQI)
classifier first presented in [80] to perform feature Dimensional
Reduction Analysis (DRA). For device identification, the
advantages of GRLVQI are described in [26] and briefly

summarized here: 1) feature selection if performed in con-
junction with classification, which is more cost effective than
trying the classification process with different set of features,
2) the classification process is well-suited for cases where the
number of inputs are comprised by noisy or inconsistent data
and 3) a relevance ranking is assigned to each RF-DNA finger-
print feature, which provides a direct measure relating feature
significance to the classification decision. While GRLVQI is
more cost effective in the selection of the features (e.g., 90%
reduction for the number of required features), the overall
accuracy presented in [26] is not significantly higher than the
one obtained by using MDA/ML, when it is applied to WiFi
and Wireless Medium Access (WiMAX) signals and it is actu-
ally lower in some cases. We note that the statistical features
used in [26] are similar to the ones chosen in the previous
papers (see [23], [25], [28]) with the addition of standard
deviation. Other authors have expanded this set of features
or applied it both in time or the frequency domain.

Yuan et al. [81] use an expanded set of features after apply-
ing the Hilbert Huang Transform (HHT) on the signal in space.
In particular, the authors apply the Energy frequency distribu-
tion entropy, kurtosis and skewness both in the HHT-based
timefrequency plane thus obtaining a very high accuracy.

The second approach (instance based) is to use correla-
tion among the observables collected from the mobile phones.
In this case, the objective is to evaluate the degree of cor-
relation between the observables. Observables from the same
mobile phone or the same model should be more correlated
than observables from different phones and models. Different
types of correlation algorithms can be used: Euclidean distance
between the observables, Pearson correlation and so on.

A summary of the statistical features and correlation algo-
rithms used for the classification and identification in literature
is provided in Table III, which aims to summarize the results
from the research community and to identify the most appro-
priate features for the different built-in components of a mobile
phone.

The table lists in the first column the type of feature used
for fingerprinting. In the second column, a brief description
of the feature is provided. Then, the third column identifies
which components of the mobile phone have been used for
fingerprinting. The fourth column lists all the research works
where the feature has been used. When more than one com-
ponent has been listed in the third column, the reference in
the fourth column does also identify the component and the
standard when applicable (e.g., RF WiFi).

From the summary Table III, we note that each set of com-
ponents has a preferred set of features, as already described
in the previous sections. Statistical features like Skewness and
Kurtosis are common in RF related components because most
of the communication standards are based on the transmission
of bursts in the time domain. Variations in the skewness or
kurtosis can be clearly identified in the fingerprinting extrac-
tion process. MFCC based features are quite common in
microphone identification because they are based on voice
processing, but there is no reported study on the application
of other statistical features. SPN is mostly used in camera
identification as expected.
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TABLE III
SUMMARY OF THE STATISTICAL FEATURES OR CORRELATION FOR MOBILE PHONE IDENTIFICATION ON THE BASIS OF THE BUILT-IN COMPONENTS

2) Algorithms: Machine learning algorithms, can be classi-
fied in the following broad categories [100]: supervised algo-
rithm, unsupervised algorithms, reinforcement learning and
hybrid algorithms (which combine elements of the previous
three categories). See also [101] for a similar taxonomy in
sensor networks. Based on the survey conducted in literature,
the most applied categories for fingerprinting are supervised
algorithm and unsupervised algorithms and we are going
to describe the application of these two categories in the
following sections.

a) Supervised learning: Supervised algorithms represent
the category where a training set of correctly identified obser-
vations is available, and classifiers are built on the basis of a
set of mutually exclusive and predefined classes of classified
(i.e., labeled) data. In the application of supervised algorithms,
the correctly identified observations are used as a training data
set, while a separate testing data (unclassified data) set is used
for identification and verification. For mobile phones identi-
fication or verification, this means that the fingerprints must
be collected in a preliminary phase and stored in a reference
library. In a subsequent phase (e.g., forensics process), the
observables from a new or unknown phone (depending on the
application) are compared to the existing library to identify
the phone or to verify its identity. For example, in a secu-
rity application like a multi-factor authentication, a reference
library of valid mobile phones, which are granted access to

specific rights, is built. This reference library creates a white
list of mobile phones. In a subsequent phase, the observables
from the mobile phone to be identified and verified are col-
lected and processed using a supervised algorithm to provide
an indication that the tested mobile phone is what it claims to
be and it can be granted access. In this case, the creation of
the reference library is the most critical and complex step.

The main supervised learning algorithms are identified in
the rest of this section, which anyway does not have the ambi-
tion to provide a detailed analysis of each algorithm, as there
is an extensive bibliography on each of them. The objective
is to provide a high level description in relation to the iden-
tification and validation of mobile phones and the potential
advantages or disadvantages. For a more detailed description
we refer the reader to the cited references.

1) The K Nearest Neighbors algorithm (KNN) algorithm
classifies a data sample on the basis of the labels of
the nearest data samples (neighbors). Different functions
can be used to determine how near or distant are the
samples. The most common function is the Euclidean
distance, but other distance metrics like the Mahalanobis
or Minkowski distances can be used. The advantage of
the KNN is that it is computationally efficient, as it does
not need high computational power in the training phase.
However, the classification phase could be more compu-
tational intensive than in other algorithms. This could be
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an issue for some fingerprinting applications where the
classification efficiency is more important than building
the reference library (i.e., in the training phase). In addi-
tion, the disadvantage of KNN is that it may not perform
in a optimal way when a large number of dimensions
is used (see [102]). In general, the performance of the
KNN algorithm depends on the distance metric used to
identify nearest neighbors, which should be adapted to
the particular problem, which must be solved [103].

2) Learning Tree or Decision Trees, where the algorithm
iterates through the input data by using the features prop-
erties to reach a specific category, which is more similar
to the labeled data (see [104] for a detailed description
of the concept of decision trees). One feature of the
decision trees is that their performance is more linked
to the structural information contained in the data (i.e.,
fingerprints). Decision tree has been used for identifica-
tion by various authors with good results (see Table IV)
but it has the following advantages and disadvantages
for identification on the basis of the fingerprints [105].
The implementation of decision trees is usually very
simple and efficient if the data is well structured. An
additional advantage is that they perform well even with
high dimensional data sets. The disadvantages of the
decision trees are the long training time and that the
orders of the features in tree nodes have adverse effect
on performance, so that an analysis and selection of the
features would be needed before the deployment of the
fingerprint system in the field.

3) SVM is a supervised algorithm, which learns to classify
the data points (e.g., originating from the observables),
from the labeled training samples (e.g., the reference fin-
gerprints). SVM separates the labeled set in two areas on
a multi-dimensional surface by using a separating func-
tion, which can be of different types: linear, Radial Basis
Function (RBF), polynomial, sigmoidal are the most
common. Since the multi-dimensional surface is divided
in two areas, SVM is a binary classifier and it can be
directly used to distinguish between two mobile phones
or for validation (to validate the claimed identity of a
mobile phone). See [106] for a detailed description of
SVM. The extension of SVM to multi-classifier identifi-
cation has been proposed by Crammer and Singer [107]
and it is available in different libraries: the machine
learning toolbox by MATLAB, LIBSVM and PRTools.
Different multi-classifier techniques have been proposed
in literature like One-Against-One (OAO), One-Against-
All (OAA) or Directed Acyclic Graph-Support Vector
Machine (DAGSVM) and an analysis of the advantage
or disadvantages of each technique is presented in [108].
There are no special recommendations for the finger-
printing problem analyzed in this paper as it depends on
the type of component and its observables. The advan-
tage of the SVM for fingerprint classification is that it
is well known for its high level of accuracy and robust-
ness against outliers. SVM is less prone to overfitting
than other methods [109]. SVM is also quite efficient
for binary classification, which is very important in the

verification phase. The disadvantage is that SVM can be
slow in the learning process and it can require a large
amount of training time. On the other side, this may
not be a problem for many applications described in
Section II because the creation of the initial reference
library of fingerprints may be a time consuming process
anyway. Some algorithms used in SVM like Quadratic
Programming (QP) methods can be computationally and
memory demanding, so other Kernel methods should be
preferred in fingerprint classification.

4) Bayesian Classifiers are statistical classifiers and they
predict the class membership probability, that is the
probability that a given sample belongs to a particular
class. See [110] for a detailed description of Bayesian
Classifiers. A specific category of Baynesian classifier
is the Naïve Bayes Classifier, where it is assumed that
all variables contribute toward classification and are
mutually correlated. This may be true for some spe-
cific category of fingerprints because they originate from
the same physical components (e.g., the RF equipment).
One advantage of Bayesian methods is that they adapt
the probability distribution in an efficient way without
over-fitting. Another advantage of Bayesian statistics is
that it requires a limited number of training samples,
which is useful when it is difficult to obtain a large
number of fingerprints for training. The disadvantage is
that they are less accurate in comparison to other classi-
fier. See [105] and [111] for an analysis of the Bayesian
classifier against the other classifiers.

5) Neural network is a set of connected input and output
units where each connection has a weight associated
with it. The network performs the learning process by
adjusting the weight to predict the class label of the
input sample. A commonly used neural network classi-
fier is the back propagation algorithm, which performs
the learning process on a multilayer feed-forward neu-
ral network. The algorithm learns by processing a data
set of training samples in a iterative way. At each
iteration, the algorithm compares the network prediction
for each sample with the actual target value and adjusts
accordingly the weights in each layer. See [112] for
a description of the back propagation algorithm and
adaptive neural networks in general. The advantage of
neural networks is that they are able to tolerate noisy
data or outliers in the fingerprints and observables. They
are usually able to classify patterns they have not been
trained on, thus being useful in identifying new models
or components. The disadvantage is that the classifi-
cation requires a very long learning time, but this (as
in the case of SVM) may not be an issue, since the
creation of a reference library may anyway require con-
siderable time to collect and extract the fingerprints.
The tuning of the neural networks may require some
a-priori knowledge of experimentation to narrow down
the list of parameters, which are specific for a type of
component (e.g., accelerometer). At the time of writ-
ing this paper, some authors have started in [113] to
investigate the possibility to fingerprint wireless devices
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by using Convolutional Neural Networks (CNN) and
Deep Neural Networks (DNN), which offers flexibility
to learn features across a wide range of tasks and demon-
strates improved classification accuracy against current
day approaches. O’Shea et al. [113] have demonstrated
that the application of CNN and DNN provides greater
accuracy than conventional machine learning classifiers
(e.g., SVM and KNN) especially in low SNR con-
ditions. Still, O’Shea et al. [113] recommend further
investigation and experimental work in this area.

Each machine learning algorithm has its own strengths and
weaknesses depending on the data set and the context or appli-
cation where the algorithm is employed. Various papers have
attempted to provide an analysis and a comparison of the dif-
ferent algorithms (see [101], [105], [111]). While we refer the
reader to the cited references, here we try to summarize the key
elements for the objective of identification and verification of
the mobile phones through the fingerprints of the built-in com-
ponents. Generally SVM and neural networks tend to perform
better with multi-dimensional and continuous features [105],
which is usually the case for fingerprints classification.

Neural networks and SVM are characterized by a time con-
suming learning process. However this is not a major issue
in this context because the collection of fingerprints to build
the reference library can also be quite time consuming due
to synchronization and normalization processes. In compari-
son to other classifiers, Neural networks, SVM and Decision
Trees have usually a high accuracy, which is quite important
because many applications identified in Section II depend on
a very high accuracy (e.g., multi-factor authentication).

Variance is an important factor in the observables used to
generate the fingerprints, because it is a measure of the contri-
bution to error of deviations from the central tendency [105].
Errors in the observables can be present for many reasons (e.g.,
RF bias in the receiver, impact of different environmental con-
ditions on clock skew). Decision Tree, Neural Networks and
SVM are usually characterized by high variance sensitivity
and special care must be applied to avoid the danger of over-
fitting. Mitigation techniques against over-fitting can be based
on the application of cross validation (e.g., K-fold) or the rep-
etition of the collection of observables in different times or
days. The testing or execution phase (e.g., when a fingerprint
is verified against the training set) should be minimized in
terms of time and storage space. From this point of view, the
KNN algorithm uses a large training space and its execution
space is at least as big as the training space [105], resulting
in a strong disadvantage.

We note that some machine learning algorithms require the
tuning of some parameters (e.g., scaling factor in SVM) that
influence the identification accuracy.

The identified work in literature for supervised learning is
quite extensive and it is reported in Table IV together with the
other approaches.

b) Unsupervised learning: Unsupervised learning is the
category of algorithms where a training set is missing and
the algorithms must find the hidden structure from data not
previously labeled or classified. For mobile phone identifica-
tion or verification, unsupervised algorithms often mean that

similar fingerprints from different logical devices are grouped
together and mapped to the same cluster. For example, in the
application of the fight against counterfeiting, the observables
from a set of mobile phones of the same model and brand
can be evaluated using an unsupervised algorithm to identify
potential counterfeit mobile phones. Since counterfeit mobile
phones are usually manufactured with components of lower
quality to save money or in different manufacturing plants
and with different materials, the fingerprints of the counterfeit
mobile phones will be different from the genuine phones. A
potential identification process for counterfeit phones could be
implemented with a process where observables from a mixed
group of mobile phones (where the identity of the genuine
mobile phones is well known) are collected and analyzed.
The counterfeit phones should have different statistical fea-
tures or a low degree of correlation with the subset of valid
mobile phones. The advantage of this approach is that the cre-
ation of the reference library is not needed as the presence of
valid phones is used for this purpose. The main disadvantage
is that the testing entity must have a significant number of
valid phones of the same type and model. This is not prac-
tical in most of the situations apart from the forensic labs
of a manufacturer of mobile phone. On the other side of the
coin, registration of device fingerprints ahead of time is not
always feasible in practice, thus supporting approaches based
on unsupervised learning. Another application of unsupervised
learning is in the security domain when multiple phones with
different fingerprints assume the same identifier. In this case,
identity spoofing attacks could be mitigated: for example, the
spoofer will be outside the cluster of valid phones [22].

There are various unsupervised learning techniques in lit-
erature. Here we described only a limited set applied to
fingerprints identification and verification.

1) K-Means Clustering, where observables are partitioned
into a number of clusters where each observation
belongs to the cluster with the nearest mean, which
serves as a prototype of the cluster.

2) Hierarchical clustering seeks to build a hierarchy of clus-
ters. An example of hierarchical clustering applied to
camera identification is provided in [114].

3) Unsupervised Bayesian Learning, which is the appli-
cation of Bayesian networks to unsupervised learning.
One example of this technique is in [115], where
the feature space of a single device is modeled by a
multivariate Gaussian distribution with unknown param-
eters. The non-parametric Bayesian Learning approach
is then applied to the multivariate Gaussian distribution
to identify the cluster.

4) PCA, a multivariate method for data compression and
dimensionality reduction. PCA aims to extract important
information from data and to present it as a set of new
orthogonal variables called principal components. Note
that PCA is often used in mobile phones identification
to reduce a large set of features used for fingerprinting
definition as in [26] for the RF component and in [116]
for the camera component.

5) Techniques based on neural networks applied to unsu-
pervised learning.
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TABLE IV
SUMMARY OF THE ALGORITHMS USED IN MOBILE PHONE IDENTIFICATION

The identified work in literature for unsupervised learning
is quite limited and it is reported in Table IV together with
the other approaches.

c) Summary of machine learning algorithms: A sum-
mary of the algorithms identified in the previous paragraphs
is provided in Table IV.

From the summary we notice that SVM is the most common
algorithm used for classification, followed by KNN. These two
algorithms are used across all the different built-in components
of the mobile phone. Algorithms based on neural networks
have been scarcely used until now, but the cited references
are quite recent and future research papers may adopt more
frequently this type of algorithms including Deep Network
approaches.

V. PRIVACY RISKS AND MITIGATION

The identification of mobile phones through their finger-
printing is useful for the applications described in Section II.
However, it has also drawbacks related to the possibility of
tracking mobile phones once their fingerprints are known.
Even if tracking of mobile phones through their fingerprints
can represent a significant privacy risk, there are also signif-
icant limitations in a realistic environment, which have been
already partially described here. For example, wireless prop-
agation attenuation and multi-path fading effects in a urban
environment can severely impact the tracking of a mobile
phone even with a-priory knowledge of its RF fingerprints
associated to the mobile phone, as the RF observables will
be highly degraded. Even for internally generated fingerprints,

which do not suffer from propagation aspects (e.g., sensor pat-
tern noise of the camera or MEMS fingerprints) it is possible
to identify and define mitigation techniques. A preliminary
analysis has already been presented in [129], where similar
privacy issues have been identified and mitigation techniques
have been recommended. The aim of this paper is to widen
the analysis presented in [129] for the specific set of physical
fingerprints.

In the following subsections, we describe the potential lim-
itations of the tracking and the related mitigation techniques
for the two main classes of built-in components.

A. Privacy Risks and Mitigation With External
Processing Techniques

In this section we investigate how privacy risks can arise
from the application and deployment of external processing
techniques. The main built-in components, whose emissions
can be used to track the mobile phone, are the RF compo-
nents. In fact, for the other built-in components (i.e., display
and loudspeaker), the fingerprinting and analysis processes are
quite difficult to achieve even in ideal conditions as described
in the previous sections. For example, in a practical scenario
with background audio noise, the observables collected by
an external sensor will also include the noise components,
which are unpredictable (e.g., they vary depending on the envi-
ronment). The fingerprinting of the emissions from the RF
components may also be degraded in a realistic environment
but to a minor degree and in different conditions. One differ-
ence with audio fingerprinting is that the radio spectrum policy
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usually defines specific licensed bands for use by a specific
radio access technology or standard. Even in the case of unli-
censed bands (like WiFi), the RF component can transmit in a
specific channel that can be filtered out and decoded, in oppo-
sition to the audio signal of a mobile phone loudspeaker that
can be interfered in different frequency bands. Instead, one
similarity with audio fingerprinting is linked to the impact of
attenuation and multi-path fading due to obstacles. In a typical
tracking scenario, an observer can collect observables of the
mobile phone to be tracked at a considerable distance from
the phone to avoid visual detection. Free-space propagation
loss will considerably decrease the power of the RF emissions
received by the observer. As noted before, a low SNR decrease
the identification accuracy. Beyond the basic free-space prop-
agation loss, the presence of obstacles in the path between the
RF component or in the surrounding environment will intro-
duce both attenuation and multipath fading effects. Even if
the impact of multipath fading must still be investigated by
the research community, we can reasonably guess that it will
also decrease the identification accuracy. We note that these
problems will be present both in the initial phase of collect-
ing a fingerprint of the RF component and in the subsequent
phases of identifying the RF component from its emissions.
An additional issue is the lack of portability of the receivers
(see [30], [31]), since a typical privacy threat scenario may
include different observers in different positions (see [130] for
a description of an implementation of a privacy threat based
on the observation of RF emissions in the road transportation
sector) and with different receivers. Even if all these limita-
tions do not completely preclude the possibility of a privacy
threat, they raise the bar for the difficulty to implement this
privacy threat for the external processing techniques.

B. Privacy Risks and Mitigation With Internal
Processing Techniques

In this section we investigate how the application of
internal processing techniques can generate privacy risks. The
identification of a mobile phone can be used to track its
owner. In comparison to what described in Section V-A,
the observables are not impacted by the distance at which
an attacker implements the privacy threat. For example, the
SPN from the images taken by a camera can be exam-
ined hundreds of kms from where the images were taken.
Then, different protection techniques must be implemented to
mitigate privacy risks. In this paper, we propose two main
approaches:

1) the specific features of the built-in components in the
mobile phone can be altered by removing specific bias
(e.g., through filtering) or by adding noise to obfuscate
their specific information about the mobile phone. This
approach must not negatively impact the correct func-
tioning of the smartphone and its provided services. For
example, the clock skew could be eliminated by resyn-
chronizing the phone either using GNSS or other tech-
niques like the Reassemble TCP option in OpenBSD,
which modifies the TCP timestamps in outgoing packets

on the device with random and monotonically increas-
ing numbers [129]. While the elimination of the clock
skew does not negatively impact the proper functioning
of the mobile phone and it can actually be benefi-
cial, other fingerprints are not based on the same bias
and their removal could have a negative impact. For
example, the fingerprints present in accelerometers and
gyroscopes can be mitigated by introducing white gaus-
sian noise in the observables to obfuscate the specific
features. The negative impact of this approach is that
the addition of white Gaussian noise may degrade the
signal originating from the sensors to the point that they
will be unusable by applications using the accelerome-
ters. For example, an application using accelerometers
to correct location information from GNSS will be neg-
atively impacted by the addition of Gaussian noise. This
disadvantage does not apply to all the components inves-
tigated in this paper. For example, the removal of SPN
in the image does not have an impact on imaging appli-
cations. The recommendation is to adopt this approach
case by case. Beyond the specific techniques described
here (e.g., addition of Gaussian white noise), there is
a large body of work in the obfuscation of sensor arti-
facts, which could be exploited. See [131] for a general
discussion on privacy mitigation techniques for images
collection and processing, which could also be applied
to fingerprinting.

2) In the second approach, the access to the fingerprints
can be restricted only to specific categories of users
and applications. For example, policy frameworks can
be implemented to prevent the distribution of the fin-
gerprints collected by the mobile phone as described
in [129]. Indeed, this is one of the most common
approaches adopted or investigated by the research com-
munity working on privacy threats. Various references
have proposed policy framework to mitigate privacy
risks, which could be applied to the specific fingerprint
context. See [132] for a policy based framework, which
is used to regulate the flow of data from Internet of
Things (IoT) devices or for a more general framework
like [133].

We note that the two approaches can be combined. The
policy framework can implement the obfuscation techniques
described in 1) rather than not allowing the access to the fin-
gerprints. In other words, all the users will be able to access
the digital artifacts generated by the sensors but some users
will be able to see the original artifacts while other users will
only see obfuscated or noise added artifacts.

VI. LESSON LEARNED

Following the analysis presented in the previous sections of
this paper, here we summarize the key issues and obstacles for
the identification and verification of mobile phones based on
the fingerprints of their built-in components, i.e., we give an
overview of the lessons learned. Some of these issues will be
discussed again in Section VII along with the related research
opportunities.
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A. Dependency of the Fingerprints on Time or
Environmental Conditions

The fingerprints of the built-in components can change in
time or for different environmental conditions (e.g., tempera-
ture, humidity), as they are based on the physical properties
of the material used to build the components. Different com-
ponents have different degrees of stability against time or
environmental conditions either because they are physically
protected (by the case of the mobile phone) or they are
designed with stability as a key requirement (e.g., RF com-
ponents for cellular communications must be quite stable to
support effective wireless communication services in the life-
time of the mobile phone). There are not many studies on
the reliability of fingerprinting in time or environmental con-
ditions, even if these aspects are taken into consideration in
some of the papers identified in the previous sections (the
measurements are repeated in different days or weeks). The
research work on PUF can also provide insight in mitigation
techniques against time or environmental changes (see [134]).

B. Security Threats on the Fingerprinting
Generation Process

The process of collecting the observables and generating the
fingerprints could be subject to security attacks with the goal
to manipulate, fake or clone the fingerprints. Security threats
can be present both for fingerprints based on internal digital
output (e.g., collected by the mobile phone from its built-in
accelerometer) or an external digital output (e.g., collected by
an external RF receiver, see Figure 1). For internal-based fin-
gerprints, there is the risk that a manipulated or compromised
(from a security point of view) mobile phone can provide false
observables to avoid detection and tracking through finger-
printing. The user of a mobile phone may have an interest for
not being tracked either legitimately (e.g., for privacy reasons
as described in Section V) or because (s)he means to imple-
ment a malicious activity. For example, the timestamps of the
digital output of the sensors can be manipulated or the observ-
ables generated internally by the mobile phone (e.g., from
the camera or MEMS) could be artificially created by mali-
cious agents running in the mobile phone (e.g., a malware),
through replication of valid fingerprints. In a similar way, fin-
gerprints generated externally (e.g., RF fingerprints) could be
captured by a malicious entity and used to clone a valid device.
Various techniques could be used to mitigate these threats:
a) a challenge-response approach, where the stimulation of
the sensor (e.g., a specific image or vibration of the mobile
phone) is the challenge and the digital output to create the fin-
gerprint is the response, b) information flows protected with
integrity checks to ensure that the sensor data is not manipu-
lated. This area requires further investigation from a research
point of view.

C. Interference and Noise

Fingerprints generated by an external device (e.g., RF based
fingerprints) could be degraded by the presence of wireless
interference or background RF noise. In a similar way, fin-
gerprints generated on TCP traffic could be impacted by

congestion on the communication link and varying levels of
load on a node [42]. Background noise could hamper micro-
phone based fingerprinting. Interference, congestion and noise
could not be entirely eliminated in practical scenarios, but risks
can be mitigated by the application of appropriate filters or
improved features and classifiers as described in the previous
sections.

D. Portability

This is a general issue for most of the fingerprints. The
agent that collects the fingerprints can introduce its own fin-
gerprint, compromising the portability of the fingerprints from
one agent to another. This issue impacts not only the RF fin-
gerprints (as the receiver will introduce different bias in the
collection phase) but it may also impact the internally gener-
ated fingerprints. A mobile phone can download and activate
a different firmware version of the built-in component, which
can introduce variations in the fingerprint (e.g., software of the
GNSS receiver). Portability of fingerprints is an open problem.

VII. FUTURE TRENDS AND RESEARCH OPPORTUNITIES

The following future trends and possibilities are envisaged
for mobile phone identification on the basis of their built-in
components:

1) Artificial insertion of unique features in the mobile
phone. Instead of using the spontaneous physical dif-
ferences in the phones, intentional imperfections could
be inserted in the manufacturing process. One example
for RF detection is the concept of PUF, but simi-
lar approaches and techniques can be used with other
components like a camera. An example of the use of
the PUF concept to camera identification was initially
proposed in [135] and further elaborated in [136]. The
PUF concept is discussed in detail in the subsequent
Section VII-A. The advantage of this approach would be
a more effective support for multi-factor authentication
in a way that cryptographic means could be correlated
with the insertion of the intentional imperfections in the
manufacturing phase.

2) Most of the results from the research community has
been so far based on empirical evaluations of the observ-
ables without the definition of a clear model. It would
be useful to define specific models which could help to
identify the most appropriate algorithms and features for
identification. In addition, some models could be used
to identify the intrinsic limitations of the fingerprinting
process and how this can be overcome.

3) New components or wireless standards will be included
in mobile phones in the near future. For example, Near
Field Communication (NFC), actually already present in
many models, or other components.

4) While some authors have already proposed the com-
bination of different features to improve identification,
there is still work to do in the combination of different
components whenever possible.

5) The stability of the fingerprints in time or for different
environmental conditions still requires further research.
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6) Most of the research was conducted on observables
collected in ideal or almost ideal conditions. While
various authors have started recently to investigate the
impact of disturbances (e.g., fading conditions, non ideal
light conditions), further research is needed to support
the applicability of fingerprinting concepts in practical
applications.

7) Security threats could be present on the fingerprinting
process itself.

Each of these aspects will be discussed in the following
subsections.

A. Intentional Fingerprints

The major part of the analysis presented in this paper is
related to the collection and analysis of the unintentional
fingerprints, i.e., the imperfections and specific physical fea-
tures unintentionally created in the built-in components of
the mobile phone during the manufacturing process. There is
also the possibility of intentionally inserting specific physical
features to support the applications identified in Section II.
One example is the concept of PUF, which has been initially
proposed in [137] to support security (e.g., the generation of
secret keys). The PUF is built by introducing specific elec-
tronic elements in the IC to generate delay or time variations of
the electronic information transmitted in wires and transistors
of the electronic component [137]. These variations are repro-
ducible and measurable across in manufacturing processes and
they could be applied to any electronic circuits used in the
built-in components of a smartphone. A recent tutorial on
PUF is described in [138], where various examples of PUF
implementation are described. In particular a Ring-Oscillator
PUF is presented, which is based on the variation in delay
of the inverters in ring oscillators. The consequence is that
each ring oscillator will have a slightly different operating
frequency, which can be used as a fingerprint (see the clock
skew fingerprint described in Section IV-B4 of this paper).
Another recent example of the PUF implementation for creat-
ing the fingerprint of a camera is provided by Cao et al. [136],
where a CMOS PUF was implemented to support fingerprint-
ing generation for security (multi-factor authentication) and
anti-counterfeiting applications. The advantage of inserting the
PUF in the built-in component of a mobile phone is to improve
the identification or verification accuracy and to increase the
resilience to changes in environmental conditions, which can
be a significant challenge in this context, as discussed in the
rest of this paper. The trade-off is obviously a higher price of
the components and a more complex design and manufacturing
process.

B. Models for Fingerprinting

As shown previously, most of the cited work is based on
the experimental evaluation of verification and authentication
algorithms. Theoretical models for describing the genesis of
the fingerprints and their collection and classification are rel-
atively scarce. These models could be helpful to mitigate bias
or disturbances in the collection phase or to identify the most

relevant features without resorting to complex and lengthy fea-
tures selection processes. A recent contribution [24], called
Wireless Physical Layer Identification (WLPI), aims to close
this gap at least for the fingerprinting at the RF physical
layer. Wang et al. [24] provide a systematic and mathemat-
ical description of the whole WLPI process, which is based
on the following elements:

1) modeling of the signal processing at the transmitter;
2) modeling of the signal propagation between TX and

RX antennas along the wireless channel between the
transmitter and the receiver;

3) signal reception and processing at the receiver;
4) extraction, identification and classification of the radio

frequency physical layer features.
As described before, existing models from literature can

help to define elements 2) and 3). In particular for element 2),
wireless propagation models (e.g., for fading) can be used to
identify which components of the model contribute more sig-
nificantly to the fingerprint or its degradation. For element 3),
models on the electronic devices and receiver front-ends can
be used. In particular, the characterization and calibration of
electronic components is quite important in RF measurements
and many models presented in literature can be used to this
purpose. Finally, statistical features can have strong or weaker
dependencies on the bias introduced by elements 2) and 3)
(e.g., entropy on the presence of noise). At the moment of
writing this paper, the authors do not report detailed studies on
the evaluation of the statistical features on the basis of the bias
introduced by elements 2) and 3) in relation to fingerprinting.

Each of these elements contribute to the fingerprint of the
RF device to be identified, which is basically related to 1).
However the other elements may degrade the definition of the
fingerprint by introducing bias and distortions.

Another important aspect in this survey is to define the
limits for identification and validation on the basis of the
fingerprints. Even if we discussed in this paper the various
factors which can contribute to create limits for fingerprinting,
theoretical studies could be helpful to identify the theoreti-
cal limits for the different types of fingerprints. For example,
Chu et al. [139] have addressed this problem by proposing a
theoretical framework for forensic-ability (one of the applica-
tions identified in Section II). Then, the authors applied the
model to image processing and identification.

A similar analysis for the RF fingerprints have been
proposed in [140], where Gungor and Koksal focus on the
authentication problem in the presence of an adversary. In
the proposed scenario, both the legitimate transmitter and the
adversary are furnished with unique fingerprint channels and a
possible secret key, which is available at the legitimate nodes.
The authors demonstrate that authentication without keys is
possible via RF fingerprints when the legitimate channel can-
not be simulated. This analysis is useful for the application of
multi-factor authentication as it can be used to evaluate how
robust is a RF fingerprint for security purposes.

C. Future Components

Mobile phones are continuously evolving and new functions
and components have been added in recent year. MEMS were
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not available until few years ago but they are now widespread
in the medium-high end mobile phones. In a similar way, the
resolution of the camera has improved drastically in recent
years and the identification of a camera is proportional to
its resolution (sensor pattern noise is less pronounced due
to averaging material inhomogenities over a relatively larger
area [52]).

The concept of modular phones, where mobile phones
can be assembled with many different components is
proposed by recent projects like the Project ARA [141] and
Phonebloks [142]. The concept is to build a smartphone out
of interchangeable parts that can be replaced by the user to
customize the smartphone depending on the need or the con-
text: add a wide-angle camera module for tourist trips or a
better battery for business reasons. This is in contrast to cur-
rent designs, characterised by a very high level of integration
that makes almost impossible to replace individual compo-
nents [143]. An example of potential add-ons for the mobile
phone is the spectrometer described in the patent applica-
tion [144], where an optical spectroscopic sensor is integrated
with a mobile communication device to utilize various func-
tions of a wireless communication network. Another example
described in [145] is the integration of a polarized microscope
into a generic mobile phone to support the rapid diagnostic
tests of the malaria disease for field use.

At the moment, it is difficult to predict which potential add-
ons will be proposed for the mobile phones. In some cases,
these add-ons will be implemented for niche markets and
they will not have widespread development. Depending on the
technology used to implement them, some of the techniques
presented in the previous sections can be extended to the
add-ons as well. For example, in a mobile phone with a polar-
ized lens, specific add-ons can be fingerprinted using image
based recognition algorithms similar to the ones described in
Section IV-C1.

D. Combination of Fingerprints Components

Most of the techniques described in Section IV are based
on the fingerprint of a single component, while identifica-
tion algorithms could exploit the combination of data from
different sensors. In fact, Dey et al. [70] (one of the first
works on fingerprinting through built-in accelerometers) have
suggested the possibility to combine sensors such as gyro-
scope and accelerometer in order to increase the ability to
discriminate between mobile phones. Different classifier com-
bination methods proposed in literature can be applied to this
specific context. Tax et al. [146] give a well cited overview
of the most common classifier combination methods. To the
knowledge of the authors, at the time of writing this survey,
there is a limited research work on the combination of dif-
ferent fingerprints. We survey here the few works proposed
in literature. Tax et al. [146], combine different classifiers
used to fingerprints the RF components of Wireless Open-
Access Research Platform (WARP) platforms, which is a type
of Software Defined Radio (SDR). The authors perform a
weighted voting where the probability of detection for each
of the weak classifiers previously identified is assigned with
normalized weight. The weight is based on the probability of

detection, which is found during the signature learning phase.
Tax et al. [146] noted in the conclusions that the combined
classifiers perform well in the presence of a large set of observ-
ables, while its performance is not very good for small number
of observables.

The combination of fingerprints from different components
in the smartphone can improve identification and verification
accuracy. The following combinations are suggested here: the
fingerprints from different RF wireless devices could be com-
bined using a weighting scheme. The RF acquisition would
require a RF receiver able to acquire different signals in
space in different frequencies. While this could be difficult to
achieve years ago, SDR based receivers at low cost can acquire
today RF signals in a large span of frequencies. As mentioned
previously, the fingerprints of gyroscopes and accelerometers
can be combined when the smartphone is subject to a specific
motion pattern. Fingerprints based on video capture can be
obviously related to the combined fingerprints of camera and
microphones. The clock skew or bias can appear as a finger-
print in various observables (e.g., RF samples, digital output
from the sensors including the GNSS receiver). Through the
analysis of different observables, the evaluation of the clock
bias could be ehnanced in comparison to a single digital out-
put. Finally, different versions of the software and firmware
present in the smartphone can generate slightly different fin-
gerprints. For example, the compressing algorithms for image
processing can be different between two software versions
(see [49] for camera identification).

E. Fingerprints Stability

As pointed out in Section IV-C5, the stability of the finger-
prints in time or for different environmental conditions is a
critical issue that can hamper the deployment of many appli-
cations based on fingerprints. While some papers investigated
the classification stability in time (e.g., observables taken in
different months) for specific components (e.g., accelerom-
eters in [72] and RF oscillators [46]) and found that the
impact of components aging for a duration of months is lim-
ited (i.e., classification accuracy does not change significantly),
many more studies are needed to specifically investigate the
impact of aging or different environmental conditions [77].
The impact of aging or environmental changes may also be
different for the different types of components and different
statistical features. In other words, different statistical fea-
tures will be more or less robust against the impact of aging.
A potential way forward to address this issue would be to
review the extensive literature on the impact of aging on elec-
tronic components (see [147], [148]) for each component (e.g.,
accelerometer, gyroscope), and define models that can be cor-
related with the features extraction process. Then, the features
most robust against aging could be selected. Depending on
the type of component, both theoretical work and experimen-
tal campaigns are needed in different environmental conditions
(e.g., humidity, temperature) to further address this issue.

F. Quality of the Collected Observables

Many reviewed papers are based on the collection of observ-
ables in ideal conditions and with ideal equipment. In the case
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of RF fingerprinting, high-end spectrum analyzers are used
with Line of Sight (LOS) conditions between the receiver and
the mobile phone. In the case of microphones, the data are
collected in an ideal sound environment with no background
noise. In the case of MEMS fingerprinting, the presence
of background vibrations can compromise the classification
process. Even if recent papers (e.g., [24] and [42]) have inves-
tigated and tried to mitigate challenging environments, further
research work is needed. This is especially important for appli-
cations where there is no control on the environment for data
collection (e.g., criminal investigation, forensics).

G. Resilience Against Security Attacks to the
Fingerprinting Process

As described in Section VI, fingerprints or the digital out-
puts on which they are generated could be subject to security
attacks aimed at modifying or cloning the fingerprints. If
mobile phones fingerprinting aims to be employed in the var-
ious applications identified in Section II, additional research
efforts are needed to secure the fingerprinting process.

VIII. CONCLUSION

This survey has reviewed the state of art on the identifica-
tion and verification of mobile phones through their built-in
physical components. Today, mobile phones are very complex
systems equipped with a wide range of sensors, communica-
tion interfaces and other components whose unique features
can be exploited to identify a mobile phone in a wide range
of applications. From a security point of view, the advantage
of mobile phone fingerprints is represented by the difficulty to
replicate them, since they are based on the intrinsic physical
features of phone’s components. In addition, the widespread
deployment of mobile phones makes fingerprinting an easy
and cost effective approach to authentication beyond the con-
ventional methods (e.g., based on cryptographic means). This
survey has shown that researchers can have a wide range
of techniques and algorithms to fingerprint mobile phones
through their built-in components. Very high accuracy can be
achieved (especially for inter-model identification) in a con-
trolled test bed environment, but there are still considerable
challenges that hamper the practical exploitation of mobile
phone fingerprinting in realistic scenarios and require further
research work. In particular, the issue of portability of the fin-
gerprints remains an open problem especially for RF based
fingerprinting. This paper has also discussed privacy issues
related to the identification and tracking of mobile phones and
the related mitigation techniques. Finally, the paper has taken
into consideration the evolution of the mobile phones, which
will probably widen the set of fingerprinting options and the
feasibility of their practical implementations in a wide range
of applications and future trends.
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