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A Guide to the Stochastic Network Calculus
Markus Fidler, Senior Member, IEEE, and Amr Rizk, Member, IEEE

Abstract—The aim of the stochastic network calculus is to
comprehend statistical multiplexing and scheduling of non-trivial
traffic sources in a framework for end-to-end analysis of multi-
node networks. To date, several models, some of them with subtle
yet important differences, have been explored to achieve these
objectives. Capitalizing on previous works, this paper contributes
an intuitive approach to the stochastic network calculus, where we
seek to obtain its fundamental results in the possibly easiest way. In
detail, the method that is assembled in this work uses moment gen-
erating functions, known from the theory of effective bandwidths,
to characterize traffic arrivals and network service. Thereof, affine
envelope functions with an exponentially decaying overflow profile
are derived to compute statistical end-to-end backlog and delay
bounds for networks.

Index Terms—Stochastic network calculus, end-to-end perfor-
mance evaluation, moment generating functions, scheduling.

I. INTRODUCTION

THE network calculus emerged during the 90s as a deter-
ministic theory for quality of service analysis of packet

data networks. Traffic arrivals at a networked system are
modelled by upper envelope functions [2]. Minimum service
guarantees that are provided by systems, such as a router,
a scheduler, or a link, are characterized by so-called service
curves [3]. Based on these concepts, the network calculus offers
convolution forms [4], [5] that enable the derivation of worst-
case performance bounds including backlog and delay. A key
advantage of the convolution-based framework is that it extends
immediately to networks. Any number of systems in series can
be transformed into a single equivalent system by convolution
of the individual systems’ service curves.

A shortcoming of the deterministic model is that it generally
considers the worst-case and hence, it cannot take advantage of
the statistical nature of traffic flows [6]. Statistical multiplexing
of traffic flows is dealt with efficiently by the theory of effective
bandwidths [4], [7] that uses moment generating functions
(MGFs) as a model of data traffic. The inclusion of statistical
traffic models into a convolution-based framework for end-to-
end analysis of networks has motivated considerable research
already in the early stages of the network calculus. Since then,
two basic traffic models became widely accepted, that are

Manuscript received October 25, 2013; revised April 17, 2014; accepted
June 20, 2014. Date of publication July 31, 2014; date of current version
March 13, 2015. This work was supported in part by an Emmy Noether grant
from the German Research Foundation (DFG) and in part by a Starting Grant
of the European Research Council (ERC). This paper was presented in part [1]
at the MMBnet Workshop’13 of the German Informatics Society, Hamburg,
Germany, September 2013.

The authors are with the Institute of Communications Technology, Leibniz
Universität Hannover, 30167 Hannover, Germany (e-mail: markus.fidler@
ikt.uni-hannover.de; amr.rizk@ikt.uni-hannover.de).

Digital Object Identifier 10.1109/COMST.2014.2337060

envelopes of MGFs [4], [8] and statistical envelopes [6], [9]–
[11], respectively. Statistical envelopes relax the deterministic
envelope model by allowing a violation of the envelope with
a defined, small probability. Statistical envelopes follow from
MGFs by use of Chernoff’s bound [6], [9].

Despite the early interest in a stochastic version of the
network calculus, end-to-end convolution forms for networks
of systems with random service remained an open challenge for
some years. The difficulty is due to the fact that the convolution
evaluates entire sample paths of the traffic arrival process.
Thus, it requires a statistical guarantee for sample paths that
is difficult to achieve. End-to-end convolution forms for net-
works of systems with random service have been obtained in
[12] using the statistical envelope model. Performance bounds
derived thereof grow as Θ(n log n) for n systems in series [13].
Convolution forms that are based on MGFs are established in
[4], [14]. Compared to the use of statistical envelopes, MGFs
utilize the additional assumption of statistical independence.
Respective end-to-end performance bounds scale in O(n) [14].

Compared to classical queueing theory, the stochastic net-
work calculus comprises a much larger variety of stochastic
processes, including long range dependent, self-similar [15],
[16], and heavy-tailed traffic [16]. This generality comes at the
expense of exact solutions. Instead, the stochastic network cal-
culus computes non-asymptotic statistical performance bounds
of the type P[backlog > x] ≤ ε or P[delay > x] ≤ ε.

With this work, we aim at an intuitive introduction to the
stochastic network calculus. We seek to define a minimal frame-
work that enables deriving the essential results of the stochastic
network calculus, in particular considering networks of tandem
systems. We contribute a self-contained exposition of basic
methods and closed form results derived thereof. We provide
frequent references for further reading, that are intended to
be optional for understanding of this tutorial. To simplify the
approach, we restrict the presentation to affine envelope func-
tions of MGFs [8] and corresponding linear statistical envelope
functions with an exponentially bounded burstiness (EBB) [9].
Also, we will occasionally forgo generality or precision in favor
of simplicity. For more general envelope models as well as
models that provide stronger guarantees, we refer the reader to
the related literature, e.g., [6], [17]–[20].

Concerning the two established textbooks on the network
calculus [4], [5] from 2000 and 2001, respectively, [5] focuses
on the deterministic network calculus and [4] phrases stochastic
tandem systems, that are essential to this work, as a problem.
Stochastic end-to-end convolution results for tandem systems
have been reported first in [12], [14] and have shortly afterwards
been included in the textbook on the stochastic network calcu-
lus [17] from 2008. Since then, the authors of this tutorial have
taught an annual course on the network calculus from which
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Fig. 1. Composition of arrival and service models.

the consolidated and comparably simpler approach taken in this
paper emerged.

An outline of the method, that is assembled in this work,
is shown in Fig. 1. We use the affine MGF envelope model
from [8] to characterize arrival processes and service processes,
respectively. The model has two parameters, ρ that is an en-
velope rate and σ that is a burstiness measure. Subscript A
refers to the arrivals and S to the service, respectively. Formulas
for statistical multiplexing, scheduling, and convolution of n
tandem systems will be provided for this model. In the next
step a transition from MGFs to the EBB model is performed
using Chernoff’s bound. Finally the EBB characterizations of
the arrivals and of the service, respectively, are composed to
compute performance bounds for backlog and delay.

We note, that a duality of MGFs and statistical envelopes
exists [6]. A transition from MGFs to statistical bounding func-
tions, such as EBB envelopes, can be made basically after any
of the steps depicted in Fig. 1. Certain results can, however, be
derived more easily using one or the other model. A represen-
tative example is statistical multiplexing that takes advantage
of statistically independent traffic flows. Many application sce-
narios, such as the aggregation of flows on Internet backbone
links or multiple user scheduling in wireless networks, provide
reasonable grounds for the assumptions of statistically indepen-
dent traffic and/or service. While the consideration of statistical
multiplexing is straight-forward in case of MGFs, the EBB
model is favorable in the absence of statistical independence
[9], [21].

The remainder of this paper is structured as follows. In
Section II, we introduce the basic queueing model of the
network calculus and describe how EBB envelopes can be de-
rived from MGFs of arrival and service processes, respectively.
Backlog and delay bounds follow immediately by composition
of the EBB envelopes of arrivals and service. Further, we derive
a corresponding EBB result for tandem systems that is novel.
In Section III, we provide a catalogue of MGF envelopes for
relevant arrival and server models. We also include results for
statistical multiplexing and scheduling. Section IV concludes
the paper with a set of guidelines for application and an outlook.
To support the applicability, we highlight a self-contained set of
final results throughout the paper, using framed equations.

II. FUNDAMENTALS

This section provides an introduction to the stochastic net-
work calculus. In Section II-A, we formulate the basic queueing
model, where traffic that arrives at a system between times
τ and t denoted A(τ, t), the service offered by the system

S(τ, t), and the departures from the system D(τ, t) are bivariate
random processes. Bivariate functions are used to express the
time-varying nature of traffic and service. In Section II-B
and C, statistical envelope functions of arrivals and service,
respectively, are derived. The envelopes are bounds that may be
violated with a defined probability. For ease of exposition, we
restrict the envelopes to affine functions with an exponentially
decaying violation probability. By assumption of stationarity,
the envelopes become time-invariant and hence are expressed
by univariate functions. In Section II-D, we show how to ex-
tend the method to multi-node networks. Section II-E provides
simple expressions for backlog and delay bounds that follow
from the envelope model.

A. Queueing Model

Throughout this work, we assume time is discrete, i.e., t ∈
N0. Continuous time requires an additional discretization step,
see [12]. We denote A(t) the cumulative number of bits arriving
at a system in the time interval [0, t]. Clearly, A(t) is a non-
negative, non-decreasing function, and by convention A(0) =
0. We use shorthand notation A(τ, t) = A(t)−A(τ) where t ≥
τ ≥ 0 to denote the arrivals in [τ + 1, t]. Trivially, A(t, t) = 0
for all t ≥ 0. Similarly, D(t) denotes the cumulative departures
from the system.

We characterize systems using the concept of a dynamic
server [4], [22] that relates the departures of a system to its
arrivals as

D(t) ≥ min
τ∈[0,t]

{A(τ) + S(τ, t)} =: A⊗ S(t), (1)

where S(τ, t) for t ≥ τ ≥ 0 is a random process that defines the
service offered by the system. By convention, S(τ, t) is non-
negative and S(t, t) = 0 for all t ≥ 0.

An example of a system that satisfies the definition of dy-
namic server is a lossless, work-conserving server with a time-
varying capacity S(τ, t), where S(τ, t) denotes the service that
is available in [τ + 1, t] [4]. To see this, assume t and τ + 1 fall
into the same busy period, such that the system is continuously
backlogged during [τ + 1, t]. Combined with the assumption of
a work-conserving system, it follows that the entire service that
is available in [τ + 1, t] is consumed, such that

D(t) = D(τ) + S(τ, t).

Now, fix τ = τ ∗ to be the beginning of the last busy period
before t, i.e., at τ ∗ the system was empty for the last time
before t. Consequently, D(τ ∗) = A(τ ∗) and

D(t) = A(τ ∗) + S(τ ∗, t). (2)

Finally, since τ ∗ is not generally known, we use the estimate

D(t) ≥ min
τ∈[0,t]

{A(τ) + S(τ, t)}

which proves that the system is a dynamic server (1). Moreover,
generally D(t) ≤ D(τ) + S(τ, t) for t ≥ τ ≥ 0 as the depar-
tures in [τ + 1, t] cannot exceed the service. From causality we
have D(τ) ≤ A(τ), such that

D(t) ≤ A(τ) + S(τ, t)
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for all τ ∈ [0, t] and consequently

D(t) ≤ min
τ∈[0,t]

{A(τ) + S(τ, t)} .

Combined with (1), it follows that

D(t) = min
τ∈[0,t]

{A(τ) + S(τ, t)} , (3)

i.e., the system is an exact dynamic server as (3) satisfies
(1) with equality. The example of the work-conserving server
with a time-varying capacity proves that the lower bound (1)
is actually attained. We note that (3) implies linearity of the
system, see [5] for details. Non-linear systems, such as a first-in
first-out scheduler [23], satisfy only the more general definition
of dynamic server (1).

The operator ⊗ that is defined by (1) is known as the
convolution under a min-plus algebra. The min-plus algebra
can be regarded similar to the traditional algebra, where the
minimum takes the place of the addition and the addition takes
the place of the multiplication. This analogy is highly useful,
as the network calculus can be viewed as a min-plus systems
theory that inherits many useful properties of the classical con-
volution from linear systems theory [4], [5]. Among others, the
min-plus convolution is associative, which enables an elegant
composition of tandem systems. Consider two dynamic servers
S1(τ, t) and S2(τ, t) in series. We use the same indices to
denote the arrivals and departures of the respective systems,
where A2(t) = D1(t). By recursive insertion of (1) and by use
of the associativity it holds that

D2(t) ≥ (A1 ⊗ S1)⊗ S2(t) = A1 ⊗ (S1 ⊗ S2)(t). (4)

As a main result, it follows that

S(τ, t)=S1 ⊗ S2(τ, t) := min
υ∈[τ,t]

{S1(τ, υ) + S2(υ, t)}

satisfies the definition of dynamic server (1), i.e., the tandem
of the two systems can be substituted by a single equivalent
system S(τ, t) that is composed by min-plus convolution of the
individual service processes. By repeated iteration it follows
that a network of n dynamic servers has an equivalent single
server representation with service process

Snet(τ, t) = S1 ⊗ S2 ⊗ · · · ⊗ Sn(τ, t). (5)

Since by convention Si(τ, t) ≥ 0 for t ≥ τ ≥ 0, it holds that
Snet(τ, t) ≥ 0, too. As a consequence of the associativity of
min-plus convolution, (5) enables to apply any result obtained
for a single dynamic server to networks of dynamic servers.
Finally, we note that while the min-plus convolution of uni-
variate functions is commutative, it is not commutative in case
of bivariate functions, i.e., the order of the individual dynamic
servers is relevant.

We conclude this section with basic backlog and delay
bounds. The backlog at time t ≥ 0 is defined as

B(t) = A(t)−D(t).

The definition of backlog comprises bits that are stored in
buffers as well as bits that are in transmission. By insertion
of (1) a backlog bound that is achieved by a dynamic server
follows immediately as

B(t) ≤ max
τ∈[0,t]

{A(τ, t)− S(τ, t)} . (6)

Assuming first-come first-served (FCFS) order, the delay at
time t ≥ 0 is defined as

W (t) = min {ω ≥ 0 : A(t)−D(t+ ω) ≤ 0} .

Note that the definition of delay is not conditioned on an actual
data departure but only on the time instance t, e.g., if the system
is empty at t, i.e., B(t) = 0, then the delay is also W (t) = 0.
By insertion of (1) a delay bound is

W (t) ≤ min

{
ω ≥ 0 : max

τ∈[0,t]
{A(τ, t)− S(τ, t+ ω)} ≤ 0

}
.

Backlog and delay both have an intuitive graphical representa-
tion, where the backlog is the vertical deviation and the delay
the horizontal deviation of arrivals and departures, respectively.

B. Arrival Envelopes

To compute actual backlog and delay bounds, the determinis-
tic network calculus uses univariate envelope functions that are
defined as deterministic upper bounds of the arrivals A(τ, t) for
all time intervals [τ + 1, t] with t ≥ τ ≥ 0. A widely applied
model are affine envelope functions defined as ρ(t− τ) + b,
that are enforced by a leaky bucket shaper with rate ρ > 0
and burst parameter b ≥ 0 [2]. The arrivals have a deterministic
affine envelope if for all t ≥ τ ≥ 0 it holds that

A(τ, t) ≤ ρ(t− τ) + b. (7)

Performance bounds are derived by substitution of the enve-
lope as an upper bound for A(τ, t). As an example, a backlog
bound for a work-conserving constant rate server with capacity
c > ρ follows by insertion of S(τ, t) = c(t− τ) and (7) into (6)
as B(t) ≤ b for all t ≥ 0.

While its application is intuitive, a drawback of the de-
terministic envelope model is that it generally considers the
worst-case. As a consequence, it cannot take advantage of the
statistical nature of traffic.

Stochastic traffic models, such as the theory of effective
bandwidths [4], [7], make extensive use of MGFs. MGFs
uniquely determine the distribution of a random process and
have the convenient property that the MGF of the sum of two
or more random processes is the product of their respective
MGFs. The MGF of an arrival process A(τ, t) is defined as
E[eθA(τ,t)] with free parameter θ ≥ 0. Under the assumption of
stationarity, i.e., P[A(τ, t) ≤ x] = P[A(t− τ) ≤ x] for all t ≥
τ ≥ 0, the MGF becomes a univariate function that depends
only on the time difference t− τ . We will frequently use short-
hand notation MA(θ, t− τ) = E[eθA(τ,t)]. The normalized log
MGF lnMA(θ, t)/(θt) is known as the effective bandwidth. For
increasing θ > 0 it grows from the mean rate to the peak rate
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of the arrivals. Corresponding to the affine envelope model, [4],
[8] define an MGF envelope for t ≥ τ ≥ 0 as

E
[
eθA(τ,t)

]
≤ eθ(ρ(t−τ)+σ) (8)

where the parameters ρ > 0 and σ ≥ 0 are functions of θ ≥ 0.
A related statistical envelope, referred to as exponentially

bounded burstiness (EBB), is defined in [9] to provide a guar-
antee of the form

P [A(τ, t) > ρ(t− τ) + b] ≤ ε(b) (9)

for t ≥ τ ≥ 0. The model relaxes the deterministic envelope
(7) with parameters ρ > 0 and b ≥ 0 by defining an overflow
profile ε(b) ≥ 0 that decays exponentially as

ε(b) = αe−θb, (10)

where α ≥ 0.
Generalizations of the EBB model, that include different

shapes of envelope functions and overflow profiles, have been
provided, e.g., in [10]–[12], [20], [24], see also the survey on
envelopes [18]. In general, the linear rate term ρ · (t− τ) in
(9) can be replaced by a non-negative, non-decreasing envelope
function E(t− τ), respectively, the overflow profile ε(b) can in
general be a non-negative, non-increasing function with finite
sum. The more general definition includes a larger set of traffic
models. Also, it may improve the tightness of bounds in certain
cases. For ease of exposition, we limit ourselves to linear rate
EBB envelopes. We note that the basic steps of the following
sample path derivations are essentially unaffected by the choice
of the envelope model. We show an example of a non EBB
envelope in Section III-A3.

The EBB model is directly connected to the MGF envelope
by Chernoff’s bound

P[X ≥ x] ≤ e−θxE[eθX ] (11)

for θ ≥ 0. By application of (11) to (9) and insertion of (8) it
follows that P[A(τ, t) > ρ(t− τ) + b] ≤ eθσe−θb. We equate
the right hand side with ε(b) to obtain

ε(b) = eθσe−θb (12)

that is EBB with parameter α = eθσ .
While the EBB model (9) is a natural statistical extension of

(7), an important difference arises with respect to the compu-
tation of performance bounds, such as the backlog bound (6):
The deterministic envelope (7) can be immediately substituted
for A(τ, t) in (6), however, the EBB envelope (9) cannot. The
reason is that (6) evaluates all τ ∈ [0, t], where the τ = τ ∗ that
attains the maximum is a random variable [6]. In contrast, (9)
only provides a guarantee for an arbitrary, yet, fixed τ ∈ [0, t].
To overcome this problem, a sample path argument similar to
[6], [10]–[12] is required that has the form

P [∃τ ∈ [0, t] : A(τ, t) > ρ′(t− τ) + b] ≤ ε′(b) (13)

for all t ≥ 0. Throughout this work we use superscript ε′ to
denote sample path overflow probabilities of the type (13). Note
that in the deterministic case (7) no such distinction exists.

To estimate ε′(b) from (13), one can rewrite P[∃i : Xi ≥
x] = P[maxi{Xi} ≥ x] and approximate the expression by its
largest term as

P
[
max

i
{Xi} ≥ x

]
≥ max

i
{P[Xi ≥ x]} . (14)

Note, however, that the expression only provides a lower bound
of an upper bound [6]. As a consequence, one can only approx-
imate ε′(b) ≈ ε(b) for ρ′ = ρ. A true upper bound, on the other
hand, follows by use of the union bound as

P[∃i : Xi ≥ x] ≤
∑
i

P[Xi ≥ x]. (15)

Regarding (13), it follows as, e.g., in [11], [12] that

P [∃τ ∈ [0, t] : A(τ, t) > ρ′(t− τ) + b]

≤
t∑

τ=0

eθσe−θ(b+δ(t−τ))

≤ eθσe−θb
∞∑

τ=0

e−θδτ

=
eθσe−θb

1− e−θδ
.

In the second line, we used the union bound1 (15) and sub-
stituted (12) for the expression (9) where we let ρ′ = ρ+ δ.
Parameter δ > 0 can be viewed as a slack rate that is used to
achieve geometrically decaying summands. Increasing param-
eter δ increases the envelope rate and decreases the overflow
profile. In the third line, we let t → ∞ to compute a steady-
state bound. In the fourth line, we used that θδ > 0 and solved
the geometric sum.

Concluding, given arrivals that have MGF envelope (8) with
parameters ρ and σ, the sample path envelope (13) is EBB with
envelope rate ρ′ = ρ+ δ and overflow profile

ε′(b) =
eθσ

1− e−θδ
e−θb, (16)

where θ > 0 and δ > 0 are free parameters that can be
optimized.

The utility of the EBB sample path envelope (13) is due
to the fact that it can be used to substitute ρ′(t− τ) + b for
the arrival process A(τ, t) in performance bounds such as the
backlog bound (6). To give a first example, we consider a work-
conserving constant rate server with capacity c. By insertion
of S(τ, t) = c(t− τ) into (6) and using the EBB sample path
envelope (13) with envelope rate ρ′ = c and overflow profile
(16) the statistical backlog bound

P[B(t) > b] ≤ eθσ

1− e−θδ
e−θb

follows for all t ≥ 0. Parameter δ > 0 is determined as δ =
c− ρ under the stability condition ρ < c. The free parameter
θ > 0 can be optimized to minimize the right-hand side. The
remaining parameters ρ and σ are characteristics of the arrival

1We note that the summand at τ = t can be omitted to improve the precision
as A(t, t) = 0 by definition.
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process. Solutions for relevant traffic sources will be provided
in Section III. In the following Section II-C, we will derive a
similar substitution for random service processes S(τ, t).

C. Service Envelopes

We start from the definition of dynamic server (1), that
defines service as a random process S(τ, t), and use the basic
methods from Section II-B to derive lower envelopes thereof.
We note, that a significant part of the network calculus literature
is based on a notion of statistical service curves that character-
ize the service by non-random functions, e.g., [6], [10], [12],
[17]. Statistical service curves are connected to envelopes of
random service processes in [25].

A deterministic definition of service envelope for all t ≥
τ ≥ 0 is

S(τ, t) ≥ ρ(t− τ)− b

that defines a lower bound of the service process with parame-
ters ρ > 0 and b ≥ 0. Since by convention S(τ, t) ≥ 0, we can
also write S(τ, t) ≥ ρ[t− τ − b/ρ]+, where the notation [x]+
denotes max{0, x}. The quotient b/ρ has the interpretation of
a worst-case latency up to which the service may be zero.

A service characterization using MGFs is known in analogy
to the effective bandwidth as effective capacity [26]. The model
uses the negative MGF, i.e., with parameter −θ for θ ≥ 0 that
is also known as the Laplace transform. An affine envelope of
the MGF can be defined for θ ≥ 0 as

E
[
e−θS(τ,t)

]
≤ e−θ(ρ(t−τ)−σ). (17)

Note that although (17) is phrased as an upper bound, it defines
a lower bound of the service due to the use of −θ where θ ≥ 0.
Also, the parameters ρ and σ are functions of −θ. Assuming
stationarity of the service process S(τ, t), we will frequently
use shorthand notation MS(−θ, t− τ) = E[e−θS(τ,t)]. The nor-
malized log MGF lnMS(−θ, t)/(−θt) is known as the effec-
tive capacity. It decreases for increasing θ > 0 from the mean
rate to the minimum rate of the service.

Statistical service envelopes that mirror the concept of EBB
are defined in [27] as the so-called exponentially bounded
fluctuation (EBF) model with parameters ρ > 0, b ≥ 0 and

P [S(τ, t) < ρ(t− τ)− b] ≤ ε(b), (18)

where the deficit profile ε(b) decays exponentially as ε(b) =
αe−θb and α ≥ 0. With Chernoff’s lower bound

P[X ≤ x] ≤ eθxE[e−θX ] (19)

for θ ≥ 0 it follows from (17) that ε(b) = eθσe−θb. Finally, the
sample path envelope

P [∃τ ∈ [0, t] : S(τ, t) < ρ′(t− τ)− b] ≤ ε′(b) (20)

with ρ′ = ρ− δ and free parameters δ > 0 and θ > 0 is EBF
with deficit profile

ε′(b) =
eθσ

1− e−θδ
e−θb. (21)

The derivation uses the union bound2 (15) and the same basic
steps as in Section II-B. The free parameters θ > 0 and δ > 0
can be optimized.

D. Convolution-Form Networks

Due to the associativity of min-plus convolution, the network
calculus can abstract a multi-node network by a single equiv-
alent system. The corresponding service process is obtained
by min-plus convolution of the individual service processes
(5), giving rise to the name convolution-form networks [28].
Regarding statistical envelope functions, the recursive insertion
of the departures of the first server as the arrivals of the second
server (4) causes, however, additional difficulties. The reason
is that the min-plus convolution evaluates sample paths of the
arrivals of a server and hence requires sample path guarantees
for the departures of the preceding server, see [6]. First end-to-
end solutions that make use of the convolution-form appeared
in the stochastic network calculus in [12], [14].

In the sequel, we derive the EBF deficit profile first for
two and then by recursive insertion for n dynamic servers in
tandem. The EBF result for tandem dynamic servers is novel
compared to the literature [12], [14]. For the MGF of the min-
plus convolution of two statistically independent and stationary
service processes it is known that [4], [14]

E
[
e−θ(S1⊗S2)(τ,t)

]
=E

[
e−θminυ∈[τ,t]{S1(τ,υ)+S2(υ,t)}

]

≤
t∑

υ=τ

E
[
e−θS1(τ,υ)

]
E
[
e−θS2(υ,t)

]

=

t−τ∑
υ=0

MS1
(−θ, υ)MS2

(−θ, t− τ − υ)

=: MS1
∗MS2

(−θ, t− τ).

In the second line, the expectation of a maximum is estimated
by the sum of the individual terms. The step corresponds to the
use of the union bound (15). Then, under the assumption of
independence, the MGF of the sum of two random processes is
the product of the individual MGFs. For stationary random pro-
cesses we finally obtain the univariate convolution in classical
algebra. The MGF of the service process of an n node network
follows by recursive insertion as

MSnet
(−θ, t) ≤ MS1

∗MS2
∗ · · · ∗MSn

(−θ, t)

=
∑

τi ≥0:
∑n

i=1
τi=t

MS1
(−θ, τ1)MS2

(−θ, τ2) . . .MSn
(−θ, τn).

(22)

Next, we assume homogeneous MGF envelopes (17). We
also provide a solution for the heterogeneous case, that ba-
sically requires additional notation. Since the convolution is
order preserving, we can substitute MSi

(−θ, t) ≤ eθσe−θρt for

2While we apply the union bound for τ = 0, 1, . . . , t, we note that the
precision can be improved if the sum is computed only for τ = 0, 1, . . . , t−
�b/ρ′� since S(τ, t) is non-negative.
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i = 1, 2, . . . , n. The sum in (22) has
(
t+n−1
n−1

)
summands as

there are
(
t+n−1
n−1

)
different non-negative vectors (τ1, τ2, . . . τn)

that satisfy
∑n

i=1 τi = t [29], [30]. It follows that

MSnet
(−θ, t) ≤ enθσ

(
t+ n− 1

n− 1

)
e−θρt.

The deficit profile of an envelope of the type of (18) for
Snet(τ, t) follows from Chernoff’s bound (19) for θ ≥ 0 as

P [Snet(τ, t) < ρ(t− τ)− b] ≤ eθ(ρ(t−τ)−b)MSnet
(−θ, t− τ)

≤ enθσ
(
t− τ + n− 1

n− 1

)
e−θb.

Using the same basic approach as in Section II-B and C, a
sample path envelope (20) can be derived as

P [∃τ ∈ [0, t] : Snet(τ, t) < ρ′(t− τ)− b]

≤
t∑

τ=0

enθσ
(
t− τ + n− 1

n− 1

)
e−θ(b+δ(t−τ))

≤ enθσe−θb
∞∑

τ=0

(
τ + n− 1

n− 1

)
e−θδτ

=
enθσe−θb

(1− e−θδ)n

∞∑
τ=0

(
τ + n− 1

n− 1

)(
e−θδ

)τ (
1− e−θδ

)n

=
enθσe−θb

(1− e−θδ)n
.

In the second line, we used the union bound3 (15) and substi-
tuted ρ′ = ρ− δ where δ > 0 and θ > 0 are free parameters. In
the third line, we let t → ∞ to compute a steady-state bound.
In the fourth line, we arrange terms such that the summands
become the negative binomial probability mass function since
θδ > 0.

Finally, we conclude that the network service process
Snet(τ, t) conforms to the sample path envelope (20) with
envelope rate ρ′ = ρ− δ and EBF deficit profile

ε′(b) =

(
eθσ

1− e−θδ

)n

e−θb. (23)

As before, δ > 0 and θ > 0 are free parameters. For n = 1, (23)
recovers the single node result (21).

A solution for the heterogeneous case, where the service
of each system i = 1, 2, . . . , n has MGF envelope (17) with
parameters ρi and σi, can be derived analogously. It follows that
Snet(τ, t) has envelope (20) with rate ρ′ = mini∈[1,n]{ρi} − δ
and deficit profile

ε′(b) =
eθ
∑n

i=1
σi

(1− e−θδ)
n e

−θb,

i.e., the network path is characterized by the minimum of the
envelope rates mini∈[1,n]{ρi} and the sum of the burstiness
measures

∑n
i=1 σi of the individual systems i = 1, 2, . . . , n.

3As before, to improve the precision, the sum can be evaluated only for τ =
0, 1, . . . , t− �b/ρ′� as S(τ, t) is non-negative.

Fig. 2. Backlog and delay bound.

E. Backlog and Delay Bounds

So far, we considered envelope models of arrivals and ser-
vice independently. For computation of non-asymptotic perfor-
mance bounds, the network calculus offers convenient methods
to compose the partial results derived so far. To distinguish
parameters of the arrivals and of the service, we will use
subscript A and S, respectively.

Consider arrivals with envelope (13). Fix t ≥ 0 and assume
a sample path where

A(τ, t) ≤ ρ′A(t− τ) + bA (24)

for all τ ∈ [0, t]. Also, consider service with envelope (20) and
assume a sample path where

S(τ, t) ≥ ρ′S(t− τ)− bS (25)

and generally S(τ, t) ≥ 0 for all τ ∈ [0, t]. By insertion into (6),
a backlog bound B(t) ≤ b follows as

b = max
τ∈[0,t]

{ρ′A(t− τ) + bA − [ρ′S(t− τ)− bS ]+}, (26)

where b is finite under the stability condition ρ′A ≤ ρ′S . Since
(24) and (25) may fail with probability ε′A(bA) (16) and ε′S(bS)
(23), respectively, it follows by application of the union bound
for any t ≥ 0 that

P [B(t) > b] ≤ ε′A(bA) + ε′S(bS) = ε′. (27)

Next, we compute (26). We substitute ρ′A = ρA + δ and
ρ′S=ρS − δ where δ > 0 is a free parameter, see Section II-B
and D. For stability δ ≤ (ρS − ρA)/2 and

ρA < ρS (28)

is required. The backlog bound follows as

b = bA + bS
ρA+δ
ρS−δ . (29)

Fig. 2 illustrates the backlog bound graphically as the max-
imal vertical deviation of the arrival envelope (13) and the
service envelope (20), where we used that S(τ, t) is non-
negative. The backlog comprises two terms: bA as a measure
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of the burstiness of the arrivals; and bS(ρA + δ)/(ρS − δ) that
is the amount of data that is accumulated at the rate of the arrival
envelope ρA + δ during the latency bS/(ρS − δ) that is caused
by the variability of the service. In addition, Fig. 2 depicts a
delay bound as the maximal horizontal deviation of the two
envelopes. The delay bound follows under the same stability
condition (28) as

P [W (t) > w] ≤ ε′A(bA) + ε′S(bS) = ε′,

where

w = bA+bS
ρS−δ . (30)

Finally, we fix ε′A = ε′S = ε′/2 and derive the quantity bA by
inversion of (16) as

bA = σA − 1
θ

(
ln
(

ε′

2

)
+ ln

(
1− e−θδ

))
, (31)

and bS from (23) as

bS = nσS − 1
θ

(
ln
(

ε′

2

)
+ n ln

(
1− e−θδ

))
. (32)

The three summands of (31) and (32) are due to the burstiness
measure σ, the violation probability ε′, and the sample path
derivation using slack rate δ. Regarding n-node networks, (32)
exhibits a linear dependence on n. As an important conse-
quence, backlog and delay bounds derived thereof grow as

b, w ∈ O(n).

Concluding, the framed equations specify how to compute
backlog and delay bounds with a defined violation probability
ε′ from the rate and burstiness parameters of the traffic arrivals
ρA, σA and the service ρS , σS , respectively. In a final step,
the free parameters θ > 0 and 0 < δ ≤ (ρS − ρA)/2 can be
optimized to minimize b (29) and w (30). The two parameter
characterization of different types of arrivals and service will
be provided in the following section.

III. TRAFFIC AND SERVER MODELS

In this section, we provide the traffic and service parame-
ters that are input to the performance bounds established by
(28)–(32) for relevant cases. We investigate elementary traffic
models in Section III-A, rules for multiplexing in Section III-B,
server models in Section III-C, and a basic model for scheduling
in Section III-D. For all figures, we optimized the free parame-
ters θ and δ numerically.

As a basis, we first consider traffic arrivals at a work-
conserving constant rate server, such as a constant rate link with
capacity c, i.e., S(τ, t) = c(t− τ) for all t ≥ τ ≥ 0. Formally,
expressed as an MGF envelope (17), the service has envelope
rate ρS = c and σS = 0. It is EBF (20) with ρ′S = c and
deficit profile ε′S(bS) = 0 for all bS ≥ 0. Hence, we set bS = 0
and obtain the backlog bound from (29) and the delay bound
from (30)

b = bA, and w =
bA
c
, (33)

with violation probability ε′ = ε′A(bA). The stability condition
is ρA < c and by choice of parameter δ = c− ρA we obtain

bA = σA − 1

θ

(
ln ε′ + ln

(
1− e−θ(c−ρA)

))
. (34)

We will use the bounds obtained for the constant rate server to
evaluate different traffic models in the following sections.

A. Traffic Models

The stochastic network calculus comprises a large variety
of traffic models, including the extensive body of effective
bandwidth results [4], [7]. In this tutorial, we include three
fundamental traffic models: Poisson traffic, that enables a
comparison with exact results from classical queueing theory;
Markovian traffic, that is frequently used to model the On-Off
characteristics of certain sources such as voice; and fractional
Brownian motion, that captures the self-similarity and long
range dependence observed for aggregated Internet data traffic.

1) Poisson: We denote N(t) the number of packets arriving
at a queueing system in the interval [0, t]. The counting process
N(t) is a Poisson process, if the inter-arrival times are mem-
oryless, i.e., exponential. The Poisson process has distribution
P[N(t) = k] = e−λt(λt)k/k! for t > 0 and N(0) = 0 where λ
is the mean arrival rate. The MGF of the Poisson process is
known as [29]

MN (θ, t) = eλt(e
θ−1). (35)

Given arrivals of constant size 1/ν, the cumulative number of
bits that arrive in [0, t] becomes A(t) = N(t)/ν. For the MGF
MA(θ, t) = E[eθA(t)] it follows that MA(θ, t) = MN (θ/ν, t)
and by insertion of (35) A(t) has an envelope (8) with parame-
ters σ = 0 and rate

ρ =
λ(eθ/ν − 1)

θ

for θ > 0. The combination of the Poisson arrival process with
a constant rate server with capacity c corresponds to the M |D|1
model, where the service time is 1/(νc).

The well-known M |M |1 model results if the arrivals are in-
dependent and identically distributed (iid) exponential random
variables Xk with mean 1/ν and MGF MX(θ) = ν/(ν − θ) for
θ < ν. In this case, the arrival process is the doubly stochastic
process

A(t) =

N(t)∑
k=1

Xk.

It has conditional MGF E[eθA(t)|N(t) = k] = (MX(θ))k [29],
such that by unconditioning

E[eθA(t)] = E
[
(MX(θ))N(t)

]
= E

[
eln(MX(θ))N(t)

]
.

By substitution of ϑ = ln(MX(θ)), it follows that [31]

MA(θ, t) = MN (ϑ, t) = MN (lnMX(θ), t).



FIDLER AND RIZK: GUIDE TO THE STOCHASTIC NETWORK CALCULUS 99

Fig. 3. Delay bounds for an M |D|1 and an M |M |1 queue compared to simulation results, respectively, exact results from queueing theory. (a) Tail decay.
(b) Impact of the utilization.

Insertion of the exponential MGF into the Poisson MGF (35)
gives MA(θ, t) = e(θλt)/(ν−θ) that satisfies (8) with σ = 0 and
envelope rate

ρ =
λ

ν − θ

for 0 ≤ θ < ν. For θ = 0 we obtain the mean rate λ/ν.
In Fig. 3, we depict the delay bound w from (33) and (34)

for Poisson arrivals with rate λ at a constant rate server with
capacity c. We use arrivals of constant size (M |D|1) and of
exponentially distributed size (M |M |1), respectively, both with
mean 1/ν. The mean service time follows as 1/(νc), where c
is the capacity. For comparison, we show simulation results for
the response time of the M |D|1 queue and the exact result for
the M |M |1 queue. For the response time of the M |M |1 queue
it is known from queueing theory [32] that ε=e−νc(1−�)w,
where �=λ/(νc) is the utilization. For numerical evaluation we
use ν=1 and c=1. We depict the tail decay of ε for λ=0.5, that
corresponds to a utilization of �=0.5, in Fig. 3(a) and show the
impact of λ, respectively, � on delays for ε=10−6 in Fig. 3(b).

The curves in Fig. 3(a) show an exponential decay that
is characteristic for EBB arrival processes such as Poisson
traffic. Clearly, delays are smaller in case of the M |D|1 model.
Compared to the simulation results for the M |D|1 queue and
the exact result for the M |M |1 queue, the bounds from the
stochastic network calculus are conservative. This is due to a
relaxation of assumptions compared to queueing theory, which
enables including a much larger set of traffic models than
Poisson. For a restricted set of traffic models, that permit the
construction of exponential supermartingales, the tightness of
bounds is improved in [33]. Notably, the bounds in Fig. 3(a)
show the same exponential decay as the exact results. For a
numerical example, consider the M |M |1 queue and ε = 10−6

where the delay bound is approximately 37 compared to the
exact result of 28 resulting in a relative error of 0.3. The relative
error decreases for smaller ε. Also, Fig. 3(b) shows that the
relative error is smaller for moderate to low utilizations and
stays below 0.5 up to a utilization of about 0.8.

Further, it can be observed in Fig. 3(a) that the simulation
results for the M |D|1 queue bend down for ε < 10−6. This
is a general problem when obtaining tail probabilities from
simulations due to the inherently restricted sample size. Further
comparisons of bounds derived from the stochastic network
calculus with simulation results are also provided in [13], [34].

For interpretation of the units, note that in the discrete time
model delays are measured in units of timeslots. As an example,
given packets of 10 kbit size and a link with 10 Mbit/s capacity,
the timeslot can be fixed as the transmission time of one
packet, e.g., 1 ms.

2) Markov On-Off: Next, we consider a Markov modulated
arrival process with a two state Markov chain. Compared to
the memoryless Poisson arrival process, Markov processes have
first-order memory, where the current state depends (only) on
the previous state. In state 1 (Off) the source generates no
arrivals, and in state 2 (On) it generates arrivals with rate r.
The steady state probability of the On state is pon = p12/(p12 +
p21), where pij for i, j = 1, 2 are the transition probabilities
from state i to state j. The mean arrival rate follows as ponr.
In addition, the arrivals can be characterized by a burstiness
parameter T = 1/p12 + 1/p21 that is the mean time to change
state twice. The MGF of the Markov On-Off process satisfies
(8) with σ = 0 and envelope rate [4], [12]

ρ=
1

θ
ln

(
p11+p22e

θr+
√

(p11+p22eθr)2−4(p11+p22−1)eθr

2

)

for θ > 0. For the special case of a memoryless On-Off process
it holds that p11 = p21 and p12 = p22, so that pon = p22 and

ρ =
ln(pone

θr + 1− pon)

θ
(36)

for θ > 0. As Markov traffic falls into the EBB class, it
shows the same characteristic exponential decay as observed for
Poisson traffic in Fig. 3, where the burstiness parameter T of
the Markov On-Off source determines the slope. We will show
results on the impact of the burstiness in Fig. 7.

3) Fractional Brownian Motion: While many relevant ar-
rival processes fall into the EBB class, defined by (9) and (10),
we cover fractional Brownian motion (fBm) as an example of a
process that is not EBB, to draw some important conclusions.
FBm is frequently used as a model of aggregated Internet
data traffic to analyze the impact of long range dependence on
networks. Fbm is a self-similar arrival process with correlated
Gaussian increments. It has MGF [7]

MA(θ, t) = e
θ
(
λt+ θς2

2 t2h
)
, (37)

where λ is the mean rate, and ς2 the variance of the increments.
Parameter h is the Hurst parameter where h ∈ (0.5, 1) denotes
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long range dependence (LRD). If h = 0.5, fBm becomes stan-
dard Brownian motion that has envelope rate (8)

ρ = λ+
θς2

2
.

In case of LRD, i.e., h ∈ (0.5, 1), (37) grows superlinearly with
t, such that no affine MGF envelope as defined by (8) exists.
Consequently, fBm does not fall into the EBB class.

To derive performance bounds for fBm traffic in the stochas-
tic network calculus, a generalized definition of statistical enve-
lope functions E(t) can be used [6], [35]–[37]. By Chernoff’s
bound (11) it holds for θ ≥ 0 that

P [A(τ, t) > E(t− τ)] ≤ e−θE(t−τ)MA(θ, t− τ) = ε.

After solving for E(t), a minimal envelope function follows by
optimization over θ > 0 as [6]

E(t) = inf
θ>0

{
1

θ
(lnMA(θ, t)− ln ε)

}

for t ≥ 0. By insertion of MA(θ, t) from (37), the minimum can
be obtained at θ =

√
−2 ln ε/(ςth), such that [6], [35], [36]

E(t) = λt+
√
−2 ln εςth. (38)

Following the steps of Section II-B, we have to construct
a sample path envelope of the form P[∃τ ∈ [0, t] : A(τ, t) >
E(t− τ)] ≤ ε′ to be able to derive performance bounds. A
respective solution is provided in [15]. Instead, in this work, we
use the much simpler approximation by the largest term (14) to
estimate ε′ ≈ ε. In this case, a backlog bound P[B(t) > b] ≈ ε
at a constant rate server with capacity c follows from (6) by
substitution of E(t− τ) from (38) for A(τ, t) and S(τ, t) =
c(t− τ). Letting t → ∞, a backlog bound is

b = max
τ≥0

{
λτ +

√
−2 ln εςτh − cτ

}
.

The maximum is attained at τ = τ ∗, where [36]

τ ∗ =

(√
−2 ln εςh

c− λ

) 1
1−h

.

By insertion of τ ∗ and after solving for ε the main result

ε = exp

(
− 1

2ς2

(
c− λ

h

)2h (
b

1− h

)2−2h
)
, (39)

that was first reported in [38], [39], is recovered in the stochastic
network calculus.

In Fig. 4, we depict the violation probability ε of a backlog
bound b from (39) for h = 0.5, 0.6, and 0.7. The remaining
parameters are c = 1, λ = 0.5, and ς = 0.5. For h = 0.5, i.e.,
standard Brownian motion that falls into the EBB class, the
curve shows an exponential decay. A fundamentally different
behavior can, however, be observed under LRD, i.e., for h >
0.5, where the decay is much slower and exhibits a Weibull tail.
The same log-asymptotic decay of ε′ with b is also obtained

Fig. 4. Backlog bounds for fBm traffic with Hurst parameter h at a constant
rate server.

from the sample path analysis [15]. The Weibull tail signif-
icantly impacts resource dimensioning as it demonstrates the
inefficiency of buffering LRD traffic [36], [39]. Regarding (39),
the spare capacity c− λ and the buffer size b are equally
important if h = 0.5, whereas spare capacity becomes more
important and buffering less efficient for increasing h, as ap-
plicable for the Internet.

B. Statistical Multiplexing

Statistical multiplexing is the reason for the resource ef-
ficiency of packet data networks. In brief, the aggregate of
independent traffic flows becomes smoother as the number
of flows increases. As a consequence, each additional flow
requires less resources, where the resource requirement of a
flow approaches its mean rate. MGFs provide a convenient and
efficient model to take advantage of this effect. The aggregate
arrival process of the superposition of m arrival processes is

Aagg(τ, t) =

m∑
i=1

Ai(τ, t).

Under the assumption of statistical independence it holds for
the aggregate arrivals that

E
[
eθAagg(τ,t)

]
=

m∏
i=1

E
[
eθAi(τ,t)

]
.

If the arrival processes Ai each have MGF envelope (8) with
parameters ρA and σA it follows that

E
[
eθAagg(τ,t)

]
≤ eθ(mρA(t−τ)+mσA),

where we considered the homogeneous case for notational
simplicity. The aggregate arrivals have MGF envelope (8) with
parameters

ρAagg
= mρA,

σAagg
= mσA.

(40)

In general, the parameters of the MGF envelope model are addi-
tive, i.e., for the heterogeneous case where the arrival processes
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Fig. 5. Number of admissible Markov On-Off flows per unit of capacity
compared to the mean rate and the peak rate allocation, respectively.

Ai have individual MGF envelopes (8) with parameters ρAi
and

σAi
it follows that

ρAagg
=

m∑
i=1

ρAi
,

σAagg
=

m∑
i=1

σAi
.

For a numerical example, we consider the number of admis-
sible Markov On-Off sources m at a constant rate server with
capacity c. Flows are admitted as long as a target delay bound
of w = 100 is violated at most with probability ε′ = 10−3. The
sources are statistically independent and have peak rate r = 1,
mean rate ponr = 0.05, and burstiness parameter T = 300. The
delay bound is computed from (33) and (34) where we use the
aggregate traffic parameters from (40).

Fig. 5 depicts the number of flows per unit capacity m/c
for increasing c. For comparison, an allocation that considers
only the peak rate has m/c = 1 and the mean rate m/c = 20,
respectively. The number of flows that are actually admissible
grows from the peak rate to the mean rate allocation. The
effect is due to statistical multiplexing, that makes the aggregate
traffic smoother as the number of flows increases. In the math-
ematical model, the statistical multiplexing gain is realized by
optimizing the free parameter θ > 0.

C. Server Models

In Section III-A and B we considered different types of
traffic at a constant rate server. Next, we investigate variable
rate servers where the service is a random process, e.g., due to
the characteristics of a wireless channel or due to scheduling
of cross traffic. One of the key contributions of the network
calculus, compared to the theory of effective bandwidths, is
that it comprehends a variety of server models and provides
results for their composition. We first show an elementary
model of a memoryless On-Off server. More elaborate models,
such as Markov On-Off or general Markovian servers, are dual
to the respective traffic models shown before and are therefore
omitted. Next, we illustrate, using the example of the On-Off
server, how to derive a basic characterization of a Rayleigh

fading channel. More elaborate models of wireless channels
that follow the same fundamental approach can be found, e.g.,
in [17], [30], [34], [40], [41].

1) Memoryless On-Off Server: First, we investigate the el-
ementary model of a lossless work-conserving server with a
time-varying capacity, where X(t) denotes the service available
in timeslot t ≥ 0. The cumulative service in [τ + 1, t] for t ≥
τ ≥ 0 follows as

S(τ, t) =

t∑
υ=τ+1

X(υ).

If the increments X(t) are iid random variables, the server is
memoryless and it follows that

MS(−θ, t) = (MX(−θ))t

for t ≥ 0. For the special case of an On-Off server, the in-
crements X(t) are iid Bernoulli trials with probability mass
function pX(r) = pon and pX(0) = 1− pon. The MGF, re-
spectively, Laplace transform is MX(−θ) =

∑
x e

−θxpX(x) =
pone

−θr + 1− pon. It follows that MS(−θ, t) = (pone
−θr +

1− pon)
t for t ≥ 0 is the binomial MGF that has an envelope

(17) with parameters σ = 0 and rate

ρ =
ln
(
pone

−θr + 1− pon
)

−θ

for θ > 0. Note how the envelope rate of the service process
parallels the corresponding rate of the On-Off arrival process
(36). The On-Off server can be parameterized by choice of r
and pon to characterize specific systems, such as a Rayleigh
fading channel in the following Section III-C2.

2) Rayleigh Fading: We consider a system that transmits
data at a fixed rate r over a wireless channel. Communications
is possible if r does not exceed the channel capacity C. The
channel is characterized by a Rayleigh block fading process
that causes fluctuations of the instantaneous channel capacity
C(t) where t ∈ N0, i.e., C(t) is a random process. If C(t) ≥ r,
the data transmitted in timeslot t can be successfully decoded
by the receiver. Otherwise, the data cannot be decoded and
are retransmitted in timeslot t+ 1. Consequently, the system
behaves like an On-Off server with parameters r and pon where
the transmission rate r determines pon = P[C(t) ≥ r]. Given
the distribution of C(t), the system can optimize the free
parameter r, e.g., to maximize the average rate of successful
transmission ponr.

Following the approach in [30], the instantaneous channel
capacity is estimated from the signal-to-noise ratio (SNR) by
the Shannon capacity as C(t) = ld(1 + γ(t)), where the capac-
ity is normalized and measured in bit/Hz/s. Given a Rayleigh
fading channel, the SNR γ(t) is exponentially distributed with
mean value γ.

In Fig. 6(a) we illustrate the relationship between r and pon.
Clearly, pon decreases with increasing r, where ponr reaches a
maximum for r ≈ 1.7. Also in Fig. 6(b), we depict the delay
bound w from (30) with ε′ = 10−6 for Poisson traffic that is
transmitted via the Rayleigh fading channel. The Poisson traffic
has arrival rate λ = {0.5, 0.6, 0.7} and unit sized packets, i.e.,
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Fig. 6. Rayleigh fading channel with an average SNR of 6 dB. (a) The transmission rate r determines the probability that data can be decoded at the receiver
pon. The average throughput ponr is maximized for r ≈ 1.7. (b) Delay bound w versus transmission rate r for different arrival rates λ. The transmission rate that
minimizes the delay bound depends on the arrival rate. (a) Successful transmission rate. (b) Delay bound.

1/ν = 1. The u-shape of the curves is due to the fact that delays
grow unboundedly if the average rate of successful transmission
ponr approaches λ. As Fig. 6(a) shows for the example λ = 0.6,
there exist two values of r, i.e., r ≈ 0.7 and r ≈ 2.8, such
that ponr = λ. All r in between these two extreme points
are feasible as they achieve the stability criterion ponr > λ.
Interestingly, the choice of r that maximizes ponr does not
minimize w. Instead, smaller r become favorable with decreas-
ing λ. The effect is caused by the increase of pon with decreas-
ing r that makes the transmission less variable and hence helps
reduce w.

D. Scheduling

The network calculus uses a notion of leftover service to
characterize schedulers that offer a certain amount of service
to a flow depending on the presence of other traffic. We show
a blind scheduling model from [14] that is conservative in
general, as it does not make any assumptions about the order
of serving traffic. Given a work-conserving system with a
time-varying capacity S(τ, t). Let A(t) = Ath(t) +Acr(t) and
D(t) = Dth(t) +Dcr(t) be composed of through traffic, i.e.,
the flow of interest, and cross traffic, i.e., other traffic. From
(2), it follows after some reordering that

Dth(t) ≥ Ath(τ
∗) + S(τ ∗, t)− (Dcr(t)−Acr(τ

∗))

for t ≥ τ ∗ ≥ 0, where τ ∗ is the beginning of the last busy period
before t. By substitution of Dcr(t) ≤ Acr(t) for causality and
since Dth(t)≥Dth(τ

∗)=Ath(τ
∗) by choice of τ ∗, it holds that

Dth(t) ≥ Ath(τ
∗) + [S(τ ∗, t)−Acr(τ

∗, t)]+ .

Finally, it follows for all t ≥ 0 that

Dth(t) ≥ min
τ∈[0,t]

{
Ath(τ) + [S(τ, t)−Acr(τ, t)]+

}
,

such that for t ≥ τ ≥ 0

Slo(τ, t) = [S(τ, t)−Acr(τ, t)]+

is a leftover service process that satisfies the definition of
dynamic server (1) for the through traffic. Under the assumption

of statistical independence of S(τ, t) and Acr(τ, t), it follows
for the MGF of the leftover service that

E
[
e−θSlo(τ,t)

]
≤ E

[
e−θS(τ,t)

]
E
[
eθAcr(τ,t)

]
,

for t ≥ τ ≥ 0. Given the service S(τ, t) has an MGF envelope
(17) with parameters ρS , σS and the cross traffic arrivals Acr

have an MGF envelope (8) with parameters ρAcr
,σAcr

, it holds
for t ≥ τ ≥ 0 that

E
[
e−θSlo(τ,t)

]
≤ e−θ((ρS−ρAcr )(t−τ)−(σS+σAcr )),

such that the leftover service process Slo has MGF envelope
(17) with parameters

ρSlo
= ρS − ρAcr

,
σSlo

= σS + σAcr
. (41)

We show delay bounds obtained for through traffic that is
scheduled with cross traffic at a constant rate server. The delay
bounds are computed from (30) where we use the leftover
service parameters from (41). Further, we let the cross traffic
parameters be the parameters of aggregated traffic from (40).

In Fig. 7, we illustrate the impact of the cross traffic bursti-
ness on the delay bound for Poisson through traffic. The con-
stant rate server has capacity c = 1. The mean arrival rate of
the Poisson through traffic is fixed to λ = 0.25 in Fig. 7(a)
and varied in Fig. 7(b) where we fix ε′ = 10−6. The size of
the arrivals is deterministic and the arrivals are unit sized, i.e.,
1/ν = 1. The cross-traffic consists of 10 independent Markov
On-Off flows, each with peak rate r = 0.15, mean rate 0.025,
and different burstiness parameters T = 10, 20, 40, and 80. We
observe that the burstiness of the cross traffic directly impacts
the delay bound of the through traffic, where it alters the slope
of the exponential decay.

In Fig. 8, we show end-to-end delay bounds for Poisson
through traffic that traverses a tandem of n homogeneous
constant rate servers, each with independent Markov On-Off
cross traffic. The scenario is illustrated in Fig. 9. The traffic
and service parameters are the same as for Fig. 7(a). We fix the
end-to-end violation probability ε′ = 10−6. Clearly, the delay
bounds grow linearly with n, where the slope is determined by
the burstiness of the cross traffic.
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Fig. 7. Delay bounds for Poisson through traffic with arrival rate λ that is scheduled with Markov On-Off cross traffic with burstiness parameter T at a constant
rate server. (a) Tail decay. (b) Impact of the arrival rate.

Fig. 8. Growth of end-to-end delay bounds for Poisson through traffic at a
tandem of n constant rate servers, each with independent Markov On-Off cross
traffic.

Fig. 9. Equivalent single system representation of a network.

In this section, we showed numerical results for the concate-
nation of tandem systems with scheduling for the special case
of constant rate servers. Due to the modularity of the network
calculus approach, variable rate servers can be dealt with in the
same way, e.g., to analyze tandem Rayleigh fading channels
with cross traffic. We summarize the basic steps of the method
in Section IV-A.

IV. CONCLUSION AND OUTLOOK

We conclude this tutorial with a summary of the meth-
ods that we presented (Section IV-A), pointers to related
works (Section IV-B), and an outlook on open challenges
(Section IV-C).

TABLE I
BUILDING BLOCKS FOR COMPOSITION

A. Toolbox

The results that we presented include stochastic arrival and
server models and rules for their composition. The composition
including multiplexing, scheduling, and series connection is
shown in Fig. 9. The topology in Fig. 9 is also known as a line
topology with single-hop persistent cross traffic. For arbitrary
feed-forward topologies there exist methods that transform
the network into the line topology in Fig. 9, see [19] for an
overview. The general approach is to consider the leftover
service of the systems on the path of the through traffic. For this
purpose, envelopes of the cross traffic at each of the systems are
computed in an iterative fashion.

In the following, we provide a summary of the lessons
learned to guide the reader through the presented method.
Table I gives an outline of the basic steps of the method and
provides pointers to the respective equations for quick access.
In step 1, the parameters of the MGF envelopes of the arrivals
ρA, σA and the service ρS , σS are defined. Optionally, rules
for multiplexing and scheduling can be applied. In step 2, we
make the transition from MGF to EBB envelopes. The outcome
of step 2 is an equivalent single system representation of the
network as depicted in Fig. 9. The resulting system is fully
characterized by the EBB parameters of the through traffic ar-
rival envelope ρA, bA and the network service envelope ρS , bS .
Step 3 provides backlog and delay bounds under the stability
condition ρA < ρS . Finally, the violation probability ε′ can be
fixed and the free parameters θ > 0 and 0 < δ ≤ (ρS − ρA)/2
can be optimized.
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TABLE II
PROS AND CONS OF MGF VERSUS EBB ENVELOPES

B. Duality of Envelope Models

A design decision of the method that we presented is the
transition from MGF to EBB envelopes in step 2, see Table I. In
fact, the transition to EBB could as well take place in any other
step, resulting, however, in a method with different qualities.
Table II considers this aspect and compares the pros and cons
of the MGF and the EBB envelope models. Next, we highlight
some major differences.

Statistical Independence and Multiplexing: While techni-
cally MGFs of sums of non-independent random processes
can be computed, MGFs are in general applied under the as-
sumption of statistical independence. Regarding EBB, overflow
profiles can be added by the union bound without assumption of
independence as, e.g., in (27). On the other hand, the overflow
profiles are essentially complementary cumulative distribution
functions (CCDFs) that can be convolved under the assumption
of independence, to take advantage of statistical multiplexing
[9], [17], [21]. As the MGF transforms convolution into multi-
plication, it provides the computationally simpler approach to
make use of statistical independence.

Scheduling: We presented the blind scheduling model from
[14] that is based on MGFs. The model does not make any
assumptions about the order of serving cross traffic and through
traffic. Hence, it is conservative in general. Solutions for
specific schedulers are derived, e.g., in [6] using statistical
envelopes.

Multi-Node Networks: We showed end-to-end performance
bounds for n statistically independent systems in series that
grow in O(n) [14]. Without assumption of independence, an
upper bound O(n log n) is derived in [12] using the EBB
model. A corresponding lower bound is proven in [13].

Backlog and Delay: Finally, we mention that the transition
from MGF to EBB envelopes that is used in this paper can
be omitted. In [14], MGFs of backlogs and delays are derived
and in a final step Chernoff’s bound is used to compute perfor-
mance bounds thereof. The final computation is, however, more
involved and less intuitive than in case of the EBB envelope
model.

C. Open Challengess

We conclude this paper with an outlook on open challenges
in the stochastic network calculus.

Packet Loss: The definition of dynamic server (1) assumes
a lossless system, i.e., a system that generally provides suffi-
cient buffer space to store backlogged data. Statistical backlog
bounds P[B(t) > b] ≤ ε′ (27) can be interpreted as the prob-
ability of buffer overflow, given a buffer of limited size b, but

provide only an approximation [4]. Solutions for server models
that include loss are still open.

Feedback Control: The deterministic network calculus fea-
tures an elegant formulation of feedback control such as win-
dow flow control. The feedback controlled arrivals that are
input to the network are Afc(t) = min[Auc(t), D(t) + x],
where Auc(t) are the uncontrolled, external arrivals and x is the
window size [4], [5], [42]. In the stochastic network calculus,
the difficulty of this model is due to the fact that sample paths
of the departures determine the arrivals to the network.

Wireless Channels: Non-equilibrium models of wireless chan-
nels receive growing interest, see, e.g., recent works in the area
of effective capacity [26], [43] and in the stochastic network
calculus [17], [30], [34], [40], [41]. Common channel models
that have been explored so far, are Markov or memoryless
processes, such as in Section III-C1, that are calibrated using,
e.g., a fading process. The results provided help to understand
the impact of essential aspects of wireless systems, such as
the fading speed, multiple antennas, or hybrid ARQ, on packet
delays.

MAC and ARQ Protocols: The service provided by random
access protocols as well as automatic repeat request protocols
is inherently random. It lends itself to an analysis using the
stochastic network calculus, see for example the works on
ALOHA [44] and on CSMA/CA [45]. A possible approach
to model the overhead due to retransmissions of lost packets
is [28].
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