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Abstract—Multicasting in wireless access networks is a func-
tionality that, by leveraging group communications, turns out
to be essential for reducing the amount of resources needed to
serve users requesting the same content. The support of this
functionality in the modern 5G New Radio (NR) and future sub-
Terahertz (sub-THz) 6G systems faces critical challenges related
to the utilization of massive antenna arrays forming directional
radiation patterns, multi-beam functionality, and use of multiple
Radio Access Technologies (RATs) having distinctively different
coverage and technological specifics. As a result, optimal multi-
casting in these systems requires novel solutions. This article aims
to provide an exhaustive treatment of performance optimization
methods for 5G/6G mmWave/sub-THz systems and discuss the
associated challenges and opportunities. We start by surveying
3rd Generation Partnership Project (3GPP) mechanisms to
support multicasting at the NR radio interface and approaches to
modeling the 5G/6G radio segment. Then, we illustrate optimal
multicast solutions for different 5G NR deployments and antenna
patterns, including single- and multi-beam antenna arrays and
single- and multiple RAT deployments. Further, we survey new
advanced functionalities for improving multicasting performance
in 5G/6G systems, encompassing Reflective Intelligent Surfaces
(RISs), NR-sidelink technology, and mobile edge enhancements,
among many others. Finally, we outline perspectives of multicas-
ting in future 6G networks.

Index Terms—5G, 6G, multicasting, New Radio, millimeter
Wave, terahertz, multi-beam antennas, optimization, multi-RAT.

I. INTRODUCTION

Forthcoming applications, such as Augmented Reality (AR)
and Virtual Reality (VR), telepresence, 8/16K video, and var-
ious use cases, require a dramatic increase in the transmission
rate over the air interface [1]. A significant rate rise of up to
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20 Gbps per Base Station (BS) was expected in 5G systems
by utilizing the Millimeter Wave (mmWave) band (24− 52.6
GHz). At the same time, there are already plans to use the
upper part of the mmWave band (52.6− 100 GHz) and even
the sub-Terahertz (sub-THz) band (100 − 300 GHz) for 6G
cellular systems [2], potentially increasing the access rate up
to 100 Gbps per User Equipment (UE).

Multicasting is an essential feature of wireless access net-
works that improves resource utilization while serving users
requesting the same content [3]. Compared to wired networks,
in wireless systems, multicasting is hampered by different
propagation conditions experienced by the UE; this forces
the BS to utilize the lowest Modulation and Coding Scheme
(MCS) for the multicast group, thus reducing multicast ef-
ficiency [4]. This has led to research activities related to
optimal multicast group formation and the exploitation of
external mechanisms, such as Device-to-Device (D2D) com-
munications (see [5]–[9] for a detailed outlook), that favored
the support of the multicast functionality in all previous
generations of cellular systems and paved the way to its
specification for 5G New Radio (NR) and future 6G Radio
Access Technologies (RATs).

A. Multicating Challenges in 5G/6G Systems

Supporting multicasting in 5G/6G mmWave/sub-THz sys-
tems poses additional challenges for system designers. First,
to compensate for the limited effective antenna aperture, the
system operating in mmWave/sub-THz band shall utilize mas-
sive antenna arrays operating in beamforming mode [22], [23].
These arrays create extremely directional radiation patterns
with a few degrees of beamwidth towards a given UE. If,
on the one hand, the use of these highly directional anten-
nas allows to increase drastically the delivered data rate of
prospective mmWave/sub-THz BSs, on the other hand, it does
not allow to serve all the UEs that belong to the same multicast
session via a single transmission [24]. Thus, the optimal choice
of multicast subgroups and relevant beamwidth to serve them
becomes a challenging task.

A second challenging issue is associated with the current
antenna arrays’ capacity to simultaneously generate numerous
beams with variable Half-Power Beamwidths (HPBWs) [25],
[26]. This introduces a new level of flexibility into multi-
cast group formation and transmission scheduling, particularly
complicating their design. When several beams are available,
the width of multiple beams to be swept simultaneously must
be set appropriately, considering the overall transmit power
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TABLE I
COMPARISON WITH PREVIOUS WORKS.

Reference Multicasting mmWave 5G Mathematical
Methodology

Main Focus

[7] ✓ ✓ 5G challenges in the view of effective management of multicast applications
[10] ✓ Survey on application layer multicast protocols
[11] ✓ Survey on multicast routing protocols for mobile ad-hoc networks
[12] ✓ ✓ Survey on channel-aware multicast scheduling and resource allocation techniques
[13] ✓ ✓ Survey on network architectures, communication protocols, transmission strategies,

and optimization algorithms to improve the performance of multicast communica-
tions over mobile radio systems

[14] ✓ ✓ Survey on techniques proposed for catering multicast services in cognitive radio
networks

[15] ✓ Survey on analysis of multicasting over wireless access networks
[16] ✓ ✓ Survey on one-hop and multi-hop wireless multi-rate multicasting
[17] ✓ ✓ ✓ ✓ Survey on symbol-level and multicast precoding techniques
[18] ✓∗ ✓ ✓ Survey on opportunities and technologies to support mobility in mmWave com-

munications
[19] ✓ ✓ ✓ Tutorial on mathematical modeling for assessing performance reliability improve-

ment algorithms for mmWave and THz systems
[20] ✓ ✓ ✓ Initial investigation of multicast transmissions using mmWave links
[21] ✓ ✓ ✓ Technological perspectives of 6G multicasting

Our work ✓ ✓ ✓ ✓ Models, methods, solutions, and technologies for multicast scheduling in 5G/6G
mmWave and sub-THz systems

∗ This survey’s focus is not primarily on multicasting. However, the authors discuss few relevant works related to multicasting.

limitation per physical antenna. This implies that power has
to be intelligently distributed over several beams in contrast
to single-beam systems.

An additional issue for mmWave/sub-THz systems is coun-
teracting blockage of propagation paths, including blockage
caused by large static objects, such as buildings [27], [28], as
well as small movable objects, such as human bodies [29],
[30]. Both types of blockage cause significant signal power
degradation at the UE, deteriorating the MCS scheme that can
be utilized for multicast group communications. On top of
this, human body blockage is also highly dynamic, resulting
in state changes at sub-second scales, as demonstrated in [31].

User mobility also complicates the design of
mmWave/sub-THz RATs operated with group-oriented
directional transmissions [32]. In the case of unicast
transmission, the BS antenna radiation pattern is oriented
towards the single UE, and small-scale UE mobility does
not drastically affect the reliable reception. In multicast
communications, on the contrary, beams are guided in
between UEs. As a result, certain UEs, initially located at
the border of the beam’s coverage area, may move out of it
due to even minimal movements. Furthermore, the mobility
of multicast users more likely corresponds to pedestrian flow
based on group motion [33]–[36]. It thus requires using
models capable of reproducing the motion in high-density
scenarios with user interactions.

Yet another critical aspect is related to the unreliable na-
ture of mmWave/sub-THz communications. When operating
over extremely narrow beams in these bands, in addition to
blockage, also fast small-scale turns and displacement of the
UE carried by a user may lead to loss of beam synchroniza-
tion and result in outages. The 3rd Generation Partnership
Project (3GPP) has foreseen the multi-connectivity function
to efficiently avoid outages. It allows UE to simultaneously
support multiple links to BSs that belong to the same or

different RATs [37]. In case of an outage event, UE is allowed
to change its network association point by switching over to
one of the backup links. As a result, the unreliable nature of
mmWave/sub-THz links naturally forces future 5G/6G cellular
systems to become heterogeneous. Given that different RATs
may have different implementation specifics (e.g., numerology,
coverage), the optimal usage of RATs for multicasting services
becomes a key open research issue.

Some of the above-mentioned challenges can be alleviated
by designing new optimization approaches and associated
algorithms and by leveraging advanced functionalities pro-
vided by modern cellular technologies, including Reflective
Intelligent Surfaces (RISs), D2D capabilities of mmWave,
and future sub-THz technologies (e.g., NR-sidelink [38]).
Furthermore, it appears evident that, with the expected increase
in the directivity of the antenna radiation patterns in sub-THz
systems, the need for explicit support to multicast services
shall be carefully evaluated to decide if (and how) it is
implemented in future 6G systems.

As the main difference between 4G systems and future
5G/6G cellular networks is the use of highly directional
antennas, in this paper, we discuss how to address the above-
mentioned challenges in mmWave/sub-THz systems by en-
abling reliable multicasting capabilities. The main focus of
this study is (i) to summarise the impact of directionality on
optimal resource allocation for multicasting in modern and
future 5G/6G mmWave/sub-THz systems and (ii) provide an
overview of novel concepts that may improve multicasting
performance in systems with directional antennas. Thus, we
not only review the results achieved so far but also sketch the
basics of models and algorithms most utilized for performance
optimization of multicasting in these systems. This will allow
interested readers to build their own analytical frameworks to
address the remaining white spots. These questions have not
been covered in any recent research work.
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Fig. 1. Paper organization.

B. Comparison with Previous Studies

Table I shows that the previous research partially addresses
the topics of our work. The studies in [17]–[21] are the most
relevant survey and tutorial-like papers on multicasting in
mmWave systems. While work [17] shares similarities with
our research in terms of covering all aspects in Table I, it is
essential to note that the focus and topic of [17] are entirely
different. It is dedicated to classifying multi-user Multiple In-
put Multiple Output (MIMO) symbol-level and multicast pre-
coding strategies. Differently, work [18] delves into surveying
the opportunities and technologies that facilitate and support
mmWave communications in the presence of mobile users,
touching upon a few relevant works related to multicasting. In
line with our research, work [19] concentrates on mathematical
modeling to evaluate the effectiveness of performance relia-
bility improvement algorithms for mmWave/Terahertz (THz)
systems. However, the multicast aspect is not addressed in
that study. In [20], the study extensively explores the crucial
aspects where mmWave and multicasting intersect. It convinc-
ingly illustrates that limiting wireless links to unicast only
might lead to suboptimal results. Finally, in a more recent
study [21], the authors explore the combination of technolog-
ical advancements and multicasting to address the application
requirements of 6G networks. However, neither [20] nor [21]
present the methodological/modeling parts.

Moreover, these papers do not adequately cover aspects such
as the directionality of transmission, different numerologies,
multi-beam antennas, and multi-RAT systems. Our study seeks
to fill this gap and address these critical issues, accounting
for 5G/6G multicast mmWave/sub-THz resource allocation
specifics.

C. Paper Structure and Content

The structure of the paper is graphically presented in
Fig. 1, whereas the main discussed topics related to multicast
resource allocations, design specifics, and service performance
in 5G/6G mmWave/sub-THz systems are summarized in Ta-
ble II, which readers can refer to for quick navigation through
the paper contents.

In Section II, we outline the current 3GPP/International
Telecommunication Union - Radiocommunication Sector
(ITU-R) standardization efforts and academic activities to-
wards multicast support in 5G NR systems and beyond. Then,
in Section III, we consider multicasting types, deployment
options, and use cases. Further, in Section IV, we introduce
possible modeling approaches to the system components ad-
dressed throughout the entire manuscript. In Section V, we
introduce versatile performance optimization frameworks and
describe the associated algorithms. Learned lessons and major
takeaways, including single-/multi-RAT optimization, are dis-
cussed in Section VI. The use of advanced mechanisms, such
as RIS and Long-Term Evolution (LTE)/NR-sidelink technolo-
gies, among others, to improve the multicasting performance
is considered in Section VII. Future research directions and
conclusions are provided in the closing section.
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TABLE II
MAIN DISCUSSED TOPICS RELATED TO MULTICASTING IN 5G/6G SYSTEMS WITH DIRECTIONAL ANTENNAS.

Multicast specifics Details Reference
Standardization 4G LTE Support of multicasting in 4G LTE Section II-B
Standardization 5G NR Support of multicasting in 5G NR (Rel-17, Rel-18) Section II-C
Research activities in multicast Academic and industrial projects related to multicasting Section II-E
Optimal multicast subgroup size For small cell radii, a single beam for all the UEs is almost always utilized, while

unicast service for each UE is only feasible for higher ones
Section VI-A

Optimal number of beams: single-RAT For the practical ranges of cell size and considered number of UEs (1−10), the optimal
solution always utilizes no more than 2− 3 beams

Section VI-A

Optimal solution vs. heuristics The gap between optimal and heuristic solutions grows with the number of UEs and
the maximum number of supported beams by the antenna array and diminishes with
the amount of available bandwidth

Section VI-A

ML optimal training set size The accuracy of all the considered algorithms remains virtually unchanged when
increasing the training sample size from H1 = 1000 to higher values. This permits
us to consider H1 = 1000 as the lowest limit on the training set size for practical
implementations

Section VI-A

Choice of ML algorithm for multicasting Random Forest and Fine Trees show almost 100% accuracy in terms of resource
utilization over all the considered distances. Recalling that relatively small computational
complexity characterizes trees, one may regard them as the best candidate for subgroup
formation

Section VI-A

ML-based solutions for multicasting A single multicast subgroup is chosen for the 100−225 m radius range. Then, for the
range 275m and beyond, only unicast transmissions are used to serve multicast UEs,
whereas the considered multicast group formation solutions can be utilized for the radii
around 250m

Section VI-A

RAT regime switching There is a clear turning point for small dual-mode BS densities when the system
switches from the regime when mmWave resources are utilized for service to the case
when µWave technology is exclusively utilized. This point is dictated by the mmWave
blockage and propagation conditions

Section VI-B

Optimal number of beams: multi-RAT The number of beams associated with optimal solution is upper limited by 3 for
mmWave and by 2 for µWave technologies across all the considered densities of dual BS
deployment. Moreover, in most cases, only one beam is utilized at µWave technology

Section VI-B

RAT selection When µWave RAT is prioritized for multicast service, mmWave resources are not
utilized at all. However, by utilizing weights for mmWave and µWave resources, the
operator might achieve the desired balance by fitting its needs in a particular deployment

Section VI-B

Technologies for improving multicasting Sidelink, air-to-ground communications, MEC, and ML, among other technologies and
methods, may be used to further improve multicasting performance

Section VII

II. MULTICASTING IN CELLULAR SYSTEMS

After introducing formal definitions, in this section, we
proceed with the outlook on how multicast is supported in
previous generations of cellular systems and then outline 3GPP
standardization efforts in recent 5G releases. We then draw the
differences between 4G and 5G multicasting. We conclude the
section by sketching the main projects having 5G/6G multicast
on their agenda.

A. Main Definitions

3GPP [39] formally defines a multicast service as a “unidi-
rectional point-to-multipoint service in which data are trans-
mitted from a single source to a multicast group in the asso-
ciated multicast service area”. Prior to the service initiation,
UEs need to subscribe to a specific multicast service and join
the multicast group. A multicast subscription group is defined
as a collection of UEs that have Multimedia Broadcast and
Multicast Service (MBMS) activated in the multicast mode. A
subset of UEs belonging to the multicast subscription group
forms a so-called multicast group. Finally, we refer to the
multicast session as a continuous reception of a multicast
session of finite duration by UEs.

A single multicast service may ensure one or several suc-
cessive multicast sessions but can only have one multicast
session active at any time. Therefore, a service might consist
of a single continuous session (e.g., a multimedia stream)

or multiple intermittent multicast sessions over time (e.g.,
messages). Unlike the broadcast mode, only subscribers of a
specific multicast service can receive this service. The Public
Land Mobile Network (PLMN) operator, the user, or a third
party may manage the subscription. The end-user’s charging
data1 is expected to be generated for the multicast mode at
the MBMS Transport Service layer [39].

B. Multicasting Support in 4G LTE

To enable multicast capabilities over cellular systems, the
3GPP has introduced MBMS in 2005, which, by design, has
two operational modes: broadcast and multicast.

Later, 3GPP Rel-9 specified the evolved MBMS (eMBMS)
architecture, which has then become the enabler for group-
based services in LTE cellular networks [40]. The RAT part
of the MBMS architecture includes the following components:
(i) eNodeBs, i.e., the LTE BSs, providing the last-mile con-
nectivity for UEs, and (ii) the so-called MultiCell/Multicast
Coordination Entity (MCE) systems, in charge of configuring
transmission parameters. eNodeB is responsible for resource
allocation procedures leveraging the channel quality feedback
from UEs regularly sent over the control channel. The core net-
work in eMBMS system consists of: (i) Mobility Management
Entity (MME) performing mobility management functions in

1Charging data related to security procedures for the end-user at MBMS
User Service layer, cf. clause 7 [39].
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addition to authentication and authorization, (ii) MBMS Gate-
way (MBMS-GW) – a node responsible for packet transmission
process from the core network to eNodeBs, and (iii) Broadcast
Multicast-Service Center (BM-SC) that manages multicast
groups and also implements service advertising functions.

The eMBMS system supports two operational models:
(i) Multicast-Broadcast Single-Frequency Network (MBSFN)
– MBMS service over single frequency network and (ii) Single
Carrier Point-to-Multipoint (SC-PTM). MBSFN enables the
delivery of the same content to the cluster of cells that belong
to the same MBSFN area by means of a time-synchronized
transmission via the same set of resources. This functionality
enables the dissemination of the content simultaneously to
UEs located in multiple cells within the MBSFN area, which
are likely to receive multiple replicas from different BSs.
Differently, SC-PTM supports multicast transmission over a
single cell.

The MBMS multicast service provisioning is initiated with
UEs subscribing to the service and MBMS performing service
advertising. UEs then join the session, and the multicast
session starts upon MBMS notification. The content dissem-
ination is then performed for the multicast session duration,
followed by the session stopping with UEs leaving the mul-
ticast group. The system allows for soft configuration, that
is, depending on the multicast service needs, some of the
described steps can be repeated while some may run in parallel
as discussed in [41].

C. Multicasting Support in 5G NR

In 3GPP Rel-15/16, no support for multicast NR func-
tionality is standardized. However, according to 3GPP plans,
multicast service delivery in 5G NR cellular systems will be

based on the reuse of unicast NR functionalities, thereby al-
lowing for faster commercialization of multicast services [43].
The required changes to the 3GPP 5G system architecture
facilitating multicast and broadcast capabilities are further
introduced in 3GPP Rel-17 [43].

In Fig. 2, the 5G Multicast and Broadcast Services (MBS)
system architecture is presented. The new functional compo-
nents introduced into the 5G Core (5GC) to support MBS,
highlighted with dashed lines, are briefly described below:

• Multicast/Broadcast Session Management Function
(MB-SMF). This entity orchestrates multicast and
broadcast sessions that also include Quality of Service
(QoS) provisioning. Specifically, it is responsible for
the configuration of the Multicast/Broadcast User Plane
Function (MB-UPF) by utilizing network policies
specified by the Policy Control Function (PCF).

• MB-UPF. This entity serves as an entry point to the
system and provides a session anchor. As described
above, MB-UPF cooperates with the MB-SMF subsystem
for MBS data reception.

• Multicast/Broadcast Service Function (MBSF). MBSF
provides the service support for the MBS subsystem
and interacts with conventional functionalities of pre-
vious generations of cellular systems, such as LTE
MBMS. To determine MBS multicast session and trans-
mission parameters, this component also interworks with
Application Function (AF)/Application Server (AS) and
MB-SMF. Additionally, if Multicast Broadcast Service
Transport Function (MB-STF) is utilized for multicast
session provisioning, then MBSF utilizes MB-STF ser-
vices.

• MB-STF. This entity provides a media anchor for multi-
cast traffic, when this is required for service provisioning.
Specifically, MB-STF provides IP multicast applications
with packetization functions that include flow splitting,
application error control, etc.

Furthermore, the functional behavior of several other ele-
ments (such as PCF, Network Exposure Function (NEF), AF,
Session Management Function (SMF), User Plane Function
(UPF), Access and Mobility Management Function (AMF),
and Network Slice Selection Function (NSSF)) has been
enhanced to support MBS.

In new-generation RATs, the high-level architecture for
5G MBS recognizes only NR as a radio access technology
(NG-RAN). The physical layer NR functionality, including
conventional signaling and data channels (PDCCH, PDSCH),
as well as waveforms specified in 3GPP Rel-15/16, is assumed
to be utilized for actual data delivery. Reducing the overall
impact of multicast service support on the radio part design
is, in fact, a common goal of 3GPP. Still, coordinated and
flexible resource usage for the implementation of unicast and
multicast services should be provided using the standardized
NR functions.

The logical set of actions driving the MBS session es-
tablishment and management is [43]: (i) service information
is delivered from the service layer to the 5GC, (ii) UEs
request to join an MBS session, (iii) an MBS flow transport is
established, (iv) data are delivered to UEs. Once the multicast
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session expires the transport provided by MBS is released and
can be utilized for another session.

From the 5GC perspective, two delivery methods are de-
fined [43], as illustrated in Fig. 3. In both cases, only one
copy of the data packet is delivered to the 5G Core Network
(5G CN). Then, the procedure differs for individual and shared
MBS delivery options. In the former case, a separate content
copy is delivered by 5G CN to all the participating UEs via
separate Protocol Data Unit (PDU) sessions. When instead
the shared mode is utilized, a content copy is first delivered
to RAN nodes, and then these nodes are responsible for
the delivery of the data traffic to UEs. As the shared mode
potentially allows a more efficient radio resource utilization,
we concentrate on this option.

At the radio interface, two delivery mechanisms are avail-
able for the shared MBS delivery option, see Fig. 3. They
differ from each other in that one involves the use of the Single
Carrier Point-to-Point (SC-PTP) while the other uses the Point-
to-Multipoint (PMP) delivery method. In the former mode,
different data packets are delivered to individual UEs, while
in the PMP mode, a multicast group consisting of multiple
UEs receives a single copy of the data packet. It is worth
mentioning that the combination of PMP and Point-to-Point
(PTP) mechanisms can be utilized for data delivery to UEs.

The mixed unicast/multicast mode has been recently defined
in 3GPP Rel-17 for the dynamic switching between PTP
and PMP transmissions [44], [45]. In general, 5G broad-
cast/multicast requirements can be met either by deploying
a stand-alone dedicated broadcast network or by adopting a
mixed unicast/multicast operation mode. In the second case,
the aim is to incorporate PMP transmissions in the RAN as a
built-in network delivery optimization functionality. This re-
quires seamless switching between PTP and PMP transmission
regimes. As required by the 3GPP, the mixed mode should be
implemented as close to the unicast transmission as possible
to minimize additional options in the RAN.

In addition to MBMS, 3GPP Rel-17 also introduces en-
hancements to further improve the performance of 5G systems.
These enhancements not only focus on seamlessly incorporat-

ing support services but also aim to ensure uninterrupted con-
nectivity in diverse deployment and environmental conditions.
This is primarily achieved through further developments in
(i) support of reduced capability UEs (RedCap), (ii) usage of
non-terrestrial connectivity to improve systems flexibility and
service delivery options, and (iii) utilization of upper mmWave
bands in the range 52− 100GHz for enhanced throughput.

In Rel-18, 3GPP will proceed to specify 5G-Advanced
that will further enhance cellular system capabilities for
mobile broadband services [46], which will continue to be
studied also in future releases. The topics of interest in-
clude advanced DL/UL MIMO, Mobile Integrated Access
and Backhaul (IAB), smart repeater, Artificial Intelligence
(AI)/Machine Learning (ML) data-driven designs, enhanced
mobility, evolved duplexing, boundless extended reality, ex-
panded sidelink, drones and expanded satellites communica-
tions, NR-Light (RedCap) evolution, expanded positioning,
multicast, and other enhancements. As highlighted in [46],
additional improvements will finally concern the support of
diversified services over the same NR radio interface. This
will require modifications to the forwarding functions and
configurability of the radio interface.

D. Difference Between Multicasting in 4G and 5G

It is essential to highlight the difference between LTE and
5G multicasting in terms of transmission mode and radio
resource management. For both technologies, the MCS for the
multicast group is determined by the multicast group member
with the worst channel condition (i.e., the lowest Channel
Quality Indicator (CQI) among those collected). However, the
principal difference is that, in LTE systems, omnidirectional
transmissions are performed, and subgrouping is done based
on the required MCS (see Fig. 4 for illustration). In this case,
users located closer to the BS will receive images/videos of
better quality. Differently, 5G NR BS operates with directional
transmissions, where subgrouping strategies usually aim at
increasing systems performance and primarily rely on the
positions of the multicast users. Therefore, the radio resource
management for 5G is entirely different from LTE. This survey
focuses on 5G and future generations of mobile networks.

E. Main Projects addressing 5G/6G Multicasting

With a view to the broad adoption of 5G in diversified
vertical markets and, at the same time, to contribute with their
results to standardization activities in 3GPP and other bodies,
several projects involving industrial and research players aim
to improve the methods of content dissemination in 5G and
test their performance in real operating environments.

METIS [47] stands for Mobile and Wireless Communica-
tion Enablers for the Twenty-First Information Society. The
project’s primary goal is to establish the groundwork for
5G, the next-generation mobile and wireless communications
technology. The project, in particular, aims to: (i) develop the
overall 5G radio access network design, (ii) provide the 5G
collaboration framework within the 5G-PPP for evaluating 5G
radio access network concepts, and (iv) participate in activities
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Fig. 4. Difference between multicasting in 4G and 5G.

of regulatory and standardization bodies for an efficient stan-
dardization, development, and economically appealing roll-
out of 5G with a solid European footprint and head-start. To
achieve its objectives, METIS-II builds firmly upon projects,
such as METIS, 5GNOW, MiWaveS, etc. It is important to em-
phasize that the developed resource management framework
of the METIS-II project is also aimed at efficiently supporting
the novel modes of communication envisioned in 5G systems,
such as multicasting, D2D, and self-backhauling.

5G-Xcast [48] is a 5G-PPP Phase II project focused on
broadcast and multicast communication enablers for 5G wire-
less systems. The 5G-Xcast aims to exploit unicast, multicast,
broadcast, and local caching delivery modes. It also develops
techniques to support media content and services migration
from legacy systems. In designing media delivery options,
the project considers a wide range of 5G use cases in dif-
ferent contexts, such as automotive (Vehicle-to-Infrastructure
(V2X) broadcast service), public safety (multimedia public
warning alert and multimedia America’s Missing: Broadcast
Emergency Response (AMBER) alert), Internet of Things
(IoT) (massive software and firmware updates), and media and
entertainment (hybrid broadcast service, AR/VR broadcast,
remote live production), making sure they fit together.

The project analyzes the requirements for future media,
considering both commercial and technological issues. 5G-
Xcast establishes the top-level requirements for the transport
and application layers and the system architectures. It provides
seamless access to information and services at any time, loca-
tion, and device. Moreover, 5G-Xcast (i) adopts a pragmatic
approach providing detailed specifications, proof-of-concept

prototypes, and demonstrations, (ii) closely collaborates with
important 5G-PPP Phase-II initiatives and (iii) contributes to
3GPP and other standardization bodies.

FANTASTIC-5G [49] is a European project that uses a
modular architecture to create a new multi-service air interface
at frequencies below 6 GHz. The features sought to allow the
system to adapt to the predicted heterogeneity, include adapt-
ability, scalability, versatility, efficiency, and future-proofness.
The project considers the following services: Mobile Broad-
Band (MBB), Massive Machine Communications (MMC),
Mission Critical Communications (MCC), Broadcast/Multicast
Services (BMS), and V2X.

Besides, it aims to: (i) develop an air interface to enable
the in-band coexistence of highly different services, UE types,
and traffic/transmission characteristics, (ii) enable ubiquitous
coverage and high capacity, (iii) induce high efficiency in
terms of energy and resource consumption, (iv) render 5G
more future-proof than former generations through the more
accessible introduction of new features, (v) validate the devel-
oped concepts through system level simulations and proof of
concepts, (vi) push the innovations for standardization.

5G-RECORDS [50] aims to create an interface between 5G-
connected devices and existing broadcast production infras-
tructure via an orchestration layer so that there is no difference
in the functionality or robustness of the UEs for the end-user.
The project considers three use cases to encompass some of
the most challenging circumstances to be displayed in the pro-
fessional content creation framework: live audio production,
multiple cameras wireless studio, and live immersive video
production. Processing audio and/or video data sources with
high criteria for Key Performance Indicators (KPIs), such as
data rate, latency, synchronization, availability, and reliability,
is required to effectively integrate the mentioned use cases into
the 5G ecosystem.

The objectives of 5G-RECORDS are as follows:(i) to
design and develop 5G components based on 3GPP Rel-15,
16, and beyond; (ii) to integrate the developed components into
end-to-end 5G infrastructures; (iii) to validate the components
in the context of the considered use cases; (iv) to demonstrate
the potential value that 5G brings to the content production
sector; and (v) to influence standardization and regulatory bod-
ies through testbeds, demonstrations, and technical solutions.

III. MULTICASTING TYPES AND DEPLOYMENT OPTIONS

In this section, we specify multicasting types, deployment
options, and use cases. Finally, we conclude by introducing
the main metrics of interest.

A. Multicasting Types

In a networking environment, we distinguish between live
and stored multicasting content. In the former case, audio,
video, or multimedia services are broadcasted by the content
provider through the operator’s network, and UEs join the
shared session. Alternatively, the multicast service can be
organized by the operator on-demand, where UEs request
similar content at the same time. Two different models are
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TABLE III
APPLICATION REQUIREMENTS FOR 5G ADVANCED (RELEASE 19) [51], [52] AND GENERIC 5G/6G APPLICATIONS.

Applications/
Requirements

Intelligent
Transport [51]

AR/VR [51] Broadcast-like
services [51]

Factory
Automation Motion
Control [51]

General 5G [21],
[53]–[55]

General 6G [21],
[53]–[55]

UE density 1000/km2 ≤ 10 UEs 15 TV channels of 20
Mbps on one carrier

105/km2 - -

UE speed Vehicles, bicycles,
pedestrians

Stationary and
pedestrian UEs

Stationary, pedestrian,
and vehicular UEs
(up to 500 km/h)

- Up to 500 km/hr Up to 1000 km/hr

Service area 2 km along a road 20 m x 10 m up to 200 km 1000 x 1000 x 30 m - -
Reliability 99,999% 99,99% - 99,9999% 99,999% 99,9999999%
E2E latency 30 ms 10 ms <20 ms 1 ms 10-1 ms 1-0.1 ms

Emitted power: 23 dBm – non-public safety (1 Tx, 1 Rx antennas), 23/31 dBm – public safety (2 Tx, 2 Rx antennas)
Tx gain: 0 dBi, Noise floor: 9 dB [52]

utilized to represent these cases from a multicast service
provisioning duration point of view.

Furthermore, different models are utilized for performance
evaluation and optimization purposes. For performance evalua-
tion purposes, dynamic session arrival models are convention-
ally utilized. Furthermore, one needs to explicitly differentiate
between broadcast and multicast services. In the broadcast
case, typically, the duration of a broadcast service provisioning
is modeled by a random variable characterizing the external
arrival process in relation to UEs joining the broadcasting.
Alternatively, for multicast content, a multicast service provi-
sioning is assumed to be initiated by the first UE requesting the
considered content and then prolonged by other UEs joining
the multicast transmission.

There are additional properties of multicast traffic types
it is worth recalling. First of all, in all the cases, typically,
non-adaptive session rates are considered. The rationale is
that multimedia information conventionally disseminated us-
ing multicast services has limited application layer adaptivity
to changing network rate [6]. Secondly, adaptivity is difficult to
enforce when operating over cellular systems with significant
channel state variation due to the need to change the service
rate for all the UEs. However, this implies that the amount of
resources needed to serve a session may change over time.

B. Deployment Options

The emergence of rate-greedy services, such as video dis-
tribution, AR/VR applications, holographic telepresence, and
over-the-air software updates, requires careful management
of network resources at the RAT. Owing to the correlation
between requests for content on multiple BSs located in close
proximity, additional orchestration capabilities are naturally
needed in the traffic distribution process. The usage of multi-
cast and broadcast services may help alleviate the shortage of
bandwidth, delivering these services efficiently to the users.

In compliance with 3GPP requirements, only downlink
operation of multicast and broadcast services needs to be
supported. For example, this implies the distribution of 4K/8K
Ultra-High Definition (UHD) video over a certain area of
interest comprising a cell sector, a cell, or a group of cells.
The other requirements on the broadcast/multicast support are
provided in 3GPP TSs 22.146, 22.246, and 22.101 [39], [41],

[56]. Differently, application requirements and deployment de-
tails are application-specific. For example, the density of UEs
participating in sports events in a stadium differs from that of
UEs visiting an art museum. Then, the propagation conditions
differ (i.e., indoors with numerous obstacles, outdoor street,
outdoor open space, etc.) depending on the use case. This
leads to particular deployments depending on the application
scenario for which multicast enhances the system performance.
In Table III, we provide four different application domains
with their deployment options (e.g., service area, UE density,
transmit power) taken from the 3GPP work items.

For performance optimization, standardized 3GPP or ITU-R
models are conventionally utilized. In this case, the system is
considered in static conditions with a certain number of active
UEs, and typically, there is no difference between models
utilized for different multicast services.

C. 5G/6G Multicast Use Cases

The market scenario for future 5G/6G multicast applications
can be roughly seen as characterized by the two types of
services [7] illustrated in Fig. 5: (i) evolved LTE applications
tailored for human users, and (ii) machine-oriented applica-
tions involving Machine Type Communications (MTC).

The former includes the following use cases:
• Mobile video: mobile TV, Video-on-Demand (VoD);
• High Quality of Experience (QoE) services: news, adver-

tising, AR/VR, disaster recovery, forecast;
• Location-based: AR, disaster recovery, public safety.
The latter applications include the following:
• Smart environments: smart homes, smart offices, smart

shops, smart lighting, industrial plants, green environ-
ments;

• Intelligent Transport System (ITS): assisted driving, au-
tonomous driving fleet management, cellular Vehicle-to-
Everything (V2E) [57];

• Software/firmware over-the-air upgrades;
• Airborne communications [57].
Focusing on the link between multicast types and use cases,

the content provider decides to deliver either live or stored
contents depending on the application types. Live content
delivery requires continuous and uninterrupted data transmis-
sion from the source to the recipients. This type of multicast
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service is particularly useful when there is a need to distribute
time-sensitive information simultaneously to a large audience,
such as for assisted driving. Stored multicast content delivery
instead involves the distribution of pre-recorded or on-demand
content. This type of multicast service allows users to access
and consume content at their convenience or send them a file
of a finite size. An exemplary application is a software update.
While both live and stored content multicast services offer
valuable distribution mechanisms, specific service parameters
may differ depending on the operator’s requirements. Factors
such as the size of buffered content, delivery timing, and
quality of service can be tailored to meet the operator’s
objectives and optimize the end-user experience. For instance,
an operator might buffer a certain amount of live content to
account for potential network fluctuations or delays, ensuring
a smoother viewing experience for the audience. Similarly, in
the case of stored content, the operator may define delivery
timing parameters to control when and how quickly content is
made available to users.

Human-oriented applications contribute significantly to the
exponential growth of the multicast services market, which is
mainly fueled by the following service categories [7], [57],
[58].

Mobile Video: In recent years, video downloading and
streaming, video conferences, concerts, and other online events
have grown in popularity. As a consequence, group-oriented
mobile TV and VoD services are expected to play a crucial role
in 5G/6G systems, being transmitted over the network at UHD
quality. This category of applications demands high data rates,
low jitter, and any-place and any-time connectivity. Designing
solutions that allow multicast applications to coexist with
services of different natures, such as unicast and broadcast
ones, together with effective resource allocation techniques,
is essential for the commercial success of such bandwidth-
intensive applications. Additionally, timing synchronization
within the multicast group must be addressed. Furthermore,
these applications can be run both indoors and outdoors, where
small-scale and large-scale blockage may affect communi-
cations, which is especially critical at high frequencies and
at multicast transmissions, where the data rate of an entire
group is determined by the UE experiencing the worst channel
conditions.

High-QoE Services and Location-based Applications:
The recent scientific literature places great emphasis on an
issue that plays a key role in various 5G/6G multicast appli-
cations, namely the improvement of the QoE. This can be
achieved, for example, by allowing a set of UEs to enjoy
content adapted to their specific profiles (for example, interests
and preferences) or by enabling the reception of the service
based on the location of the UE. For this reason, in the
NetWorld2020 white paper [59] and in some UE projects (for
example, METIS and 5GNOW), the UEs of 5G/6G systems
are always considered strictly connected to the surrounding
environment. An example of location-based services developed
specifically for commercial reasons is provided by AR/VR
multicast applications that allow groups of UEs to obtain
additional information from the surrounding environment in
order to carry out their daily activities more effectively.

Human-oriented applications Machine-oriented applications

Video-on-demand

VR/AR glasses

Mobile TV

Mobile video

Intelligent Transportation Systems

Airborne communication

Smart
environments

Smart home

Fig. 5. Human- and machine-oriented applications for 5G NR scenarios.

Similarly, high QoE location-based multicast communications
can be targeted for disaster recovery situations, where a group
of UEs (victims and rescuers) receive information of common
utility during an emergency (e.g., natural disaster, medical
emergency, explosion) so they can respond accordingly [7].
The benefits gained with multicasting will be much more
significant as future high-quality immersive content formats,
such as Ultra-High Definition TV (UHDTV), 360° video, and
AR/VR, become more prevalent [60].

Such applications introduce additional challenges in manag-
ing UEs positions and profiles, requiring precise mechanisms
for estimating and tracking UE positions, as well as effec-
tive methods and protocols for group formation and service
announcement. The current MBMS standard architecture of
the 3GPP needs to be modified to provide these new func-
tionalities. Furthermore, enhanced-QoE multicast applications
require ultra-low latency data transfer capability, high depend-
ability, extended coverage, and blockage mitigation to provide
appropriate signal quality to UEs in unfavorable locations.

Intelligent environments: One of the main purposes of the
platforms that exploit MTC in 5G systems is the possibility
of supporting stakeholders and users in using services in
everyday environments at reduced costs, of contributing to the
improvement of their quality of life and to optimize their work
activities by providing them with real-time data on which to
base their decisions. A prime example of the benefits deriving
from multicast MTC applications is provided by users who,
through their UEs, transmit messages outside their residences
to a series of actuators to turn on/off electrical equipment (such
as the heating/cooling system). Similarly, specific user/worker
needs can guide the monitoring and control of home or
office lighting systems. Another example is the application
of intelligent lighting for homes, offices, and urban areas.
For example, energy savings can be achieved by turning on
the lights on country roads only when a car is approaching
and turning them off when no vehicles are in the vicinity. In
addition, intelligent industrial facilities could rely on multicast
communications to effectively transmit control, warning, and
safety management signals (for example, shutting down all
assembly line devices following an emergency or reconfiguring
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them all during normal operation).
These applications can also be useful in environments where

multicast can help manage groups of sensors/actuators in a
“green” perspective to minimize energy consumption (a crucial
challenge in 5G/6G systems), thereby extending the life of
their batteries. Multicast applications for smart environments
usually require low latency and low power consumption during
communications. These constraints offer challenges for the
effective design of customer and location-based grouping
methods while minimizing the multicasting overhead towards
the interested UEs.

Intelligent Transport Systems: 5G networks are proving
to be an effective support to the plethora of V2X applications
that are emerging in future Automotive scenarios, where
actuators/sensors will be installed either on the roadside and
in cars to receive/transmit control/data signals. The delivery of
data of different natures to interested terminals participating
in the same ITS services or deployed in the same area might
be combined to improve the effectiveness of dissemination.
At the same time, multicast transmissions may support fleet
management systems. However, multicast transmissions for
ITS might make it difficult to design procedures intended
for group formation/re-formation that operate at low latency
and have a location-based nature. This is due to the UE high
speeds and high-frequency operations, which are susceptible to
blockages, resulting in unfavorable Non-Line-of-Sight (nLOS)
conditions.

Software/Firmware Upgrade: Sensors, smartphones, and
other smart devices require software/firmware upgrades pe-
riodically or at specific events/dates. Smart devices might
need to get newly released software/firmware updates to
update/modify their capabilities or address flaws. These may
also be delivered based on the location where the affected
sensors/actuators are installed. Again, the primary concern is
related to group formation. An option could be that the owner
of the sensors, not the network provider, could handle group
formation (e.g., because she/he is interested in delivering
data solely to its own devices depending on position and
features, and associated finality). Therefore, defining effective
customer-based group formation techniques becomes a further
priority.

Airborne Communications: Group communications are
advantageous for applications and services involving the use of
drones and which include, for example, aerial video capture,
support to rescue actions, surveillance operations, control of
drone movements, and their safety. Multicasting communica-
tions involving drones are vital for several of the mentioned
applications, since it enables the delivery of rich content to
numerous recipients with fewer resources and allows several
UEs to dependably receive vital data (e.g., drone safety
warnings and drone traffic schedules). Drone multicasts may
also assist terrestrial multicast systems in relaying information
to group members in nLOS conditions. Drones often relocate
to acquire data from a variety of angles and to adjust the Line-
of-Sight (LOS) states between sky and ground UEs.

In conclusion, multicast transmissions can provide more
efficient delivery than unicasting every time a given data from
an application must be delivered to multiple UEs simultane-

ously. Thus, multicasting is expected to be vital for 5G/6G
applications in many verticals and applications [60].

D. Metrics of Interest

Performance optimization algorithms are required to enable
optimized resource usage at any given time instant. These
algorithms are covered in Section V. For performance opti-
mization purposes, we need to specify optimization criteria.
As this paper mainly concentrates on access network resource
optimization, the main metric to consider is the utilization of
resources in serving UEs, which shall be minimized. More
specifically, in the presence of multiple beams, one needs to
account for the ratio of used resources to all the available
resources, as adding one more beam to the system increases
the amount of available resources. At the same time, an un-
derutilization of these resources could occur due to constraints
related to the value of maximum emitted power, as power
needs to be split between beams.

The optimization process should aim to simultaneously de-
termine the following metrics: (i) ρ – the fraction of available
resources that are occupied, (ii) L opt – the optimal number of
beams in the system. A further goal is to determine Inter-Site
Distance (ISD) D and, thus, η – the minimum BS deployment
density needed for the provision of the multicast service.

IV. MODELS FOR THE KEY SYSTEM COMPONENTS

The radio part of 5G/6G systems has several specifications
that are vital for the performance optimization of multicast ser-
vice performance. Therefore, the present section summarizes
the most commonly used approaches to model propagation,
antennas, and blockage phenomena.

We note that the propagation properties, antenna designs,
and blockage specifics are qualitatively similar in mmWave
and sub-THz bands. The main difference is quantitative, e.g.,
different blockage attenuation is produced in different bands.
For this reason, in this section, we concentrate on models cap-
turing qualitative properties of different radio part elements,
highlighting sub-THz specifics whenever needed.

We also emphasize that the models described below can
be effectively utilized in various communication scenarios
without being limited by the type of service (e.g., multicasting,
unicasting.) This is because the physical phenomena and
radio part design, such as antenna, blockage, and propagation
models, do not depend on the type of service being provided.
It is crucial to highlight that, unlike unicasting, the channel
conditions of the worst user in the multicast group determine
the channel conditions of the entire multicast group.

A. Antenna Models

The antenna model is a critical part of the radio subsys-
tem for performance optimization and evaluation of multicast
service in 5G/6G mmWave/sub-THz systems. Specifically, it
defines how many UEs can be organized in a single multicast
group and how efficiently resources are utilized. Thus, careful
modeling accounting for compromise between applicability
and accuracy is of special importance.
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TABLE IV
ANTENNA HPBW AND ITS APPROXIMATION [66].

Array Value, direct calculation Approximation
64x1 1.585 1.594
32x1 3.171 3.188
16x1 6.345 6.375
8x1 12.71 12.75
4x1 25.58 25.50

TABLE V
ANTENNA ARRAY GAINS [66].

Array Gain, linear Gain, dB
64x1 57.51 17.59
32x1 28.76 14.58
16x1 14.38 11.57
8x1 7.20 8.57
4x1 3.61 5.57

1) Geometric Single-beam Antenna Models: The main fea-
ture of antenna arrays in the context of multicasting is their
directivity and gain in transmit/receive directions. The former
parameter is often captured by utilizing HPBW, i.e., the
angle, where the emitted power decreases by a factor of two.
Detailed antenna radiation pattern model capturing not only
the main lobe but side and back lobes is defined in [61] as the
superposition of individual elements. However, as the model
is algorithmic in nature, it can only be utilized in simulation-
based system-level performance evaluation.

A simplified model utilized for mmWave/sub-THz per-
formance optimization and evaluation purposes is a cone-
type model, see, e.g., [62]–[65]. The radiation pattern in the
model is a cone with the angle α. The same angle has the
HPBW of the antenna array. By following [66], the HPBW
corresponds to the number of elements in the appropriate
plane. Specifically,

α = 2|θm − θ3db|, (1)

where θm is the location of the array maximum, θ3db is the
angle, where the gain of the radiation pattern decreases by 3
dB as compared to the array maximum. The location θm can
be calculated as θm = arccos(−β/π), where β is the phase
excitation difference affecting the physical orientation of the
array. In our case θm = π/2 for β = 0. The 3 dB point is
provided by

θ±3db = arccos[−β ± 2.782/(Nπ)], (2)

and N is the number of antenna elements.
The gain over the HPBW can be found as [66]

GA(θ
±
3db) =

1

θ+3db − θ−3db

∫ θ+
3db

θ−
3db

sin(Nπ cos(θ)/2)

sin(π cos(θ)/2)
dθ. (3)

Note that a reliable approximation for HPBW of the main
lobe can be obtained by utilizing 102◦/N [66]. The compar-
ison between values calculated according to (1) is provided
in Table IV. Similarly, antenna gain over the main lobe in
the appropriate plane can be approximated by the number
of antenna elements, see Table V providing the comparison
between gain calculated by utilizing (3) and approximation.
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Fig. 6. Approximations of antenna radiation patterns computed according to
(5) for URAs in polar and Cartesian coordinates [68], [69].

The described baseline model can be further extended or
simplified according to the modeling needs.2 Specifically,
when there is no notable difference between BS and UE
heights, a triangle model from [62] can be utilized. Alter-
natively, one may add a spherical component around the
transmitter and appropriately divide the power between the
main lobe and side and back lobes to represent parasite power.

2) Pattern-based 2D Single-beam Antenna Model: The
antenna models considered above are constrained by geometric
assumptions about HPBW and sidelobes. Alternatively, one
may define the antenna model directly by utilizing its radiation
patterns from, e.g., [61] or even direct measurements. A simple
example of this model is provided further.

Consider a simple single-beam antenna model. The main
antenna lobe is assumed to be symmetric w.r.t. the antenna
boresight axis. The antenna gain GA(αd) can then be simply
provided as [67]–[69]

GA(αd) = D0ρ(αd), (4)

where D0 represents the maximum directivity along the bore-
sight, ρ(αd) is the directivity function of the angular deviation
from the boresight direction, whereas αd ∈ [0, π]. The total
directivity is specified by ρ(0) = 1.

The function ρ(αd) can be found as [68], [69]

ρ(αd) =

{
1− αd

α , αd ≤ α,

0, otherwise.
(5)

For symmetric radiation patterns, antenna directivity can be
expressed as in [70]

D0 =
4π

2π(1− cosα/2)
=

2

1− cos α
2

. (6)

For asymmetric radiation patterns, antenna directivity can be
determined as [70]

D0 ≈
4π

αaz(NH)× αel(NV )
, (7)

2The source code that generates planar antenna arrays, HPBWs, and gains
is available at https://github.com/NadezhdaChukhno/planar-antenna-array
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Fig. 7. Illustration of beam definition.

where αaz and αel are the HPBW in the horizontal and
vertical planes, azimuth and elevation respectively, depending
on the number of antenna elements, respectively. For a three-
dimensional (3D) single-beam antenna model, we refer to [28].

Note that the presence of side- and back-lobes is not taken
into account in the proposed approximation, but they can
be added similarly to the geometric models considered in
Section IV-A1. In Fig. 6, we show a comparison between
the linear directivity approximation (5) and the realistic an-
tenna radiation patterns for uniform rectangular/planar arrays
(URAs) having NH×NV = 2x2, 4x4, 8x8, and 16x16 elements.

3) Multi-beam Antenna Arrays: Advanced antenna arrays
also facilitate the formation of multiple beams simultaneously.
By employing digital or hybrid analog-digital beamforming
techniques, it becomes possible to create multi-beaming solu-
tions where each beam can be steered in a distinct direction.
However, achieving this functionality requires the availability
of multiple Radio Frequency (RF) chains proportional to the
number of antenna elements in use.

To represent multi-beam antenna arrays, in conventional ap-
proaches, the number of the involved antenna elements defines
the HPBW of these beams and is lower bounded by a single
beam HPBW. Note that the overall emitted power PA needs
to be split between beams, not necessarily proportionally.

Fig. 7 illustrates the multicast group of 3 UEs split into
two subgroups, each covered by one beam. The first beam,
⟨θm,1, α1, r(α1)⟩, covers the multicast subgroup consisting of
one UE, UE1. The second beam targets the multicast subgroup
formed by UEs UE2 and UE3, where the two farthest UEs
determine the width of the beam. The second beam is defined
as ⟨θm,2, α2, r(α2)⟩. The multicast subgrouping and beam
assignment problems are discussed in Section V.

Here and below, the term a multicast subgroup denotes a
set of the multicast group’s UEs served by one transmission,
i.e., by a single beam. In Fig. 7, subgroup 1 consists of one
UE, i.e., in fact, the multicast UE1 receives a multicast service
using individual unicast transmission.

This work focuses on beamforming design under the as-
sumption of perfect global Channel State Information (CSI).
However, a promising future direction is to expand the scope
of this research by incorporating the effects of imperfect CSI.
One major challenge with imperfect CSI is the loss of spatial
alignment between the transmitted and desired signals at each

receiver. This misalignment can result in interference and
reduced signal quality, leading to decreased achievable rates
and increased error rates in multicast transmission. Due to
the limited coherence time of mmWave channels, accurate
estimation of CSI becomes more challenging, making the
impact of imperfect CSI more pronounced. The presence of
blockages and rapid channel variations further exacerbates the
problem, as the beamforming system must adapt quickly to
changes in the channel conditions. Incorporating the effects of
imperfect CSI can be achieved by applying robust optimization
techniques, such as those proposed in [71], [72], and learning-
based techniques [73].

Another issue that may affect multicasting performance
is beam squint, which causes system bandwidth restriction
in wideband communication systems. Namely, the beams
deviate from the focus direction as the system bandwidth
increases [74]. As mmWave and THz communications depend
heavily on the precise alignment of beams between the trans-
mitter and the receiver, beam squint can lead to significant
performance degradation if not appropriately handled. In mul-
ticasting scenarios, the performance degradation due to the
beam squint (also known as beam split) of just one user in
the multicast group may lead to performance deterioration
of the entire group. In this case, beam squint will affect
more users compared to unicasting. However, several research
studies proved that beam squint increases with the number
of antennas (or the same, with array size) [74]–[76]. Since
wider beams are typically utilized for multicasting compared
to unicast transmissions to cover a group of multicast users,
we can deduce that beam squint has a less or equal impact
on multicasting performance compared to unicasting. We also
discuss this and other beamforming challenges that appear in
mmWave/THz in Section VIII.

B. Blockage Models

Another critical factor affecting service performance at
mmWave/sub-THz frequency bands is blockage. 3GPP rec-
ommends differentiating between blockages by small dynamic
objects in the channel, such as humans and vehicles, and
by large static objects, such as buildings [28]. The first type
of impairment is often taken into account by subtracting a
constant factor from the received Signal to Interference and
Noise Ratio (SINR), whereas the latter one is modeled by
utilizing different propagation exponents, see Section IV-C.
Blockage by a large stationary building is also referred to as
nLOS conditions. Thus, in what follows, we refer to the former
as non-blocked/blocked states while to the latter as LOS/nLOS
states.

Below, we briefly introduce blockage models that can be
utilized in performance optimization and analysis of multi-
casting in mmWave/sub-THz systems. We note that blockage
impairments in sub-6 GHz bands are in the range of 2− 4 dB
and thus often neglected in performance models [77].

1) Blockage by Small Dynamic Objects: Most stud-
ies investigating blockage by small dynamic objects in
mmWave/sub-THz channels concentrate on human body
blockage and consider static UE location w.r.t. the BS. Then,
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there is the so-called blockage zone associated with a UE,
where blockers always block the LOS [78], [79]. Represent-
ing human blockers by cylinders and assuming the Poisson
distribution of blockers in ℜ2, the following expression for
blockage probability is reported in [79]

pB(x) = 1− e
−2λBrB

[
x

hB−hU
hA−hU

+rB
]
, (8)

where x is the 2D BS to UE distance, hB is the blocker
height, hU is the UE height, hA is the BS height, rB is the
cylinder’s base radius, and λB is the blockers’ density in the
environment.

As small objects acting as blockers are often mobile,
the blockage process is stochastic in nature, evolving in
time as shown in [31]. For the Random Direction Mobility
(RDM) [80] model of blockers, the LOS time follows the ex-
ponential distribution. In contrast, the uninterrupted blockage
time coincides with the busy period in M/G/∞ queuing system
with the arrival rate corresponding to the blocker arrival rate
to the LOS blockage zone and service time corresponding
to the residence time of a blocker in the LOS blockage
zone. A feasible closed-form approximation for the mean
uninterrupted blockage time can be obtained by applying the
M/M/∞ queuing system.

Only a few efforts have been made to represent the dynamic
blockage process, where both UEs and blockers are mobile.
The authors are aware of the attempt in [81], wherein the
blockage process is approximated by a Markov process with
two states and the sojourn times in the states capturing LOS
blocked and non-blocked durations.

In general, models assuming static locations of UEs and
blockers are utilized for performance optimizations of multi-
cast service, see Section V. However, the frequency of re-
optimization depends not only on the intensity of session
arrivals to the system but on the intensity of blockage events,
as the latter may change the amount of resources allocated
for multicast sessions. Here, the models capturing the time-
dependent structure of the blockage process need to be uti-
lized, see [82].

2) Blockage by Large Static Objects: The blockage models
for large static objects have been known for decades as they
have also been utilized for assessing coverage of µWave
systems. In mmWave/sub-THz systems, buildings completely
prevent LOS energy from reaching UEs (causing nLOS), thus
forcing the communication through reflected paths. Another
principal difference compared to blockage models by small
dynamic objects is that building deployments in cities tend
to create regular grids, such as the Manhattan buildings
deployment. Furthermore, the propagation path length might
be comparable to the size of buildings. These properties affect
the choice of the deployment models and techniques utilized
to assess the blockage probability.

The set of simple empirical models for building blockage
is proposed by 3GPP in TR 36.901 [28]. Different models
are utilized for indoor and outdoor deployments. Specifically,
for Urban-Micro (UMi) outdoor deployment with appropriate

heights of BS and UE, the LOS probability is given by

P 3GPP
L =

{
1, x ≤ d,
d
x +

[
1− d

x

]
exp

[
−x
p1

]
, x > d,

(9)

where the variables p1 and d are defined as

p1 = 233.98 log10(hU )− 0.95,

d = max(294.05 log10(hU )− 432.94, 18). (10)

The structure of 3GPP models makes it difficult to apply
them to specific environments where properties might be
different from those where measurements have been carried
out. To this aim, ITU-R in Rec. P.1410 offers an alternative
approach specifying the LOS probability as an explicit func-
tion of environmental parameters in the following form

P ITU
L =

m∏
n=0

1− exp

 [hA −
(n+ 1

2 )(hA−hU )

m+1 ]2

2ϵ23

 , (11)

where m = ⌊r
√

(ϵ1ϵ2)⌋ − 1 is the mean number of buildings
in between UE and BS, hA and hU are BS and UE heights.
The parameters ϵ1, ϵ2, and ϵ3 are the input model parameters
representing the deployment specifics, including building di-
mensions, density, and height. These parameters can be related
to the different parts of the cities, such as high-rise urban,
urban, and suburban, by utilizing ITU-R typical districts data
provided in ITU-R Rec. P.1410 as demonstrated in [27].

C. Propagation Models

The standard SINR equation is defined as

S(y) =
PAGAGUSFUF

(N0W + I)L(y)
, (12)

where PA is the BS transmit power, GA and GU are the
antenna array gains at the BS and the UE, SF is shadow
fading, UF is the fast fading capturing small-scale changes
in the received signal strength [83], N0 is the thermal noise at
1 Hz, W is the operational bandwidth, I is the interference,
L(y) is the path loss in the linear scale, and y is the distance
between the BS and the UE.

Consider the components in (12). The BS and UE antenna
gains can be calculated by utilizing the models provided
in Section IV-A. The thermal noise component is constant,
−174 dBm/Hz. The interference component I is a random
variable but is known to be much smaller compared to µWave
frequencies due to the use of directional antenna radiation
patterns [62]. It, thus, can be captured by a constant factor,
called interference margin, or modeled explicitly by utilizing
the stochastic geometry models provided in [63], [84]. Further,
the shadow fading component is a random variable with a
Normal distribution with zero mean and standard deviations
that depend on the LOS state, as provided in [28].

Further, the fast fading, UF , is also a random variable
capturing small-scale phenomena in the wireless channel, i.e.,
small-scale displacements of UE or objects in the surround-
ings. Depending on the complexity of propagation conditions,
the fast fading phenomenon can be modeled by Rayleigh,

This article has been accepted for publication in IEEE Communications Surveys & Tutorials. This is the author's version which has not been fully edited and 

content may change prior to final publication. Citation information: DOI 10.1109/COMST.2023.3319354

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/



14

TABLE VI
ANTENNA, BLOCKAGE, AND PROPAGATION MODELS.

Type of Model Model Comment

Antenna model

Geometric single-beam antenna Models: Eq. (3)

GA(θ±
3db) = 1

θ
+
3db

−θ
−
3db

∫ θ
+
3db

θ
−
3db

sin(Nπ cos(θ)/2)
sin(π cos(θ)/2)

dθ

Simplified model utilized for mmWave/sub-THz, main lobe modeling, symmetric
radiation pattern

Pattern-based 2D single-beam Antenna Model: Eq. (4)
GA(αd) = D0ρ(αd)

Approximations of antenna radiation patterns, main lobe modeling, accounts
for boresight direction and angular directivity, both symmetric and asymmetric
radiation patterns

Multi-beam antenna model The single-beam antenna model can be used to construct multi-beam antennas.
Overall emitted power PA needs to be split between beams, not necessarily
proportionally

Blockage model Blockage by small dynamic objects Human body blockage (blocked LOS path)
Blockage by large static objects Blockage by a large stationary building causing nLOS conditions

Human blockage

Human blockage probability: Eq. (8)

pB(x) = 1 − e
−2λBrB

[
x

hB−hU
hA−hU

+rB

] Blockage zone associated with a UE, where blockers always block the LOS

Building blockage

LOS probability from 3GPP UMi: Eq. (9){
1, x ≤ d,
d
x +

[
1 − d

x

]
exp

[
−x
p1

]
, x > d,

p1 = 233.98 log10(hU ) − 0.95
d = max(294.05 log10(hU ) − 432.94, 18)

LOS probability depends on the propagation environment, such as RMa, UMi -
Street canyon, UMa, Indoor - Mixed office, Indoor - Open office, which makes
it difficult to apply them to specific environments where properties might be
different from those where measurements have been carried out

LOS probability from ITU-R: Eq. (11)

P ITU
L =

∏m
n=0

1 − exp

 [hA−
(n+1

2
)(hA−hU )

m+1
]2

2ϵ23


LOS probability as an explicit function of environmental parameters

Propagation model
3GPP/ITU-R-based models: Eq. (13)
LdB(y) = υ + 10ζ log10 y + 20 log10 fc

Parementers υ and ζ depend on the propagation environments

Rician, or general Nakagami-m distributions [85]. However,
as fast fading happens at rather small timescales, it does not
affect service performance at large scales, where forward error
correction and Hybrid Automatic Repeat Request (HARQ)
mechanisms can efficiently smooth these effects.

The path loss component L(y) utilized in (12) heavily de-
pends on the deployment scenario. Specifically, for UMi out-
door deployment, 3GPP specified the following path loss [28]
in decibel scale

LdB(y) = υ + 10ζ log10 y + 20 log10 fc, (13)

where fc is the carrier frequency in GHz and y is the 3D
distance between the BS and the UE,

y =
√
(XA −XU )2 + (YA − YU )2 + (hA − hU )2, (14)

where (XA, YA, hA) and (XU , YU , hU ) are the coordinates of
the BS and the multicast UE, respectively, the coefficients υ
and ζ account for LOS/nLOS states as well as for LOS blocked
and LOS non-blocked channel conditions. Specifically, 3GPP
recommends ζ = 2.1 and ζ = 3.19 for LOS and nLOS states,
whereas the value of υ depends on the carrier frequency.

In non-blocked conditions for the lower part of mmWave
band, 28−78 GHz, υ is 32.4 dB. The blockage attenuation in
blocked is added on top, resulting in an additional loss in the
range of 15 − 25 dB [86]–[88]. For the sub-THz band, these
losses are expected to reach 40 dB [89]. The vehicle type and
geometry highly influence the blockage by vehicles at 300
GHz: the front-shield glass level is from 20 dB, while at the
engine level, the value can reach up to 50 dB. In comparison
with those for the mmWave band, they are significantly higher.
Other factors that affect the values of blockage losses are the
vehicle size and the number of them between communicating
entities [90]. For 28 GHz, the authors in [91]–[93] also report

the following height-dependent vehicle blockage losses: 411−
12.2 dB for 1.7 m, 13.3 dB for 1.5 m, and 30 − 40 dB for
0.6 m.

By accounting for LOS/nLOS states as well as
blockage/non-blockage conditions, the propagation model for
mmWave/sub-THz band can be represented by the exhaustive
superposition of LOS/nLOS and blockage/non-blockage
states. We consider four states: nLOS,blocked, LOS,blocked,
nLOS,non-blocked, LOS,non-blocked. The state probabilities
are numerated from 0 to 3 accordingly and given by

κ0(y) = [1− PL(y)]pB(y),

κ1(y) = PL(y)pB(y),

κ2(y) = [1− PL(y)][1− pB(y)],

κ3(y) = PL(y)[1− pB(y)],

where pB(y) is the blockage probability provided in Sec-
tion IV-B1, PL(y) is the LOS probability from Section IV-B2.

By converting (13) to the linear scale using notation Aiy
ζi

corresponding to the introduced states, we have

A0 = A1 = 102 log10 fc+(υ+L)/10, ζ0 = ζ2 = 3.19,

A2 = A3 = 102 log10 fc+υ/10, ζ1 = ζ3 = 2.1. (15)

Finally, the value of SINR at the UE located at the 3D
distance y from the BS is given by

S(y) =

3∑
i=0

Ciy
−ζiκi(y)SF,iUF,i

N0W + I
, (16)

where Ci = PAGAGU , SF,i and UF,i are state-dependent
shadow and small-scale fading [28]. Note, that the BS cov-
erage area radius r is defined by (16) for a predefined BS
transmit power PA, HPBW α, and a given SINR threshold
Sth, see, e.g., [94].
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Specifications for 5G mmWave systems include none of
the frequencies in the FR2 mmWave (24, 28, 38, 72 GHz)
band that are exposed to severe molecular absorption. In THz
band, not only the impact is more profound, but the affected
frequency bands are wider. However, as demonstrated in [95],
there are still the so-called transparency windows, where
the impact is negligible. Expectedly, these windows will be
utilized for cellular systems in the future. However, we would
like to highlight that all the proposed approaches in the
paper are not limited to the transparency windows, where the
propagation is not affected by molecular absorption. If there
is the need to account for molecular absorption, one has to
complement the propagation model with an additional factor,
LA(f, y), obeying the Beer-Lambert law [96]

LA(y) =
1

τ(fT,c, y)
, (17)

where τ(fT,c, y) is the transmittance of the medium follow-
ing the Beer-Lambert law, τ(fT,c, y) ≈ e−KAy , KA is the
absorption coefficient calculated on the base of the HITRAN
database [97], as demonstrated in [96].

A much more pronounced effect is produced by weather
conditions (e.g., fog, rain) and trees. In the latter case, the
impairments can be as high as 0.5−2 dB/m3. Detailed values
of these impairments are provided in [19].

Finally, the absorption phenomena may also lead to the
molecular noise theoretically predicted in [96]. The theoretical
model for molecular noise has been proposed in [98]. How-
ever, recent measurements [99] did not reveal any noticeable
impact of the molecular noise phenomenon. However, the
models reported in this study also remain valid under the
molecular noise phenomenon.

For the reader’s convenience, we summarize our discussion
of antenna, propagation, and blockage models in Table VI,
where we also indicate when the models can be utilized.

V. OPTIMAL MULTICASTING IN 5G/6G
MMWAVE/SUB-THZ SYSTEMS

The design of multicast solutions poses significant chal-
lenges, primarily due to the highly directional nature of 5G
mmWave systems [100], [101]. In a single-beam system,
all UE devices belonging to the same multicast session and
spread across different cell regions cannot be served via a
single transmission. In this case, operation over larger beams
limits the communications distances and leads to inefficient
radio resource use due to lower MCSs. When utilizing multi-
beam antennas, the total transmission power constraint per
antenna causes a similar effect, which must be considered
when selecting the width of beams to be simultaneously swept.

To address these challenges, this section introduces a
general framework for optimal multicast scheduling in 5G
mmWave systems by describing a globally optimal solution
for single- and multi-beam antenna designs, as proposed in [9].
The optimization problems are formulated under the assump-
tion that the radio channel conditions and the multicast group
composition remain unchanged for a specific time interval.
The framework is considered as a basis for illustrating further
possible extensions finalized to capture various operational

specifics of 5G deployments. For example, we illustrate how
it can be adapted to the case of optimal multicasting in dual-
mode mmWave sub-6 GHz hybrid deployments when both
types of RATs can be utilized to serve multicast UEs, as
presented in [102]. To reduce the complexity of suggested
solutions, we explore the application of heuristics and ML
techniques [103]. Theoretical exposure is supplemented with
major takeaways enriched with numerical results.

A. Single-RAT Operation

The multicast multi-beam operation optimization problem
can be formalized as a subclass of Bin Packing Problem
(BPP) [104]. Starting from identical bins and a collection of
items of various sizes, the BPP objective is to either minimize
the number of bins in which the items must be packed in
such a way as to be evenly distributed or to fill the bins in
the most time-efficient manner. The variable-sized BPP [105]
represents a new variant of BPP that attempts to reduce the
cost of assigning items to particular bins, which may or may
not be primarily determined by the item’s volume. In the
formulation we consider for this paper, UEs represent items,
whereas a beam is a bin for a subgroup of UEs. The objective
is to minimize the cost, represented by the ratio of occupied
resources to the total available resources, when assigning UEs
from a multicast group to subgroups, with each subgroup being
served by a directional beam [9]. Formulating the multicast
multi-beam optimization problem as a BPP allows leveraging
existing algorithms and techniques developed for BPP to
find solutions that minimize the cost of resource allocation
and improve the efficiency of multicast transmission in 5G
mmWave systems.

A typical model that can be considered for multicast service
provisioning optimization is formulated as follows. A tri-sector
cellular architecture is considered, wherein each BS covers a
120◦ sector and operates with a directional antenna array that
contains L ≥ 1 beams. The set of K UEs that make up a
multicast group is denoted as K = {1, . . . ,K}. An Orthogonal
Frequency-Division Multiple Access (OFDMA)-based system,
where M represents the length of the time horizon, i.e., the
number of time slots in the time horizon (one subframe of
1 ms), with index t ∈ T , T = {1, . . . ,M}, of each time slot.
The number of time slots M depends on the NR numerology
µ. The maximum number of Primary Resource Blocks (PRBs)
available in the system is restricted by MLRb, where Rb is the
available number of resource blocks in the system for a beam
at time slot t for given numerology µ and operating frequency
fc, whereas ML restricts the potential maximum number of
subgroups served within the time horizon.

When considering all combinations of K UEs of the
multicast group, the number of possible subgroups scales as
2K−1 [106]. Hence, Kj is introduced to denote the set of UEs
forming subgroup j, j ∈ J ,J = {1, . . . , 2K − 1}, and |Kj |
is the number of UEs in subgroup j. For instance, for K = 3
UEs, the number of subgroups’ options is 7 and these feasible
options are K1={1}, K2={2}, K3={3}, K4={1, 2},K5=
{1, 3}, K6={2, 3}, K7={1, 2, 3}.
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A suit3 Gk is defined as the collection of subgroup’s indices,
Gk ⊂ J , corresponding to the combination of subgroups Kj ,
j ∈ J , that covers all the UEs of the multicast group without
their repetition, k = 1, 2, ..., |Ω|, where Ω is the set of all such
combinations.

In the case of K = 3, the set Ω contains G1∼K1∪K2∪K3,
G2 ∼K3 ∪ K4, G3 ∼K2 ∪ K5, G4 ∼K1 ∪ K6, G5 ∼K7 with
|Ω| = 5. Therefore, the following conditions should be held:⋃

j∈Gk

Kj = K, k = 1, 2, ..., |Ω|, (18)

Kj1

⋂
Kj2 = ∅, j1 ̸= j2, ∀j1, j2 ∈ Gk, (19)

meaning that each multicast UE has to be included in one
subgroup only. Note that the set Kj of UEs forming subgroup j
determines the directionality of the beam θm,j , HPBW αj

required to cover all UEs in subgroup j, and the distance Lj

from the BS to the farthest UE.
For a single-beam system, L = 1, all the subgroups

with indices included in suit Gk are served sequentially by
one beam. For a multi-beam system, L > 1, the subset of
subgroups’ indices is defined as Glk ⊆ Gk, l = 1, 2, ..., L,
scheduled for beam l. Hence, suits Glk should satisfy the
following conditions:

Gk =

L⋃
l=1

Glk,

Gl1k
⋂
Gl2k = ∅, l1 ̸= l2, ∀l1, l2 ∈ {1, 2, . . . , L}. (20)

A binary indicator gtj ∈ {0, 1} is introduced to designate
the subgroup assignment decision variable at time slot t,
i.e., gtj = 1 if subgroup j is served at time slot t, and
gtj = 0 otherwise. Then, a vector-indicator gt = (gt1, . . . , g

t
|J |)

represents subgroups that are served at time slot t. At time slot
t at most L beams can be simultaneously swept, or, equally,
L subgroups can be served, that is,∑

j∈Gk

gtj ≤ L, ∀t ∈ T . (21)

Moreover, a suit service time should not exceed the schedul-
ing time horizon that may depend on implementation, i.e.,∑

j∈Gl
k

∑
t∈T

gtj ≤M, ∀l = 1, ..., L, ∀k = 1, ..., |Ω|. (22)

Furthermore, the total transmit power budget per antenna
that serves subgroup j must be taken into account when
dealing with a multi-beam system:∑

j∈Gk

gtjPj ≤ Pmax, ∀t ∈ T , (23)

where Pmax corresponds to the overall emitted antenna power
to be split between beams, whereas Pj is calculated according
to the propagation model (see Section IV) by taking into
account the SINR threshold corresponding to a chosen NR
MCS [94].

3Note that a suit is the set of subsets. The term suit is utilized for clarity
of further exposure.

The SINR of subgroup j is defined according to (16) by
substituting Lj for y. Consider that a multicast session requires
a constant bit rate of C bps. Then, to calculate the number
of resources required from BS to provide a multicast service
with bit rate C, one needs to know the CQI and MCS values,
and SINR to spectral efficiency mapping. MCS mappings
from [107] might be used, but these parameters are typically
vendor-specific.

The cost of the multicast service delivered to subgroup j
is the function aj = f(Pj , Nj , C), where Pj is the transmit
power of the corresponding beam, f is the number of antenna
elements used to form the radiation pattern of the beam, and
C is the required session bit rate, i.e.,

aj = C/sjwPRB, (24)

where sj is a spectral efficiency in bps/Hz of the farthest UE
in subgroup j and wPRB is a PRB size.

The scheduler’s time slot assignment is written in vector
gj = (g1j , . . . , g

M
j ) with∑

t∈T
gtj =

⌈
aj
Rb

⌉
, j ∈ J . (25)

The following condition on the number of resources allo-
cated to subgroup j served by a beam should also be held

aj ≤MRb, j ∈ J . (26)

Finally, in (22) and (26), the constraint on the maximum
number of available resources in the system should hold, i.e.,∑

j∈Gk

aj ≤MLRb, j ∈ J , k = 1, ..., |Ω|. (27)

The proposed BPP formalism can be utilized to formulate
single- and multi-beam multicast optimization problems. It
also allows for extensions to the case of multiple RATs.

1) Single-Beam Antennas Optimization: In the case L = 1,
the entire transmit power budget at BS is allocated to a single
beam, Pj = P1 = PA. Hence, the optimization problem can
be defined as [108]

min
k∈1,...,|Ω|

∑
j∈Gk

aj , (28)

s.t. (18), (19), (20), (21), (22), (23), (26), (27).

2) Multi-Beam Antennas Optimization: If L ≥ 1, then the
goal becomes grouping multicast UEs in an optimal way that
minimizes the total multicast service cost in terms of ρ, i.e.,
the fraction of PRBs occupied compared to the total available
for the entire time horizon. Thus, the optimization problem
can be formulated as follows:

min
k∈1,...,|Ω|

∑
j∈Gk

aj
MLRb

, (29)

s.t. (18), (19), (20), (21), (22), (23), (26), (27),

with ρ as the objective function.
For a single-RAT operation, optimal multicast scheduling,

serving as a globally optimal solution, is achieved through the
following formulations: for single-beam antenna designs, the
optimization problem is expressed by (28), while for multi-
beam antenna designs, it is represented by (29).
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B. Two-RAT Operation

If the optimal multicast scheduling formalism is extended
to two-RAT 5G systems, the goal of the model remains the
same. The scheduler still aims to minimize ρ, thereby finding
the optimal grouping of multicast UEs while considering
the possibility of transmission over two technologies, e.g.,
mmWave/µWave, mmWave/sub-THz.

1) No Service Priorities: Considering the case of no ex-
ternal priorities, the problem formulation can be written in a
similar way as described above for single-RAT with multi-
beam antennas by introducing the variables with indices m

and µ for mmWave and µWave technologies, respectively,

min
k∈1,...,|Ω|

∑
j∈Gk

[
aj,m

MmLmRb,m
+

aj,µ
MµLµRb,µ

]
. (30)

We emphasize that (30) reflects the implicit mmWave or
µWave priorities. In the first case, the system selects mmWave
band to serve a set of UEs Kj , j ∈ J , if Pj,m ≤ Pmax,m. This
means that the mmWave BS is utilized until it fails to perform
successful data delivery, and µWave technology is only used
when some multicast UEs reside outside of the coverage of
mmWave BS. By analogy, µWave priory ensures that the set
Kj is served by µWave BS, if Pj,µ ≤ Pmax,µ.

2) Weighted Priority Service: The available spectrum, de-
ployment area, traffic conditions, and other factors may in-
fluence an operator’s technology selection. To this aim, the
following weighted optimization function to fulfill these spe-
cific requirements may be utilized:

min
k∈1,...,|Ω|

∑
j∈Gk

[
w

aj,m
MmLmRb,m

+ (1− w)
aj,µ

MµLµRb,µ

]
, (31)

where w is the weight factor.
The weight parameter w in (31) can be introduced to provide

weighted priority in technology selection. When considering
the coexistence of unicast and multicast traffic, one may set
w = min(1, R2/R2

m) with R and Rm being the service area
and mmWave cell radii, respectively, making w proportional
to the coverage distance. The motivation is that the objective
function in (31) maximizes the resources available for a new
session under a uniform distribution of geometric locations
of unicast sessions throughout the dual-mode BS coverage
region. Alternatively, the weight w can be set proportionally
to the operator’s utility, depending on these factors.

The expressions that can be used to find an optimal solu-
tion in the context of the unweighted and weighted priority
multicast service are given by (30) and (31), respectively.
By optimizing these objective functions, the scheduler can
determine the optimal grouping of multicast UEs while consid-
ering the trade-off between mmWave and µWave technologies,
leading to an efficient allocation of resources and satisfying
the operator’s specific needs.

C. More Than Two-RAT Operation

When dealing with more than two RATs operations, it
becomes essential to determine multicast user grouping that
minimizes the overall service cost. Additionally, the task

involves mapping these subgroups onto multiple RATs to
enable parallel transmission within the multi-RAT networks.
The minimization of the ratio of utilized to available resources,
ρ, can be considered while satisfying the service requirements.
Thus, similarly to the two-RAT scheme, the scheduler aims
to minimize total delivery cost in terms of ρ during the
entire time horizon, considering the possibility of transmission
over all available technologies. For more than two RATs, one
may use the formulation described in Section V-B by adding
more components associated with all available technologies.
Alternatively, the optimization criteria can be latency mini-
mization, data rate maximization, etc. In general, for more
than two RATs considered, the optimization function takes
the following form

min
k∈1,...,|Ω|

∑
j∈Gk

∑
η∈H

wη
aj,η

MηLηRb,η
, (32)

where η represents the RAT index, η ∈ H , H is a set of RATs.
By combining multiple technologies, the effective service

area of a multi-RAT solution can be extended to cover all
onboard technologies. The optimal choice for such a scenario
can be determined using (32). This approach can significantly
enhance reliability compared to relying on a single RAT con-
nectivity. It is important to note that the choice of technology
generally depends on the specific application being used.

D. Alternative Solutions to Optimal Multicasting
General BPPs, wherein a given set of items of various sizes

has to be packed into the fewest number of unit capacity bins,
belong to the NP-complete problem [105]. While exhaustive
search can solve these problems for small-scale instances, it
becomes infeasible in the case of large-scale environments
due to the exponential increase in state space. To address the
complexity and enhance practicality, this section presents a
range of algorithms for multicast problems discussed above.
These algorithms include exact branch-and-cut and branch-
and-bound methods, relaxation approaches, meta-heuristics,
and ML methods.

1) Single-RAT Heuristic Solution: The proposed heuristic
algorithm is suitable for the case L ≥ 1 and consists of two
stages: subgroup formation (stage 1) and beam assignment
and power (re-)allocation (stage 2). The second stage is also
logically divided as follows: (i) selection of the multicast
subgroups that should be served during the same time slot,
(ii) water-filling to determine the maximum power to allocate
to all the beams within the time slot, and (iii) the adjustment of
power allocation to the selected beams. Multi-beam transmis-
sions can be considered starting from the second stage, which
implies the need to guarantee the energy budget constraints
(23) per antenna. More specifically, this means that for the
single-beam systems, L = 1, only the stage 1 is needed (see
Algorithm 1 and Algorithm 2), whereas, in the case of multi-
beam systems with L ≥ 1, further steps have to be performed
(we refer to Algorithm 3).

Stage 1 - Subgroups Formation. Subgroups are formed in
this stage to serve all UEs in a multicast group within a time
horizon. There are two ways to complete this procedure, as
detailed below.
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Subgroup Formation Option 1.1. To implement beam
assignment, the incremental multicast grouping algorithm (ini-
tially designed in [108]) is adapted for mmWave networks to
the multi-beam case, i.e., L > 1. For L = 1, the approach
described in [108] can be used by changing the objective
function. In detail, the number of beams and their resolution
(i.e., width) needed to optimize the multicast transmission
performance are defined by employing the resource utilization
minimization criteria. The pseudo-code is shown in Algo-
rithm 1, wherein the output of the algorithm includes the
number of subgroups, n, required to serve set K of multicast
UEs, 1 ≤ n ≤ |J |; the set of subgroups, SM1 , . . . ,SMn , that
covers all UEs K from a multicast group without their repe-
tition; and required beam transmit power for each subgroup,
PM
1 , . . . , PM

n .
The list of UEs to be allocated into subgroups is referred

to as A. Initially, all UEs are included in the multicast group,
i.e., set K, to list A (line 3). Each element of the 3D distance-
vector y = (y1, y2, ..., yi, ..., yK) reflects the distance between
the BS antenna and UE i as per (14). Vector Φ = (ϕ1, ..., ϕK)
takes into account UEs’ reference angles in the azimuth plane
(lines 4-5). The amount of used resources is initially set to 0 in
line 7. The algorithm iteratively segregates the UEs from list
A into multiple subgroups, as seen in line 9. Particularly, the
minimization function is set to infinity on line 10. Here, the
minimization function reflects the occupied per UE resources
for each multicast subgroup. The algorithm begins by selecting
the furthest UE from list A with a distance y and its reference
angle ϕy (lines 12-13).

Further, adaptive beamforming is used based on the UE’s
location, wherein one beam pattern can be chosen to transmit
with a selected MCS. Line 15 collects all UEs covered by
a beam with width α directed toward the UE with reference
angle ϕy and with distance y in the multicast subgroup Sα. We
underline that the transmit power for each beam with width α
is computed for L ≥ 1 according to the propagation model and
SINR threshold. The maximum available power Pmax is used
for the transmission when L = 1. Recall that for a single-
beam operation, i.e., L > 1, unlike the approach described
in [108], as the objective function, the ratio of occupied to
available resources should be minimized (line 18). Here, sα is
a spectral efficiency for a beamwidth α and corresponds to sj
in (24). As a result, the algorithm defines the best α for the
chosen in line 12 UE and removes all the UEs served by the
beam with width α UEs from the list A (line 29). Algorithm 1
comes to a stop either when all UEs have been serviced (i.e.,
list A is empty) or when there are no resources available in
the system.

Subgroup Formation Option 1.2. A different approach
for subgroup formation is presented in Algorithm 2. First,
this algorithm chooses the farthest UE i from the BS and
identifies the subgroup Kj , such that i ∈ Kj , to serve at the
smallest value aj/|Kj |, j ∈ J = {1, ..., 2K − 1} (lines 8-10).
The motivation behind this approach is that the algorithm can
cover more UEs when sweeping the beam by choosing the
farthest UE from the multicast group. Further, to provide a
less complex solution while keeping the intention to minimize
the ratio ρ of occupied to available resources, the algorithm

Algorithm 1: Single-RAT Heuristic Stage 1 Option
1.1, L ≥ 1

1 Input: (XU (i), YU (i), hU ), i ∈ K
2 Output: n; SM1 , ...,SMn ; PM

1 , ..., PM
n ;

3 A ← K, K = {1, . . . ,K};
4 y = (y1, ..., yK) as (14);
5 Φ = (ϕ1, ..., ϕK); ▷ reference angles
6 n← 0; ▷ subgroups counter
7 asum ← 0; ▷ occupied resources collector
8 SMn ← ∅;
9 while A ≠ ∅ or asum < MLRb or n < ML do

10 MINQ ←∞;
11 n← n+ 1;
12 y ← max

i∈A
yi;

13 ϕy ← ϕ(y);
14 for α ∈ Ωα = {αmin, ..., αmax} do
15 Sα = {i ∈ A : ϕy − α/2 ≤ ϕi ≤ ϕy + α/2};
16 calculate Pα from

Pα = A1A2Sth(N0W+I)
GAGUSFUF yζ1 [A2(1−pB(y))+A1pB(y)]

;
17 end
18 if Pα ≤ Pmax then
19 Qα = C

sαwPRB|Sα| ;
20 if MINQ > Qα then
21 MINQ ← Qα;
22 SMn ← Sα;
23 PM

n ← Pα;
24 an ← C

sαwPRB
;

25 end
26 else
27 go to line 29;
28 end
29 end
30 A ← A \ SMn ;
31 asum ← asum + an;
32 return n, SM1 , ...,SMn , PM

1 , ..., PM
n .

selects the beamwidth that gives the smallest value of utilized
resources per UE, aj/|Kj |. Then, the algorithm erases selected
UEs from the list A (line 11) and repeats the process for the
remaining UEs (lines 6-12). We emphasize that all subgroups
Kj from J = {1, ..., 2K − 1} that contain the served UEs
are also excluded (line 12). By doing this, Algorithm 2
significantly reduces the complexity while preserving compa-
rable performance with the optimal solution obtained through
exhaustive search as per (28) and (29), as later discussed in
Section VI-A.

Stage 2 - Beam Assignment and Power Allocation. A
pseudo-code for stage 2, where beam assignment and power
allocation are performed, is presented in Algorithm 3, wherein
SM stands for the set of subgroups selected during stage 1
of the heuristics. For the time horizon, the algorithm aims
to find the subgroups that will be served simultaneously in
each time slot and the transmit power for corresponding
beams to minimize ρ. Accordingly, the algorithm runs until
all subgroups are deleted from SM (lines 5-22), and it outputs

This article has been accepted for publication in IEEE Communications Surveys & Tutorials. This is the author's version which has not been fully edited and 

content may change prior to final publication. Citation information: DOI 10.1109/COMST.2023.3319354

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/



19

Algorithm 2: Single-RAT Heuristic Stage 1 Option
1.2, L ≥ 1

1 Input: (XU (i), YU (i), hU ), i ∈ K
2 Output: n, SM1 , ...,SMn , PM

1 , ..., PM
n ;

3 Create 2K − 1 multicast subgroups of UEs,
J = {1, ..., 2K − 1};

4 A ← K, K = {1, . . . ,K};
5 n← 0; ▷ subgroups counter
6 while A ≠ ∅ do
7 n← n+ 1;
8 find the farthest UE i ∈ A and the distance from

BS to this UE: y ← max
i∈A

yi as (14);

9 find all subgroups Kj , j ∈ J , such as i ∈ Kj ;
10 find subgroup SMn such as i ∈ Kj , with the

smallest utilized resources per UE:
SMn ← min

j∈J ,i∈Kj

aj/|Kj |;

11 A ← A \ SMn ;
12 remove from J all subgroups that contain UEs

from SMn ;
13 end
14 return: n, SM1 , ...,SMn , PM

1 , ..., PM
n .

the number of time slots m to serve all subgroups. The D(m)

denotes a set of subgroups to be served at the current time
slot m. The algorithm chooses the worst subgroup in terms of
the required transmit power from SM and adds it to the set
D(m) (lines 7-9). If the power budget constraint Pmax allows
adding more subgroups to the set D(m), the algorithm selects
the best subgroup in terms of the required transmission power
and adds it to the set D(m) (lines 10-19). The number of
subgroups in D(m) is restricted by L. When the set D(m)

is defined, the power water-filling procedure (the two options
described below) (re-)allocates the power in a way to minimize
the utilized resources (line 20).

Option 2.1. Traditional power water-filling. The channel
with the high Gane to Noise Ratio (GNR) receives more
power, which leads to a higher system capacity. Note that
channel GNR is related to the SINR.

Option 2.2. Resource-Based Power Water-Filling. Alter-
natively, resource information can be used to implement the
water-filling algorithm. This approach allows for allocating
extra power to subgroups that result in the most significant
reduction in overall resource utilization.

2) Machine Learning Solution Algorithms: To decrease
the relatively high computational complexity of the previous
solutions to the multicast grouping problem, ML techniques
can be utilized. Below, we illustrate three classes of algorithms
based on their complexity: (i) classification/regression models,
(ii) decision trees and forests, and (iii) neural networks.

Running the optimal solution for a multicast group with
a small number of UEs can provide data that can be used
to develop a fast algorithm that can solve the multicast
subgrouping problem even in the case of a multicast group
with many more UEs. Thus, supervised learning is the suitable
class of ML algorithms. In supervised ML techniques, the

Algorithm 3: Single-RAT Heuristic Stage 2, L > 1

1 Input: SM1 , ...,SMn ; PM
1 , ..., PM

n ;
2 Output: m, D(k), P ∗(k)

j , j = 1, ...n, k = 1, ...m;
3 SM ← {SM1 , ...,SMn };
4 m← 0; ▷ time slot counter
5 while SM ̸= ∅ do
6 m← m+ 1;
7 kmax ← argmax

j∈SM

Pj ;

8 Psum ← PM
kmax

;
9 D(m) ← SMkmax

;
10 if SM \ D(m) ̸= 0 then
11 for j = 2 : L do
12 kmin ← argmin

j∈SM\D(m)

Pj ;

13 if Psum + PM
kmin
≤ Pmax then

14 D(m) ← D(m) ∪ SMkmin
;

15 else
16 go to line 20;
17 end
18 end
19 end
20 Perform water-filling for D(m) and obtain P

∗(m)
j ;

21 SM ← SM \ D(m);
22 end
23 return: m, D(k), P ∗(k)

j , j = 1, ...n, k = 1, ...m.

algorithm leverages labeled training on a prepared dataset (i.e.,
data provided by the optimal solution) and returns outcomes
(i.e., a class or a predicted value), which can be evaluated
in terms of accuracy using labels from the training dataset.
Both an online and offline learning platform based on recent
International Telecommunication Union (ITU) standards for
5G ecosystems [109]–[111] can implement the supervised
algorithm.

The execution phase and training period of ML algorithms
should be short, due to the required BS real-time opera-
tion whenever a multicast group either gains an additional
UE or loses one. Hence, low-complexity ML techniques are
prioritized as practical implementation is targeted at simple
algorithms, such as supervised classification and decision
trees. Random forests and neural networks are examined to
determine whether cutting-edge learning models may produce
more accurate results.

Regarding accuracy assessment, one may utilize two sim-
ilarity metrics. The one, σ, can rely on the perfect match
between the actual and predicted number of subgroups and the
number of UEs assigned to these subgroups. More precisely,
the following criterion can be utilized

σ =
number of correctly classified data

number of test data
× 100%.

If ML and optimization outcomes match perfectly, the ratio
of occupied to available resources, ρ, coincide for both metrics,
i.e., ρopt = ρML. Moreover, due to the discrete nature of
resource allocation and MCSs/spectral efficiency mapping, the
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investigated metrics ρopt and ρML may be close even when
the number of subgroups and UEs assigned to these subgroups
varies. Considering that resource usage is the primary metric
of interest, one may also examine a second metric based on
the resulting resource utilization matching:

γ =
ρML

ρopt
× 100%.

Due to the availability of the training datasets, supervised
learning algorithms, whose most common learning task is
classification, can be utilized. For the problem at hand, one
may consider the following supervised learning algorithms:

• Decision Tree learning splits the dataset based on dif-
ferent conditions and can be used for classification and
regression predictive models. The foremost benefit of this
approach consists of the construction of an interpretable
model. Hence, these algorithms are often referred to as
white-box implementations [112].

• Logistic Regression is usually leveraged in binary classifi-
cation to associate observed values to one of two possible
classes. The method transforms the output through a
sigmoid function to return a probability value for class
mapping.

• Naive Bayes is a straightforward but effective classifica-
tion technique based on Bayes’ theorem and assuming
conditional independence among objects’ features.

• The Support Vector Machine (SVM) algorithm is able to
differentiate between classes by projecting a hyperplane
that separates them. In this formulation, support vectors
correspond to the nearest points to the hyperplane, and
changing the support vector leads to modifications in the
hyperplane [113].

• K-Nearest Neighbors (KNN) attempts to predict the cor-
rect class for test data by computing the distance between
test data and all training points. The KNN method com-
putes the probability that test data belong to the “K”
closest classes of training data and chooses the most
likely class.

• Multiclass classifications performed using Neural Net-
work (NN) classifiers. These models often outperform
other algorithms in terms of accuracy of prediction.
Increasing the number and size of connected layers in
NN models boosts their flexibility.

Table VII provides the characteristics of considered algo-
rithms in terms of interpretability, which allows for a better
understanding of obtained solutions. This feature makes it easy
to avoid solution mistakes or errors and compensate for them.
With higher interpretability, one can understand how an ML
model makes its decision.

All the above-mentioned algorithms can solve the required
classification problem, namely, assigning an observation (UE)
to one of the classes (multicast subgroups). In general, the
following set of model’s features can be considered as pa-
rameters that form the training dataset: (i) UE’s coordinates,
(ii) number of UEs, (iii) service area radius, (iv) available
bandwidth, (v) session data rate, and (vi) number of subgroups
(classes). Model’s features form predictor’s set P that may
impact the classification results (see Section VI-A, where the

TABLE VII
INTERPRETABILITY CHARACTERISTICS OF MAIN CLASSIFIER TYPES.

ML Algorithm Interpretability
Decision Trees Easy
Ensemble Classifiers Hard
Logistic Regression Easy
Naive Bayes Classifiers Easy
Support Vector Machine Easy for linear kernel, hard for others.
Nearest Neighbor Classifiers Hard
Neural Network Classifiers Hard

features’ importance is investigated). The algorithms learn
from the training dataset of size H1 (created by running the
optimization presented in Section V-A) by predicting the data
and adjusting it for the correct solution of 5G NR multicast
subgroup formation.

Finally, since the optimal solution is feasible only for a
limited number of UEs, one needs to test the extrapolation
capabilities of ML models by training them on the reduced
number of UEs and then assessing the accuracy for a larger
number of UEs.

3) Multi-RAT Suboptimal Solutions: For a limited number
of UEs in the coverage area of BS, the direct solution of
the problems in (30) and (31) can be achieved by using,
e.g., branch-and-cut or branch-and-bound techniques. Some
of these solutions allow controlling heuristic behavior focusing
on the solution’s integrity rather than its optimality. In general,
the following solutions have been shown to improve the
heuristic behavior of Mixed-Integer Programming (MIP):

• Metaheuristics. These are general frameworks to build
heuristics, often using combinatorial formulations. Meta-
heuristic rules and principles can be used to create heuris-
tics for resolving mathematical programming problems.
For example, Local Branching (LB) is based on the idea
of altering neighborhoods throughout the search to obtain
the best feasible solution [114]. LB is a technique created
based on the exact method. The difference is that the LB
is limited in time to solve a problem. If this period elapses
without the optimal solution being determined, LB stops
and returns the best-known solution.

• Neighbourhood Search Methods. Relaxation-Induced
Neighborhood Search (RINS) heuristic is a heuristic that
explores the neighborhood of a valid solution to discover
an improved one [115]. Continuous relaxation of the MIP
model is used to build a promising neighborhood, which
is formulated as another MIP (known as the sub-MIP).
Limiting the number of nodes in the search tree truncates
the subMIP optimization.

• Randomization Methods. Since the formulated prob-
lem is NP-hard, one may adopt a heuristic simulated
annealing solution, which is a stochastic global search
optimization algorithm and is known to be efficient for
BPPs [116]. The initialization and implementation parts,
as well as the parameterization of the technique, are
specified below.

4) Multi-RAT Heuristic – Simulated Annealing: Simulated
annealing is based on randomizing the local search strategy
and accepting changes that, with some probability, make the
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result better. The approach imitates the annealing of metals in
thermodynamics, which involves exposing the metal to a very
high temperature and then allowing it to cool down slowly
to create the required shape with a defect-free structure. As
a result, using an appropriate temperature cooling schedule is
a critical idea in simulated annealing. Several variations of
the simulated annealing method differ in the distribution and
temperature reduction rule, resulting in specific disadvantages
and benefits, such as speed, the assurance of reaching the
global minimum, and execution complexity.

A critical part of the simulated annealing algorithm is the
temperature control rule. Each control rule reduces the temper-
ature at a different rate, and each method is better at optimizing
a certain model type. The main types of temperature control
rules are as follows:

• Linear rule: T = T − ωc;
• Geometric rule: T = Tωc (frequently used);
• Slow-reduction rule: T = T/(1+ωcT ), ωc is a constant;
• Fast annealing: T = T/k [117];
• Very fast annealing: T = T exp(−cik1/D), i = 1, ..., D,

where D is number of variables in the cost function, i de-
notes i-th variable of the cost function, various annealing
processes can be considered for different variables, and
ci is a constant that can have different values depending
on the problem [117];

• Boltzmann annealing: T = T/ ln k [118].
To solve the multi-RAT multicast problem, one may uti-

lize the standard simulated annealing methodology [119],
presented in Algorithm 4 to obtain the heuristic solution
denoted as G̃k. First, one may define problem-specific choices,
including the form of the objective function c(S) and the
strategy for obtaining solution S. Theoretically, the initial
solution does not affect the final result. However, several
experiments have shown that using a good heuristic to obtain
an initial solution occasionally results in a faster convergence
to the optimal solution [120], [121]. To achieve the global
minimum, the number of steps, MaxIt, in the inner loop of
Algorithm 4 must be larger than the number of points in the
solution space, i.e., MaxIt > |Q|, leading to the futility of
the approach [119].

The heuristic described in detail in [101] allows to acquire a
good initial solution and, hence, minimize the number of steps
in the simulated annealing approach. First, the farthest UE
from the BS is chosen. Then, by altering the set of predefined
beamwidths, one that demands the lowest number of utilized
resources per UE is selected to serve the corresponding UEs.
Note that all UEs covered by the beam are included in
the corresponding subgroup. All the selected UEs are then
removed from the set of all multicast group’s UEs, and the
algorithm again selects the farthest UE from the remaining set
of UEs. The algorithm operates until there are no UEs left.

The general logic that handles the operation of the Algo-
rithm 4 can be described as follows. The initial temperature
is set in the temperature parameter, while the temperature
reduction is a cooling function ωc, 0 < ωc < 1. At each
iteration k, the temperature is cooled down by ωc. The number
of neighbors to visit at each iteration is denoted as MaxIt.
A stopping criterion can be either the condition T = 1 or the

Algorithm 4: Multi-RAT Simulated Annealing

1 Input: (XU (i), YU (i), hU ), i ∈ K
2 Output: Heuristic solution G̃k for multicast grouping
3 Generate a feasible initial solution S;
4 Setup initial temperature T > 0;
5 Setup the cooling rate ωc;
6 while T = 1 do
7 k ← 0; ▷ number of iterations
8 while k < MaxIt do
9 Select a neighbor S′ of S;

10 ∆c = c(S′)− c(S);
11 if ∆c ≤ 0 then
12 S ← S′;
13 else
14 S ← S′ if random(0, 1) < exp(−∆c

T );
15 end
16 k ← k + 1;
17 end
18 T = Tωc;
19 end

lack of significant improvement in two consecutive executions
of the objective function of the outer loop. Also, to stop
the algorithm, one may utilize the criterion of reaching a
solution that does not exceed a predefined cost. One may use
condition T = 1 to stop the algorithm. The objective function
c(S) represents the ratio of occupied to available resources, ρ,
required by solution S, where S is a set that includes all the
UEs once.

After defining the initial solution S and setting up the
general execution parameters, such as initial temperature and
cooling rate, the algorithm performs the outer “while” loop
with fixed temperature (lines 4-17 of Algorithm 4). In the inner
“while” loop, which executes MaxIt times, the algorithm
selects a random neighbor S′ and performs the Metropolis
test (see below) to accept the move from S to S′ or not (lines
6-15). In the algorithm, the procedure of the random neighbor
selection is as follows: (i) randomly generate set S′ such that
it covers all the UEs, (ii) calculate the required transmit power
for S′ based on the most robust Signal-to-Noise Ratio (SNR),
(iii) perform water-filling for those subgroups that can be
served simultaneously in a slot considering the power budget
per antenna, Pmax, and (iv) compute c(S′) = ρ. Note that
if the cost fiction ∆c = c(S′) − c(S) is non-positive, the
move is always accepted. Otherwise, the change of solution
is accepted with probability P = e−∆c/T . Once MaxIt steps
are completed, the temperature decreases (line 18), and the
inner loop starts again. The algorithm works until the stop
criterion is met.

Algorithm 4 is relatively simple to implement, but its
efficient implementation requires tinkering with parameters
and figuring out ways to reduce the run-time associated with
computing the solution for values in the search space. The
initial temperature typically is a large number. Then, the
inner while-end loop is executed MaxtIt times, which is
another parameter of the algorithm. As simulated annealing is
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a heuristic solution, in Section VI-B, we explore the optimality
and complexity of the simulated annealing algorithm when the
number of neighbors to be explored, MaxIt, is 15, and the
initial temperature is T = 10.

VI. LEARNED LESSONS AND MAJOR TAKEAWAYS

In this section, based on the performance optimization and
modeling frameworks presented in the previous section, we
will report the learned lessons and major takeaways for multi-
cast operation in mmWave/sub-THz systems with directional
antennas.

A. Single-RAT Optimized Performance

1) Execution Times: We start with the comparison of
the computation complexity of the algorithms 4, reported
in Table VIII. The simulations are performed in MATLAB
on a standard laptop PC with an Intel Core i7-1260P CPU
running at a frequency of 2.10 GHz and equipped with 16
GB of RAM. First, one can see that in the category of single-
RAT multicast solutions, the heuristic solution offers a low-
complexity scheduling scheme but at the expense of optimally
(described in sub-sections below). Note that the run time
of the heuristic solution for a single RAT depends on the
UE locations and the resulting configuration (see single-RAT
heuristic stage 1 option 1.1). Moreover, Table VIII illustrates
that the optimal solution is impractical when the number of
multicast UEs is high (more than 12 in single-RAT and more
than 10 in dual-RAT).

Regarding the multi-RAT solutions, one may deduce that
involving more than two technologies will result in an even
higher execution time. One may use relaxation techniques
(LB, RINS) to reduce the computational complexity of the
optimal solution. However, the improvement is not significant.
Instead, simulated annealing noticeably reduces the compu-
tational time. We emphasize that simulated annealing with
the initial configuration obtained through heuristic (Simulated
Annealing with Heuristics (SA-H)) and random initial config-
uration (Simulated Annealing (SA)) offer the same complexity
since the heuristic solution is extremely low-complex.

Finally, we comment on the complexity of ML solutions.
We note that the run time depends on the size of the testing
dataset, H2, and is not affected by the number of UEs. This
proves that ML algorithms represent a good tool to work with a
high number of UEs in the case of optimal multicast grouping.

We emphasize that time constraints for multicast group
formations are not precisely defined in current standards and
are likely to vary due to operators’ resource management
implementations. It is evident that the constraints do not apply
at the sub-slot or frame level and, in practice, may have even
longer durations. Still, to avoid the infeasibility of applying
a brute-force solution with exponential complexity, we have
chosen to utilize simulated annealing and ML models. This
decision offers a polynomial time complexity, enabling us to
efficiently address the problem while maintaining computa-
tional tractability.

4The presented values are not applicable to the data delivery stage, as they
only specify the time required for multicast group formation.

2) Solutions’ Performance and Water-Filling Comparison:
To compare the solutions designed for single-RAT systems,
we begin with Fig. 8, which depicts the ratio of occupied to
available resources, ρ, for the maximum number of beams
L = 3 (a) and L = 5 (b) when varying the cell area
radius R. One can deduce that, in the case of L = 3, the
curves grow noticeably slower with the increase in the cell
radius compared to L = 5. It is essential to underline that at
smaller values of BS coverage radius R (e.g., approximately
50 − 100m), heuristic (O.1.2) and optimal solutions create a
single subgroup comprising all UEs of the multicast group.
This explains why the curves for L = 5 first exhibit superior
performance and then provide higher ρ values for all schemes.
We also observe that the maximum number of beams per time
slot determines the difference between the optimal solution
and (O.1.2) for (O.2.1) and (O.2.2) heuristic alternatives for
L = 5. Specifically, at roughly 150 − 250m of service area
radius R, the optimum solution employs a single beam and
several time slots, whereas heuristic methods serve UEs with
multiple beams in a single time slot. Hence, in order to reduce
ρ for long distances, such as 150 − 240m, it is essential to
employ a single beam at a time. Note that all the evaluated
techniques employ unicast mode to serve multicast UEs, i.e.,
separate beams for each multicast UE, beginning from around
R = 250m.

Further analysis of the presented data reveals no significant
difference between the types of power water-filling schemes,
i.e., choices (O.2.1) and (O.2.2), with the latter performing
negligibly better than the former. This slight dominance is in-
tuitive and derives from the fact that water-filling (O.2.2) relies
on the resource information feature. Similarly to L = 1 (that
we leave out the scope of this article for the sake of space),
the heuristic option with exhaustive search (O.1.2) agrees with
the optimal solution most closely. However, as the maximum
number of beams, L, rises, even this approximation begins
to deviate from the optimal solution. As per our additional
results, the gap between optimal and heuristic solutions is less
for larger bandwidths, such as for W = 200MHz compared
to W = 100MHz and W = 50MHz. Thus, with higher
bandwidth, data transmission is significantly faster, decreasing
the occupied to available resource ratio.

3) Optimal Number of Beams: The above-mentioned con-
clusions on the utilized number of beams are further com-
plemented in Table IX, which offers the optimal number of
beams, Lopt, as a function of the cell area radius. One may
notice that the optimal solution chooses only one beam per
time slot until R reaches 230m and 250m for L = 5 and
L = 3 beams, respectively. In addition, for L = 3, the optimal
solution selects one beam and several time slots when R is in
the range of 240 − 250m, whereas the presented heuristics
(O.1.2) and (O.1.1) sweep two and three beams per time
slot, correspondingly. By observing both Fig. 8 and Table IX,
we can infer that for the practical cell size ranges and the
evaluated number of multicast UEs, the optimal approach
always employs no more than 2− 3 beams.

4) Optimal Multicast Subgroup Size: Further, Table X
demonstrates the average number of UEs served by a beam
per time slot. The rationale behind analyzing this metric is to
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TABLE VIII
ALGORITHMS’ EXECUTION TIME.

Time/K 2 5 7 10 12 15 17 20 22 25 27 30
Single RAT (in minutes)

Optimal 0.008 0.01 0.06 10.03 54.35 60 (lim-
ited)

- - - - - -

Heuristic∗ 0.0021 0.0046 0.005 0.0043 0.0073 0.008 0.008 0.0085 0.0096 0.012 0.0115 0.017
∗Note that the run time of the heuristic for single RAT depends on the UEs locations and the resulted configuration.

In general, the complexity increases with the number of UEs.
Dual Connectivity (in minutes)

Optimal 0.15 0.89 14.37 29.50 60 (limited) - - - - - - -
LB 0.13 0.88 14.2 28.70 60 (limited) - - - - - - -
RINS 0.13 0.88 14.25 29.20 60 (limited) - - - - - - -
SA-H 1 2.29 3.12 11.01 13.19 17.49 21.51 25.58 29.65 33.70 37.75 41.79
SA 1 2.29 3.12 11.01 13.19 17.49 21.51 25.58 29.65 33.70 37.75 41.79

Machine Learning, R = 250 m, H2 = 5000 (in seconds)
Log. Regres-
sion

2.223 1.863 2.307 2.21 1.93 1.877 2.532 2.109 2.115 1.959 4.344 1.87

Kernel Naive
Bayes

14.82 14.033 13.649 14.31 13.94 13.779 16.136 13.917 14.057 13.88 16.646 14.14

Random For-
est

2.888 2.555 2.602 2.56 2.54 2.463 2.481 2.475 2.494 2.515 3.258 2.97

Narrow
Neural
Network
(NN)

0.184 0.137 0.1253 0.11 0.12 0.134 0.126 0.148 0.163 0.156 0.142 0.15

Weighted
KNN

0.758 0.649 0.646 0.37 0.38 0.734 0.691 0.624 0.684 0.652 0.836 0.75

Cubic SVM 8.291 4.02 3.6771 5.6 7.36 5.093 7.097 5.547 10.934 10.698 4.956 8.31
Fine Tree 0.373 0.342 0.361 0.49 0.39 0.335 0.335 0.355 0.374 0.351 0.393 0.44
Coarse Tree 0.194 0.128 0.1297 0.15 0.19 0.1297 0.1345 0.129 0.133 0.133 0.131 0.16
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Fig. 8. Ratio of occupied to available resources as function of cell radius, K = 10, C = 25 Mbps, W = 50 MHz [9].

evaluate the number of transmissions used to serve multiple
UEs for different radii. The presented results prove the con-
clusion drawn from Fig. 8 that starting from 250m, practically
all the schemes employ the unicast mode for L = 5 beams.
Therefore, Table X delivers an insight into the efficiency of the
multicast transmissions in mmWave networks. Specifically, it
shows situations where the system employs a lower amount
of resources than that required by the unicast service (one
UE per beam). One may notice that the system with L = 3
beams works better in terms of serving more UEs within a
beam, which can be explained by the fact that, generally, the
augmentation of the number of beams leads to a decrease in
the number of UEs per beam. A single beam (one subgroup

that contains all UEs) is almost always utilized for small cell
radii, while unicast service is only feasible for higher ones.

5) Machine Learning: Regarding the ML algorithms im-
plementation, Fig. 9 depicts the accuracy of UEs allocations
to subgroups. As anticipated, the UE allocation to subgroups
accuracy, σ, grows with the training dataset size H1. How-
ever, starting from approximately H1 = 1000, the accuracy
essentially plateaus and no longer increases. At the same
time, we note that, as per our additional investigation, the
perfect resource matching with the optimal solution is seen
for this considered distance of R = 250m, even for very
small values of H1. Therefore, the fact that the accuracy of
all examined algorithms (with the exception of Random Forest)
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Fig. 9. Subgroup assignment accuracy, σ, for H2 = 5000, R = 250m,
K = 10 [103].

remains almost stable when the training sample size increases
from H1 = 1000 to larger values, permits us to consider
H1 = 1000 as the lowest limit on the training set size for
practical implementations.

We now analyze the extrapolation performance of the ML

TABLE IX
OPTIMAL NUMBER OF BEAMS IN MULTI-BEAM SYSTEM AS FUNCTION OF

CELL RADIUS, K = 10 UES, C = 25 MBPS, W = 50 MHZ.

Number
of beams

1 beam 2 beams 3 beams 4 beams 5 beams

L=3 (radius, m)
Optimal 50-250 260 270-300 - -
Heuristic
O.1.1

- 50-180 190-300 - -

Heuristic
O.1.2

50-230 240-250 260-300 - -

L=5 (radius, m)
Optimal 50-210 220-250 260 - 270-300
Heuristic
O.1.1

- 50-130 140 150-160 170-300

Heuristic
O.1.2

50-170 180 190-200 210 220-300

TABLE X
AVERAGE NUMBER OF UES PER BEAM AS FUNCTION OF CELL RADIUS,

K = 10 UES, C = 25 MBPS, W = 50 MHZ.

Number
of UEs

1 UE 2 UEs 3 UEs 4 UEs 5 UEs 10
UEs

L=3 (radius, m)
Optimal 280-

300
- - 270 260 50-250

Heuristic
O.1.1

- - - 190-
300

50-180 -

Heuristic
O.1.2

- - - 260-
300

240-
250

50-230

L=5 (radius, m)
Optimal 270-

300
- - 260 220-

250
50-210

Heuristic
O.1.1

- 170-
300

150-
160

140 50-130 -

Heuristic
O.1.2

270-
300

220-
260

210 190-
200

180 50-170

algorithms. For this purpose, the algorithms are trained using
the training sample of size H1 = 1000 for 10 UEs and then
apply the trained algorithms to the multicast system with 13
UEs. The accuracy metrics are computed for 13 UEs solved by
employing the optimal solution. Fig. 10 illustrates the accuracy
of the multicast subgroups formation for H1 = H2 = 5000
and K = 13 UEs. As can be seen, the match is perfect up
until about R = 250m and then drastically declines for R =
275 m and beyond. The reason is that the considered metric
accounts for specific UEs classified into subgroups. Up until
R = 275m, only one subgroup is utilized, which explains
the perfect match between solutions. We also note that UEs
are served individually using unicast transmissions for the cell
radius higher than R = 300m.

The inability to learn particular UE allocations to different
subgroups, as shown by σ, does not imply that the investigated
ML algorithms cannot learn other UE classification character-
istics. To demonstrate it, Table XI provides resource matching
accuracy, γ, for various BS service area distances, R. As may
be noticed, several algorithms offer excellent performance.
Specifically, the tree algorithms are also showing excellent
extrapolation capabilities. Thus, Random Forest and Fine Trees
show almost 100% accuracy in terms of resource utilization,
γ, over all the considered distances. Considering the relatively
small computational effort required for trees, one may regard
them as the best candidate for subgroup formation.

6) ML Predictors’ Importance: Recall that in order to
collect a dataset, several variables of interest were chosen.
However, the algorithms may or may not use these variables
for classifications. Now, we will investigate which factors
have the most impact on the performance of the algorithms.

TABLE XI
SUBGROUP AND RESOURCE MATCHING ACCURACY, H1 = 5000,

H2 = 5000, K = 13.

Radius 100m 150-225m 250m 275m 300m
Fine Tree

UE assignment, σ 100% 100% 99.02% 29.35% 29.58%
Resources, γ 100% 100% 100% 98.51 96.97%

Logistic Regression
UE assignment, σ 100% 100% 99.96% 29.41% 31.30%
Resources, γ 100% 100% 100% 100% 98.53%

Kernel Naive Bayes
UE assignment, σ 100% 100% 99.17% 28.88% 30.19%
Resources, γ 100% 100% 100% 98.44% 95.39%

Cubic SVM∗∗

UE assignment, σ 99.98% NaN/100% 99.92% 20.74% 20.66%
Resources, γ 100% NaN/100% 100% 85.00% 96.88%

Weighted KNN
UE assignment, σ 100% 100% 99.67% 24.72% 26.91%
Resources, γ 100% 100% 100% 96.92% 98.53%

Random Forest
UE assignment, σ 100% 100% 99.21% 29.86% 29.13%
Resources, γ 100% 100% 100% 96.92% 100%

Narrow NN
UE assignment, σ 100% 100% 99.96% 30.67% 30.84%
Resources, γ 100% 100% 100% 98.53% 100%

Coarse Tree
UE assignment, σ 100% 100% 99.55% 26.65% 26.83%
Resources, γ 100% 100% 100% 59.42%∗ 90.2%∗

∗the algorithm defines 5 clusters (on average) instead of 13
∗∗ no solution for 150, 200 m, accuracy is 100% is for 225 m
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Fig. 10. Subgroup assignment accuracy, σ, for H1 = H2 = 5000, K = 13.

To this end, we present the predictor importance for the
classification ensemble of decision trees in Fig. 11. It computes
the estimated predictor importance for the dataset by summing
these estimates over all weak learners in the ensemble. Here,
a high value corresponds to a high importance of the variable
for the model.

Fig. 11(a) presents the importance of the whole dataset,
where the model’s behavior is analyzed as a function of the
service area radius, R. Therefore, variable R is expected to
be of great importance. However, we anticipated the locations
of UEs to be the most important model features. In contrast,
the number of clusters derived from the solution of the
optimization problem and the cell radius are the two most
influential predictors of the learning process, followed by the
coordinates of the UEs.

Further, by examining Fig. 11(b), one can see that the
importance of the predictors varies with the dataset. Here,
fixing the radius R leads to the UEs’ coordinates being the
most important predictors. This trend may be explained by
the fact that in directional multicast systems, the service area
radius influences the type of transmission used for service (i.e.,
multicast for multiple UEs or unicast for each multicast UE).
The numerical results demonstrate that the solution mainly
depends on the cell radius. When varying the number of UEs
in the system, one may notice, for instance, that a single
subgroup is chosen for the 100−225 m radius range. Then,
for the range 275m and beyond, only unicast transmissions
are used to serve multicast UEs, whereas the considered
multicast group formation solutions can be utilized for the
radii around 250m.

B. Multi-RAT Optimized Performance

1) mmWave Priority. Regime Switching: The results of the
performance analysis when mmWave resources are utilized
whenever possible are shown in Fig. 12 for mmWave nu-
merology µm = 3, µWave numerology µµ = 0, K = 10 UEs,
C = 5Mbps, Wm = 100MHz, Wµ = 50MHz, Lm = Lµ = 5
beams. Here, we start by analyzing the ratio of occupied
to available resources, ρ, as a function of cell radius, R,

illustrated in Fig. 12. As a general trend, one may notice that
ρ grows with the increase in the cell radius until it reaches
the distance at which no mmWave coverage is available due
to the propagation and blockage conditions. At this point, the
system starts selecting µWave as a transmission technology.
For example, in the case of the optimal solution, R = 300m
can be considered as a threshold that defines the change in
the utilized transmission technology. Once this threshold is
exceeded, the optimal solution always chooses the subgroup
containing all K UEs for µWave transmission.

We emphasize that the relaxation techniques (LB, RINS)
show a perfect match with the globally optimal solution. On
the other hand, the simulated annealing algorithms demon-
strate slightly worse results but with better optimality vs.
complexity trade-offs than optimal solutions. By comparing
the simulated annealing algorithms, one may learn that starting
with a good solution (compared to the random one) at some
points brings us a better value of ρ. This can be explained
by the fact that heuristic-based simulated annealing can find a
better solution by the time the stopping criterion is met.

2) Optimal Number of Beams: We further comment on
the optimal number of beams utilized in the multi-beam dual
system as a function of the cell radius illustrated in Table XII.
The optimal number of mmWave beams, Lm, starts with
one beam (when all UEs form a single subgroup) and then
increases up to 3 beams. On the contrary, up to one µWave
beam can be swept at a time (and up to 2 µWave beams for
random simulated annealing). One may notice that µWave
transmissions are utilized when mmWave fails to provide
the service due to propagation conditions and blockage. We
emphasize that µWave BS sweeps one beam as, first, it is
possible to provide services to all UEs by using the wide
beam (small propagation losses) and, second, it ensures the
best ratio of occupied to available resources, ρ. We also note
that the utilized HPBWs for µWave antennas are larger than
those of mmWave technology, as the former is employed for
subgroups having UEs located farther away from each other.
In contrast, mmWave technology typically serves individual
UEs in the unicast way or very clustered subgroups of UEs.

TABLE XII
OPTIMAL NUMBER OF BEAMS IN MULTI-BEAM SYSTEM AS FUNCTION OF
CELL RADIUS, MMWAVE RAT PRIORITY: MMWAVE – µm = 3, µWAVE –

µµ = 0.

Number
of beams

0 beams 1 beam 2 beams 3 beams

mmWave (radius, m)
Optimal 300-400 100-200 220 240-280
LB 300-400 100-200 220 240-280
RINS 300-400 100-200 220 240-260
SA - 280-400 100-200 220-260
SA-H - 280-400 100-200 220-260

µWave (radius, m)
Optimal 100-280 300-400 - -
LB 100-280 300-400 - -
RINS 100-280 300-400 - -
SA 100-260 - 280-400 -
SA-H 100-260 280-400 - -
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Fig. 11. Variables’ importance estimates [103].
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mmWave – µm = 3, µWave – µµ = 0.
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Fig. 13. Ratio of occupied to available resources, weighted optimization
function: mmWave – µm = 3, µWave – µµ = 0.

3) RAT Priority Selection: Observe that µWave priority
excludes mmWave resources, thereby fully loading µWave

technology. A network operator may want to avoid it as µWave
technology needs to be utilized in those areas not accessible
for mmWave. On the other hand, the mmWave priority scheme
exclusively utilizes mmWave resources up to a certain distance
and then switches to µWave technology. An operator might
have different preferences for balancing resource utilization
between considered RATs. To this end, we continue by inves-
tigating the impact of the weighted optimization function on
the system performance. The corresponding results are shown
in Fig. 13 and Table XIII for mmWave numerology µm = 3,
µWave numerology µµ = 2, K = 10 UEs, C = 5Mbps,
Wm = 100MHz, Wµ = 50MHz, Lm = Lµ = 5 beams.

By analyzing the data presented in Fig. 13 and Table XIII,
we emphasize that increasing w in (31) leads to the shift in
the priority from mmWave to µWave. One may learn that at
lower distances R, weights w = 0.2, 0.5, 0.8, do not affect

TABLE XIII
OPTIMAL NUMBER OF BEAMS IN MULTI-BEAM SYSTEM AS FUNCTION OF

CELL RADIUS, WEIGHTED OPTIMIZATION FUNCTION: MMWAVE – µm = 3,
µWAVE – µµ = 0.

Number
of beams

0 beams 1 beam 2 beams 3 beams

mmWave (radius, m)
mmWave
priority

260-400 100-200 220 240

µWave
priority

100-400 - - -

Optimal,
w=0.2

300-400 100-200 220 240-280

Optimal,
w=0.5

240-400 100-200 220 -

Optimal,
w=0.8

220-400 100-200 - -

µWave (radius, m)
mmWave
priority

100-240 260-400 - -

µWave
priority

- 100-400 - -

Optimal,
w=0.2

100-280 300-400 - -

Optimal,
w=0.5

100-220 240-400 - -

Optimal,
w=0.8

100-200 220-400 - -
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the performance and provide results similar to the mmWave
priority scheme. This can be explained by the fact that
mmWave ensures more efficient resource utilization at smaller
distances. Further, note that the choice of w = 0.5 produces
a similar effect to mmWave priority, thereby utilizing µWave
band resources only when mmWave service is infeasible due
to the propagation and blockage conditions. Alternatively,
w = 0.2 increases the range of mmWave technology up to
280m (compared to 240m in the case of mmWave priority),
whereas w = 0.8 shortens R to 200m, thereby allowing
µWave band usage. We can conclude that depending on the
operator’s preferences, weights can be properly adjusted to
achieve a goal with respect to resource usage in dual-mode
mmWave/µWave systems.

The numerical results illustrate that properties of the optimal
solution, such as resource utilization and the type of tech-
nology, heavily depend on the density of dual-mode BS de-
ployments and RAT priority. Further, the utilized numerology
may quantitatively affect the above-mentioned conclusions,
but the overall qualitative trends remain unchanged. The
investigated RAT selection priorities reveal that when µWave
RAT is prioritized for multicast service, mmWave resources
are not utilized at all. However, by using weights for mmWave
and µWave resources, the operator might achieve the desired
balance by fitting its needs in a particular deployment. Finally,
we note that the efficiency of resource utilization for multicast
service may also be affected by the number of UEs and utilized
numerologies.

C. Summary of Key Points

1) Single-RAT Deployment: The summary presents the
conclusions on the complexity and performance of different
optimization solutions, the optimal number of beams, multi-
cast subgroup size, and the importance of predictors in ML
algorithms for optimal multicast grouping in the case of the
single-RAT deployment:

• Computation complexity: The complexity of single-RAT
multicast solutions varies, mainly depending on the num-
ber of multicast UEs. The optimal solution becomes im-
practical for a high number of multicast UEs. Simulated
annealing significantly reduces computational time and at
the same time closely approximates the optimal solution.

• ML solutions: ML algorithms are a valuable tool for
achieving optimal multicast grouping with a large number
of UEs. The runtime depends on the testing dataset’s
size and remains unaffected by the number of UEs. The
importance of ML predictors varies with the dataset,
but influential predictors include the number of clusters
derived from the optimization solution and the cell radius.

• Solution performance and water-filling comparison:
When comparing solutions designed for single-RAT sys-
tems, the ratio of occupied to available resources grows
with increased cell radius. The difference between power
water-filling schemes is negligible.

• Beam configuration: For practical cell sizes and the
evaluated number of multicast UEs, the optimal approach
typically utilizes no more than 2-3 beams.

• Multicast subgroup size: As the cell radius reaches ap-
proximately 250m, practically all schemes employ the
unicast mode to serve multicast UEs. A single beam
(multicasting) is utilized for smaller cell radii.

2) Single-RAT Deployment: The summary analyzes re-
source utilization and RAT selection in a dual-mode
mmWave/µWave system, considering factors, such as cell ra-
dius, beam configuration, RAT priority, and weight parameters.

• Resource utilization analysis: The ratio of occupied to
available resources (ρ) increases with the cell radius until
mmWave coverage is no longer available. The threshold
of 300 m determines the transition to a different trans-
mission technology (i.e., µWave).

• Computation complexity: Involving more than two tech-
nologies increases the execution time. Relaxation tech-
niques, such as LB and RINS, provide results that closely
match the globally optimal solution. Simulated annealing
algorithms yield slightly worse results but offer better
trade-offs between optimality and complexity.

• Beam configuration: The optimal number of mmWave
beams increases from 1 to 3 with an increasing cell
radius, while up to one µWave beam can be used at
a time.

• RAT priority schemes: The µWave priority scheme uti-
lizes mmWave resources up to a certain distance and then
switches to µWave. µWave priority excludes mmWave
resources, thereby fully loading µWave technology. The
choice of RAT priority depends on the operator’s prefer-
ence for balancing resource utilization between mmWave
and µWave.

• Weight parameter: Increasing the weight parameter in the
optimization function shifts the priority from mmWave to
µWave. The choice of weights allows operators to adjust
resource usage based on their preferences.

VII. TECHNOLOGIES FOR IMPROVING MULTICASTING
PERFORMANCE

Despite multicasting represents a really promising approach
to optimize bandwidth usage even in the presence of very
demanding 5G/6G applications, the multicast performance
remains strongly negatively conditioned by the presence of
UEs experiencing poor channel conditions and by the increase
in the number of UEs with the same number of BS anten-
nas. For this reason, 5G/6G-level mechanisms, such as RIS,
LTE/NR sidelink, air-to-ground communications, Mobile Edge
Computing (MEC), and ML, among other technologies and
solutions, can be utilized to improve multicasting performance.
In this section, we survey the recent advances in these areas.
The summary of topics and proposed techniques is provided
in Table XIV.

A. Sidelink-Assisted Multicasting

Sidelink technology, which is an extension of the LTE
system allowing for D2D communications without using BS as
an intermediate point, can be utilized to bridge over the mul-
ticast difficulties [198], [199]. For example, in such a system,
sidelinks may provide service to UEs experiencing degraded
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TABLE XIV
TECHNOLOGIES FOR IMPROVING MULTICASTING PERFORMANCE

Enhancement type Reference Problem Proposed technique/approach
Sidelink assistance [122] Energy reduction Heuristic algorithms for multicast data delivery

[123] Optimal multicast scheduling Group partition and beam selection algorithm
[124] Optimal user partitioning Multicast scheduling algorithm
[125] Power consumption/interference minimization Relay selection and power allocation algorithm
[126] Latency, reliability, data rate, and spectral efficiency Location-based hybrid multiple access scheme
[127] Secure data delivery Approach for assessment of relay trustworthiness
[128] Sidelink transmission security Reliable management of multicast services in a 5G IoT
[129] System capacity maximization Spectrum sharing and caching selection strategy

RIS assistance [130] Power control, QoS, fairness RIS optimization algorithm
[131] Downlink power control Passive beamforming scheme
[132] Energy efficiency maximization RIS-based resource allocation methods
[133] Choice of the optimal reflection coefficients Analytical method for RIS configuration
[134] Secure RIS beamforming Analytical optimization via semidefinite relaxation
[135] Maximization of RIS secrecy rate Analytical assessment via stochastic geometry
[136] Channel capacity maximization Optimization via gradient descent method
[137] Simultaneously transmitting and reflecting RISs Overview of state-of-the-art algorithms
[138] RIS-assisted multicasting modeling Analytical model via queuing theory

NTN assistance [139] Radio resource sharing Resource allocation cooperative T-NTN algorithm
[140] Simultaneous usage of NTN/terrestrial systems Cooperative multicast/unicast transmission scheme
[141] Spectral efficiency maximization Radio resource management scheme
[142] Capacity and spectral efficiency maximization Dynamic beam area formation algorithm
[143]–[146] Exhaustive coverage of NTN usage in 5G/6G Survey covering NTN-aided multicasting

MEC assistance [147] Content distribution, energy consumption efficiency Offloading and resource allocation algorithm
[148] Resource allocation for MEC Stochastic optimization via real-time algorithm
[149] Secure data delivery Certificate-less security scheme
[150] Resource minimization with privacy Convex optimization algorithm
[151] Resource allocation Real-time throughput maximization algorithm
[152] NFV-enabled edge multicast Multicast admission algorithms
[153] Delivery latency minimization Caching-assisted algorithms

AI/ML usage [154] Spectrum crunch problem Heuristic algorithms via self-organizing maps
[155] Clustering and resource allocation problem Q-learning, Lagrange decomposition algorithms
[156] Performance of sidelink and BS multicast Random Forest and Deep Neural Network algorithms
[157] Beamforming and beam selection Neural network-based approach
[158] Single-group multicast beamforming ML-enhanced determinantal point process

Coded caching [159] Robust transmission to in-and-out wireless network
quality, delay and power minimization

Stochastic optimization problem via MDP; deep double
Q-learning

[160] Minimization of transmission bandwidth Scalable framework for wireless distributed computing
[161] Minimization of satellite communication load Coded multicasting framework
[162] Spatial scalability Separation between caching and PHY transmission
[163] Worst-user channel limitation of multicasting Aggregated coded-caching scheme
[164] QoS requirements of XR (latency) Global caching and spatial multiplexing delivery

Cell-free MIMO [165] Throughput improvement Analytical performance analysis
[166], [167] Secure transmission Closed-form lower bound on the ergodic secrecy rate
[168] Optimization of beamforming strategies Distributed precoding design
[169] Performance imrovement closed-form solution for achievable spectral efficiency
[170] Spectral efficiency improvement Joint unicast and multigroup multicast transmission
[171]–[173] Enabling FL over wireless networks FL groups with different learning purposes

Cloud/fog RAN [174] Resource allocation problem Optimization framework
[175] Robust beamforming for multigroup multicasting Convex approximation
[176] QoS improvement Nested coalition formation game-based algorithm
[177] Content caching Non-convex problem
[178] Content-centric transmission design Mixed-integer nonlinear programming problem

Network coding [179] Throughput improvement Bulk-service queueing system
[180] Power cost, delivery delay reduction Optimized random network coding strategies
[181] Reliable multicasting Lower bound on probability of successful delivery
[182] Throughput maximization Optimization problem for delay-tolerant applications
[183] Distortion minimization End-to-end mean square error distortion optimization
[184] Throughput maximization Theoretical results on the bandwidth efficiency
[185] Throughput improvement Architecture for wireless mesh networks
[186] Efficient network capacity usage Network coding routing
[187] Multicast capacity improvement Multicast rate optimization probel
[188] Information security, communication, and system

robustness bottlenecks
Federated learning

[189] Reduction of number of transmitted packets Network coding datagram protocol
NOMA usage [190] Spectral efficiency improvement Beamforming design and power allocation

[191] Cooperative unicast–multicast, reliability Outage probability assessment
[192], [193] Unicast rate maximization problem Beamformer-based NOMA-aided framework
[194] Rapidly fluctuating vehicular wireless channels Optimization problem
[195] NOMA networks with multicast-unicast Power allocation schemes
[196] Security of cooperative multicast-unicast system Transmission scheme and power allocation method
[197] Hybrid unicast/multicast MIMO precoding Opportunistic massive MIMO-NOMA system
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propagation conditions (that is, the BS multicast link serves
not all UEs), as considered in [200]. Specifically, the authors
design a sidelink-enhanced system provisioning of multiqual-
ity titled 360◦ VR services by utilizing both multicasting and
sidelinks. Although the efficiency of the proposed approach
is validated on LTE-based systems, the designed solution
can also be exploited for mmWave-based networks while
considering specific multicast-group formation and directional
transmissions. Similarly, in [154], sidelink transmissions are
used to tackle blockage and/or poor mmWave communication
channels. A more complex system is provided in [201], where
a reinforcement learning approach is proposed to orchestrate
multicast service provisioning by jointly utilizing broadcast-
ing, unicasting, and D2D connectivity options. The authors
demonstrate that the proposed system allows for improving
spectral efficiency at the cell edge.

In [122], the authors tackle the problem of utilizing con-
current transmission (D2D multihop and conventional BS-to-
UE communications) for multicast service provisioning with
the aim of improving power efficiency. They compare the
proposed scheme to the multicast operation over mmWave sys-
tems implemented via unicast service. More recently, in [123],
the optimal multicast scheduling problem is addressed by
leveraging D2D transmissions, multicast group partition, and
beam selection by exploiting a multi-level codebook structure.
Besides, in [124], it is demonstrated that D2D communica-
tions increase multicasting efficiency, and the authors propose
a user-clustering and multicast-path-planning algorithm with
cubic complexity on the set of multicast UEs.

The problem of relay selection in D2D-aided multicasting
has been the focus of several recent studies. For instance,
in [125], a method for relay selection that improves energy
efficiency and power allocation for multi-source network-
coded cooperative D2D communication is proposed for LTE
systems, readily adaptable for mmWave networks. Similarly,
in [126], a low-complexity, location-based hybrid multiple
access scheme and relay selection algorithm are presented
for V2X communications when no sidelink CSI is available.
The proposed approach determines the most suitable multiple
access schemes and the associated relay. Moreover, in [202],
the use of D2D links carrying additional CSIs is proposed
for determining the pseudo-range estimates between UEs
that might be helpful for, e.g., position estimation and relay
selection.

While it has been demonstrated that sidelink communica-
tions can enhance point-to-multipoint transmissions through
efficient relay selection, direct D2D connections present even
greater security challenges since data exchange occurs directly
between nodes in close proximity. In [127], a mechanism
to effectively deliver trustworthy multicast/broadcast traffic in
5G-oriented networks is introduced to address this issue. In
the same vein, a protocol for effectively managing multicast
services with a particular emphasis on security in a 5G-
oriented IoT environment is proposed in [128]. In addition,
cyber security and social trustworthiness mechanisms are
exploited to ensure secure D2D communications.

Social relationships are also exploited for the D2D-assisted
caching (D2DC) technique, which has emerged as a viable

means of bringing the service closer to its consumers. In order
to optimize system capacity, in [129], a social-aware spectrum
sharing and caching selection method uses the mobile users’
resources (i.e., downlink resources for sharing and cache stor-
age resources for multicasting) to offload videos in D2D 5G
networks. We highlight that the methods provided in [127]–
[129] are employed in 5G networks for traditional LTE-like
multicasting. Nevertheless, it does not limit their adaptability
to directional multicasting by providing valuable insides into
security and capacity problems.

B. RIS-Aided Multicasting

RISs are an emerging technology that may modify or rear-
range the propagation environment to enhance the performance
of wireless communications [203]. Several research groups
recently examined RIS-assisted multicasting to improve con-
tent delivery efficiency, especially in mmWave systems. A
RIS-assisted multicast architecture for single-group and multi-
group multicasting is presented in [204] and in [205], respec-
tively, whereas in [206], the channel condition of the weakest
UE is enhanced by adjusting the RIS phase shifts. In [207],
simulations at the system level demonstrate that the near-field
region cannot be neglected in outdoor circumstances.

Furthermore, in [130], a comprehensive study of optimiza-
tion problems, including power control, QoS, and fairness in
wireless mmWave networks augmented by RISs, is performed.
It also contains the formulation of optimization problems for
power control under QoS and max-min fair QoS under three
BS-to-UEs traffic patterns (unicast, broadcast, and multicast)
and its extension to multi-antenna and multi-RIS scenarios.
Similarly, the study in [131] highlights the difficulties of down-
link power regulation under QoS restrictions in the presence
of RISs for unicast, multicast, and broadcast scenarios.

An analytical study of the energy efficiency of the RIS-
assisted multicast communication system and a formulation
of the energy efficiency maximization problem are presented
in [132]. Similarly, a theoretical model for RIS-assisted mul-
ticast communications for future 6G wireless systems is pro-
posed in [138] by utilizing the M/D/c queuing model, where
the number of servers represents the number of simultaneous
beams at the NR BS. Further, in [133], an efficient recon-
figuration technique providing control over multiple beams is
proposed. The strategy uses an analytical method to design the
surface for multi-beam RIS radiation patterns, as opposed to
time-consuming numerical optimization strategies. As a part
of the analysis, broadcasting and multicasting scenarios are
studied.

In [134], the application of RIS to increase the physical-
layer security of the Multi-User Multiple-Input Single-Output
(MU-MISO) broadcast system, where a BS sends a shared
data stream to several legitimate receivers in the presence
of numerous eavesdroppers, is examined. Similarly, in [135],
security is enhanced by a RIS that reflects the incident signal
so that the interference is constructive at the intended receiver
and destructive at the eavesdropper. In [136], the channel
capacity of the RIS-assisted MIMO system in the multicast
scenario is investigated. In [208], an overview of RIS-based
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channel measurements and experiments is provided by catego-
rizing frequency bands, scenarios, system configurations, RIS
designs, and channel observations.

Finally, the novel concept of Simultaneously Transmitting
and Reflecting (STAR) RISs is studied in [137]. Here, a STAR-
RIS-aided downlink communication system for both unicast
and multicast services is studied, in which a multi-antenna BS
transmits information to two UEs, one on each side of the
STAR-RIS. The results prove that the performance advantage
of STAR-RISs over traditional RISs increases with the number
of RIS elements.

C. Multicasting over Non-Terrestrial Networks
Lately, Non-Terrestrial Networks (NTNs) have received

significant attention due to their capability to expand network
coverage and effectively complement terrestrial networks.
Additionally, the availability of backup NTN connectivity
may also improve service reliability via inter-RAT multi-
connectivity.

In [139], the principles of the multicast grouping technique
implemented in a cooperative Radio Resource Management
(RRM) scheme are investigated. The scheme detects which
UEs should be connected to terrestrial BS or NTN cells to
improve service quality and fairly allocate resources. The
simulation results show a significant increase in the over-
all performance of the integrated network. In [140], hybrid
satellite-terrestrial double-edge networks are investigated, and
a transmission scheme, which combines multicast and unicast
services, is proposed. The analysis of the proposal is carried
out using the OPNET platform and shows that the coopera-
tion of multicast and unicast can further reduce the load of
terrestrial backhaul links.

In [141], a solution for efficiently utilizing the radio spec-
trum in multi-beam NTN systems is developed. Differently
from the traditional four-color frequency re-use, the proposed
radio resource management scheme called Single-Frequency
Multi-Beam Transmission (SFMBT) splits the radio resources
among the overlapping MBSFN Beam Areas (MBAs) and
avoids inter-beam interference. The schemes are compared
in terms of the Aggregate Data Rate (ADR), UE throughput,
and system spectral efficiency. The idea of grouping adjacent
beams into a single MBA is further studied in [142], where
the Dynamic MBSFN Beam Area Formation (D-MBAF) algo-
rithm is proposed. D-MBAF leverages multicast subgrouping
and simultaneously serves subsets of users at different data
rates. Albeit the approaches mentioned above work with 5G
NR systems where traditional multicasting is used, it does not
limit the applicability of mmWave multicasting over integrated
terrestrial/non-terrestrial networks.

Recently, a number of surveys were published to underline
the role of multicasting in future NTN 5G systems. In [143],
a comprehensive overview of the NTN evolution with an
emphasis on the role of NTN within the 5G NR system is
provided. Multicasting is presented as the primary enabler of
network scalability for Enhanced Mobile Broadband (eMBB)
service in 5G NTN. In [144], the evolution of NTNs and
the solutions to close the gap between 5G and 6G ecosys-
tems are considered. Specifically, it underlines the need for

global coverage to access eMBB service. In [145], the issues
of power consumption, blockage, and dynamic propagation
environment are considered proposing RIS as a solution.
In [146], in joint terrestrial-satellite systems, NTN broadcast-
ing/multicasting can provide content scalability and seamless
delivery to high-speed moving objects, such as automobiles,
trains, and ships.

D. Mobile Edge Enhancements for Multicasting

The integration of MEC with multicasting has recently
become a natural trend for improving bandwidth utilization
efficiency in radio access and backhaul networks. MEC may
alleviate the dependency of multicasting on the core net-
work and further optimize multicast video streaming over the
MBMS service.

In [147], the advantages of multicasting to improve the
efficiency of content distribution while optimizing energy con-
sumption are emphasized. To facilitate offloading of latency-
constrained services, the authors proposed a multicast-aware
cooperative caching scheme. The problem of caching in
combination with computing in multicast scenarios is further
investigated in [148].

Some studies emphasize the security concerns of using
MEC for multicasting. For instance, in [149], a secure down-
link transmission scheme minimizing the delivery delay is
proposed. Further, in [150], a system to encrypt the multi-
cast messages on the edge is suggested and evaluated. The
main advantage of the proposed scheme is the reduction of
communication costs.

The combination of MEC and Network Functions Virtual-
ization (NFV) is considered to tackle the wireless bandwidth
bottleneck problem. In [151], NFV-enabled multicasting is
investigated. Specifically, the authors conclude that the op-
timization of MECs for joint network resource allocation and
computing tasks assignment presents significant challenges
and requires further studies in this area. In [152], a similar
problem related to service provisioning for latency-constrained
applications via NFV-guided multicast operation in a MEC
is investigated. The solution combines both exact algorithms
and associated heuristics. Finally, in [153], the authors focus
on latency minimization for multicasting services in MEC
systems utilizing caching infrastructure.

E. AI/ML aided Multicasting

The research community has recently been investigating the
possibility of leveraging ML techniques to efficiently utilize
radio resources for multicasting.

The problem of multicast group formation in mmWave com-
munication has been widely studied in various research works.
In [154], an unsupervised learning approach is employed to
cluster UEs. The authors of [155] focus on improving power
and resource allocation in D2D multicast cellular networks. A
strategy based on unsupervised ML is exploited for performing
a dynamic division of D2D users into groups, while an
algorithm that embeds Q-Learning is used to maximize the
energy efficiency of involved UEs. The work in [156] proposes
a mixed-mode content distribution scheme for D2D-enabled
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clustered networks wherein the users that should be serviced
by the eNB are determined by means of ML.

The research in AI/ML-aided multicasting extends beyond
UE clustering. In [157], the authors aim to maximize the
minimum received SNR at the UEs by selectively activating
a subset of the available transmit antennas. To this end,
they propose an ML-based approach that maps the channel
realization to the optimal antenna selection, reducing com-
plexity and outperforming traditional numerical optimization
techniques. In [158], the impact of users with the lowest SNR
on the efficiency of a beamformer is examined. To address
this issue, the authors propose an ML-based approach to
detect such users and develop an optimized beamformer. The
suggested scheme is not affected by the time-varying number
of UEs and demonstrates an excellent performance-complexity
compromise.

F. Coded Caching Multicasting Data Delivery

Coded caching techniques involve distributing bits of con-
tent among multiple cache memories across the network rather
than simply replicating popular information near end-users.
This approach consists of two phases: placement and delivery.
During the placement phase, content files are divided into
smaller parts and stored in different cache memories. This
phase is typically performed when network traffic is low or
when users are in close proximity to a transmit-receive point.
In the delivery phase, after users reveal their requests, several
codewords are generated and multicasted to specific groups
of users. By leveraging their cache contents, target users can
eliminate unwanted terms from the received signal, enabling
them to obtain their requested data without interference.

The utilization of coded caching leads to a reduction in
average caching load by half [161]. Furthermore, coding multi-
cast opportunities can help minimize the required transmission
bandwidth [160]. Among various coded caching techniques,
the Progressive Delivery Array (PDA) has gained significant
attention [159]. PDA provides guidance on which content users
should cache and what needs to be sent from the server in
a single array. By combining coded caching and PDA, high-
rate and low-latency communications can be achieved, thereby
enhancing users’ QoE, particularly in multi-user Extended Re-
ality (XR) applications. However, the design of PDA involves
computationally intensive processes.

Work in [162] explores the concept of coded caching in the
context of statistically diverse channels. The proposed scheme
builds upon the principles of coded caching designed for
single bottleneck networks. It effectively transforms individual
user demands into a single coded multicast stream, achieving
optimality from an information-theoretic perspective. Addi-
tionally, the scheme utilizes maximum distance separable
coded multipoint multicast, enhancing the overall system’s
efficiency. Differently, in [163], the focus is on mitigating
the worst-user bottleneck in wireless coded caching. This
bottleneck significantly hampers the benefits of cache-aided
multicasting, primarily due to the limitations imposed by the
worst-channel scenario in multicasting. Furthermore, employ-
ing multi-antenna coded caching techniques can effectively

address critical communication bottlenecks in multi-user XR
applications [164].

G. Cell-Free MIMO

Cell-free massive MIMO systems differ from traditional
cellular ones as they involve multiple Access Points (APs)
working together to serve numerous users within the same
time-frequency resource. There are no distinct cells in this
configuration, and the system leverages the advantages of
both colocated massive MIMO and network MIMO, resulting
in high energy and spectral efficiency. Multigroup multicast
systems have also gained attention due to their efficient
transmission capabilities to multiple groups of destinations.

In [165], the performance of multigroup multicast cell-
free massive MIMO in terms of throughput is analyzed. The
findings indicate that, in scenarios with a small number of user
groups, a short-term power constraint outperforms the long-
term power constraint commonly employed in the existing
literature. Additionally, when there are only a few user groups,
utilizing downlink pilots during transmission significantly en-
hances system performance. To further improve performance,
it is essential to explore the advantages of combining cell-
free massive MIMO, low-resolution analog-to-digital/digital-
to-analog converters, and multigroup multicast technologies,
as emphasized in [169].

Furthermore, multicast cell-free massive MIMO networks
are studied to cover different research topics. For example,
in [166], [167], the works focus on studying secure trans-
mission in a cell-free massive MIMO network employing
multigroup multicasting in the presence of an active spoofing
attack. Then, the proposal in [168] involves designing multi-
group multicast precoding techniques specifically tailored for
cell-free massive MIMO systems. Differently, the approach
in [170] examines the combined unicast and multigroup
multicast transmission in cell-free distributed massive MIMO
systems. By comparing the spectral efficiency of unicast and
multicast transmission under identical parameters, the findings
demonstrate that multicasting achieves higher spectral effi-
ciency while utilizing fewer coherence time slots. To facili-
tate stable and rapid Federated Learning (FL) over wireless
networks, works in [171]–[173] suggest employing cell-free
massive MIMO as an assisting technology for the FL process.

In the context of 6G applications, cell-free network oper-
ations show tremendous potential [21]. They offer seamless
mobility support without the need for frequent handovers,
which is particularly beneficial for THz frequency systems.
These operations ensure the desired QoS levels required by
demanding mobility requirements in 6G applications. Ad-
ditionally, high-frequency cell-free smart surfaces supported
by mmWave tiny cells can be utilized for both mobile and
stationary access scenarios.

H. Cloud/Fog Radio Access Network

Cloud-Radio Access Network (C-RAN)/Fog-Radio Access
Network (F-RAN) have the potential to enhance multicasting
in several ways. First of all, C-RAN/F-RAN architectures
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enable centralized resource allocation and management, al-
lowing for efficient multicast scheduling. The centralized
controller can intelligently allocate radio resources, such as
time slots and frequency channels, optimizing the overall mul-
ticast performance [174]. Then, C-RAN/F-RAN can facilitate
coordinated beamforming techniques for multicasting [175].
By coordinating the transmission from multiple base stations
or fog nodes, the beamforming can be optimized to maximize
the signal strength at the intended multicast group, thereby
enhancing the coverage and capacity of the multicast trans-
mission.

The cloud/fog components in C-RAN/F-RAN can pro-
vide additional processing capabilities and storage capacity,
allowing for improved QoS provisioning for multicast ser-
vices [176]. The increased computational power can support
advanced multicast protocols, error correction codes, and con-
tent delivery mechanisms, ensuring reliable and efficient multi-
cast transmission. With the help of fog nodes located closer to
the end-users, C-RAN/F-RAN can enable efficient caching and
content delivery for multicast services [177], [178]. Popular
multicast content can be cached at the fog nodes, reducing
transmission latency and network congestion and enhancing
the scalability and reliability of multicast delivery.

Overall, the integration of cloud and fog technologies
into the radio access network architecture brings numerous
benefits to multicast services, including optimized resource
allocation, coordinated beamforming, improved QoS, and ef-
ficient content delivery. These advancements contribute to
enhanced multicast performance, scalability, and reliability in
C-RAN/F-RAN deployments.

I. Network Coding

Network coding is a powerful method for considering the
information content of each transmission and utilizing that
information to boost network throughput [184], [185], thus
improving the network’s efficiency and scalability. In [179],
queuing delay analysis for multicasting over a one-hop net-
work with random linear coding is discussed. The problem
of reliable multicasting employing Random Linear Network
Coding (RLNC) for one-hop destinations is discussed in [180].
Work in [181] introduces a lower bound on the probability
of successful packet delivery using RLNC for any number of
users in one-hop. A relay-assisted multicasting approach using
network coding with a single source, single relay, and two
destinations is proposed in [182]. The source node broadcasts
data for a fixed time interval and combines relayed packets to
communicate with destinations reliably. Similarly, work [183]
considers a single source and a single relay to transmit data
to multiple destinations. Binary network coding techniques for
single-hop wireless networks are proposed in [184], where the
source node broadcasts network coding packets to the intended
destinations. In [185], an inter-session wireless network coding
scheme that incorporates opportunistic listening to maximize
packet extraction by intended receivers based on reception
reports broadcasted by overhearing nodes is implemented.

Differently, in [186], a scheme for efficient packet transmis-
sion in multi-hop wireless networks is proposed to optimize

the transmission of packets from the source node to the
destination set using a selected forwarder set. This reduces
the number of transmissions and improves network capacity
utilization. In [187], linear network coding is used to improve
the multicast capacity of the satellite dynamic networks.
Another interesting approach is presented in [188], where
network coding is applied to the FL scenario to deal with
information security, communication bottlenecks, and system
robustness. In [189], network coding datagram protocol is
designed for content delivery systems that utilize multicast
data transmission from multiple sources to reduce the number
of transmitted packets.

J. NOMA to Support Mixture of Unicast and Multicast

In recent years, there has been a growing interest in Non-
Orthogonal Multiple Access (NOMA) due to its potential
to meet the requirements of 5G technology. By leveraging
power domain multiplexing, NOMA enables the simultane-
ous provision of services to multiple users within the same
time/frequency/code domain, taking into account variations in
channel conditions between different users [209]. In the lit-
erature, NOMA supports the coexistence of multicast-unicast
traffic and hybrid transmission modes.

In the case of coexisting multicast-unicast traffic, in [190],
an approach that involves beamforming and power alloca-
tion techniques is proposed to enhance the performance of
unicast transmissions while ensuring reliable reception for
multicast communications when applying NOMA to a multi-
user network that handles both multicast and unicast traffic.
Nevertheless, the approach has several limitations. First, it
fails to fully leverage the inherent diversity orders offered
by the NOMA concept to enhance reliability. Second, this
strategy is ineffective when serving multiple unicast users
(more than one) and multicast users simultaneously. In a
different work [191], shared time/space/frequency resources
are utilized by a group of unicast users (requiring unique
unicast traffic) and multicast users (requiring the same traffic).
A two-phase cooperation strategy is proposed in order to
enhance reliability.

There are also studies focusing on mixed multicast-unicast
transmissions, where the same content needs to be delivered
via different modes. For example, works [192], [193] ex-
plore the concept of NOMA for joint radar and multicast-
unicast communication, wherein MIMO dual-functional radar-
communication BS utilizes the same spectrum resources.
Similarly, in [194], a hybrid multicast/unicast scheme is
investigated in a vehicular scenario with rapidly changing
wireless channels using cache-aided NOMA in a MIMO
system. Here, a practical scenario of imperfect CSI is inves-
tigated differently from the rest of the literature. In [195],
two power allocation schemes are proposed for multicast-
unicast transmission in NOMA networks. Differently, in [196],
the security performance of a cooperative multicast-unicast
system in the presence of high-mobility users is studied. A
NOMA-based orthogonal time frequency space transmission
scheme is developed to mitigate the impact of the Doppler
effect and enhance spectral efficiency. Additionally, a power
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allocation method is proposed to balance multicast reliability
and unicast streaming confidentiality. Finally, in [197], a
hybrid unicast/multicast MIMO precoding based on NOMA
is proposed.

Since 2017, NOMA in the case of hybrid multicast-unicast
systems has risen in popularity in the scientific/research com-
munity. Although, to the best of our knowledge, there are no
plans to introduce NOMA in the 5G-Advanced set of 3GPP
standards.

VIII. CONCLUSIONS AND FUTURE RESEARCH
DIRECTIONS

Motivated by the need to support multicasting in future
5G/6G mmWave/sub-THz systems, which operate over highly
directional antennas, in this work, we provided a compre-
hensive tutorial on performance optimization and evaluation
frameworks for such systems. Starting with the current support
of multicasting in 5G and an overview of the ongoing projects
related to this topic, we then proceeded with system model
components for building different use cases and scenarios. The
optimization and evaluation frameworks detailed in this paper
make a solid foundation for the practical implementation of
multicasting as well as the assessment of enhancements and
new service algorithms. To this aim, we concluded our work
with an in-depth review of additional mechanisms that can be
utilized to further improve multicasting performance in 5G/6G
mmWave/sub-THz systems.

We summarized the most critical findings, observations,
and properties in Table II. Among practical recommendations,
a few critically affect the current cellular systems’ design
and their future evolution. Specifically, there are still no
efficient algorithms to ensure service continuity of sessions in
mmWave/sub-THz RATs except for fallback to µWave systems
that are not subject to outages as a result of blockage impair-
ments. Moreover, with the further increase in antenna direc-
tivity in cellular systems, the need for explicit multicasting
support may no longer exist in 6G sub-THz systems. Finally,
the overall complexity of forming multicast sessions in 5G/6G
systems with various enhancements is expected to be increased
even further naturally, requiring efficient approximations and
even sub-optimal solutions.

The envisioned future research directions are outlined next.

A. Mobility Support for Multicasting

The future of 6G networks is influenced by the increas-
ing number of interconnected devices and the emergence of
innovative mobility scenarios. Meeting the needs of highly
mobile users, including those in vehicles, drones, and space
missions, is of utmost importance. Seamless handovers, low
latency, high-speed mobility support, and efficient mobility
management are key priorities for the evolution of 6G.

Addressing mobility challenges in 6G involves optimizing
network architecture, access protocols, QoS, and network
slicing. Enhancements in these areas facilitate reliable con-
nectivity for users on the move, regardless of their location
or speed. Managing mobility in high-frequency bands, espe-
cially for multicast service delivery, is a significant challenge.

Sophisticated techniques are required to dynamically adjust
antenna direction and focus to maintain connectivity with
moving users and ensure efficient multicast delivery.

To tackle this challenge, 6G networks need advanced mul-
ticast techniques that dynamically adapt to changing positions
and movements of multicast groups. This involves adjust-
ing group composition, optimizing resource allocation, and
intelligently managing transmission parameters for a high-
quality multicast experience. Furthermore, the optimization of
multicast routing protocols and the design of efficient multicast
tree structures should take into account network capacity, the
number and distribution of recipients, and dynamic changes
in multicast group membership [21].

B. Support of Multicasting in IAB Systems

The propagation specifics of mmWave/sub-THz bands, in-
cluding severe path losses and outages caused by blockage,
inherently require dense deployments of 5G/6G BSs. To
address the abovementioned challenge, 3GPP has recently
standardized IAB technology [210] that allows the utilization
of low-cost relay nodes, called IAB nodes, connected via
wireless backhaul links to improve the coverage of a single
mmWave/sub-THz BS, referred to as an IAB donor.

The use of IAB architecture in future 5G/6G
mmWave/sub-THz cellular systems is a drastic paradigm shift
in terms of network control and optimization. First, there is an
inevitable step away from centralized control due to signaling
delays. Thus, IAB systems will adopt a semi-centralized
control, where a part of the functions, such as topology
selection and resource allocation, will still be performed
centrally at an IAB donor. In contrast, some functions,
such as scheduling, must be performed autonomously at
IAB nodes [211]. Moreover, the use of wireless access and
backhaul induces the half-duplex operational regime, that is,
IAB nodes and donors cannot simultaneously receive and
transmit over their interfaces. Finally, as UEs utilizing the IAB
network shall experience exactly the same QoS as those using
conventional BS-only deployments, in addition to throughput
and coverage, which have traditionally been the main metrics
of interest in cellular deployments, latency starts to play
a critical role. The latter becomes a further constraint for
complex optimization and evaluation frameworks considered
for multicasting. So far, there are no studies addressing
the question of optimal multicasting over multi-hop IAB
topologies.

C. Reliability Improvements via New Mechanisms

Being inherently prone to outage events due to blockage
and micromobility, 5G/6G mmWave/sub-THz bands pose ex-
treme challenges for the provisioning of reliable multicast
service. As the main tool to improve session service reli-
ability, 3GPP offers inter- and intra-RAT multi-connectivity
operations. However, as demonstrated in [65], by utilizing even
extremely dense deployments on mmWave BS, no sufficient
service reliability can be achieved. On the other hand, the
use of inter-RAT multi-connectivity with, e.g., LTE or µWave
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NR, leads to considerable performance degradation of single-
band µWave UEs, as shown in [64], [212]. However, the
observations above are extrapolated from those obtained for
unicast services, and there are still no in-depth mathemati-
cal frameworks benchmarking performance improvements of
these functionalities for multicast services.

There is an urgent need for new advanced mechanisms
to improve service reliability in 5G/6G mmWave/sub-THz
systems, such as the use of IAB deployments, RISs, and
NR-sidelink technologies, among others. As outlined in Sec-
tion VII, only the first steps are made in this direction. There
are no full comprehensive frameworks allowing for comparing
the performance of different solutions and algorithms.

D. Lightweight/Sub-Optimal Solutions/Approximations

Performance optimization of multicasting in 5G/6G
mmWave/sub-THz systems with directional transmissions is
inherently an NP-hard problem. As we demonstrated, using
various relaxation techniques does not lead to time complex-
ity improvements, while approximations, such as simulated
annealing and even the best ML-based approaches, may result
in deviations from the optimal solution. Thus, there is a
need to further research for either simplified formalizations
leading to fast solutions and/or more reliable approximations
of the existing formalizations. The former can be addressed
by, e.g., linearizing the involved variables. In contrast, the
latter can be obtained by using exact combinatorial methods
for group formations, at least for a set of specific cases, and
then applying extrapolation techniques.

E. Fair Coexistence Between Unicast and Multicast Traffic

Although there has been a sizable amount of research on the
provision of multicast services in broadband wireless access
networks, very few studies offer solutions for simultaneously
managing unicast and multicast traffic. Due to the fact that
these two types of traffic will undoubtedly coexist in future
mobile communication systems, it is imperative to understand
their unique properties to ensure fair resource allocation, as
discussed in the following.

The specifics of the multicast service operation indirectly
introduce priority for the multicast sessions, thereby severely
decreasing the unicast session loss probability. As the offered
load for the multicast sessions increases, the system fills up
nearly entirely with them, leaving the unicast sessions with
minimal remaining resources. One must actively prioritize the
unicast traffic using bandwidth reservation and connection
admission control techniques, among others, to balance out
the session drop possibilities. Note that some work on fair
multicast and unicast traffic management has been done for
LTE systems in [6], [213] and in a review of related studies
thereof. However, such solutions designed for omnidirectional
LTE systems are unsuitable for 5G/6G mmWave/sub-THz
systems based on directional transmissions. Hence, there is
an urgent need to fill this gap.

F. Hybrid Unicast-Multicast Strategies

In the realm of communication systems, the primary means
of data transmission has traditionally relied on unicast, where
information is sent from a sender to a recipient. However,
multicast transmission has gained significant attention with the
emergence of new applications and the increasing need for
simultaneous content delivery to multiple users.

Looking towards the future, the advent of 6G networks
brings forth the exploration of hybrid strategies that integrate
unicast and multicast methodologies, enabling adaptability to
diverse communication scenarios. These strategies entail the
dynamic switching between unicast and multicast transmission
modes based on factors such as the number of users, network
conditions, and the nature of the content being transmitted. It
is worth noting that hybrid unicast-multicast schemes have
been thoroughly investigated in the context of 4G and 5G
systems [214]–[217].

The unique characteristics and requirements of 6G net-
works, such as higher data rates, ultra-low latency, mas-
sive connectivity, mobility, and the integration of emerging
technologies, introduce new challenges and considerations
for hybrid unicast-multicast schemes. Specifically, the design
of hybrid strategies in 6G systems necessitates a deeper
understanding of their impact on network architecture, the
development of advanced routing protocols that can adapt
to dynamic transmission modes, efficient resource allocation
algorithms tailored for 6G environments, and the establishment
of robust QoS guarantees to meet the stringent requirements
of future applications.

G. Machine Learning for Multicasting

ML algorithms can play a pivotal role in enhancing the
adaptability and efficiency of multicast strategies in future
6G networks. By integrating ML capabilities, these networks
can dynamically allocate resources, predict traffic patterns,
and optimize multicast routing decisions. Multicast routing
involves determining the most efficient paths for delivering
data to multiple recipients. ML algorithms can analyze histor-
ical data, network conditions, and user preferences to make
intelligent routing decisions. This integration of ML into
multicast strategies results in reduced bandwidth consumption
and improved overall network performance [103].

One of the significant benefits of employing ML in multicast
strategies is the intelligent management of interference in
wireless communication networks. Interference occurs when
multiple devices transmit signals simultaneously, leading to
signal degradation or disruptions. By analyzing network con-
ditions and utilizing predictive models, ML algorithms can
proactively mitigate interference issues. These algorithms can
dynamically adjust transmission parameters and optimize re-
source allocation to minimize interference, enhancing signal
quality and improving user experiences.

Moreover, ML techniques can contribute to dynamic spec-
trum management, which is a critical aspect of 6G networks.
Spectrum refers to the range of frequencies used for wireless
communication. With access to historical data and real-time
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network conditions, ML algorithms can optimize spectrum al-
location decisions by analyzing the available frequency bands,
predicting user demand, and allocating the spectrum efficiently
to different users and applications. This optimization leads to
efficient spectrum utilization while minimizing interference,
thereby maximizing the network’s capacity and overall per-
formance.

By embracing the power of ML in the architecture of
6G networks, communication systems can adapt intelligently
to the evolving needs of users and applications. Real-time
optimization based on insights derived from ML enables
networks to allocate resources effectively. This results in im-
proved energy efficiency, reduced bandwidth consumption, and
enhanced user experiences. The combination of multicasting
and ML algorithms in 6G networks holds immense promise
for the future of efficient and intelligent data delivery [21].

H. Multicasting in Specific Use Cases and Deployments

Unlike µWave systems in mmWave/sub-THz systems, the
area covered by a single beam heavily depends on the de-
ployment specifics. Most of the studies performed so far
assumed close-to-open space deployments where a sector can
approximate this area. In complex deployment scenarios, such
as indoor, V2X, and industrial ones, the zone covered by
a single beam may take an arbitrary shape. The latter is
especially true for sub-THz systems, where the directivity
of transmit and receive antennas is expected to be much
higher while the frequency band is more sensitive to the
environmental specifics as compared to mmWave systems.

The frameworks tailored for specific use cases and deploy-
ment options need to be composite in nature, utilizing ray-
tracing at the first phase to determine zones covered by a
single beam, e.g., similarly to [218]. At the next stage, the
multicast group formation task can be formalized. To alleviate
the complexity of the solution, one may utilize the frameworks
presented in this paper relying on sector approximations of
the beam coverage zones and then fine-tune the solution by
rearranging UEs belonging to the same group.

I. Timescale for Resource Allocations and Schedulers

A special case of interest is the identification of the optimal
timescale for resource re-allocations. In this context, a critical
question is related to the performance modeling of resource
allocation dynamics in the presence of large-scale mobility
of UEs in the serving area of BS. Although the solution of
such systems is generally more complex, as demonstrated
in [219], [220] based on theoretical foundations in [221],
the functionality may capture resource dynamics under UE
mobility patterns.

Another critical question to address is the determination
of packet scheduling policies that approach optimal resource
allocations in the presence of competing multicast and uni-
cast traffic. The literature on optimal packet scheduling for
mmWave/sub-THz band, where the service process of UEs
can be interrupted by blockage and micromobility events, is
nearly non-existent. Further improvements in this area also
require the development of novel packet arrival models.

J. Hybrid Beamforming with Beam Squint in Multicasting

Beam squint, also known as frequency-dependent changes
in the Angle of Arrival (AoA) and Angle of Departure (AoD),
is an important effect. This phenomenon causes the diffusion
of AoA/AoD and leads to an expanded beamwidth of the
desired signal in the spatial domain. Remarkably, the impact
of beam squint becomes more pronounced in mmWave and
THz systems with larger antenna arrays [74]–[76]. To provide
a comparison, the beam squint-induced angular deviation in
the beamspace is approximately 6◦ for a frequency of 0.3
THz with a bandwidth of 30 GHz. In mmWave, the beam
squint impact is less rigid. For a frequency of 60 GHz with a
bandwidth of 1 GHz, the angular deviation is approximately
0.4◦ [222].

Accurate channel estimation plays a crucial role in hy-
brid beamforming. Numerous studies have focused on hybrid
beamforming, assuming the availability of precise channel
state information. However, in real-world THz systems, the
challenge of channel estimation becomes even more pro-
nounced due to the increased impact of beam squint, exceeding
the difficulties encountered in mmWave systems. As a result,
conventional channel estimation methods cannot be directly
applied to THz systems [223]. Consequently, investigating
the channel estimation techniques specifically tailored for
THz communication systems affected by beam squint holds
significant research value.

We note that the research community has not analyzed
the impact of beam squint on multicasting performance yet.
In Section IV-A, we made an attempt to investigate how
such a phenomenon as beam squint will affect multicasting
compared to the traditional unicast transmissions. We came
to the conclusion that since multicast transmissions usually
operate with a smaller number of antennas, the beam squint
will be lower or equal to the unicasting case. However, more
investigations and analyses should still be accomplished to
understand the impact of beam squint on multicasting.

IX. LIST OF ACRONYMS

3GPP 3rd Generation Partnership Project
5GC 5G Core
5G CN 5G Core Network
ADR Aggregate Data Rate
AI Artificial Intelligence
AF Application Function
AS Application Server
AMBER America’s Missing: Broadcast Emergency

Response
AMF Access and Mobility Management Function
AoA Angle of Arrival
AoD Angle of Departure
AP Access Point
AR Augmented Reality
BMS Broadcast/Multicast Services
BM-SC Broadcast Multicast-Service Center
BPP Bin Packing Problem
BS Base Station
CQI Channel Quality Indicator
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C-RAN Cloud-Radio Access Network
CSI Channel State Information
D2D Device-to-Device
D2DC D2D-assisted caching
D-MBAF Dynamic MBSFN Beam Area Formation
eMBB Enhanced Mobile Broadband
eMBMS evolved MBMS
FL Federated Learning
F-RAN Fog-Radio Access Network
GNR Gane to Noise Ratio
HARQ Hybrid Automatic Repeat Request
HPBW Half-Power Beamwidth
IAB Integrated Access and Backhaul
IoT Internet of Things
ISD Inter-Site Distance
ITS Intelligent Transport System
ITU International Telecommunication Union
ITU-R International Telecommunication Union -

Radiocommunication Sector
KNN K-Nearest Neighbors
KPI Key Performance Indicator
LB Local Branching
LOS Line-of-Sight
LTE Long-Term Evolution
MBA MBSFN Beam Area
MBB Mobile BroadBand
MBMS Multimedia Broadcast and Multicast Service
MBMS-GW MBMS Gateway
MBS Multicast and Broadcast Services
MBSF Multicast/Broadcast Service Function
MBSFN Multicast-Broadcast Single-Frequency

Network
MB-SMF Multicast/Broadcast Session Management

Function
MB-STF Multicast Broadcast Service Transport

Function
MB-UPF Multicast/Broadcast User Plane Function
MCC Mission Critical Communications
MCE MultiCell/Multicast Coordination Entity
MCS Modulation and Coding Scheme
MEC Mobile Edge Computing
MIMO Multiple Input Multiple Output
MIP Mixed-Integer Programming
ML Machine Learning
MMC Massive Machine Communications
MME Mobility Management Entity
mmWave Millimeter Wave
MTC Machine Type Communications
MU-MISO Multi-User Multiple-Input Single-Output
NEF Network Exposure Function
NFV Network Functions Virtualization
nLOS Non-Line-of-Sight
NN Neural Network
NOMA Non-Orthogonal Multiple Access
NR New Radio
NSSF Network Slice Selection Function
NTN Non-Terrestrial Network
OFDMA Orthogonal Frequency-Division Multiple

Access
PCF Policy Control Function
PDA Progressive Delivery Array
PDU Protocol Data Unit
PLMN Public Land Mobile Network
PMP Point-to-Multipoint
PRB Primary Resource Block
PTP Point-to-Point
QoE Quality of Experience
QoS Quality of Service
RAT Radio Access Technology
RDM Random Direction Mobility
RF Radio Frequency
RINS Relaxation-Induced Neighborhood Search
RIS Reflective Intelligent Surface
RLNC Random Linear Network Coding
RRM Radio Resource Management
SA Simulated Annealing
SA-H Simulated Annealing with Heuristics
SC-PTM Single Carrier Point-to-Multipoint
SC-PTP Single Carrier Point-to-Point
SFMBT Single-Frequency Multi-Beam Transmission
SINR Signal to Interference and Noise Ratio
SMF Session Management Function
SNR Signal-to-Noise Ratio
STAR Simultaneously Transmitting and Reflecting
sub-THz sub-Terahertz
SVM Support Vector Machine
THz Terahertz
UE User Equipment
UHD Ultra-High Definition
UHDTV Ultra-High Definition TV
UMi Urban-Micro
UPF User Plane Function
V2E Vehicle-to-Everything
V2X Vehicle-to-Infrastructure
VoD Video-on-Demand
VR Virtual Reality
XR Extended Reality
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