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Machine Learning for Healthcare Radars: Recent
Progresses in Human Vital Sign Measurement
and Activity Recognition

Shahzad Ahmed

Abstract—The unprecedented non-contact, non-invasive, and
privacy-preserving nature of radar sensors has enabled various
healthcare applications, including vital sign monitoring, fall
detection, gait analysis, activity recognition, fitness evaluation,
and sleep monitoring. Machine learning (ML) is revolutionizing
every domain, with radar-based healthcare being no exception.
Progress in the field of healthcare radars and ML is comple-
menting the existing radar-based healthcare industry. This article
provides an overview of ML usage for two major healthcare
applications: vital sign monitoring and activity recognition. Vital
sign monitoring is the most promising healthcare application of
radar, as it can predict several chronic cardiac and respiratory
diseases. Activity recognition is also a prominent application
since the inability to perform activities may result in critical
suffering. The article presents an overview of commercial radars,
radar hardware, and historical progress of healthcare radars,
followed by the usage of ML for healthcare radars. Subsequently,
the paper discusses how ML can overcome the limitations of
conventional radar data processing chains for healthcare radars.
The article also touches upon recent generative ML concepts used
in healthcare radars. Among several interesting findings, it was
discovered that ML does not completely replace existing vital sign
monitoring algorithms; rather, ML is deployed to overcome the
limitations of traditional algorithms. On the other hand, activity
recognition always relies on ML approaches. The most widely
used algorithms for both applications are Convolutional Neural
Network (CNN) followed by Support Vector Machine (SVM).
Generative Al has the capability to augment data and is expected
to have a significant impact soon. Recent trends, lessons learned
from these trends, and future directions for both healthcare
applications are presented in detail. Finally, the future work
section discusses a wide range of healthcare topics for humans,
ranging from neonates to elderly individuals.

Index Terms—Healthcare radars, deep-learning, vital sign
measurement, activity recognition.
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I. INTRODUCTION

UE TO a rapid increase in the life expectancy, population

aged 65 years or above is expected to reach nearly 1.5
billion in 2050 which previously was 524 million in 2010 [1].
Consequently, age-related chronic diseases are also increasing
and the need for having detective and persuasive healthcare
solutions is more than it was ever. Elderly person either living
at home or old-care facility, should not be left unattended
for a long period of time. Additionally, at a healthcare
facility, everyone regardless of age requires a continuous
health monitoring to prevent chronic sufferings such as cardiac
arrest and fall, and the hospitals in the developed countries
are already facing under-staff issue [2]. In addition to the
usage at healthcare facilities, ambient intelligence offered in
non-contact and non-invasive fashion can be used in the
daily living spaces since humans spends a sizeable amount
of time at home. For such scenarios requiring continuous or
at least frequent monitoring, a non-contact and non-invasive
sensor can provide a detective and persuasive system. Perhaps,
progresses in Machine Learning (ML) and low-cost off-the-
shelf (OTS) sensors can collectively complement the existing
detective and persuasive healthcare system.

Physiological and bio-medical signals measurement in non-
contact and non-invasive fashion can be accomplished with
several sensors such as a vision-based (camera) sensor, or a
radio sensor such as radar. Unlike vision-based sensors, radars
have no associated privacy issue, and the radar-acquired data
is not highly vulnerable to lightning and other environmental
factors [3].

Radar sensors embedded in the surroundings of a patient can
provide an ambient intelligence platform, capable of extracting
several health-related physical and physiological signals. In
radio detection (Radar), a transmitter sends a periodic signal
which is reflected by the target present within the radar-
cross-section (RCS). The signals reflected from the target are
collected at the receiver to extract the information related to
the target under consideration [4]. With human subjects as
a target in the RCS area, the radar returns can be analyzed
to extract information related to the health and well-being of
human subject under consideration. Fig. 1 (a) shows all the
physiological signals that can be measured using radar sensor.

While designing a healthcare solution with radar, radar-
extracted bio signal must be compared with a medically
proven gold standard technology. Hence, the signals from
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Biomedical signal measurement through radar

No Movement Measurable bio-signal Movement Gold-standard
Type Sensor
1 Chest & lungs  Heart Rate and Breathing Rate  Periodic ECG, oximeter,
measurement pressure belt
2 Carotid pulse Heart rate measurement and Periodic ECG sensor
ECG signal construction
3 Radial Pulse Heart rate and blood pressure Periodic PPG, ECG
measurement sensors
4 Head Assisted living Aperiodic Camera
5 Gait (leg) Fall prediction & Neural Aperiodic IMU, Camera,
disorder detection warble markers
Hand Assisted living Aperiodic Camera
K Full bod Fall and activity recognition Aperiodic Camera, IMU
Radar Detectable Biomarkers i g P

(a) Summary of biomarkers and the corresponding biomedical signal measurement through radar.
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(c) Popular radar-based healthcare applications.

Fig. 1.
few popular healthcare applications.

both the sensors are extracted simultaneously to measure the
correlation between radar and the reference gold standard
device. Fig. 1 (b) outlines a few gold standard sensors being
used alongside the radar sensor. For instance, respiration belt,
End-tidal Co2 mask and Electrocardiogram (ECG) sensor are
considered as a reference devices to measure the Breathing-
Rate (BR) as shown in Fig. 1 (b). Similarly, Electrocardiogram
(ECG) sensor is used as a reference sensor to measure the
Heart Rate (HR). Measuring BR and HR from the chest
displacement is one of the most promising applications being
offered by radar [5]. Other than chest vibrations, the vibrations
created by carotid pulse around neck area are also used to
extract the Electrocardiogram (ECG) signal [6], as expressed

(a) Healthcare-related physiological signals measurable with radar sensor, (b) the gold standard sensors for performance evaluation and (c) list of

in the Fig. 1 (a). Radar sensor has also shown its effectiveness
in the radial pulse measurement [7], and the synchronized
extraction of carotid pulse signal and the radial pulse signal
has enabled radar to measure human blood pressure [7].

The prominent healthcare applications of radar enabled by
utilizing these biomarkers are listed in Fig. 1 (c). Each appli-
cation has independently been studied by several researchers.
At present, each of the applications has emerged as an
independent research domain.

Artificial Intelligence (AI) has widely been considered to
process radar-recorded physiological signals. Similar to any
other domain, Al is also revolutionizing the radar based digital
healthcare industry. Use of Al or more precisely, ML has
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made it possible for radars to detect several chronic diseases
such as Arrhythmia [8], Alzheimer [9] and Apathy [10].
Perhaps the ML has shown its footprints in every radar-
based health related applications discussed in Fig. 1 (c).
Additionally, ML equipped radar solutions are overcoming the
existing limitations in the healthcare industry. For instance, the
radar-based Vital Sign (VS) measurements are easily altered
even with a slight body movement. ML approaches such as
Support vector machine (SVM) are deployed to detect and the
body movement and discard the measured VS containing body
movement [11].

A. Motivation, Scope and Methodology of Our Review

Radar based healthcare systems are emerging at a rapid pace
and a considerable amount of work is underway currently. The
motivations of considering vital sign measurement and activity
recognition concurrently are as follow:

e Current research trend discussing these two topics

together [12], [13], [14], [15], [16], [17], [18].

o Broad range of applications offered by healthcare radars,
posing challenges in comprehensive coverage of several
applications within a single paper.

¢ Vital sign and activity recognition are the most prominent
healthcare applications.

Recently, several papers have begun to discuss vital sign
measurement and activity recognition together [12], [13], [15],
[18]. It provides a holistic approach for health monitoring
by observing vital signs and activity recognition in living
environment, and the medical experts can obtain a detailed
overview of an individual’s health. The integration of data
from various sources into a unified view has emerged as
a prominent trend, with the utilization of recent Internet of
Things (IoT) advancements.

Each of the healthcare applications of radar shown in
Fig. 1(c) has emerged as an independent research domain and
a considerable amount of work has been done. Simultaneously
reviewing all these fields will expand the scope of the article.
On that account, this article provides an overview of healthcare
radars followed by in-depth review of two of the most
prominent applications which are human vital sign monitoring
and activity recognition.

VS monitoring is the most prominent and important radar-
based healthcare application which can provide early detection
for several chronic diseases. Human activity recognition on
the other hand, is always deciphered using ML system in liter-
ature. Moreover, activity recognition in context of healthcare
is of great importance since the inability to perform daily
living activities has greatly been associated with mortality
of elderly persons [1]. Specifically, aging societies require
continuous activity monitoring since aging brings several
undesired impairments to perform activities of daily life.
Consequently, these two examples are discussed in this paper.

The yearly breakdown of the vital sign and activity
recognition studies considered in this work is presented in
Fig. 2. These studies are mentioned in Table I for reference.
According to our data scrapping, ML for these topics was
introduced around the year 2008. Consequently, the review
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TABLE I
SUMMARY OF ARTICLES CONSIDERED IN THIS REVIEW

Topic Count References
Related Reviews 21 [2], [15], [19]-[37]
Vital Signs 33 (8], [11], [12],

[38]-[67]
Activity recognition 92 [10], [68]-[158]
Total 143 -

covers the studies between the years 2008-present, mainly
from the years 2017-2022. During the years 2008-present,
only studies related discussing VS and activity recognition
with ML are mainly considered. Topics other than ML based
VS Measurement and activity recognition are excluded due
to the richness of those topics. We tried to collect articles
from reputed publishers such as IEEE, Springer, Taylor and
Francis, Elsevier, MDPI, ACM, Nature, Optica, and Frontiers.
The considered keywords are:

¢ ‘Radar vital signs’ and ‘machine learning’

e ‘Radar vital signs’ and ‘deep learning’

¢ ‘Radar vital signs’ and ‘SVM/ CNN/ RNN’

¢ ‘Radar vital body movement’ and ‘Machine learning’

¢ ‘Radar vital body movement’ and ‘Machine learning’

¢ ‘Radar human activity’ and ‘Machine learning’

¢ ‘Radar human activity’ and ‘CNN/ SVM/ kNN/ Encoder/

Neural Network’
e ‘Radar human activity’ and ‘supervised/ unsupervised/
semi-supervised’.

¢ ‘Radar vital body movement’ and ‘Machine learning’

e ‘Human activity/vital’ and ‘reinforcement learning’

Next, we explain the existing reviews work related to
healthcare with radar.

B. Existing Reviews and Surveys

Few studies have previously reviewed the radar-based digital
healthcare applications (see Table II). The first review summa-
rizing the use of radar in healthcare industry was presented by
Lin in 1992 [19]. The author reviewed the studies related to the
non-invasive physiological measurements presented between
1960 to 1992. Later in 2002, Staderini [20] provided a short
review on UWB radar applications in medicine. The pervasive
health care applications were reviewed by Li and Lin [21].
Non-contact healthcare applications based on the Doppler
radar were reviewed by Li et al. [22]. Gu [23] summarized
the non-contact VS applications with radar. Ferreras and co-
workers [24] studied the progresses on multimodal, short
range, Continuous Wave (CW) radars for VS extraction.
Another work by Li et al. [25] reviewed portable radar-based
applications such as human VS extraction, animal veterinary
monitoring and activity recognition. In these aforementioned
researched [19], [20], [21], [23], [24], [25], the use of DL in
radar-based healthcare industry was not discussed instead, the
core focus was centered around the detection and estimation
of human VS based on signal manipulation.

Radar-based healthcare applications specifically assisted
living, in context of Internet of Things (IoT) were discussed
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Fig. 2. Yearly breakdown of vital sign measurement and Activity recognition articles discussed in this work.

by Le and co-workers [26]. Persuasive healthcare applica-
tions based on ML algorithms driven by the micro-Doppler
spectrum were briefly discussed. However, the discussion on
ML was too brief in their review. Shah and Fioranelli [28]
reviewed assisted living technologies such as radar, RFID, Wi-
Fi. However, only a few articles regarding radar-based activity
recognition are considered since radar was not the main focus
of this study. Two studies presented by Fioranelli et al. [15]
and Li et al. [27] summarized the usage of radar for activ-
ity monitoring purpose only. In addition to that, the two
studies [15], [27] does not provide a radar-based activity
recognition tutorial and studies until 2018 were covered.
Recent years have shown frantic development for the related
topic in recent years. Recently, several researches are aiming
to review a specific topic of healthcare in context of radar
sensor such as sleep monitoring [32]. Another paper reviewed
the signal processing aspects of multi-human VS extraction
approaches [5]. The use of ML with wireless sensors was
reviewed by Saeed and co-workers [35]. However, the discus-
sion on radar was limited since the paper reviewed several
different wireless sensing technologies altogether. Similarly,
activity recognition with radar was briefly introduced in
a tutorial published by Shastri et al. [161]. Additionally,
their work focused mainly on mm-Wave sensing and activ-
ity recognition was not discussed in detail. Remainder of
the details, strength and weaknesses of existing reviews are
summarized in Table II. The shortcomings of the current
review articles for both topics can independently be summa-
rized as:

1) Vital sign monitoring: To our knowledge, the existing
reviews and surveys only cover the conventional signal
processing methods for vital sign recognition [5], [19],
[20], [21], [22], [23], [24], [29], [30], [159], [160]. A
detailed survey and tutorial for ML based vital sign
studies is yet to be discussed.

2) Activity Recognition: Table II suggests that few authors
have reviewed sensing technologies for activity recog-
nition in general, while quoting a few radar related
examples [162]. The existing dedicated reviews [27] for

activity recognition are not up to date since over forty
new articles have been published recently. In addition
to that, previous articles lack the discussion on the
current Al trends such as generative Al (in context of
radar-based activity recognition). Currently, generative
Al such as Generative Pre-Transformers (GPT) and
Generative Adversarial Networks (GAN) are gaining
huge attention and in fact, GANs have already begun
to show their footprints in the radar-based healthcare
applications. Another limitation of the previous articles
is the lack of a comprehensive summary regarding
the utilization of OTS commercial radar for activity
recognition (and healthcare industry in general). To our
knowledge, availability of OTS radars is one of the
main driving factors of radar-sensors adaptability in non-
military applications (See Section I-D).

3) Recent review covering both the activity and vital sign
simultaneously consists of less than fifty articles [163].

C. Our Review: Novelty and Organization

The research on the applicability of AI for activity-
recognition and VS measurement is progressing at a significant
pace. A considerable amount of work has been done in recent
years. A dedicated review is required for ML based VS
measurement and activity recognition which must cover the
most recent research work. Consequently, in contrast to the
previous reviews, this study aims to provide a detailed analysis
of the recent usage of ML in radar-based healthcare applica-
tions. Main focus is exerted on the topic of VS measurement
and activity recognition. This article aims to familiarize the
readers with the basics and taxonomic details of ML, and
how to use them for radar-based VS monitoring and activity
recognition. The multi-fold contributions of this work are as
follow:

e This review attempts to provide a detailed answer to
the question that how the integration of Al with radar
is overcoming the existing limitations for radar-based
healthcare applications.



question that how ML is being used for the radar-based
healthcare industry, and what are the current challenges
to be solved for the two of the most widely discussed
healthcare applications which are VS monitoring and
activity recognition. Visualization of current trends and
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TABLE 11
EXISTING SURVEY AND REVIEWS FOR RADAR BASED HEALTHCARE
Study Scope Limitation

Lin (1992) [19] Physiological signals measurement based on microwaves.  Only pioneer studies were discussed since at that time,
ML was not yet developed.

Staderini (2002) [20] UWRB radar based vital sign measurement and few Only UWB radars and signal processing based works are

microwave radar prototypes. presented. Machine learnig is not discussed at all.

Li and Lin (2010) [21] Vital sign extraction. Only legacy techniques were discussed. No discussion of
ML for vital sign or activity recognition is presented.

Li et al. (2013) [22] Review of different architectures, and radar systems for Only vital sign extraction is discussed. No discussion on

vital sign extraction. ML is presented at all for any of the topic.

Gu C. (2016) [23] Doppler radar-based vital sign extraction. Other radars were not discussed and discussion is limited
to vital signs only. No discussion of ML for vital sign or
activity recognition is presented.

Ferreras et al. (2017) [24] Radar-based human vital sign extraction and localization. No discussion of ML for vital sign or activity
recognition is presented.

Li et al. (2017) [25] Applications of short range radars. No discussion of ML based vital sign or activity
recognition is presented. Additionally, the healthcare
related applications are discussed too briefly.

Le et al. (2018) [26] Radar for assisted living. Brief (3 pages) discussion is proved for the topic of
assisted living.

Shah et al. (2019) [28] Assisted living based on RF technologies. Several sensors were discussed altogether and radar-
based activity recognition is briefly introduced only.

Fioranelli et al. (2019) [15] Dedicated article for vital sign extraction and activity Paper provides an overview consisting of twelve articles

recognition. only. historic progresses and current trends are not
discussed.

Li et al. (2019) [27] DL for activity recognition. Vital sign was not discussed. In addition, the field has
progressed a lot in 2019 onward which are not present in
this survey.

Zhu et al. (2019) [159] Review on random body movements cancellation while Discussed a single challenge related to vital signs in

measuring vital signs. a brief fashion. No discussion of ML for vital sign or
activity recognition is presented.

Peng and Li (2019) [29] Brief review on radar-based localization and life tracking  Only vital signs for life detection purposes are

applications. reviewed. No discussion of ML for vital sign or activity
recognition is presented.

Gouveia et al. (2019) [30] Vital sign measurement and motion detection. Only reviewed studies related to movement detection and
compensation. Machine learning was not discussed at all.

Meng et al. (2020) [31] Activity recognition using non-contact sensors. Several sensors are discussed and as a result, the radar-
based activity recognition part is too brief.

Singh et al. (2020) [5] Multiple-subjects vital sign sensing with traditional Activity recognition and ML approaches are not

signal processing approaches. discussed.

Khan et al. (2020) [160] Signal processing based vital sign sensing. No discussion on ML was preseted at all.

Walid et al. (2021) [32] Sleep monitoring based on radars. Only sleep related studies were discussed.

Abdul et al. (2022) [34] DL for mm-wave radars. Several applications are reviewed the main focus is not
on vital sign and activity recognition.

Saeed et al. (2022) [35] Several different non-contact sensors were discussed Discussion on radar sensor is too brief since focus was

such as camera radar and other RF sensors. divided on several fields.

Shastri et al. (2022) [161] Sensing and localization using mm-Wave devices. The main focus of review was localization and activity
sensing were discussed as a use-case scenario only.

Hernandez et al. (2022) [162]  Non-contact sensing through Wi-Fi Devices. Wireless sensing and activity recognition with Wi-Fi
devices is discussed.

Fioranelli et al. (2023) [163] Activity recognition and vital sign monitoring. Only few papers are discussed since the total count of
papers is less than 40.

e This article also aims to provide an answer to the e While the existing articles only discuss the dis-

criminative ML approaches, this article also provides
a comprehensive note on the usage of generative
ML approaches for healthcare-radars. A comprehensive
note on generative networks is also included in this
article.

learned lessons based on these trends are also presented o Unlike the existing reviews, details regarding the current

for these two applications.

Based on literature survey, few open issues are presented
at the end. In addition to that, a few issues which are not
yet explored by healthcare radar research community are

also suggested.

usage of OTS radars along with the brief market statistics
are also included in this article. The availability of low-
cost commercial radar sensors is one of the driving factors
contributing to the adoption of radars for non-military

applications.
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Processing
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Fig. 3. Organization of this review article.

The article is organized as explained in Fig. 3. The overview of
the topic, motivation, existing reviews, novelty of this review,
and the market statistics are covered in Section I. Section II
deals with the background of radar sensors from hardware
perspective. Details regarding available radar technologies and
their strengths and weaknesses are discussed. Afterwards,
Section III explains the taxonomies, popular ML algorithms
and their usage for healthcare radars. ML aided VS recognition
and activity recognition are discussed in Sections IV and V
respectively. Section VI and VII present the current trends
and lessons learned respectively. Finally, Section IX concludes
the paper.

D. Market Statistics and OTS Radars

During the period of 2020-2027, (military and non-military)
radars market is expected to register an overall Compound
annual growth rate (CAGR) of 17.8% [164]. The applications
of short and medium-range radars have become more diverse,
and the commercialization of short-range radar is already on
the go. In the year 2022, estimated radar market is of US
34.2 Bn with automotive radar being the biggest (non-military)
shareholder. In the healthcare industry, several studies have
used radar which were originally fabricated for automotive

Paper
Sections

A. Performance
V. Machine Evaluation methods
Learning Aided

Activity B. Nature of activities

measurement being recognized
Using Radars
C. CNN based
classifiers
G. AE based
algorithms D. SVM based
classifiers

H. Other algorithms

E.RNN and LSTM

I. Generative Aland ~ ___| F.RNN/LSTM +
similar data sources —— CNN based
classification

J. Comparative
analysis

A. Vital signs

VL. Current measurement
Trends B. Activity
recognition

A. Vital signs

measurement
B. Activity
VII. Lessons recognition
Learned
B. Integrated
applications based on

vital sign and activity

— A. Vital signs
measurement

B. Activity

: - V!
IX. Conclusion recognition

VIII. Future
Directions

applications at 77 GHz band [141], [147]. Additionally, it is
expected that in the industrial revolution 4.0, which already
enforces the importance of Al, radar-based healthcare will
also play a critical role [165]. While the exact market trends
and future predictions related to the healthcare radar are yet
to be explored, Fig. 4(a) shows the trend of overall radar
sensor market in terms of CAGR. Fig. 4(b) shows the type
of radar being used in the reviewed articles. It can be seen
that most of the works are based on OTS radar. Instead of
focusing on designing radar hardware, ML based VS and
activity recognition research works are mainly algorithm-based
works. A Few biggest OTS radar vendors for the topic in
consideration are additionally shown in Fig. 4(c). The rest of
the popular OTS radars being in use for VS measurement and
activity recognition are listed in Table III, which includes the
radar model and operating frequency.

II. RADARS FOR HEALTHCARE: OVERVIEW
AND TAXONOMIES

A. Healthcare Radars: A Brief History

The use of radar for healthcare industry dates to 1960
when microwaves were used by Moskalenko [38] to quantity
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Fig. 4. (a) Radar market growth rate (including all the applications), (b) usage of commercial (OTS) and non-commercial radars for DL based VS measurement
and activity monitoring tasks, and (c) OTS radars being used for vital sign monitoring and activity recognition purposes.

the volumetric change caused by the movement of biological
objects. Later, Johnson and Guy in 1972 [39] confirmed
the capability of radar to measure the change in ventricular
volume of human heart by observing the transmission loss of
915 Mega Hertz (MHz) radar. This groundbreaking finding
laid the foundation of research related to VS measurement
using microwaves. Lung’s abnormalities detection [40] and
measurement of respiration rate [41] were the initial healthcare
related applications of radar.

Human motion and behavior monitoring studies gained
attention in 2000s where several authors used shallow ML
algorithm such as Multi-class SVM [126] to classify human
activities. For instance, shallow ML algorithms were also used
to classify fall and non-fall activity [166]. The reason behind
the popularity of shallow models was the fact that DL models
were not easy to train at that time. However, later CNN
based model gained huge attention in 2012. Afterwards, DL
based healthcare applications using radar gained most of the
attention. Nevertheless, shallow learning models are still in
practice for applications based on VS measurement [47] and
activity recognition [122].

B. Radar Taxonomy

Several taxonomies of radar-based hardware exist. In this
article we adopt the taxonomy based on the transmitted signal
shape which are [3]:

o Frequency Modulated Continuous Wave (FMCW) radar.

¢ Single Frequency Continuous wave (SFCW) radar.

o Pulsed radar.

As the name suggests, SFCW and FMCW transmit a con-
tinuous signal whereas pulsed radar transmits the impulse
like, discrete signal. SFCW radar can be considered as a
mono-pulse radar having a fixed carrier frequency whereas
FMCW radar increases the frequency linearly with time for a
fixed bandwidth. One such modulated signal transmission is
known as chirp [50], [53]. A single FMCW frame consists of

several chirps. The frame of pulsed radar on the other hand
consists of several narrow time-domain pulses which have
a wide frequency spectrum. Consequently, these radars are
often termed as Impulse Radio-Ultra wide Band (IR-UWB)
radars [160]. Table IV shows the comparative summary of
these radar technologies.

In SFCW radar, the peaks in the frequency domain resolve
the Doppler velocity of the target. On the other hand, for the
case of UWB radar, the peaks in time domain of the received
signal resolves the range of the target. In contrast to SFCW and
UWB radars, FMCW radar can provide both the distance as
well as velocity of the target simultaneously. The transmitted
SFCW radar waveform can be expressed as:

zspow (t) = cos(2mft + @), 1)

where zgpow (t) represents the transmitted signal, f repre-
sents the center frequency of radar, and ¢ represents the phase
of the transmitted signal.

UWB radar on the other hand transmits a discrete signal
which can be expressed as:

N
zywaln] = Y s[n — nN], )

n=1

where zyyp(t) represents the transmitted discrete signal, n
represents the delay between the two consecutive pulses within
a frame, and s represents the shape of transmitted signal.

Similarly, signal transmitted by FMCW radar can be
expressed as:

zpvcw (t) = cos (27rft + %&2), 3)

where zpprow (t) represents the transmitted FMCW signal
having modulation bandwidth B and time-period 7. The
remainder of the similarities and differences of these radars
are summarized in Table IV. It can be seen in Table IV that
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TABLE III
OTS RADARS USED IN RESEARCH WORKS
SUMMARIZED IN THIS REVIEW

Model Frequency Example studies
TI - xWR12xx 76 GHz [61]
TI - xWR14xx 76 GHz [8], [461, [65], [75], 831,
[86], [105], [114], [125]
TI - xXWR16xx 77 GHz [135], [141], [147]-[149]
TI - xXWR18xx 77 GHz [12], [57]
TI - xXWR68xx 60 Ghz [501, [64], [73], [85], [121],
[154], [155]
TI - Unknown Model - [55], [63]
SAAB - SIRS 77TD 77 GHz [102]
SAAB - SIRS 6100TD 77 GHz [138]
Infinion - BGT24xx 24 GHz [68], [91], [94]-[96]
Infinion - BGT60xx 60 GHz [69], [77], [117]
Ancortek - SDR 2500 25 GHz [108], [120], [158]
Ancortek - SDR 580 5.8 GHz [701, [81], [87], [98], [103],
[106], [123], [142], [143],
[145], [146]
BumbleBee Radar 5.8 GHz [112]
Timedomain Co. - Puls 3.2 GHz [129], [131]
ON P220
Timedomain Co. - 4.8 GHz [58], [82], [90], [100], [101],
PulsON P4xx [104], [107], [136]
Novelda Xethru 7 GHz [11], [48], [54], [66], [71],
[801, [99], [113], [122], [124]
Novelda - NVA 6100 6 GHz [74], [139]
TI - AWR 1243 77 Ghz [61]
WalaBot 33-103 [144]
GHz
RF Beam Swiss K- 24 GHz [47]
MCl1
New-JRC, Tokyo, Japan - [60]
Imec Heverlee, Belgium 79 GHz [62]
Multiple OTS - [12], [51]
TABLE IV
COMPARISON OF DIFFERENT RADARS
SFCW FMCW Pulsed
Transmission  Continuous Continuous Discrete
Signal Single tone Modulating Pulsed
frequency
Spectrum Narrow Wide/narrow Wide
Data- Frequency Frequency Time
Domain
Range Res. - C /2B Cr/2
Information Doppler/ radial ~ Range and Fine Range.
velocity velocity

C: Speed of light, B: bandwidth, 7: Pulse width.

both FMCW and UWB radar have same bandwidth-dependent
range resolution which is ¢/2B .

III. ML TAXONOMIES AND USAGE FOR
HEALTHCARE RADARS

In this section, a brief history of Al is presented which
is followed by a brief introduction of commonly used

machine learning algorithms for activity recognition and VS
measurement.

A. Brief History of ML

The term Al was first proposed by McCarty in 1956 and the
term ML was first introduced by Arthur Samuel in 1952 [167].
The first 2D learning network named Neocognitron [168]
was proposed in 1980 which is a bit similar to today’s
convolutional networks. Multi-class SVM was first introduced
in 1992. Deep Learning (DL) which is the subset of ML,
has gained attention recently after 2010. There were several
training related issues which hindered the applicability of
DL in early 2000. In 2006 several research works (such
as [169]) provided solutions to these training related issues
which shifted the trends towards DL and resulted in several
DL models based on learning characteristics such as AlexNet,
ResNet and GoogleNet.

ML algorithms without considering DL approach requires
features engineering and one must be aware of the detailed
characteristics of input data. On the other hand, DL algorithms
can learn data characteristics by themselves. Next, we summa-
rize a few taxonomies of ML algorithms with examples related
to the considered topic.

B. Taxonomies of ML

ML based on the learning style and labeling strategy are
classified mainly into three classes which are:

o Supervised Learning

o Unsupervised Learning

o Semi-supervised Learning
Table V summarizes the definitions, strengths, and weaknesses
of each learning type separately. Healthcare radar examples
are also included in Table V. Other than these aforementioned
classes, another class exists in between the semi-supervised
and unsupervised learning called as reinforcement learning.
Reinforcement Learning operates on the game theory of
positive or negative reward system. Reinforcement learning
has currently been used for several radar applications such
as scene adaptive target tracking of multiple targets [170]
automotive radar and spectrum allocation [171]. However, the
use of reinforcement learning for healthcare radar has not
yet been considered so far. The reminder of details which
include advantages, disadvantages and popular ML networks
are summarized in Table V. In addition to that, a radar-based
healthcare application is also included. Considering the task-
based taxonomies, the system can be sub divided as:

¢ Classification

o Regression

o Clustering
Classification deals with dividing data into a few groups
based on features. In literature, with particular interest in VS
monitoring and activity recognition through radar, the classi-
fication task is mostly dealt as a supervised ML problem. For
instance, human activity classification using radar presented
by Noori et al. [124] presents classification of five human
activities in supervised fashion. Regression on the other hand
deals with predicting a quantity or quantities based on one
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TABLE V
TAXONOMIES OF ML (BASED ON LEARNING TYPES)

Detail Supervised Unsupervised Semi-supervised
Definition During training, input data types are During training, input data types are Few samples are known to the model, and
known to the model completely unknown to the model most of the samples are unknown
Data Type Labeled data Unlabeled data Labeled and unlabeled both
Advantages Produce data output from previous Helpful in finding patterns in data. Minimize the amount of labeled data

experiences
Disadvantages Requires data labeling which is time
consuming and tedious task

Popular models & CNNs, DNNs, RNN, LSTM

networks

Radar Data Example =~ CNN based activity recognition [147]

Perfect tool for data scientists

Less accurate, time-consuming process,
Not feasible for known tasks
Boltzmann Machines, Auto-Encoders
and GANs (Generative Adversarial
Network), RNN, and CNN

Markov chain based unsupervised
activity recognition [127]

needed

Irrelevant input feature present training
data could furnish incorrect decisions
GANs, RNNs which include GRUs and
LSTMs, are used for semi-supervised
learning. Multi-view training, graph
methods, and generative models
Auto-encoder based activity recognition
with labeled and unlabeled samples [76]

or more variables. For radar-based healthcare issues, missing
data in the VS measured using radar can be filled up using
a linear regression approach as demonstrated by Xie and
co-workers [54]. Clustering deals with grouping objects of
similar properties together. Unlike classification, the number
of groups in clustering can vary. Clustering is often achieved
with an unsupervised ML approach. In healthcare applications,
clustering has enabled several applications such as activity
recognition [127] and fall detection [172].
Based on the complexity of network, the ML systems can
be divided into two categories which are:
o Shallow Network: A single layer of non-linear features
transformation
o Deep network: Multiple layers of features transformation
In shallow network, all the learning and decision is made on
that single layer. A Neural network with a single hidden layer
will be a shallow network. Shallow architectures have shown
their usefulness in solving several well-constrained, simple
problems. However, since the complexity and modeling is
limited, dealing with complex real-world generalized problems
is difficult for a shallow network. On the other hand, DL
models operate on the principle of the human brain where the
information is processed in layered architecture. For instance,
human retina and camera sensor respectively act as an input to
the human brain and a ML model. This information is passed
through several layers in systems to make final decision.
Another (recent) type of taxonomy can be considered as
follow:
e Discriminative Al: Constitute the decision boundaries
between two or more classes of data.
o Generative Al: As the name implies, generative Al is
used to create new data points.
While detection and recognition are widely discussed
previously in literature, generative Al is lately getting huge
attention as well. Generative adversarial networks (GAN) are
a famous DL based data augmentation approach introduced
in 2014. Current trend is showing a huge usefulness of
Al in the field of data generation such as Generative Pre-
training Transformer (GPT). The popular AI models and
their use-cases example in the field of radar based healthcare
applications are shown in Fig. 5.

C. ML for Healthcare Radars

Fig. 6 shows the standard steps to be carried out in radar
data processing chain. For each step, in context of healthcare
applications of radar, a few traditional and the ML based
approaches are also mentioned. It must be noted that all or
any one of the step can be carried out with ML approaches
discussed in Fig. 6.

Researchers have reported that ML based approaches can
overcome several limitations being imposed by the con-
ventional approaches. For instance, data scarcity [173] and
imbalanced nature of dataset [174] poses a huge challenge
for radar-based healthcare applications. Data augmentation is
often performed to overcome this issue. To generate new
samples from existing data, data transformation approaches
often rely on adding noise [174] or performing geometric
and spatial transformations [73]. Huang et al. [174] used
Gaussian noise to balance radar-based sleep monitoring dataset
and Yu et al. [73] used spatial transformation for activ-
ity recognition dataset. However, these approaches may not
generate statistically independent samples for training [108].
As a result, Generative Al is getting huge attention lately.
Recently, GAN (shown in Fig. 5) has emerged as a candidate
solution for several activity recognition works using radar. For
example, by using GAN data to train the radar-based activity
recognition algorithm, 14% increase in accuracy was reported
in reference [108].

The second step shown in Fig. 6 deals with pre-processing
the radar data (fabricated with or without augmentation).
Simple iterative low pass filters are extensively being used
to filter the static unwanted reflections, known as clut-
ter [11], [173], [175]. However, researches show that simple
sources separation fails when the unwanted signal to be seg-
regated becomes complex [51]. For instance, removal of body
movement while measuring vital signs was demonstrated in
reference [51] where Auto-Encoder (AE) was used for source
separation. Similarly, [44] used DNN for similar research
problems.

For features extraction, a vast number of studies have
demonstrated the dominance of DL techniques over the hand
crafted features [176]. In addition to that, we may not be
required to perform features engineering while using DL
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Fig. 5. Basic architectures of well known shallow and deep learning models being used for healthcare radars.

techniques. In a similar way, unsupervised features reduction
methods are a common practice to efficiently reduce features
space. PCA has widely been considered for this purpose.

Fig. 6 shows the comparison of both the conventional
approaches as well as the machine learning approaches for
different radar data processing tasks. Their strengths and
weaknesses are also summarized as well. It must be noted that
DL can be opted at any or all of these steps. For instance,
if we have enough dataset, we may not require augmenting
the data.

After a brief introduction of ML techniques and their current
usage trend for radar-based healthcare applications, further
section presents detailed review of two of the most prominent
healthcare applications individually.

IV. ML AIDED VITAL SIGN MEASUREMENT

VS measurement is the most promising healthcare appli-
cation offered by radar. Decades long research for VS

measurement through radar has enabled the simultaneous
measurement of HR and BR in non-contact and non-invasive
fashion [160]. As stated earlier, VS measurement through radar
dates back to 1960s [19] and the field has evolved sufficiently.
Currently, several researches are being carried out to make
radar measurement more robust against the environmental
factors.

During breathing, the air enters and leaves the lungs
which causes contraction and relaxation of diaphragm. This
diaphragm movement repeats at a rate of 8 to 25 times per
minute for a young healthy adult. The heart rate on the
other hand expands and contracts with a rate of 55-110 beats
per minute to ensure blood circulation in the body. Due to
these movement of lungs and heart, the chest also vibrates
periodically. Radar sensor, being sensitive to fine movements,
can effectively measure and quantify these movements to
extract the heart rate and breathing rate. However, since both
movements are superimposed on each other, a set of signal
processing techniques is required to extract the two quantities.
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Step 1: Data Collection Step 2: Data Preprocessing Step 3: Features Extraction Step 4: Features Processing

Augmentation can be performed to
increase number of data samples

Traditional approaches

e Gaussian noise addition [173] .
e Geometric Transformation [72]
Characteristics: Simple, does not .
require expensive computation
Limitation: May not generate
statistically self-sufficient samples
for training [12]

noises

ML based approaches ML based approaches

e Generative Al’s .
*  GAN GPTs etc. .
Characteristics: Learning
approach to generate samples
which are statistically independent
[107], requires a huge computation

Noise & background subtraction
and target information extraction

Traditional approaches

Loop Back filters

Moving average filtering
Smoothing filters
Characteristics: Low complexity
and well suited to remove static
clutter.

Limitations: Removes only linear

Auto Encoders

DNN filtering
Characteristics: Can remove
complex noises better than sources
separation methods [49]. Huge data
is required data for training

Extraction of salient features of the  Number of features can be reduced

target to reduce classifier’s complexity
Traditional approaches Traditional approaches
e Statistical features [111] ¢ Forward elimination backward

elimination etc.
Characteristics: Simple
mathematical appr
Limitations: Traditionally the
features are ranked in supervised

*  Spectral features [125]
Characteristics : Feature
extraction is easy

Limitations: Features are affected
by environmental conditions [69]

and requires features engineering manner

ML based approaches ML based approaches
« CNN *  PCA,LDA

*  LSTM etc. * t-SNE

Characteristics: Rich features set
in comparison to traditional
approach [73]. However, it
increases the hardware complexity

Characteristics: Unsupervised
approach to identify and remove
less-effective features. There is
chance of overtraining in features
selection itself

Fig. 6. Radar data processing steps using traditional and ML based approaches (Quoting references form healthcare applications of radar).

A. Performance Evaluation Methods of VS Measurement

As shown earlier in Fig. 1, the data from radar and clin-
ical heart and breathing measurement sensor is captured in
simultaneous fashion. Several matrices exist to find correlation
between the two sensors. Mean absolute error (MAE), mean
error (ME) and mean-square error (MSE) are extensively used
to show the difference of beats captured through radar and
clinical sensors [55].

The difference between radar and reference sensor some-
times may not show the capability of radar to follow the heart
variations. Consequently, statistical plots such as correlation
plots and Bland-Altman plots are also being considered as
well [64]. These plots additionally show the correlation factors
and confidence range. The higher the Correlation factor, the
higher is the accuracy. Research works often use correlation
factor with based approach and conventional approach to
quantify the overall improvement of system [65].

B. Vital Signs Extraction With Radar (Baseline Method)

In order to demonstrate the VS extraction process, we
established an exemplary VS extraction setup using Pulsed and
CW (FMCW) radar as shown in Fig. 7(a). A human participant
wearing a respiration belt and ECG electrodes was sitting in
front of radar at a distance of 0.5 meters. We used Xethru
X4 Pulsed radar designed by Novelda, Norway and IWR-
6843 FMCW Radar designed by Texas, Instruments, USA. For
BR reference, GDX-RB respiration belt designed by Vernier,
Beaverton, USA was used, and for ECG measurement, PSL-
iECG2 ECG module developed by PhysioLab, Ltd., Korea was
used. As shown on the right side of Fig. 7(a), the breathing
and respiration movement scatter points are superimposed on
each other [177].

Fig. 7(b) shows the signal processing chain to extract VS
using both the pulsed and CW radars. For the case of pulsed
radar, the signal is processed in time-domain where the first
step is to remove the unwanted static reflections from the
received signal since received signal contains reflections from

the chest as well as surroundings. A clutter removal filter is
often deployed to reduce the background reflections [175].
Afterwards, the distance showing the maximum variance is
selected and FFT analysis is performed at the values observed
at that point to extract VS. The process for CW radars is
also similar however, the processing is being performed in
frequency domain. At the beginning, FFT of received raw data
is performed followed by clutter removal and human detection
blocks. Finally, the phase is unwrapped to extract the VS
signal.

While the initial processing in both radars differ slightly,
Fig. 7(b) suggests that the final stage of the extracting VS
are similar for both technologies. From the extracted and the
processed data of both radars, two separate band-pass filters
(BPF) ranging between 0.1 to 0.9 Hz and 1 to 2.5 Hz are
used to extract the breathing and heart signal respectively.
Exemplary results based on signal processing chain shown in
Fig. 7(b) are demonstrated in Fig. 7(c). The two peaks for
UWB and CW (FMCW) radar provides the BR in both cases.
The demonstrated process is repeated with a sliding window
over the captured radar returns for a specific duration.

With a human subject at a distance of d, from radar as
shown in Fig. 7, the mathematical model for radar-based VS
can be presented as:

“

where d represents the overall change in distance due to chest
vibrations, my represent the breathing rate harmonic compo-
nent, and my, represents the heart rate harmonic component.
The corresponding breathing rate and heart rate frequencies
are represented by f, and f;, respectively. As stated earlier,
two band-pass filters are used to independently extract the
breathing rate and heart rate.

d = do + Ad(t) = mysin(27fy) + my, sin(27fy),

C. Challenges Related to Vital Signs Extraction

Radar sensor-based framework shown in Fig. 7 facilitates
a user-friendly measurement of VS in comparison to the
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Fig. 7. Vital sign extraction through radar: (a) Experimental setup and materials, (b) signal processing work flow and (c) the extracted vital sign and its FFT

analysis.

competing (wearable) sensors. However, radar observations are
sensitive to several ambient conditions for the case of VS
measurements. The biggest challenges and research directions
currently considered for VS monitoring are:

1) Random body movement during data acquisition

2) Breathing harmonics distorting the heart-rate harmonics

3) Human detection (accurate range point selection)

4) Low signal to noise ratio of the extracted vital sign signal

5) Fast signal acquisition (reducing the observation window
for VS measurement)
Reconstruction of heart-beat waveform similar to ECG
Sensor.
Application development exploiting radar-extracted vital
signs

As per our literature survey, it was observed that while VS
measurements are often performed with the traditional Fourier
Transform (FT) based signal processing approach shown in
Fig. 7, ML 1is deployed on top of it to reduce the error
encountered due to the aforementioned challenges.

0)

7)

D. ML Empowered Vital Sign Measurement and Processing
This section summarizes the usage of ML based systems to
overcome the aforementioned challenges.
1) Body Movement Cancellation: Since radar measures the
chest vibrations occurred due to heart and lungs movement,

any other movement will create inaccuracies in VS measure-
ment. In an ideal case, the human body should completely be at
rest during VS measurement. However, one can expect several
periodic and non-periodic body movements while acquiring
data with radar. These movements such as neck vibration or
hand movements are not linear in nature instead, they corrupt
both the amplitude and phase of chest vibrations [51]. In fact,
macro-movements such as limb movement alone will be a non-
linear phenomenon. Simple source separation algorithms such
as independent component analysis may not serve the purpose
here.

Fig. 8 (a) and (b) respectively represents the radar extracted
VS signals without and with the influence of body movement.
As seen in Fig. 8 (a) and (b), the body movement signal
appears as an abnormality in the extracted VS signal. Fig. 8(c)
represents an exemplary DL study based on DNN to segregate
body movement and respiration signal [44].

With the help of ML, several researchers have proposed
methods to detect and mitigate body movements during data
acquisition. For instance, Khan and co-workers [11] used a
DL model to classify the stationary heart rate signal from
the heart signal captured under the influence of random body
movements. Pulsed radar was deployed in this study to capture
data, and AlexNet was used to extract the features from
both the classes which served as an input to the binary
SVM classifier. The HR captured under body movement was
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discarded while keeping the resting HR which resulted in
overall lower mean error.

In similar fashion, another research work [44] utilized
Deep Neural Net to cancel the body movement (as expressed
in Fig. 8). Chest vibrations were captured with CW radar
and random body movements were added in the recorded
signal. Later, a DNN model consisting of an input layer,
two hidden layers and an output layer was trained to detect
and quantify these body movements. Afterwards, based on
the DNN prediction, the respiration signal was reconstructed
successfully. A generalized DNN diagram can be seen in
Fig. 5.

In reference [61], LSTM based model was proposed to solve
the movement artifact issue where the body movement power
and VS were analyzed to segregate the two quantities.

Performing regression on the radar extracted VS is another
approach to resolve the issue of missing VS data due to body
movement or any other reason. As expressed in Fig. 8 (b), the
measurement error often appears as an outlier— Regression
can be used to mitigate these errors. For instance, DeepVS, a
ID-CNN based regression model was trained to predict and
minimize the effects of body movement in reference [54].
Authors used a two stream 1D CNN to extract features from
both time and frequency domain. On a challenging data set,
mean error of 7.4 beat per minute was achieved which in
case of simple signal processing approach was 11.4 beats per
minute.

©

Vital sign extraction (a) without body movement, and (b) under the influence of body movement adopted from [11]. (c) A DNN based regression
approach extract respiration signal under the influence of body movement [44].

Auto Encoders (AE) have also shown their effectiveness
in removing random body movement. For instance, the work
presented in reference [52] used a convolution based varia-
tional AE to reconstruct the VS from the mixture of signal
containing body movement along with VS. In their work,
simulated human movement data is mixed with a public VS
dataset to create a mixed signal representing VS measured
under the influence of body movement. Results suggest that
AE does reduce the effect of unwanted movement in the radar-
measured VS data. Another work presented by [178] extracts
only the respiration rate from non-static humans using AE. BR
while moving on treadmill, exercising on the same spot and
turning over are extracted in their work and the AE generated
respiration waveform was (more) close to the gold standard
reference sensor in comparison to the respiration waveform
extracted using only the signal processing methods (shown in
Fig. 7). Similarly, [51] used a DL based AE to separate the
components of body movement from the radar observed vital
signs. The reminder of the body movement mitigation works
are listed in Table VI along with other challenges.

2) Breathing Harmonics Cancellation: Harmonics of
breathing signal residing between 1 to 2.5 Hertz (Hz),
distorts the heart rate measurements since the amplitude of
breathing harmonics is sometimes higher than that of heart
rate peak. Table VI shows three studies related to breathing
harmonics cancellation using ML approaches (along with
other VS measurement challenges). Saluja et al. [43] proposed
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TABLE VI
ML AIDED VITAL SIGN MEASUREMENT STUDIES USING RADAR (SORTED YEAR-WISE)

Study Algorithm Usage ML class Network Main Focus Radar Implementation details and performance improvement
[179] Gamma Regression Supervised ~ Shallow Harmonics CwW A supervised ML filter named as Gamma filter is
(2018) filter cancellation used which is a calibration-free filter.
[43] Gamma Regression Supervised ~ Shallow Breathing Ccw This work is a detailed and extended version
(2019) Filter Harmonics of the work presented in [179]. Accuracy
and time improvement of 1.2% and reduction in observation
reduction window by 3 seconds is reported.
[180] Conv. Regression Unsupervised Deep Breathing Pulsed Used the time domain sparsity to directly extract
(2019) coding Harmonics the HR and improved the accuracy by 15%.
[44] DNN Regression supervised ~ Deep Body CwW Body movement was added in respiration signal
(2019) Movement and DNN was trained
cancellation
[49] CNN+LSTM Regression Supervised  Deep HR and BR CwW Used CNN+LSTM based regression to reduce HR
Improvement and BR measurement errors. Accuracy: DNN:
91%, CNN:94%, and CNN+LSTM:99%.
[53] CNN Regression Supervised  Deep HR FMCW  This model can extract ECG waveform by
Construction performing regression. R-R peak time error is
of proposed was 17 millisecond(msec) whereas
conventional approach provided 102.2 msec.
[65] CNN Classification Supervised = Deep HR FMCW  Template matching is performed to extract HR
(2020) Construction histogram. Conventional method yielded 0.66
correlation between radar and gold standard,
proposed method yielded 0.72.
[46] DNN Regression Supervised  Deep Accuracy FMCW  Increased vital sign SNR by using DNN as
(2020) improvement denoising agent and reported above 25% accuracy
improvement
[181] CNN+LSTM Regression Unsupervised Deep ECG recon- CW Network learned the temporal and spatial features
(2020) struction from radar and reference sensor to reconstruct HR
waveform.Comparison was performed only with
wearable sensors, not with the radar methods.
[50] DNN Regression Supervised  Deep Accuracy FMCW  Performed regression increase the measurement
improvement accuracy
[51] AE Regression Unsupervised Deep Body Any Encoder based sources separation method to
& classifi- Movement radar segregate vital signs and body movements. The
cation and Range proposed method also provides a fast acquisition
detection mechanism. Compared results with [65] and
reported around 20% accuracy improvement.
[52] AE Classification Supervised  Deep Body Cw AE based body movement separation method is
movement provided
[55] CNN Classification Supervised Deep Data FMCW  For a short window length, the conventional vital
Acquisition sign method showed 6.3% error whereas proposed
time method showed 3.5%.
[56] AE Regression Unsupervised Deep HR CwW Used AE to reconstruct radar extracted ECG
Construction waveform to find peak-to-peak differences (HRV).
Proposed model shows over 30% improvement.
[57] TCN Regression Unsupervised Deep HR FMCW  TCN to reconstruct ECG waveform.
Construction
[11] AlexNet Classifier Supervised  Deep Body Pulsed AlexNet to learn feature and SVM to classify body
and and movement movements and stationary vital signs.
SVM Shallow Removal
[54] 1D CNN Regression Supervised  Deep Body Pulsed Performed regression at the output of radar
Movement measurements. the error for HR and BR is 7.4 and
4.9 beats per inute (bpm) whereas non-learning
based competitor showed 11.8/7.3 bpm.
[67] SVM Classification Supervised ~ Shallow HR CW SVM and SVD are used to find HR & BR
Construction waveforms.

a supervised ML algorithm based on gamma filter to remove
the breathing harmonics from the signal.

In reference [180], convolutional sparse coding was used to
mitigate the low Signal-to-noise ration (SNR) and the issue of
breathing harmonics. Results showed above 95% accuracy in
HR extraction.

3) Human Range Point Detection: Another, biggest
concern is the fact that while measuring VS, human chest does

not appear as a rigid reflective point [177], instead, it contains
reflection from different portions of human abdomen as shown
at the top of Fig. 7(a) where yellow and red scatter points
represents the BR and HR respectively. Incorrect selection of
range bin may result in measurement inaccuracies. To resolve
this issue, Chang et al. [55] proposed a spatial correlation-
based scheme to accurately detect the range bin. Several
different range bins are selected, and a CNN based voting
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TABLE VII
ML AIDED APPLICATIONS BASED ON RADAR-EXTRACTED VITAL SIGNS

Study  Algorithm Usage ML class Network Main Focus Radar Implementation details and performance improvement
[45] SVM Classifier Supervised ~ Shallow Application CwW SVM Classifier to classify humans for identity
(2019) Oriented identification
[47] SVM Classifier Supervised ~ Shallow Application CcwW Used SVM and several other classifier to classify
(2020) and kNN Oriented different human subjects
[48] CNN Classifier Supervised  Deep Application Pulsed Used pre-defined unique breathing pattern for each
(2020) Oriented subject and detected the pre-defined breathing
pattern with CNN classifier

Stacked Classification Supervised — Deep Application FMCW Four different types of reparations are being
[183] NN classified to monitor multi-human respiration
(2022) abnormalities
[8] DNN Classifier Supervised  Deep Application FMCW Used ECG sensor data to train DNN which was
(2022) oriented tested on radar data for arrhythmia detection.

scheme is implemented to find the best. Each candidate range
bins are considered as a class to be classified and CNN is used
in supervised fashion. Results suggest that MAE is reduced
from 3.95 to 2.70.

4) Fast Signal Acquisition: As discussed earlier, a window
of few seconds is required to process the data and the size of
window defines the time taken by the algorithm to predict VS.
Analysis on different window sizes suggest that the increase in
window size reduces the measurement error [182]. However,
in practice, some scenarios require the algorithm to converge
quickly. To meet this challenge, authors in [55] used DL to
reduce the acquisition time with FMCW radar. In addition, DL
based weighted scheme was introduced to find the best range-
point of human chest during data acquisition. Reference [43]
also reduced the acquisition time from 3 seconds to less than
1 second by utilizing supervised ML approach.

5) Accuracy Improvement: Few research works focused on
improving the overall accuracy of vital sign measurement
particularly by increasing the SNR of radar observations.
As expressed in Fig. 7, radar-based VS are measured by
taking the FFT of the extracted vital sign signal, however,
Chang et al. [46] used an iterative frequency estimation
scheme named as Newtonized Orthogonal Matching Pursuit
(NOMP) instead of FFT approach. However, the proposed
technique requires a high signal-to-noise ratio. As a result,
authors proposed a DL aided NOMP scheme to increase the
VS accuracy in comparison to the traditional scheme. The
CNN model is utilized in this work to increase the SNR.

The issue of low signal to noise was also discussed in [46].
Similarly, Czerkawski et al. [52] also used (variational) AE
for de-noising the Doppler radar observations for VS mea-
surement. The authors in [12] have proposed a multi radar
data fusion network based on LSTM network to extract VS
followed by a discriminator block to optimize the heart rate
detection. OTS pulsed and FMCW radars were used together
in this study. Research presented in [50] also utilized a neural
network based regression model to increase the measurement
accuracy.

6) Reconstruction of Heart-Beat Waverform Similar to ECG
Sensor: The radar extracted heartbeat waveform (in its raw
form) does not resemble greatly with the standard waveform
extracted using ECG sensor. A chain of signal processing is

required to process the radar-extracted heartbeat waveform.
For heartbeat waveform reconstruction, work presented by
Ha et al. [65] used FMCW radar and CNN based template
matching to transform radar waveform into a seismocardiogra-
phy. The radar extracted waveform is matched with a reference
ECG waveform while training. The correlation between the
reference HR waveform and the one extracted with CNN
based template matching was 0.72 whereas for the same
case, conventional FFT approach provided 0.66 only. Table VI
summarizes all the related works.

7) Heart Rate Variability Extraction: Radar sensors also
facilitate the Heart Rate Variability (HRV) extraction in
non-contact fashion. The R-R interval which defines the peak-
to-peak difference between consecutive heart beats in ECG
waveform is an extensively used parameter in identifying car-
diac diseases. AE has shown their usefulness in reconstructing
the heart waveform, permitting radar to extract a waveform
similar to that of ECG sensor. In practice, radar observed
HR waveform (similar to ECG) is not robust in practical
scenarios. Jang et al. [56] proposed an AE based approach
to reconstruct more robust ECG signal out of CW Doppler
radar measurements. The output of encoder-decoder pair was
used to detect the R-R interval. For the similar task, Temporal
convolutions network (TCN) based encoder was used by Chen
and co-workers [57].

8) Application Oriented Research Works: A few authors
used the extracted breathing rate as an input to ML classifiers
for user authentication purpose (Table VII). For instance, [45]
used SVM classifier to classify six participants based on
the breathing waveform. Another study used several shallow
classifiers such as SVM and kNN for identity authentication
during sleep [47]. Similarly, [48] assigned a unique breathing
pattern to each involved human volunteer and used CNN based
classifier to segregate each user. Rana et al. [58] used Doppler
(CW) radar and SVM to detect VS in a home at different
locations for surveillance purpose.

In the similar way, [60] proposed neural network based
dengue fever detection using radar-recorded VS. In [59], the
authors studied the feasibility of CNN to classify four different
radar acquired vital signals. In similar line, an approach to
segregate children based on age-group was presented using
OTS FMCW radar by Yoo et al. [64].
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Since radar data is a scarce resource, to train a deep
network for heartbeat signals classification is a challenging
task. Authors in [63] proposed a Common Features Extraction
Method (CFEM) which extracts the features from ECG wave-
form to train a model which works well with the radar recorded
heart waveform features. Next section explains the activity
recognition work based on ML.

E. Generative Al Concepts for Radar Based VS
Measurement

The concept of generative Al is yet to be explored for
radar-based vital sign monitoring purposes. Nevertheless, a
preliminary study based on GAN was presented by [66] where
the authors tried to find the orientation of human body (while
measuring vital signs) using signal from multiple radars.

F. A Brief Competitive Analysis

In computer vision research domain, several open-
source datasets exist for benchmarking purpose such as
ImageNet [184] and COCO [185]. However, radar-based vital
sign researches does not often use public dataset which con-
sequently obstructs the comparative analysis among different
algorithms. Based on the available data a brief comparison
is stated here for VS measurement using radar. For body
movement mitigation, two prominent ML models appeared
to be 1D CNN and AE. ID CNN showed an improvement
of 44 and 2.3 beats per minute for HR and BR extrac-
tion respectively, which approximately constitutes 35% and
40% performance improvement [54]. In another study based
on AE [51], 20% improvement can be observed however,
the data capturing conditions were different in both the
studies ([51], [54]). In addition to that, regression based
approaches [44], [51], [54] are able to mitigate the body
movement unlike the classification based approaches which
can only detect random body movement [11].

For breathing harmonics cancellation, supervised filtering
appeared to be a prominent solution [43]. For HR reconstruc-
tion, it was found that AE showed the 30% improvement
in-comparison to the conventional approach [56]. Template
matching based on CNN also achieved considerable improve-
ment as presented in work by Ha et al. [65] where the
correlation between radar and reference was increased to 0.72
which previously was 0.6.

V. ML BASED HUMAN ACTIVITY RECOGNITION

This section discusses the second application of healthcare
radars. According to projections, the elderly population aged
65 years and above is expected to exceed 1.5 billion by the
year 2050, which is more than twice the current population.
Aging brings several undesired impairments to perform activ-
ities of daily life. These activities are crucial to the ones
well-being and studies suggests that inability to perform daily
life activities have shown a five-fold rise in a yearly mortality
rate [186].

Automatic human activity recognition has brought us
many applications in the healthcare and smart living indus-
tries such as remote patient monitoring [187] and indoor
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2) CW [12]
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Fig. 9. Radar based activity recognition framework.

surveillance [116]. More precisely, the focus can be shifted
from cure to prevention, which will reduce the work load
of already burdened healthcare infrastructure [2]. Due to
the non-contact and non-invasive nature, radar-based activity
recognition has become a hotly discussed research domain.
As stated earlier, unlike the other competing non-contact
technologies such as cameras, radar has no privacy concern.

To facilitate the activity recognition process, a set of
activities are performed in the Radar Cross Section (RCS),
and the acquired signal is processed either using ML approach
(such as SVM [131]) or a simple signal processing approach
such as distance manipulation [188]. However, as per our
survey, radar-based activity classification studies with simple
signal processing approach are very rare.

Radar-based methodology for activity recognition with ML
is summarized in Fig. 9. First, the suitable radar sensor is
selected to create a dataset. As per our survey, with few excep-
tions [111], supervised ML is used which additionally requires
dataset-labelling [189]. Furthermore, as expressed in Fig. 9,
pulsed, CW and FMCW radars offer different type of data
representations. Suitable data representation scheme based on
the nature of activity to be recognized and radar sensor being
used, is selected to serve as input to the recognition algorithm.
Radar data representation plays an important role in the overall
performance of activity recognition framework. Few studies
have utilized radar data from different domains with the same
ML algorithm for comparative analysis [83]. Afterwards, any
or all of these types of data representations can be used to
train a ML network. Several studies have used multi-domain
data to recognize human activities [152] and gestures [4].
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A. Performance Evaluation Methods for Activity Recognition

Human activity recognition is often dealt as a multi-class
classification problem. Consequently, formation of confusion
matrix is a common way of evaluating the performances.
Finding true positive, false positive, true negative, false nega-
tive, F-1 score, precision, recall, are also a common practice.
The confusion matrix is capable of extracting this information
as well (Refer to [190] for details). It must be noted that if the
data is highly imbalanced, accuracy must not be considered as
an evaluation criterion even for binary classification.

B. Nature of Activities Being Classified

Web search with related keywords suggest that researchers
are paying a huge attention on classifying activities of daily
living such as drinking, going to bed, sleeping. For instance,
Maitre et al. [80] classified fifteen such daily living activities.
Exercise related activities such as walking, squatting, jumping
crawling etc. are also being classified in several studies [105].
In addition to that, recognition of suspicious activities such
as boxing, crawling, jogging (in army style), jumping with
gun and throwing grenades etc. has also been considered in
literature [151]. Another categorization of the activities is the
activities performed at the same place and activities which
involve leaving the original position [139].

In literature, few studies have considered task or
situation-oriented studies such as store counter activities classi-
fication [144] and bed-room related activities [125]. In addition
to that, preliminary results of toilet activity recognition using
(FMCW) radar has also been observed in literature [156]. A
few authors have attempted to classify the patient’s activities
such as trying to get out of bed, roll on bed, and walk in the
room [83].

Next, we review different ML options available for activity
recognition.

C. CNN Based Classifiers

The pioneer study making use of DL for radar-based activity
recognition was based on CNN, where a three-layered CNN
was used to classify seven human activities using micro-
Doppler images with a success rate of 90.9% (Kim and
Moon [78], 2015). According to the claim made in the
paper, this was the first study employing DL model for
human activity recognition through radar [78]. Although the
activity recognition accuracy was same as the shallow (SVM)
classifier. the intention of this study was to show the usefulness
of CNN for activity recognition work. Perhaps, the model
was not tuned properly with different structural variations.
Later, the same authors also used a similar three-layered CNN
model for gestures recognition as well [191]. Afterwards, CNN
based classifiers were extensively used for activity recognition
using different types of radar data representation. Since CNN
considers image at the input, research work in [68] used short-
time Fourier transform (STFT) of the CW radar data to train
a classifier consisting of five (hidden) convolutional layers.

Work presented by Axelsson and Gueorguiev [97] also used
CNN and micro-Doppler images acquired by FMCW radar to
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classify three activities with 97.50% average accuracy. A three-
layered CNN architecture to classify six activities recorded
with OTS pulsed radar (which is also being used in [139]) was
presented in [74]. Since algorithm was trained and tested for
activities performed at three different incident angles which are
0, 15 and 30 degrees, an argument was made in their studies
that range resolution is more robust than velocity resolution
presented earlier by Kim and Moon [78].

Exercise activity classification has also attracted the atten-
tion of a few researchers. A work in this line was presented
by Tiwari and Gupta [149] using FMCW radar and CNN. The
exercises involved in the study were the usual gym exercises.

Normal practice of extracting features (using shallow or
deep model) utilizes one or more radar-data-representation
schemes as an input to the model (see Fig. 9). However, Ye
et al. [94] proposed a unique idea of using CNN as an end-
to-end framework. Raw radar returns of three activities were
fed to a 1D CNN for features extraction. These extracted
features further served as input to a 2D CNN network for
training and classification. This research work demonstrated
the feasibility of using a DL model on raw data without
extracting any other information. The considered activities
in this study are moving and boxing, only boxing, sitting,
crawling, falling forward, falling aside, and walking with a
stick.

Several variants of CNN exist to the date and have
shown their usefulness in different research domains. One
such variant was used in [123] where the authors trained
ResNet model to classify six activities and achieved 96%
accuracy. In the similar way, GoogleNET has also shown
its effectiveness to recognize six activities [146]. For the
same dataset, ResNet with time-Doppler as input showed 85%
accuracy [123] whereas GoogleNET with phase and amplitude
of time-Doppler map as input showed 86% accuracy.

Recently, Yu et al. [73] proposed a four component
framework consisting of 1) de-noising radar point cloud,
2) voxelization, 3) augmentation and 4) DCNN algorithm for
classification. The authors compared the result on public data
set proposed by Singh et al. [105] and showed the dominance
of voxel-based CNN approach over the simple CNN+RNN
approach.

Kim and Seo [98] demonstrated that a FMCW radar-based
range—time—Doppler maps can better train the CNN based
classifiers in comparison to the similar classifier trained with
range-Doppler maps only. A 3D map is used to train a 3D
CNN which as stated by the authors, generalizes better than
2D images-based classifiers. In addition to that, images were
created using wavelet transforms instead of STFT.

Another way of providing multi-domain radar to a CNN fea-
tures extractor is presented by Victoria and Maragatham [142]
where a tower CNN consisting of parallel input layer was used
in their work.

The use of stepped frequency CW radar to capture
time-range maps at different frequencies was reported by
Jia et al. [116]. These multiple time-range images were
used as input to a Multi-Stream CNN based classifier which
yielded 96.42% accuracy. Table VIII summarizes the activity
recognition works based on CNN.
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TABLE VIII
CNN BASED ACTIVITY RECOGNITION WORKS

Study Usage ML class Radar Data Data Details
[78] (2015) Classifier Supervised Time-Freq. Ccw A three layered CNN architecture was used to classify seven activities
[68] (2016) Classifier Supervised Time-Freq Ccw STFT images used as input to 5 Layered CNN architecture
[97] (2017) Classifier Supervised Time-Freq FMCW Micro Doppler signatures were used to classify three activities using CNN
[74] (2017) Classifier Supervised Time-Range Pulsed Data at different arrival angles was also tested and accuracy of 93.3% is
reported
[72] (2018) Classifier & Supervised Time-Doppler Ccw 371 fake samples were created using 1129 by utilizing GAN. CNN was used
generator for classification
[108] (2019) Classifier & Semi Time-frequency Ccw Generate synthetic time-frequency plots for eight different human activities.
generator supervised
[157] (2019) Classifier Supervised Time-Doppler Ccw Data being generated by GAN is used as input to DCNN classifier
[81] (2019) Classifier Supervised Time-Doppler FMCW Classification of 6 activities with several different classifiers (GoogleNet, SVM
based on alexnet)
[88] (2019) Classifier Supervised Time-Doppler Pulsed An open set classification is proposed based on GAN. Classification is
Doppler performed using CNN classifier.
[94] (2019) Classifier supervised Raw-Data Cw Used 1D CNN on raw-data directly (without extracting Doppler frequency)
directly
[119] (2020) Classifier supervised Range-Doppler FMCW Authors suggested that the use of multi dimensional data yields higher
accuracy.
[70] (2020) Classifier Supervised 4 different FMCW For 6 activities, Range-time & Doppler, amplitude & phase representations
domains were used
[147] (2020) Classifier Supervised 3D positioning FMCW Forked CNN: Range azimuth and elevation are used to draw human pose.
Proposed mythology is aimed to replace voxel based approach
[148] (2020) Classifier Supervised Range-Angle FMCW Range-azimuth and range-elevation maps are used as input to CNN to extract
the pose of human
[71] (2020) Classifier Supervised Time-Range Pulsed First moving direction is extracted using k-NN algorithm followed by CNN to
classify 12 activities with 98% accuracy.
[152] (2020) Classifier Supervised Range-Doppler- FMCW 3D network known as pointNET is proposed based on range-doppler-time
time maps
[10] (2020) Classifier Supervised Time-Doppler Cw Used doppler images and CNN as binary classifier to detect Apathy
(preliminary results).
[96] (2021) Classifier Supervised Time-Freq. Ccw STFT of captured data was taken and two separated 1D CNN networks were
used together to perform classification
[149] (2021) Classifier Supervised Range-Doppler FMCW Classified seven exercise activities using rang-doppler features
[116] (2021) Classifier Supervised Time-Frequency Ccw MS-CNN features and AE output was concatenated together to to classify 6
activities
[123] (2021) Classifier Supervised Time-Doppler FMCW Six activities are classified using ResNet classifier on public dataset (accuracy
= 96%)
[77] (2021) Classifier Supervised Time-Doppler FMCW Data with different FMCW radars having different settings is collected for
& domain and Range domain adoption purpose since change in radar setting affects the classification
adoption outcomes
[95] (2021) Classifier Supervised Time-Doppler FMCW Attention mechanism is added in 1D CNN to increase its accuracy. For 6

activities, proposed network showed 98% accuracy which is higher than the 1D
baseline accuracy of 97%.

[79] (2021) Classifier Supervised Time-Range Pulsed A through-the-wall public dataset of three different activities is proposed and
CNN classifier example is also shown with 99% accuracy

[142] (2021) Classifier Supervised Time-Doppler FMCW A tower CNN consisting of a parallel input layer is used to classify six
activities.

[146] (2021) Classifier Supervised Time-Doppler FMCW On an open dataset, six activities were classified using GoogINET.

[91] (2022) Classifier Supervised Time-Doppler (&% Used few shots and many shots learning to classify seven different activities.

[73] (2022) Classifier Supervised 3D Positioning FMCW Posture was created from radar point cloud using voxels.

[83] (2022) Classifier Supervised Range-Doppler FMCW Key finding: range-Doppler features are most robust than time-Doppler
features.

[69] (2022) Classifier & Supervised Time-Doppler & FMCW An approach to create synthetic radar data is introduced and CNN is used for

Generator Range classification purpose.
[98] (2022) Classifier Supervised 3D range-time- FMCW A 3D map is used to train a 3D CNN which is generalizes better than 2D
doppler images based classifiers. Images were created using wavelet transforms instead

of STFT.

[103] (2022) Classifier Supervised Time-Doppler FMCW With an improved PCA features, a modified version of VGG net is used to

classify six activities with accuracy of 96.3% which is 4.2% higher than the
conventional PCA and VGGNET

[151] (2022) Classifier Supervised Time-Doppler CW Six (suspicious) activities were classified using NN. Open dataset is also
provided by the authors
[84] (2018) Classifier Supervised Time-Doppler CcwW used DNN Synthetic data based on Synthetic data approach is used to train

DNN model. Testing is being performed with real radar data.

Transfer learning deals with the studies where a model challenging task and open data sources are scarce, researchers
trained at one task is used as a beginning point for another realized the need of generating activity data synthetically.
task. As stated in earlier section, capturing radar data is a Seyfioglu and co-workers [84] used a similar MOCAP
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TABLE IX
SVM BASED ACTIVITY RECOGNITION STUDIES

Study Usage ML class Radar Data Data Details

[126] (2009)  Classifier Supervised  Time- CcwW Classified seven activities using six micro Doppler features
Frequency

[129] (2010)  Classifier Supervised  Time-Range  Pulsed Classified seven activities using six micro Doppler features

[132] (2010)  Classifier Supervised  Time- CwW A two class classifier was used to detect fall as an activity
Frequency

[131] (2012)  Classification Supervised Time-Range  Pulsed Used PCA based features to train SVM classifier to

distinguish eight different activities

[130] (2012)  Classifier Supervised  Time- CwW Six features were extracted from Time-Doppler (frequency
Frequency plot)

[133] (2014)  Classifier Supervised  Time- Ccw A strategy was presented to classify activities even at non-
Frequency line of sight condition

[137] (2014)  Classifier Supervised  Time- FMCW SVM driven by PCA features was used for classification
Doppler purpose

[136] (2014)  Classifier Supervised  Time-range Pulsed SVM optimized by genetic algorithm was used in this study

[138] (2015)  Classifier Supervised  Time- FMCW This study used same features extracted by [126]. However,
Doppler radar is FMCW in this work instead of CW

[128] (2016)  Classifier Supervised  Time- CW Used STFT images from six activities to extract features
Doppler

[140] (2017)  Classifier Supervised  Time- FMCW Classified two datasets consisting of seven and ten activities
Velocity which yielded accuracy of 93 & 76 respectively

[139] (2018)  Classifier Supervised  Time-range Pulsed Used weighted time-range frequency patterns to classify 12

activities using different shallow classifiers

[134] (2019)  Classifier Supervised  Time- CcwW Performed through wall activity recognition
Frequency

[118] (2014)  Classifier Supervised Time Range  Pulsed Used energy, variance, skewness and kurtosis as features

[141] (2022)  Classification Supervised Range- FMCW Features were extracted from RDM using PCA and
Doppler VGGNet to perform classification with SVM and KNN

(separately)

approach to generate synthetic radar data to train DNN model.
Models train on MOCAP data were transferred to the real
radar data. Another transfer learning approach was discussed
in [81] and data was classified with GoogleNET classifier.

D. SVM Based Classification

Table IX summarizes all the works related to activity
recognition based on SVM, the second most widely discussed
classification approach. The first use of ML for (CW) radar-
based activity recognition was demonstrated in 2009 which
used SVM trained on six time-frequency features to classify
seven human activities [126]. Similarly, in [137], features-
based on Principal Component Analysis (PCA) are used to
classify activities based on FMCW radar. Another SVM based
early implementation is presented in [138], where the authors
have extracted similar features as discussed in [126] to train
SVM. However, unlike the previous work [126], FMCW radar
was used. Zenaldin and Narayanan [128] also used SVM to
extract indoor and outdoor activities where STFT images of
six activities were used to extracted features.

Authors in [102] used simulated human micro-Doppler data
generated using infrared and video Motion Capture (MOCAP)
approach. While the training was performed on synthetic data,
the system was later tested with real data captured using a
commercial radar to validate the findings.

The fist instance of ML usage for radar-based activity
recognition was based on SVM and perhaps, Table IX suggest

that the SVM is still in use. SVM based classifier can even
consider the features extracted by DL models such as CNN
and its variants [141].

E. RNN and LSTM Based Classification

CNN processes the grid shaped data and extracts the spatial
patterns and hierarchical representations, suitable for image
data and lacks the ability to process the sequential data.
RNN can handle sequential data and make decisions based
on the present input and past decision. RNN has also been
used for activity classification. Noori et al. [124] used pulsed
UWB radar to classify five activities using RNN with an
overall accuracy of 99.6%. The proposed network was also
tested on a public UWB-gestures dataset [173], which yielded
98% accuracy. In addition, the authors also implemented
discriminatory analysis and principal component analysis to
reduce the features set. DL networks often require a huge
amount of processing, and deployment of the DL model
with radar is a challenging issue. In this context, Werthen-
Brabants et al. [125] proposed a method which first performs
forward RNN at the device-premises and later, the processed
information is again utilized at server with backward RNN
for accurate prediction. Fourteen activities were considered in
their work.

Traditional RNN was suffering from vanishing gradiant
issue which gave rise to another sub-class of RNN known
as LSTM, introduced in the earlier sections. LSTM has
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TABLE X
RNN AND LSTM BASED ACTIVITY RECOGNITION STUDIES

Study Usage ML class Radar Data Data Details
[106] (2019)  Classifier Supervised  Time-Doppler FMCW Wearable and wireless sensor data is combined to provide a sensor
fusion approach which yields 96% accuracy for six activities.
[115] (2020)  Classifier Supervised  Time-Range Stepped Four activities in through wall condition are classified with accuracy
CW of 96.7%
[124] (2021)  Classifier Supervised ~ Time-range Pulsed Five activities were classified using a Neural Network. Data was

collected in home environment

shown its effectiveness for the activity recognition task.
Cheng et al. [115] used LSTM based classifier on time-range
maps extracted with stepped frequency CW radar and achieved
96.7% accuracy for five through the wall activities.

Since radar sensor specializes in sensing movement, most
research works rely on the detection of dynamic movement
being performed while pursuing the activity. Nevertheless,
few studies have proposed posture recognition to recognize
the activity [147], [148]. For instance, forked RNN based
posture classification using range-angle (both azimuth and
elevation) is presented in [147] (2020). It is needless to say that
MIMO radar was used since angle of arrival requires multiple
receiving antennas. Remainder of the studies related to RNN
and CNN are summarized in Table X.

F. CNN+RNN Based Classification

To introduce recursion in the CNN extracted features, a
combination of CNN and RNN can be used as shown earlier
in Fig. 5. LSTM is often considered as a special case of
RNN. In [105], features extracted from two CNN layers
were used as input to a bi-LSTM to introduce recurrence in
CNN features which yielded 90.4% accuracy (2% higher than
LSTM only based features). Five different exercise activities
are being classified. Another similar approach is presented by
Du et al. [92] where CNN features are used by a gated RNN
to classify six activities.

The concept of Hybrid model based on CNN and RNN was
also deployed by Ding et al. [87] (2021), where 1D CNN
output was used as input to the RNN network. Authors used
time-Range, angle and Doppler maps extracted by FMCW
radar to classify six activities with an average accuracy of
93%. Maitre and co-workers [80] also used same hybrid
CNN-+LSTM approach with pulsed radar to classify fifteen
daily-living activities.

Recently, Zhu et al. [107] used multiple CNN blocks and a
single LSTM block to learn features. A radar sensor network
consisting of five radars was used to collect data, and a single
CNN network processed each radar data independently to
extract features. Later, these features were combined to form
a concatenated output for LSTM network. For nine activities,
accuracy of 90.8% is reported.

Wang et al. [86] created images from both dynamic
movement and static postures using 3D radar point-cloud map.
The extracted point-cloud map comprising of (2D) range-angle
was used to generate images using voxelization approach—a
concept of clustering data-points into a geometric mesh.

The idea of using CNN+LSTM combination is also adopted
in study presented by Khalid et al. [85]. Combination of CNN
and LSTM with a 3D data cube consisting of time-range-
Doppler images as training input was used in their study. Two
additional features, which are Doppler energy dissipation and
temporal variation history, were also used as input feature
to the multi-view network. Authors reported that the use of
tracking feature will additionally increase 5% classification
accuracy.

In the similar line, authors in [104] utilized pulsed (Doppler)
radar-based time-Range information to train a hybrid CNN and
LSTM based network to classify six activities. The solution
was mainly optimized for fall detection purposes.

In the similar line, another work used pulsed radar for the
hybrid CNN and LSTM based network for features extraction,
which yielded 96% classification accuracy on fifteen different
activities [99]. Refer to Table XI for the remaining studies.

G. AE Based Classification

While most of the earlier attempts extracted features
using CNN with different radar types and data modalities,
few authors presented a contrary approach based on AE
(Table XII). Since, AE tries to learn the non-linear data
representation of input sample to reconstruct same sample
at the output, the learned information contains a rich set
of features related to the input sample—these features can
be used as an input to classifier as well. Jokanovi¢ and
Amin [120] presented similar approach of using a pair of
stacked AE based on DNN to extract features. The authors
demonstrated fall detection capability of FMCW radar and
results suggest that the accuracy was higher than the traditional
ML approaches. With fall-detection being the main focus
of the study, four human activities were considered in their
work. A sparse auto-encoders followed by logistic regression
classifier was opted, which resulted in classification accuracy
of 97%. OTS FMCW radar developed by Ancortek Inc. (SDR
2500) was used in this work.

H. Miscellaneous Classification Approaches

Few studies have recently considered a semi-supervised
learning approach which requires a few amount of labelled
training data. For instance, [76] proposed a semi-supervised
learning method where a small portion of labeled and a huge
portion of unlabeled data was used for training purposes.

Statistical features-based k-NN has also shown its effec-
tiveness for recognizing activities using pulsed Doppler
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TABLE XI
CNN-+RNN/LSTM BASED ACTIVITY RECOGNITION STUDIES

Study Usage ML class Radar Data Data Details
[105] (2019)  Classifier Supervised 3D range FMCW CNN + LSTM Generated a point cloud image to classify 5 exercise
angle activities
[92] (2020) Classifier Supervised  Time-Doppler Pulsed CNN features are processed with gatted RNN to classify 6 activities
with 88.19% accuracy.
[86] (2021) Classifier Supervised 3D Range map FMCW Voxelization based image was created from point cloud as input to
the model. CNN+RNN
[80] (2021) Classifier Supervised  Time-Range Pulsed 15 different activities are classified. CNN+LSTM An additional vot-
ing system is used to increase the robustness (overall accuracy=90%)
[87] (2021) Classifier Supervised  Time-Range, FMCW Used 1D CNN followed by RNN to combine multi-domain data
angle, Doppler using feature concatenation. 93% accuracy for six different activities
is reported
[125] (2022)  Classifier Supervised  Time- Velocity =~ FMCW Forward & Backward RNN are performed at device and server
respectively to divide computation burden
[85] (2022) Classifier Supervised  Range, FMCW Features and data was used to train the CNN+LSTM. It was
Doppler, Time reported that adding tracking features and Doppler energy increases
generalization accuracy by 5%
[99] (2022) Classifier Supervised ~ Time-Range Pulsed Features extracted from CNN and LSTM are concatenated together
to classify 15 different activities (accuracy = 96%)
[104] (2020)  Classifier Supervised  Time-Range Pulsed Convolultional LSTM is used to classify six activities. Main focus is
Doppler fall detection
[107] (2022)  Classifier Supervised ~ Time-Range Pulsed Outputs of multiple CNN blocks from multiple radars are combined
Doppler to make feature map for 9 activities (accuracy=90.8%)
TABLE XII
AE BASED ACTIVITY RECOGNITION STUDIES
Study Usage ML class Radar Data Data Details
[120] (2017)  Classifier Supervised  Time- FMCW Four activities were classified. The main focus was detection of fall
Frequency event
[70] (2020) Classifier Supervised 4 different FMCW Considered AE, SVM, CNN to recognize 6 activities. Range-time &
domains Doppler, amplitude & phase representations were used
[116] (2021)  Classifier Supervised  Time- CW MS-CNN, AE MS-CNN features and AE output was concatenated
Frequency together to to classify 6 activities
[76] (2022) Classifier Semi- Time-Doppler CW Both labelled & unlabeled data was used for training purpose
supervised enabling a semi-supervised learning.
[145] (2022)  Classifier Supervised  Time-Doppler FMCW Used the dataset proposed in [105] to extract 3D point cloud with

graph neural network (GNN)

(Bumblebee) radar [112]. Another work utilized k-NN to
classify seven activities with time-Doppler features [140].

Recently, graph CNN (or GNN) was employed to classify
through the wall activities using stepped frequency CW radar
data [153]. Another work presented by Zhengliang et al. [79]
classified three activities in through the wall condition using
CNN and provided a public dataset as supplementary material
along with their research work [79].

Aziz et al. [93] (2022) introduced Metric Learning approach
for classification based on multi-domain target information in
time-Doppler and time-Angle domains. For eight activities,
82% accuracy is achieved.

Lee and Kim [114] (2022) used GNN on the dataset
provided by [105] to classify five activities. Another public
dataset named MARS [192] was also used to evaluate the
algorithm. In [109], authors reported that a fast computation
approach for activity recognition is Hyper Domain Computing
(HDC) which can provide accuracy similar to CNN.

Aziz et al. [93] (2022) introduced Metric Learning approach
for classification based features extracted in time-Doppler and

time-Angle domains. For eight activities, 82% accuracy is
achieved.

1. Generative Al and Similar Data Sources

1) Generative Als: As introduced earlier, generative Al
such as GAN have shown a huge success in generating new
data samples from a small dataset. Table XIII presents the
studies utilizing GAN for radar-based activity recognition
topic. GAN uses a generator and a discriminator block to
generate new data samples from the input data distribution
(see Fig. 5). One such example of the real and GAN generated
radar data sample for human walking is shown in Fig. 10.

In the real world, the human subject under the test may
perform activities which may be out of the distribution of the
data used for training. Most of the studies deal with the closed-
set classification where the training and test set have the same
activities. Open-set classification deals with the classification
of classes which are not present in training set. The issue of
open set for radar is discussed by Yang and co-workers [88].
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Real Radar Data GAN Generated Data

GAN Generated- Data

(b)

Real Radar Data

Fig. 10. Real and GAN (augmented) radar data for (a) bending down and
(b) walking around (adopted from [108]).

GAN is used to create a negative activity class that is to say,
the activity class other than the designated activity set.

Transfer learning based on GAN for activity recognition
was performed by Shi and co-workers [72]. A total of 371
additional training samples were created from 1129 real
radar spectrogram using GAN, and DCNN was used for
classification purposes. In [108], researchers also used GAN
to generate synthetic time-frequency plots for eight different
human activities. Similarly, Ding et al. [89] used GAN
to achieve semi-supervised activity recognition with micro-
Doppler spectrum.

Recently, a study to generate simulated radar activity data
using Kinect sensor followed by GAN to augment the data
was presented in [150].

2) Simulation Based Data Generation: Few studies are
utilizing synthetic data based on simulations for activ-
ity generation work. In this regard, MOCAP provides a
simulation-based method to generate micro Doppler behavior
synthetically. In this kind of approach, infrared sensors are
placed on human body parts (or in the ambience), and
distance-variation with time are recorded to generate human
micro-Doppler spectrograms. A low-cost approximation of
MOCAP can be achieved by using Microsoft Kinect sensor,
which is markerless approach. Several works have confirmed
the validity of Kinect sensor based MOCAP approach to gen-
erate activities data similar to radar [102]. Studies have used
this (synthetic) MOCAP generated radar data to train shallow
learning classifiers [102] as well as DL based classifiers [84].

In [100], an unsupervised adversarial domain adaptation
(ADA) approach is proposed for radar micro-Doppler images
to classify five activities. Authors considered two domains
consisting of same activities and possessing similar feature
space. A source domain is simulated dataset generated using

MOCAP which is used for training. The trained model is
tested on a real radar dataset (the target domain), and an
accuracy of 81.6% is achieved. Similarly, domain adoption
can be performed to train a network for different radar
settings.

Recently, the issue of limited radar data is also discussed
in [101] where a two-stage domain adaptation approach is
provided for a generalized solution. Few samples are collected
with OTS radar whereas few samples are generated using
MCOAP dataset. Later the data is randomly paired together
to be used as a pair input for GAN model. In [152], authors
used range-Doppler information to create a point cloud map to
classify eight activities using Multi-Layer Perceptron (MLP).

As stated earlier, few synthetic approaches to generate
activity data exist. Hernangome and coworkers [69] generated
a simulated radar returns for different activities using video
camera. The joints information extracted using a computer
vision approach was processed to get the simulated range-
Doppler map. However, the simulated and the captured
images had few differences. A DL based image transformation
network was used to overcome these differences. Afterwards,
CNN was used for classification purposes.

J. A Brief Competitive Analysis

For activity recognition, it is hard to provide a direct answer
to the question that which ML model has higher accuracy due
to below factors:

o Lack of having a benchmark dataset causing variations in
test environments: Unlike image processing, researchers
exploring radar-based activity recognition often collect
dataset first followed by training ML algorithm.

e Fairness in comparison: Few ML models converge
on small datasets showing high accuracy on small
amount of data. On the other hand, few models (deep-
structured models in particular,) requires a huge amount
of data however, the overall accuracy might be higher.
Radar-based healthcare topics lack this kind of studies,
making it hard to compare different models in terms of
performance.

e A high set of intra-model variations such as number of
(hidden) layers, learning rate, optimizer and activation
functions.

Nevertheless, it was observed that a few research works
utilized the same dataset in their investigations. Since, refer-
ence [94] used raw radar returns, Zhu et al. [96] used the
STFT of captured data to train (lightweight) 1D CNN. Two
separate 1D CNN networks are being used together to classify
seven activities. This study used Mobile-Edge computing to
provide a lightweight network. The activities were same in
these two aforementioned studies ([94] and [96]), and the
accuracy of [96] was 1% higher in comparison to [94].
However, lightweight DL model was used in [94] to achieve
low-latency algorithm. On the same dataset, another study by
Liu et al. [91] used few shots learning based CNN to classify
same seven activities. Few shots learning uses less training
data in comparison to conventional learning algorithms. With
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TABLE XIII
USE OF GENERATIVE Al FOR RADAR-BASED ACTIVITY RECOGNITION

Study Augmented Data Radar Details
[72] (2018) Supervised Time- CwW 371 fake samples were created using 1129 by utilizing GAN. CNN was used
Doppler for classification
[108] (2019)  Semi Time- Cw Generate synthetic time-frequency plots for eight different human activities.
supervised frequency
[157] (2019)  Supervised Time- Cw Data being generated by GAN is used as input to DCNN classifier
Doppler
[88] (2019) Supervised Time- Pulsed An open set classification is proposed based on GAN. Classification is
Doppler Doppler performed using CNN classifier.
[89] (2022) Semi- Time- CW GAN based model capable of considering labelled and unlabelled data
supervised Doppler simultaneously was trained
[101] (2022)  Supervised Time- Pulsed Using a two-stage domain adaptation, a generalized system is proposed where
Doppler Doppler system designed on simulated dataset is tested on real data
[114] (2022)  Supervised 3D Range FMCW Used the dataset proposed in [105] to extract 3D point cloud with graph
neural network (GNN). Posture based approach is presenteds
[150] (2022)  Supervised Time- FMCW Used GAN to generate augmented data samples
Doppler

five samples in each of the considered class, 91.6% accuracy
is achieved.

On a same dataset, ResNet with time-Doppler as input
showed 85% accuracy [123] whereas GoogleNET with phase
and amplitude of Time-Doppler map as input showed 86%
accuracy. Kim and Seo [98] demonstrated that a range—time—
Doppler maps can better train the CNN based classifiers in
comparison of range-Doppler map only. A 3D CNN model
generalizes better than 2D images based classifiers. CNN
with range-Doppler maps were more robust and efficient in
comparison micro-Doppler spectrum. Later the same data was
used with CNN+-LSTM network.

VI. CURRENT TRENDS
A. Vital Sign Measurement

Fig. 11 outlines the current research issues related to VS
and their candidate solutions based on ML. For instance,
body or any other unwanted movement can either be
detected, or detected and discarded at the same time. The
former solution reduces the amount of extracted VS data
while reducing the overall MAE whereas the latter will
reduce the overall MAE only. Similarly, for other limita-
tions and challenges, corresponding solutions from literature
are quoted in Fig. 11. Next, we present the survey of VS
studies.

1) Radar Hardware Usage: As demonstrated in Fig. 11,
we found that all the radar hardware are equally being
utilized for ML based VS measurement (See Table XIV for
references). However, since the VS measurement heavily relies
on conventional methods whereas we have summarized the
usage ML only, this finding cannot be generalized for the
overall VS measurement topic. As explained earlier, several
radar hardware choices exist and each hardware has its own
strength and weakness, Table XIV provides a categorization
from radar hardware perspective. Since this review considers
the studies related to VS extraction using ML only, Table XIV
can be used to study usage of ML for particular hardware.

TABLE XIV
SUMMARY OF VS BASED STUDIES USING ML

Pulsed [11], [42], [48],
VS Radar Hardware E;%] (661, [178].
CW [46], [50], [53],
[57], [64], [65], [67]
FCMW [46], [50], [53],
[551, [571, [64], [65]
Any Hardware [51]
CNN [48], [53]-[55], [64],
. } [65], [180]
VS Algorithms SVM TT1T, 451, 471,
[58], [67]
DNN [46], [50]
Gamma Filter [43]
AE [52], [56], [178]
HMM [42]
TCN [57]
CNN+LSTM [49]
GAN [66]
Unsupervised [51], [56], [57],
. [180], [181]
Learning Style Supervised T, (111, (431
(501, [52]-{55], [65],
[179], [183]

Note that the study presented by [51] can be used with any
radar type.

2) Algorithmic Details: Table XIV also presents the sum-
mary of the techniques being used in VS extraction. Readers
can get an insight about how ML techniques are currently
being deployed for VS measurement through Table XIV.
Table XIV suggests that CNN is most widely being used so
far followed by SVM. AE have also a huge potential since AE
has shown its effectiveness as to de-noise images and several
other types of data. In a similar way, AE based models have
a huge potential in de-noising the based radar measured VS.

Table VI suggests that ML offers several approaches to
improve VS measurement and reduce the error between radar
and reference gold standard devices. For instance, it can
be observed that a supervised classifier can be deployed to
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DL based noise removal filter [S0], Convolutional
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Coding [177].

Supervised Filtering [43], Convolutional Coding [178]

distorting HR

Reconstruction of ECG like

A 4

(both for SNR and Harmonics cancelation).

CNN [53], AE [56], CNN+LSTM based regression

\ 4

heart waveform

ML based improved VS extraction

[180], TCN [57], SVM [181].

Regression to improve accuracy by reducing outliers

Accuracy improvement

\ 4

using DNN [46, 50].

User authentication & surveillance [45, 47, 48], NN for

Application Oriented
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Exemplary (candidate) solutions

Radar Hardware usage in literature

Adopted algorithms in literature
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Fig. 11.

classify the radar-recorded VS signal with and without body
movement [11]. Currently, the measurement of VS under
voluntarily and involuntarily body movements is getting huge
attention. Similarly, regression analysis has also been proposed
to increase accuracy of VS measurement.

B. Activity Recognition

This section summarizes the activity recognition works
being carried out using ML algorithms. The hardware and
software related research trend for the activity recognition
works are shown in Table XV.

1) Radar Hardware Usage: As per our survey, FMCW
radar is the most widely used radar for recognizing human
activities (Fig. 12). One of the core reasons is the fact that
a MIMO FMCW radar can provide range, Doppler (velocity)
and angle information simultaneously in contrast to pulsed
and CW radars. In addition to that, FMCW radar usage is
increasing in recent years in comparison to the other radars

Summary of research works being performed for ML based vital sign measurement through radar.

which were famous in 2010-2015. One of the reasons is the
availability of several OTS FMCW radars which can be used
directly for activity recognition.

2) Learning Style: Next analysis shown in Table XV sum-
marizes the learning styles of algorithms being used for
activity recognition through radar. ML algorithms have been in
practice since 2009 whereas DL has emerged after 2015. Yet
the overall count of using DL is higher than ML algorithms
which suggests that the trend has shifted towards the use of
DL for activity recognition with radar.

Shallow learning models are here to stay since a few
recent studies are still deploying shallow models for activ-
ity recognition [134], [134], [141]. A recent work confirmed
the effectiveness of SVM for through-wall activity recogni-
tion [134]. Another recent work presented in [113] (2020) used
kNN to classify activities using IR-UWB radar.

The detailed study of related articles suggests that fewer
features are used in shallow learning in comparison to DL
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TABLE XV
SUMMARY OF ACTIVITY RECOGNITION WORKS BASED ON MACHINE LEARNING

[71], [74], [79], [80], [88], [90], [92], [99]-[101], [104], [107], [112], [113], [118],

- Pulsed [122], [124], [129], [131], [136], [139], [144]
Radar Hardware cw [101, [671, [68], [76], [781]. [841], [89], [91], [94], [96], [102], [108], [110], [111],
[126]-[128], [130], [132]-[134], [150], [151], [157]
(691, [701, [73], [75], [771, [811-[83], [851-[87], [93], [95], [97], [98], [103], [105],
FCMW [106], [109], [114], [117], [1191-[121], [1231], [125], [135], [137], [138], [140]-[143],

[145]-[149], [152], [154]-[156], [158]

. Shallow (28 works)
Learning style

[82], [90], [102], [110]-[113], [117], [118], [121], [122], [126]-[134], [136]-[141],

[144], [156]

Deep (63 works)

[10], [68]-[81], [83]-[89], [91]-[101], [103]-[109], [114]-[116], [119], [120],
[123]-[125], [135], [142], [143], [145]-[152], [154], [155], [157]

CNN: [10], [68], [69], [71], [73], [741, [77]-[79], [81], [83], [84], [91], [97], [98],

CNN [103], [114], [116], [119], [123], [142], [146]-[149], [151], [152], [155] 1D- CNN:
[94]-[96]
NN NN [117], [118] DNN [120], [154]
SVM [126]-[134], [136]-[141], [144]
LSTM [106], [115], [124]
Algorithms GAN [72], [88], [89], [101], [108], [114], [150], [157].
AE [70], [76], [145]
HMM [110]
RNN / LSTM [106], [115], [124]
k-Means & k-NN k-NN: [90], [102], [112] k-Means: [111]
CNN+LSTM/RNN CNN+LSTM: [80], [85], [99], [104], [105]. CNN+RNN: [86], [87], [92], [107], [125]
Random Forest [113], [121], [122], [156]
Metric Learning: [93] Domain Adoption: [100] GNN & GCN: [75], [153] HDC:
Misc [109] HMM: [110] Transfer learning with CNN [143] Features based Softmax:
[82]
) 701, [711, [73], [74], [79], [801, [90], [99], [104], [107], [113], [115], [118], [122],
Time-Range oL L [1]24E], ][1£9],] [1[31]], [[13]6],[ [13]9],[ [15]5],[ [15]6][ b LTS, 122
. 10], [68], [72], [76], [78], [811, [84], [88], [89], [911, [92], [95]-[97], [100]-[103],
Radar Data T‘}“i;:fg‘é‘;;‘}g/ [1[06]], [[105];]E[11]2][, [1] 1&], %12[3],][1[25%7[[12251,[[1%01[, [135]7%13[4],] [[137]], [[138]],[[1431,
. [142], [143], [145], [146], [150], [151], [157]
Representation

Range Doppler

[82], [83], [119], [120], [141], [149]

Time-Doppler &
Time-Range

[69], [77], [117]

Time-Range, Doppler
& Angle

[87], [121]

2D, 3D localization
& point maps

[75], [86], [105], [114], [147]

Others

Time-Doppler& Angle: [93]. Raw-Data: [94] Range-Angle: [148] Range Time
Doppler: [98] Range Time Doppler: [98] Time-Doppler & Time-Range &

Range-Doppler: [85].

approach. For instance, [126] used only six features from
micro-Doppler pattern of different actuates. Such shallow
networks also require less radar data samples in comparison to
deep networks. Unlike the computer vision research area, there
are few open-source datasets available for radars. Capturing
data with radar sensor and creating labelled dataset is a
challenging task. Few public radar-based datasets exist such
as UWB-gestures [173] and [105]. A DL model would get
over-trained with less amount of data. On the other hand, a
shallow learned classifier may not be robust against different
environmental conditions. DL model learns the hidden data
hierarchy in more complex way in comparison to shallow
models [176].

In general, shallow networks are considered to deal with
small-scale data [193] driven with hand-crafted features and

possesses lower generalization capability [194]. For radar-
based activity recognition case, it was reported in one of the
studies that the performance of SVM degrades significantly
when the training and testing is done in separate environment
whereas, the performance of CNN is more consistent and
environment independent [70]. Nevertheless, shallow Learning
models are still in use for radar-based activity recognition.
3) Data Analysis and Processing Approaches: Activity
recognition with radar has mostly been considered as a
classification problem and supervised ML algorithms are being
used [27] which additionally requires data labeling. To the best
of our knowledge, only two papers used unsupervised learning
approach for activity classification using k-means [111] and
HMM [110]. Additionally, semi-supervised learning for activ-
ity recognition is proposed in references [76], [89], [143].
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Fig. 12.  Summary of current trends in radar based activity recognition.

The rest of the studies mainly relied on supervised learning
approach for classification. Unsupervised learning have a huge
potential in future applications and must be considered. In
addition to that, few unsupervised features reduction and
clustering approaches have been used in literature such as
unsupervised PCA for features reduction [117] and DB-Scan
clustering [73] to reduce noise.

4) Algorithm Usage Trend: As stated earlier, our analysis
shows that initial studies were based on shallow classi-
fiers [42], [129], [130], [131], [132], [133], [137], [138].
Afterwards, deep models such as CNN started to gain huge
attention [68], [74], [78], [97] and CNN showed dominance
over SVM in terms of classification accuracy. Few studies
showed the dominance of CNN+RNN over other models on
public datasets [105] however, the note on fine tuning the
network and grid search is not discussed in details. CNN
based deep architectures such as GoogleNet have also been
considered in literature.

Recently, AE has shown its effectiveness for activity recog-
nition works [70], [116], [120]. A work presented by [145]
suggests that AE reduce the features space in comparison to
the CNN architecture since AE has the ability to compress the
data.

To show the overall trend of algorithms being used, data
shown in Table XV is plotted in Fig. 12. It is evident that

CNN algorithm is by far the widely used algorithm for activity
classification. Note that the count for CNN based studies
also contains the variants based on CNN such as ResNet
and GoogleNet as well. SVM is the second most widely
discussed classification algorithm. As stated earlier, multi-class
SVM classifier is the first ML based approach to recognize
activity through radar sensor [126]. To the date, few examples
of SVM based activity recognition exist [141]. The use of
reinforcement learning for radar-based healthcare applications
has not been observed so far.

5) Simulation and Public Data Sources: Owing to the fact
that capturing data using a radar might be difficult, simulation-
based datasets can further elevate the generalization to avoid
over fitting by providing a rich data distribution. Following
methods are found in literature to create simulation-based
dataset:

e MOCAP: Motion captured using RGB-D camera such
as Microsoft-Kinect can be used to generate radar
data [84], [102]. To our knowledge, this is the most
widely used method for data synthesis.

o Kinematic Model: This approach is similar to MOCAP
based approach where the joints movement is used to
generate synthetic Doppler effect [72].

e Data expansion through GAN: GAN is a powerful tool
to expand radar data, verified by many studies
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o Direct conversion of videos into Radar data This method
provides a DL based framework to generate Doppler data
from video sequences [135].

6) Radar Data Representation Scheme: Final survey
shown in Table XV for activity recognition work is related
to the use of different radar-data as input to the ML classi-
fiers. Several different types of data-representation schemes
have been used. It can be seen that Time-Frequency or the
Time-Doppler map which can be extracted with any CW
radar, has been used in several researches. The Time-Range
map which can be extracted from FMCW and Pulsed radar
data has also been used extensively in literature. Several
combinations of radar data such as ‘Time-Doppler and Time-
range’, ‘Time-range, Time-Doppler and Time-Angle’ has also
been discussed. The rest of the combination and detailed are
summarized in Table XV. The overall trends are visualized in
Fig. XV for convenience.

VII. LESSONS LEARNED

The history of artificial intelligence dates to the 1940s [167]
whereas the first radar-based bio-medical signal was mea-
sured in 1960s [38]. Radar sensing is also getting integrated
with the existing communication network [195], [196], [197],
[198]. Progress in both fields is complimenting each other to
overcome traditional limitations. Reviewing the state-of-the art
literature reveals that non-contact (radar) sensors are getting
integrated into the healthcare industry at a rapid pace, and one
may expect commercial-graded medical devices based on radar
sensor very soon. Perhaps, a United States Food and Drug
Authority (US-FDA) cleared radar sensor for HR monitoring is
already in the market [199]. The overall summary of the survey
being conducted in this work is presented in Fig. 13. The
application being reviewed is shown in the middle whereas
left and right sides represent the radar-sensor and ML network
taxonomies. Here are a few learned lessons for the two topics
in consideration.

Vital Signs: 31 I

Shallow Learning: 48

High level summary of research works being reviewed in this article. Type of radar, application and learning style are summarized.

A. Vital Sign Measurement

e According to our survey, the use of ML for radar-based
VS monitoring is still at the initial stage. VS
measurements is mainly performed using conventional
way with ML being a helping tool. Currently, research is
being carried out to overcome the limitations and restric-
tions being imposed by the conventional VS measurement
approach.

e As shown in Fig. 11, CNN is the most widely used
network followed by SVM. Regarding hardware usage,
Fig. 11 suggests that all types of radars are being used
equally.

¢ For body movement cancellation, if the work focuses only
on detecting and discarding body movement instances,
CNN and SVM are good candidate solutions [11].
However, if the algorithm is trying to make measurements
even under the influence of body movement, regression
such as DNN based regression [44] can be performed.
Similarly, an auto-encoder (based on DL) tries to learn
the statistical properties for encoding purposes often used
in compression. The learned properties (or features) are
often used to learn normal breathing patterns. Hence can
be used to detect and mitigate the body’s movement
accordingly.

o For the issue of breathing harmonics, several harmonics
cancellation filtering approach exist such as comb filters
or gamma filters [43]. However, these filters require high
SNR and DL based filter such as DNN filter can be used
accordingly.

o To extract heartbeat waveform showing R-R peaks, radar-
extracted vital signs must be pre-processed since the
radar extracted waveform often looks like a sinusoidal
waveform [160]. Conventional CNN may not serve the
purpose, instead template matching based on CNN [65]
can be performed. In addition to that, unsupervised AE
can be trained to transform radar extracted vital signs into
ECG alike waveforms.
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¢ To find accurate range-point, any ML algorithm providing
a suitable voting scheme to select optimum range-bin
can be used. Authors in reference [55] used CNN based
voting scheme.

e A few applications oriented studies also exist such
as usage of radar extracted vital signs for security
and surveillance purposes [37], [45]. These algorithms
require sophisticated classifiers such as CNN and SVM
to detect and classify the individual person.

o Researchers have not yet utilized the potential of gener-
ative Al. To our knowledge, only one work has utilized
generative Al for VS measurement [66].

B. Human Activity Recognition

Literature survey suggests that activity recognition topic is
dealt using ML only. Simple classifications based on signal
manipulation are very rare. Consequently, the number of
research works employing machine learning for this topic are
considerably higher than VS measurement research works.
Here are the few learned lessons based on the existing works:

1) Usage of DL based classifiers is significantly higher than
ML based classifiers.

2) First ML algorithm used for activity recognition was
based on SVM ([126], 2008) and first DL classifiers was
CNN ([78], 2015)

3) CNN is the most widely used algorithm, followed by
SVM and LSTM (Fig. 12).

4) Shallow model may show higher performances however,
the deep models show consistent performances in dif-
ferent environments [70].

5) Considering multimodal data together such as range,
time, and doppler simultanuously for features learning
instead of range-Doppler only increases classification
accuracy [98].

6) Fusion of radar and camera shows better precision in
comparison to radar and camera alone [119].

7) Efficient algorithms can decrease need of having big
dataset: Using FMCW radar, Zhao et al. [103] reported
that the efficient algorithms can decrease the required
data samples for training purpose. With an improved
PCA, dimensional reduction is performed and a modified
version of VGG net is used on the dataset provided
by [81]. An overall accuracy of 96.3% is achieved
which is 4.2% higher than the conventional PCA and
VGGNET.

8) Shallow networks are still being used. For instance, we
witnessed a two-stage classification approach based on
random forest recently [121]. Another recent attempt
utilizing random forest classifier to recognize fifteen
activities of daily living [122]. In addition to that,
shallow SVM and shallow NN are recently being used
for activity classification in references [141]. Similarly,
K-means clustering based unsupervised classification
was also used recently in reference [111].

9) Currently, a pre-selected activity set is being considered,
and the start and the finish instances of these activities
are already determined. However, practical scenarios

may require the detection of start and end time in
autonomous fashion.

Comparative analysis on studies utilizing same dataset
suggests that ID-CNN with attention mechanism has
higher accuracy in comparison to end-to-end-1D CNN,
mobile-edge based lightweight CNN. However, few
shots learning which requires very less labelled data
samples, decreases the accuracy [91], [94], [95], [96].
The performance of shallow learning models (SVM in
particular), degrades when training and test is performed
in separate environment whereas DL model shows con-
sistent performance [194].

Using FMCW radar, Zhao et al. [103] reported that effi-
cient algorithms can decrease the required data samples
for training purposes.

It has also been observed that efficient features extrac-
tion scheme and classifier can reduce the need of having
big dataset [103]. Consequently, the small-scale dataset
must be treated with efficient classification approaches.
Unlike vision-based activity recognition, public datasets
are very scarce for radar-based activity recognition
works.

10)

1)

12)

13)

14)

C. Integrated Well-Being Tracker Based on These Two
Applications

As stated earlier, several research works are currently
considering both the vital sign measurement and activity
recognition in a holistic fashion [12], [13], [14], [15], [16],
[17], [18]. Recently, concepts like activity-aware vital sign
measurement [18] have been receiving increased attention.
This is because a compact health monitoring system that
can measure multiple physiological quantities simultaneously
can offer integrated and personalized well-being tracking. For
example, monitoring vital signs following a critical event,
such as a fall, can help quantify the severity of the incident.
Low vital signs observed in an elderly person after a fall can
indicate an emergency situation.

VIII. FUTURE DIRECTIONS
A. Vital Sign Measurement

Survey suggests that the use of ML for radar-based VS is
very recent and still in the preliminary stage, suggesting a
considerable amount of room for new research. Each of the VS
related challenges mentioned earlier can be considered as an
open research topic. Fig. 14 shows a list of future directions
for VS measurement. We conclude that a huge importance
must be given to the early detection of cardiac and respiration
anomalies in future. As shown in Fig. 14 both these vital signs
can be used to build a wide range of detection and prevention
systems.

Unlike activity recognition, VS measurements lacks the
studies discussing generative ML concepts for training and
testing. The only study using generative ML is based on where
the data from multiple radar is fused together using GAN
to find the orientation of human body while capturing vital
signs [66]. We suggest the use of GAN to generate additional
heart and respiration waveform signals based on radar sensors.
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ML based early detection of cardiac
disorders

Personalized solutions

Accuracy improvement

Refer to Section IV for subtopics.

HRYV, Irregular Heartbeat, arrhythmias, myocardial
infarction, congestive heart failure, Stress and Emotional
State recognition.

ML aided VS -
measurement

ML based early detection of

Respiratory disorders

m= Blood pressure variability detection

Mechanical Heart movement

Continuous monitoring

Using MIMO for multi-human vital
B sign detection

I

Interactive dashboard for remote risk assessments

Sleep apnea detection, sleep stage classification, Chronic
obstructive pulmonary diseases, breathing cessation etc.

Measure the stability of blood pressure

ML based sources separation & MIMO can used to find
out vital signs of multiple co-located humans

Mechanical movement detection to see heart pumping

Fig. 14.  Few Open Issues for VS Measurements.

Clinical and preclinical trials of ML
based systems

Multi human activities recognition

Semi-Supervised approaches

ML aided
Activity —
recognition

Reinforcement learning
Continuous monitoring and
personalized solutions

Recognizing specific activities
related to diseases

Multi-Radar as well as single radar
multi-domain data combination

Ethical concerns

Interference mitigation —_—

_.
—
T
.
—

Clinicians and general public must trust these solutions which
suggest testing systems beyond laboratories.

Activity recognition at multi-human environments

To reduce the burden of labeling radar datasets

To overcome the scarcity of datasets.

Reinforcement learning has not been applied to the topic so
far.

Interactive dashboard for remote monitoring purpose

Focus must be exerted to recognize activities related to
mental disorder such as stress, anxiety, dementia, Parkinson,
ADHD and behavioral disorders

finding the suitable data representation for specific activity
and the method to combine multiple radar data

Making humans adopt radar technology in their living spaces.

How the radar will act in the presences of other radio devices
in living spaces.

Fig. 15.

Section V suggests that most of the VS studies mainly focus
on the extraction of breathing rate and heart rate. A similar
mechanism can be applied to find out the heart mechanical
movements as well. For instance, calculation of the point of
maximal (heartbeat) impulse near chest can lead us to find out
the size of heart. These topics have not yet been considered
by the researchers.

B. Activity Recognition

The future works related to activity recognition are summa-
rized in Fig. 15. The discoveries may have shown huge success

Few Open issues and Future Directions for Human Activity Recognition.

rate in research environment, the actual patients and clinicians
are required to trust these findings which suggest that clinical
and pre-clinical trials must be performed. Research works still
lack the clinical and pre-clinical trials for radar-based activity
recognition.

With few exceptions [154], activities from single human
subjects are being classified all the time. The issue of multi-
human activity recognition remains an open challenge.

Semi-supervised learning has great potential in this field as
it can reduce the burden of labeling datasets. In addition to
that, although the set of activities being classified is always
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* Vital sign monitoring of infants
and newborns.

Sleep wake monitoring
Neonatal heart rate variability
Pulse rate

Movement disorders and
behavior disorders detection
Baby movement quantification

recognition.
Patterns based human identification

* Blood pressure measurement
» Non-contact asthma detection.
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« Fitness and exercise activity monitoring
Security and surveillance related activity
monitoring such as suspicious activity

Vital sign measurement for fatigue analysis.

* Dementia and Alzheimer's

Gait analysis for fall risk assessment

Gait analysis for dementia detection

Personalized dashboard for an overall health
monitoring considering activity recognition, sleep
blood pressure etc.

Detection of inability to activities of the perform
daily life

Fig. 16.

pre-decided and fixed, unsupervised learning can also enable
several novel applications. The addition of new activity by
users can be accomplished using this approach.

ML system requires a massive data to create rules and adjust
its parameters (automatically) for a generalized solution having
negligible bias. This suggests the need to have a public dataset
which additionally provides a competing platform for different
algorithms as well. Regarding radar-data representation and
type, comparative analysis is very rare. Research is required to
compare the accuracy and robustness of different radar-data.
Multi sensor data fusion can also be a future direction where
radar sensors fused with other sensors such as camera or lidar
can complement the existing of each other. We already have
witnessed a few works previously [106].

As defined earlier, the activities are often performed in
discrete fashion. More work is required in future to recognize
activity in a continuous set of motions being performed by the
participants.

Another future challenge can be the situation based activity
recognition aiming for elderly healthcare and well-being.
For instance, radar-based medication reminder system can be
proposed where the human subject must be reminded to take
medicine while going to bed. However, the subject will not
be reminded to take medicine while in living room. In the
similar way, owing to the benefits of privacy preserving nature
of radar, sensor can be deployed in the home environment
to ensure that elderly patient is performing the medical
doctor’s recommended exercises (such as strokes rehabilitation
exercises recommended by Phillips research [200]).

C. Overall Healthcare Applications of Radar

Since healthcare radar applicability is not limited only
to activity recognition and VS measurement, several other
open issues are listed in Fig. 16. The health monitoring
topics also vary based on age. For instance, neonates require
vital sign monitoring and movement quantification which
has already been attempted based on radar sensor by a few
authors [201], [202]. The young and middle aged person may
require fitness monitoring systems and fortuitously as stated
earlier radar based fitness activity monitoring and vital sign

Cradle to grave healthcare applications in nutshell: Overall future potential of healthcare radars from a broad application perspective.

systems already exist [50], [105]. The integration of these
system is yet to be considered. In the similar way, elderly
population often suffer from neurological disorders such as
alzheimer, apathy, and dementia. Few others have discussed a
vague applicability of radar to detect these issues [8], [9], [10].
However, an integrated radar-based solution using applications
such as vital sign monitoring, sleep monitoring, activity
recognition is yet to be proposed.

IX. CONCLUSION

Fueled by the availability of OTS radars, an upsurge has
recently been observed in non-military applications of radar,
with healthcare industry being one of the beneficiaries. ML
empowered healthcare-applications are breaking the traditional
limitations, making radar-based healthcare more practical and
robust. While the list of related applications is vast, in this
article, a detailed overview of ML based VS measurement and
activity recognition is presented.

We conclude that for the case VS measurement, the
researchers are trying to use ML as an additional helping tool
to increase the accuracy and robustness of the conventional
algorithms. ML classifiers are often used to detect the abnor-
malities in the VS which are either discarded or recovered.
To recover the distorted VS, regression using shallow and
deep learning models has shown its usefulness. Auto-encoders
based de-noising have also been used. ML has also enabled the
measurement of VS while the human subject is non-stationary.
In addition to that, the radar extracted VS can further be used
to train ML systems to develop several novel applications
such as non-contact user authentication by breathing and
robust HRV extraction. However, the research works are still
at the preliminary stages, suggesting a research gap in the
corresponding field.

For activity recognition, we conclude that activity recogni-
tion is an application which is always being resolved using
the ML approach. Most of the time, supervised learning
approaches are considered, leaving a roam for semi-supervised
and unsupervised learning approaches. The reinforcement
learning based solutions are yet to be discussed. FMCW
radar is the most widely used radar for activity recognition,
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particularly in recent years. A few public datasets also exist
however, no such dataset exist which can be used to com-
pare the performance of different radars. Unlike VS, activity
recognition still lacks clinical and pre-clinical evaluation.
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