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Abstract—Autonomous driving services depends on active
sensing from modules such as camera, LiDAR, radar, and com-
munication units. Traditionally, these modules process the sensed
data on high-performance computing units inside the vehicle,
which can deploy intelligent algorithms and AI models. The
sensors mentioned above can produce large volumes of data,
potentially reaching up to 20 Terabytes. This data size is influ-
enced by factors such as the duration of driving, the data
rate, and the sensor specifications. Consequently, this substan-
tial amount of data can lead to significant power consumption
on the vehicle. Similarly, a substantial amount of data will be
exchanged between infrastructure sensors and vehicles for col-
laborative vehicle applications or fully connected autonomous
vehicles. This communication process generates an additional
surge of energy consumption. Although the autonomous vehicle
domain has seen advancements in sensory technologies, wireless
communication, computing and AI/ML algorithms, the challenge
still exists in how to apply and integrate these technology inno-
vations to achieve energy efficiency. This survey reviews and
compares the connected vehicular applications, vehicular com-
munications, approximation and Edge Al techniques. The focus
is on energy efficiency by covering newly proposed approxima-
tion and enabling frameworks. To the best of our knowledge,
this survey is the first to review the latest approximate Edge Al
frameworks and publicly available datasets in energy-efficient
autonomous driving. The insights from this survey can bene-
fit the collaborative driving service development on low-power
and memory-constrained systems and the energy optimization of
autonomous vehicles.

Index Terms—Approximate computing, connected vehicles,
deep learning, edge computing, energy efficiency, intelligent
vehicles, machine learning.

I. INTRODUCTION

V EHICLES have seen a growing trend in the utilization of
sensors, advanced driver assistance systems (ADAS), and
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safety features. The latest progression is towards integrating
these sensors with the state-of-the-art deep learning models
based on the sense, think, and act model, which can assist or
replace a driver by offering the highest level of autonomy [85].
The highest level of autonomy is described as the execution of
driving processes that serve self-driving functionality from a
source point to the destination point without any input or control
from a human. Full automation can be achieved by integrating
multiple sensors, such as camera, LiDAR, global naviga-
tion satellite system, radar, and communication modules with
software-level solutions, thus providing the automotive driving
features or the advanced driver assistance system [17], [142].
The automotive industry has already been using several sim-
ple and complex ADAS features, improving the overall driver
experience with the ultimate objective of providing better road
safety [54], [344]. Braking assistance, lane departure warning,
adaptive cruise control, and global positioning system (GPS)
based navigation are some of the features that have been used
since its introduction between 1990-2000 [85]. The current
trend involves incorporating deep learning and machine learning
approaches within autonomous vehicles to provide maximum
precision and human-level accuracy. These statistically-based
learning algorithms aim to interpret the driver’s surroundings
when provided with impartial or neutral data. Based on the
characteristics of the provided input, these algorithms classify
or predict an output.

Several machine learning models have been proposed to
replace traditionally used algorithms for applications such
as collision-warning systems [58], [81], [132], object detec-
tion [134], [155], [323], path planning [19], [136], [302],
lane change assist [159], [332], localization and map-
ping [216], [379]. Although these methods solve autonomy
issues in vehicles, their scalable deployment on embedded
and edge devices and rising computational complexity cannot
be overlooked. Therefore, this survey reviews the Al algo-
rithms for connected vehicle applications, Edge Al approaches,
and vehicular frameworks. This survey focuses on energy-
efficient mechanisms and approximate techniques from the
above-mentioned topics. Figure 4 presents a dedicated taxon-
omy and classification of topics covered in this paper. The
outline of the sections are as follows:

1) Motivation and Background: This section intro-
duces research trends in vehicle-edge computing. Further
content includes motivation, methodology, and research
questions.

2) Al and Autonomous Driving: In this section, the funda-
mentals of machine learning & deep learning approaches are
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described. Autonomous driving services such as perception,
simultaneous localization and mapping (SLAM), and vehicle-
to-everything (V2X) are reviewed and compared.

3) Edge Al for Autonomous Driving: This section dis-
cusses edge computing and edge intelligence paradigm. This
section reviews articles published on cooperative driving,
communication-efficient approaches, federated learning, Edge
Al Inference, and Edge Al optimization methods.

4) Enabling Frameworks: The discussion includes legacy
framework for autonomous driving and the Edge Al frame-
work on computation, communication, and offloading capa-
bilities. To the best of our knowledge, this survey is the first
attempt to provide a review of the latest Edge Al frameworks
for energy-efficient autonomous driving.

5) Research Outlook and Open Problems: This sec-
tion summarises the survey by discussing open problems
and potential challenges in deploying intelligent services
within the vehicle-edge system. Further, this section contains
information on approximation opportunities and enablers for
edge intelligence approaches in autonomous driving services.

II. MOTIVATION AND BACKGROUND

Autonomous vehicles have seen phenomenal growth.
Manufacturers have also developed and received approval in
recent years to produce and deploy level 3 autonomous vehi-
cles [312]. However, there exist limitations in considering
these vehicles as connected autonomous vehicles (CAV). The
current vehicular technologies need significant development
in reliable communication, efficient computation, collabora-
tive intelligence, and paramount safety. This section discusses
these research trends in CAV, approximation and Edge Al

A. Research Trends

The primary focus and key research areas in the automo-
tive domain revolve around improving performance parameters
and developing baseline models in object detection, SLAM,
and vehicular communication. To show the research trends in
the autonomous driving domain, a graph is generated using
data collected from the Scopus database. For data collection,
the search is refined using popular keywords, subject area
(e.g., engineering science, mathematics, information systems),
year range, and type of publication (e.g., conference paper,
journal, books, chapters). The trend in the past decade, as
shown in Figure 1, indicates that the primary focus was
in the area of object detection (perception), owing to the
advancements in neural networks and datasets. SLAM and
vehicular communication have also evolved, with the latter
catching up because of the recent developments in 5G/6G
technology, next-generation (NG) cellular, and hybrid commu-
nication technologies. Energy-efficient techniques and Edge
Al approaches are showing a slow increase. However, the
number of publications on energy-efficient methods is still rel-
atively small, as previous enablers and solutions for connected
vehicles primarily focused on cloud computing.

Energy-Efficient Keywords: Energy-efficient Edge &
Vehicles, AI model compression & approximation, TinyML,
Energy-efficient Edge Framework, Vehicular communication
compression & Sparsification, Low-power Vehicular-Edge.
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Fig. 1. Publication trend in autonomous driving between 2011 and May
2023 (Source: “scopus.com”).

Edge AI: Vehicle-Edge-Cloud computing, Tiny
Embedded intelligence, Edge artificial intelligence.

SLAM Keywords: SLAM, EKF, KF, visual-slam, deep
SLAM, pose estimation, graph SLAM, vehicular localization,
vehicular mapping, Edge-SLAM, Deep-SLAM, Graph SLAM.

Communication Keywords: V2X, V2V, V2I, C-V2X, 5G-
V2X, DSRC, RSU, Vehicular communication, Inter-vehicular
communication, WiMax, Vehicular Networking.

Object Detection Keywords: Perception, 2D and 3D object
detection, edge analytics, traffic monitoring, classification, col-
laborative perception, cooperative perception, lane detection.

Further discussion includes a background of AI models
applied in the context of autonomous driving, software approx-
imation approaches, Edge Atrtificial Intelligence, and vehicular
communication. Building upon this discussion, topics are
followed by requirements and needs to address the energy-
efficient approximation in connected vehicular services.

Edge,
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Fig. 2. Data generated by the automotive sensors.

B. Autonomous Driving

Autonomy in vehicles is achieved by deploying ADAS fea-
tures, which requires continuous sensing and computing within
the vehicle. Some ADAS features proposed with Al models
include adaptive cruise control, object classification, obsta-
cle detection, mapping, path planning, and SLAM. These
applications mostly depend on cameras, LiDAR, and radar
sensors, which also generate a large amount of raw data cur-
rently processed by the vehicle computing unit. An example
of the approximate data rate from vehicle sensors is shown in
Figure 2. The data rate may vary based on the sensor’s spec-
ification (e.g., generation, bit-rate, feature capture properties)
and the data quality. At present, the autonomy in vehicles is
defined in six levels [312], and for these levels, the require-
ments and counts of the sensor are different as high-level
autonomy expects no intervention from the driver. A count
of approximate number of sensors [3], according to autonomy
levels 1-5 is shown in Table II.

Studies from [147], [297] suggest that energy consumption
from fully connected autonomous vehicles can be separated
into three categories: 1) Consumption by an autonomous
car (on-board sensors and computing devices). 2) Energy
consumption caused due to Infrastructure sensors involving
Vehicular communication and Networking. 3) Energy con-
sumption at the backend such as Edge servers, local and
central servers maintaining legacy data, and the global DNN
model. Studies [188] show that on-board energy consumption
is higher than 1000’s watts, and overall energy consumption
from a single conditional automated diving vehicle combining
all three categories could be around 2500 Wh per 100 km of
driving [147]. High on-board energy consumption is due to
the usage of compute-intensive algorithms and the processing
devices such as graphics processors, which are essential for
perception and visual applications.

The on-board computation approaches leading to power
consumption [36] demand the design of applications and
energy-efficient Edge Al systems for automated driving
services. Therefore, this survey paper focuses on identifying
currently practised Al algorithms, computation, and commu-
nication approaches that lead to high energy consumption.
Further, it includes a review of the design and implementa-
tion of edge computing approaches for autonomous driving
tasks (e.g., Perception, HD Map, SLAM), datasets, edge-
assisted techniques, and vehicle-edge frameworks. Lastly,
based on the gathered requirement and research gaps, an
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TABLE I
LIST OF ACRONYMS USED IN THIS PAPER

Acronym Definition
3GPP 3rd Generation Partnership Project
4G Fourth Generation Technology
5G Fifth Generation Technology
AM Amplitude Modulation
ACC Adaptive Cruise Control
ADAS Advanced Driver Assistance Systems
AEB Anti-Emergency Braking
AECC Automotive Edge Computing Consortium
ANN Artificial Neural Network
BLE Bluetooth Low Energy
BPSK Binary Phase-shift Keying
CAN Controller Area Network
CAV Connected Autonomous Vehicle
CCK Complementary Code Keying
CNN Convolutional Neural Network
COFDM  Coded Orthogonal Frequency-division Multiplexing
CPU Central Processing Unit
C-V2X Cellular Vehicle-to-Everything
DAB Digital Audio Broadcasting
DNN Deep Neural Network
DSRC Dedicated Short Range Communication
EKF Extended Kalman Filter
ETSI European Telecommunications Standards Institute
FDMA Frequency-Division Multiple Access
FCC Federal Communications Commission
FCW Forward Collision Warning
FL Federated Learning
FM Frequency Modulation
GFSK Gaussian Frequency Shift Keying
GNSS Global Navigation Satellite System
GPS Global Positioning System
GPU Graphical Processing Unit
HD Map High-definition Map
MU Inertial Measurement Unit
ITS Intelligent Transport Systems
KF Kalman Filter
LTE Long Term Evaluation
M-QAM M-ary Quadrature Amplitude Modulation
MANO Management and Orchestration
MFG Mean-Field Game
MIMO Multiple-Input Multiple Output
ML Machine Learning
NR New Radio
NX Next Generation
NRF Neural Radiance Field
0-QPSK Offset Quadrature Phase Shift Keying
OBU On-board Unit
OFDM Orthogonal Frequency Division Multiplexing
QPSK Quadrature Phase Shift Keying
RNN Recurrent Neural Network
ROS Robot Operating System
RSU Road Side Unit
SGD Stochastic Gradient Descent
SLAM Simultaneous Localization and Mapping
TPU Tensor Processing Unit
UWB Ultra Wideband
V2G Vehicle-to-Grid
V2I Vehicle-to-Infrastructure
V2N Vehicle-to-Network
V2P Vehicle-to-Pedestrian
v2v Vehicle-to-Vehicle
V2X Vehicle-to-Everything
WiFi Wireless Fidelity
WiMAX Worldwide Interoperability for Microwave Access

Edge Al processing pipeline is proposed, which contains the
higher-level abstraction of components involved in service
implementation across vehicle-edge settings. In this survey, the
levels of autonomy is referred from the International Society
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TABLE 11
APPROXIMATE CONT OF SENSORS IN AN AUTONOMOUS CAR

Sensors Count Approximately Present in an Autonomous Car
Sensor Level 1 | Level 2 | Level 3 | Level 4 | Level 5
Control Units 1 1 2 3 3
Ultrasonic 5 5 9 9 9
Radar 2 4 4 8 8
Camera 0 2 5 5 5
LiDAR 0 0 1 2 2
GPS/GNSS 1 1 1 1 1
DSRC 0 1 1 1 1
V2X Module 0 1 1 1 1

of Automotive Engineers (SAE), consisting of six levels [312]
of automation in driving, which are as follows:

1) Level O - No Automation: Driver dependent driving.

2) Level I - Driver Assistance: Driving tasks are carried
by driver with little input from the vehicle sensors, this
level introduces driving assist features.

3) Level 2 - Partial Automation: Some driving tasks are
carried by a computing unit placed in car by sensing
the vehicle surrounding. Tasks include adaptive cruise
control, autonomous emergency braking. This level still
requires the driver to maintain control over driving tasks
and regularly monitor the vehicle surrounding.

4) Level 3 - Conditional Automation: Some tasks (sensing,
actuation and control) are carried out by the sensors and
the computing unit placed in the car, however the driver
must be able to take control of the vehicle based on
demand and situation.

5) Level 4 - High Automation: Vehicle is capable of per-
forming all driving tasks by initiating communication
with other vehicles under certain conditions, but the
driver has the option to take control of vehicle.

6) Level 5 - Full Automation: Vehicle is capable of per-
forming all driving tasks by communicating with other
vehicles and infrastructure sensors under all conditions,
but the driver may have the option to control the vehicle.

C. Approximate Techniques

Al methods for implementing automated driving tasks,
such as perception and SLAM, can be categorized as com-
putationally intensive, high resource and energy-demanding,
which also makes them expensive for deployment. An esti-
mate of energy consumption within a vehicle by its com-
ponents (e.g., the embedded device running DNN model,
sensors such as LiDar, and camera) is shown in Table IIIL.
For example, currently deployed level 3 autonomous vehi-
cles [19], [150], [243] primarily rely on vision sensors and
GPU computing systems, consuming significant resources in
terms of memory and energy, respectively. When integrating
these ADAS features into resource-constrained [101], [284],
[339], [395] and energy-constrained [178], [361], [378], [386]
real-time autonomous systems, several challenges arise.

Firstly, processing a large volume of sensor data through
DNN algorithms for autonomous driving services directly
impacts the computing efficiency of embedded systems
with limited memory. This necessitates the implementation
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TABLE III
ENERGY ESTIMATES FROM VEHICLE COMPONENTS [79]

Source ‘ Estimate (energy consumption)
Computing units 63 -77) %
Camera 6-11) %
Radar 3-5 %
LiDAR (11 -18) %
Communication units 2-3)%

of efficient on-board inference techniques to optimize the
embedded device usage for better energy efficiency [162],
[229], [271], [282]. Secondly, the computing complexity and
low latency requirements of applications like SLAM make it
necessary to process the sensed data at the on-board computing
unit rather than relying on cloud or edge servers. Approximate
and adaptive computing and communication techniques, such
as probabilistic/deterministic approximation, data aggrega-
tion, model compression, early-exit neural networks, adaptive
networks, and sparsification can aid in improving on-board
latency, inference and communication requirements. These
topics are comprehensively covered in Section IV.

D. Edge Al

Edge AI or Edge Intelligence can be described as the com-
bination of edge computing and artificial intelligence [402].
It has emerged due to the requirements of connected ecosys-
tems developed for applications that require the processing of
algorithms locally near the data source or edge-server. These
algorithms [278] utilize the data generated by the devices and
make independent decisions for real-time applications with-
out needing to connect to the centralized server or cloud
for the decision-making process. A fully connected Level 5
autonomous car will be a result of collaboration between
vehicles, vehicle-edge, edge-server, vehicle-edge-cloud com-
munications and distributed computing systems. The current
Level 1 to Level 3 autonomous vehicles highly rely on the
Graphics Processing Unit (GPU) for their applications, and the
GPU alone can consume up to 300-350Wh [19], [36], [147] of
energy per 100 km of driving, depending on the data rate and
quality of the sensors. As shown in Table II number of sensors
increases for fully-connected autonomous vehicle compared
to the current scenario; presented values are an approximate
estimate depending on OEMs and fleets [3], [19], [150].

Sensor numbers vary according to the sensor suite and
related software technologies. The estimated power consump-
tion of each vehicle can range from hundreds to thousands of
watts, depending on the type of these sensory technologies.
According to reports [269], the amount of data transmitted
between the vehicle and the cloud can reach 10 exabytes in
the future, which is excessive compared to current practices.
The present cloud and server infrastructure are not capable of
handling and processing this in real-time within the expected
latency. Therefore, Al on Edge and task offloading can be
implemented for latency-tolerable tasks in the ecosystem.

These latency-tolerable applications can leverage the func-
tionality of distributed devices and joint inference within
the ecosystem. Models can quickly process sensor data and
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Fig. 3. Communications in vehicular ecosystem across vehicles, infrastruc-
ture, and road-side networks.

decision-making while ensuring the efficient delivery of tasks
by running on specialized hardware. An example could be
urban traffic optimization and route planning by deploying
models on distributed edges located in close proximity to
the vehicles. These systems can also provide strategies to
enhance the driving experience by analysing traffic patterns
and environmental conditions in real-time. Overall, Al at the
edge empowers connected autonomous vehicles with the abil-
ity to process data locally, minimizing latency and enabling
time-critical applications for enhanced safety and performance.
Optimized Edge AI implementation can help in achiev-
ing better end-to-end accuracy while balancing performance
and energy consumption. The Edge AI deployment process
can/may involve sensing, re-training, decision-making, and
collaborative learning/inference while enabling communica-
tion with other edge devices and servers in the environment.

E. Communications in Autonomous Vehicles

Communication within vehicles and their ecosystem has
been identified as a key enabler for deploying level 6 auton-
omy [116]. An example of connected vehicles, base stations,
road-side units, edge-servers, infrastructure and remote cloud
is shown in Figure 3. Several use-cases presented within the
context of vehicle communication [22], [52], [96], [212],
[218], [252], discuss directly benefiting the perception, plan-
ning, and control related use-cases using distributed or joint-
inference. However, little attention has been given to energy
efficiency. Current communication are further categorized
as: Inter-Vehicle Communication [45], [48] & Intra-Vehicle
Communications [226], [241].

Intra-vehicle communication helps understand the vehicle’s
current state by exchanging information and signals between
the sensors, actuators, and other electronic devices and compo-
nents present within the vehicle. This communication is a com-
bination of wired and wireless technologies. Commonly used
wired technologies include Controller Area Networks (CAN),
Digital Data Bus (D2B), Ethernet, FlexRay, Media Oriented
System Transport (MOST), Low Voltage Differential Signaling
(LVDS), Power Line Communication (PLC), Time-Triggered
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Fieldbus (TTP). Conversely, the wireless communication
methods for Intra-vehicle communication include WIFI, BLE,
Zigbee, and Ultra Wideband. Amongst the mentioned wire-
less technologies, BLE is one of the most commonly used
by automotive manufacturers as it is a significantly proven
technology and is relatively cheap compared to WiFi. It can
transmit media relatively faster than Zigbee and comprises a
good security layer. A comparison of these communication
technologies is also shown in Table VII.

An important factor for the high use of BLE technol-
ogy is relatively low power consumption [185], [328] and
it has a large installed base and a guaranteed latency, as
well as a stable specification. Automobile components and
modules, normally connected by electrical signal wires, are
increasingly being replaced by wireless signals. A reduction
of 50% in the number of signal wires is the goal of the
automotive industry. Typically, an automobile contains about
five kilometers of wiring, so there would be many wireless
signals. A hybrid practice that uses both, wired clusters of
automobile components and wireless inter-cluster connections
is becoming more common. The infotainment panel at the
vehicle dashboard is such an example. For Inter-Vehicle com-
munication, the present human-driven or semi-autonomous
vehicles are equipped with communication and radio modules,
which receive information and signals mostly related to info-
tainment. The communication technology has evolved from
AM, FM, DAB to HD Radio in which transmission method,
media size, and quality of service have significantly improved.
Since fully connected autonomous driving has wider commu-
nication and real-time processing requirements as the high-
performance computing unit takes the decisions, researchers
have proposed relevant technologies such as DSRC, V2V/V2I,
WiMax, 5G-NR-V2X or C-V2X for local and long-range
communication.

F. Taxonomy of Edge Al Technologies for CAV

This subsection introduces the taxonomy used in this sur-
vey paper. First, legacy Al methods for autonomous driving
are described. Second, Edge Al and computing applica-
tions are explained. Third, the approximation approaches and
compression strategies are defined. Finally, energy-efficient
mechanisms and requirements for vehicular ecosystems are
discussed. A structure can be seen in Figure 4.

1) Al Models & Autonomous Vehicles: An autonomous
vehicle is defined as an independent system capable of
routing from source to destination by perceiving its sur-
roundings using sensors and processing the sensed data
on intelligent algorithms. Advancements in CAV can be
associated with the progress of vehicle sensors, embedded
devices and intelligent algorithms. These progressions have
enhanced connectivity, infotainment systems, electrification,
and automation. Perception sensors (camera, LiDAR, radar),
positioning sensors (GPS, GNSS), and communication mod-
ules have been used to replace or assist driver using Al
models.

e Basic Model: Al models proposed to automate/assist

driving tasks can be divided as follows:
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— Machine Learning: Supervised, unsupervised, and
reinforcement are the popular techniques explored
within autonomous driving.

— Deep Learning: It is a subset of machine learning
that consists of several types of neural networks
trained on datasets to learn complex features from
unstructured or structured data.

o Model Requirements: Al models have specific require-

ments and guidelines depending on the driving tasks.

For, e.g., localization, emergency braking, and detect-

ing an obstacle/traffic sign should be highly accurate.

Within the scope of this survey paper, the discussed

model requirements are:

— Accuracy: The principle behind using Al models is to
eliminate human error while driving and achieve an
expected level of accuracy for the driving tasks. It is
measured as a score of correct predictions/estimation
with respect to the total predictions by a model.

— Latency: Each driving tasks have varied execution
requirement. For, e.g., detection and localization
have strict requirements of a few milliseconds(ms).
For AI models, latency (in time) is used to char-
acterize the performance of a model for a specific
application.

— Energy: Desiring the highest level of accuracy for an
Al model and fulfilling strict latency requirements
for specific tasks generally leads to the use of high-
performance computing units, which leads to energy
consumption. Energy (Joules) can be estimated by
capturing Al models’ power consumption (Watts).

o Al Models Compression: These techniques enable pro-

cessing large data or Al models on resource-constrained

devices with limited computation. Lossless and lossy
compression has been explored in models and data for
vehicular tasks. Popular compression approach includes:

Edge Frameworks
Edge for Vehicle
Caching

— Parameter Reduction: Reducing parameters from
the model results in compression, which may
lead to faster training or inference by address-
ing model complexity challenges. For, e.g., prun-
ing non-contributing weights/layers leads model
compression.

— Layer/Node Reduction: To address compute and
memory requirements of models, layer/node reduc-
tion has been used as a popular approach which also
helps in balancing the model accuracy. An example
is Minimal matrix operations and parameter-sharing.

— Neural Architecture Search: This approach can be
seen as optimizing the parameters/hyper-parameter
of neural networks with a search dimension. Model
downsizing and balancing high communication
bandwidth demand within the vehicular environment
can be such search dimensions.

o Approximate Techniques: These techniques are uncon-

ventional approaches from the area of mathematics
with known applications use-case in science and engi-
neering (e.g., probabilistic circuits). In approxima-
tion, a balanced mechanism is used to trade-off met-
rics/parameters quantitatively for achieving fast com-
putation (on-board latency) by trading-off computing
performance (precision) [89], [152], [303]. Software and
model compression approaches proposed for framework
and Al models in connected autonomous vehicles can
be categorized as approximate model or approximation
techniques. However, this generalization do not address
energy-efficiency (one of the three dimensions in approx-
imate computing) from the viewpoint of computation and
communication.
— Quantization: Vehicular applications are dependent
on intelligent algorithms, which generally use 32-bit
floating point precision for training the model and
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gradient estimate. The elements can be approximated
using quantization to fewer bits, reducing the
model size and decreasing the bandwidth load. The
approach is inspired by the human nervous system,
where information is stored in discrete form [306].

— Sparsification: In this approach, a vector is repre-
sented by its approximate form where the non-zero
components are equal to the corresponding orig-
inal vector. It is a compression technique often
implemented in collaborative and distributed learning
approaches such as federated learning which requires
frequent communication between the devices, in this
case, between the vehicle and edge or cloud.

— Low-Rank Approximation: Another technique to
implement reduced computation for AI models
in low-rank approximation. Tucker or Canonical
polyadic decomposition has been well used for
CNN and DNN. The technique successfully reduces
the model size, but it significantly affects model’s
accuracy.

— Knowledge Distillation: An approach to approx-
imately represent a larger DNN model in com-
pressed/reduced form. Although the technique
allows the development of approximate versions of
Al models, maintaining performance is an open
challenge.

2) Al Tasks: Driving tasks implemented using AI mod-
els can be categorized as perception, SLAM, HD map,
path/motion planning, and communication. In this paper, these
tasks are further differentiated on the basis of data processing,
feature extraction mechanisms, and hardware used.

o Perception applications provide scene understanding and
are performed using sensors such as a camera or LiDar
at the vehicle’s on-board computing unit or at the sensor
units present within the ecosystem (e.g., CCTV cameras).
These applications are performed using CNN or DNN
models deployed on the GPU. As the models largely
consist of dense layers, the computational demand and
energy cost for deployment are relatively high.

e SLAM application enables vehicles to localize in their
surrounding using sensor data. Al models enabling
SLAM applications are also memory and compute-
intensive. The complexity further increases because of the
low inference requirement/processing of these algorithms.

¢ HD map sometimes also referred to as 3D map is an
evolving service/feature, which provides 3D scene view
of the vehicle surrounding. It is expected to be used with
detection and localization tasks.

o Communication in the vehicular environment is dynamic
and heterogeneous. It exists in three forms; in the vehi-
cle, between vehicles and within the infrastructure. With
the continuous evolution, it depends on the generation
of hardware/software and sensory technologies. High-
level autonomy is highly dependent on connected vehicles
and smart infrastructure sharing raw data, weights, and
algorithms. Similar to on-board computation, the com-
plexity in vehicular communication arises due to the large
volume of data and additional load on bandwidth.

IEEE COMMUNICATIONS SURVEYS & TUTORIALS, VOL. 25, NO. 4, FOURTH QUARTER 2023

o Path/Motion Planning is a crucial Al task that enables
the vehicle to navigate from source to destination by
avoiding obstacles. A traditionally used algorithm is
A-star. However, recent approaches involve using Al
models with vision sensors, thus combining motion plan-
ning and path prediction by avoiding obstacles.

3) Edge Al and CAV: Initially, cloud computing was
proposed to facilitate computation, and decision-making for
the connected vehicles [73], [116], [301]. However, the cloud
computing approach had several challenges in transmitting
high volume or flood of data from the vehicle to the cloud, data
privacy and leakage, adversarial and poisoning attacks on the
ground truth data, and algorithms present in the cloud [116].
Therefore, an approach to bring computation near the data
source to tackle surplus data transmission to the cloud has been
proposed in the form of edge computing. This technique has
been further enhanced by proposing Edge-Intelligence, which
allows the deployment of Al applications on Edge devices to
facilitate inference near the data source. Edge AI improves
data privacy and security and shows promising aspects in
tackling the distributed computation and communication chal-
lenges for the connected vehicular ecosystem, which consists
of services such as driver’s assistance, infotainment, decision-
making, and safety-critical applications. It is further divided
into Edge training, Inference and Caching.

e Edge Training: As future vehicular applications will be
carried out in dynamically distributed and connected
environments, edge training can enable and facilitate
collaborative/joint learning within participating devices
using federated learning. It also allows re-training and
updating models.

o Edge Inference: Edge inference enables deployment of
Al model in resource-constrained devices. Considering
the complexity of deploying fully connected autonomous
vehicles and the severity, the following concerns should
be addressed:

— Latency: The vehicular environment is complex, and
many applications have strict latency requirements.
In fully connected vehicles involving Al applica-
tions, latency includes sensor data processing, data
fusion, algorithm processing or computation, and
communication between devices.

— Real-Time Inference: Deploying real-time applica-
tions is essential for connected autonomous vehicles.
The adjacency of computing to the data source tack-
les the low-latency and time-sensitive requirements.
However, high computational and relative energy
costs should be considered in such deployment cases.

— Offloading: For resource-constrained devices (low
compute and battery powered), offloading data and
computation to the nearest edge servers can facili-
tate local deployment, which also reduces the traffic
amount from the vehicles/edge devices to the cloud.

— Heterogeneity: In a vehicle-edge-cloud ecosystem,
heterogeneity exists in the sensed data, comput-
ing capabilities, communication devices, and proto-
cols. This property poses significant challenges for
deployment and resource management strategies.
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TABLE IV
COVERAGE AND COMPARISON OF PREVIOUSLY PUBLISHED SURVEY

Previous Work Topics Covered
Perception | SLAM | Comm | HD Map | Dataset | Edge AI | Energy Efficient
This Survey Y Y Y Y Y Y Y
2018 - Autonomous Driving Cars [362] Y Y Y N N Y N
2019 - Edge Computing System [186] N N Y N N Y N
2019 - Edge Computing For AD [190] Y Y Y Y N Y N
2019 - Edge Intelligence for IoV [381] Y Y Y Y N Y N
2020 - AD: Common Practices [376] Y Y Y N Y N N
2020 - Deep Learning for AD [87] Y Y N N Y N N
2020 - Energy Aware [125] N N Y N Y Y Y
2020 - Communication-Efficient [278] Y N Y N N Y N
2021 - Edge Computing [40] N N Y N Y Y N
2021 - Edge-Benchmarking [314] N N Y N N Y Y
- Rella.bllll‘y, Po.551b.1l1ty of deploying low-lat?ncy and — ey | &'e'}}l't'i'f'y':"""""? — & b'%;ii"? ................
real-time applications makes Edge AI reliable for  i-Research Questioni - Search Strategies - Included Scope
. . . . . : - Objective - Keywords H - Exclusion Criteria
vehicular applications. Also, it prevents sharing of i [ ............................................................................
sensitive and safety-critical data. However, rural or T
highway driving, communication, congestion, packet " Compare and | " Categorize Article
delay, and bandwidth requirement are concerns. | Analyze Results L Corthon
o Edge Caching: As training/re-training, updating the 7777 poeeee [
weights, and model in a distributed environment require
frequent data exchange’ Caching becomes an essential Fig. 5. Approach for systematic literature review adapted from Kitchenham

and important function, which deals with the collection,
storing, processing, and real-time labelling of data.

4) CAV Frameworks: Advancements in sensory tech-
nologies, Al models, driving tasks and on-board pro-
cessors/computers have resulted in the development of
autonomous driving frameworks. These driving frame-
works can be currently categorized as driving task/assist
oriented, independent application/service oriented or as
compute-communication oriented frameworks.

G. Motivation and Methodology for Choosing Literature

In past years, comprehensive surveys in emerging
autonomous  driving technologies [190], [362], com-
mon practices [376], deep learning techniques [87], and
communication-efficient [278] approaches have been pub-
lished. Despite the increasing focus on connected autonomous
vehicles, there has been a lack of attention towards energy-
efficient approaches and software approximation techniques
specifically tailored for this domain. In [362], an overview
of current and emerging autonomous driving technologies
is discussed by following the case-study approach. While
discussing emerging technologies, the authors also briefly
described the future research opportunities in connected
autonomous vehicles.

A comprehensive study of edge computing systems and
edge computing opportunities for autonomous driving is
presented in [40], [186] and [190] respectively. The review
paper gives attention to computing architecture, software
framework, privacy, and security in vehicular communica-
tion. In a similar context, [381] presented a review of
mobile edge intelligence techniques for vehicles and dis-
cussed edge-assisted perception, mapping, and open issues.
Articles [87], [376] covered recent autonomous driving state-
of-art Al models and techniques in detail. Key discussed topics
were machine/deep learning models, driving safety features,

and Charters [311].

system components, and architecture. The review conducted
in [125] covers energy-aware approaches for hardware and
software layers in the edge computing domain, focusing on the
framework layer. Authors in [278] presented a comprehensive
review of communication-efficient techniques for edge com-
puting systems by focusing on key communication challenges.
In [314], authors reviewed cloud-edge computing and frame-
works that focus on application and optimization techniques
and benchmarks.

Table IV shows a comparison with related surveys. This
comparison is based on coverage of topics: deep learning prac-
tices (perception), data & compute-intensive tasks (SLAM,
Communication, High-definition Maps), datasets, applications
of Edge Intelligence, and energy-efficient approaches. The
review procedure used in preparing this literature survey is
based on the SLR approach adapted from Kitchenham and
Charters [311], also shown in Figure 5. This approach ini-
tially demands defining research questions and objectives,
followed by identifying the search strategies. While search-
ing the relevant and related content, a connected paper search
approach is followed, and the inclusion and exclusion cri-
teria are applied with the keywords and terms to refine the
article based on the scope and objectives. In the last two
stages of the SLR approach, the collected articles are cate-
gorically divided based on the article’s contribution toward
approximation techniques, autonomous driving applications,
and Edge Intelligence. Some approximation techniques over-
lap in multiple research questions. For this case, a quantitative
approach is used.

Key Questions Addressed:

1) What are the current Al model development and
deployment strategies for connected vehicular
tasks/applications such as perception, SLAM, vehicular
communications, and HD maps?
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2) What are the recent communication-efficient approaches
that are proposed in a vehicle-edge ecosystem for CAV?

3) Which approximation strategies are proposed as
software-level solutions for communication and compu-
tation in vehicle-edge environments?

4) What are the techniques for developing energy-efficient
vehicle-edge frameworks that enable vehicular services
through joint inference?

III. AI & AUTONOMOUS DRIVING

Al/Machine learning approaches and techniques have been
widely used for autonomous driving tasks and services.
Commonly used techniques are supervised learning, unsuper-
vised learning and semi-supervised learning [25], [117]. In
supervised learning a machine learning model is trained with
labelled dataset, while in unsupervised learning a machine
learning model is trained with unlabeled dataset, with the com-
mon purpose of prediction or classification. In semi-supervised
learning a machine learning model is trained with both labeled
and unlabeled datasets. This approach is proposed to save
training time and computational resources [62], [123].

A. Perception

Autonomous vehicles driven using sensory technologies
and Al algorithms can be seen in the form of taxies from
Waymo, Zoox, Cruise etc. [3], [82]. These vehicles are mostly
dependent on Perception related tasks: segmentation, Object
classification-detection and localization. These three tasks are
currently considered as crucial element for the enablement
of autonomous driving. The object detection task can be
further divided into 2D or 3D detection, which are mainly
reliable on the line-of-sight sensors such as High-Definition
Camera [196], [392] and LiDAR [173]. 2D object detection
task is generally carried using convolutional neural network
and recurrent neural network architecture which involves fea-
ture detection and estimation of rectangle or square shaped
bounding boxes (x, y) around the detected objects in an image
or video frame, whereas the 3D detection involves estimating a
cube shaped, three dimensional bounding box in an object, by
estimating the position of the object in the 3D plane (x, y, z).

Deep learning has been widely accepted as attractive or
prominent technique for image and vision related applications
because of development of the state-of-the-art neural network
architectures [9], [149], [176], and their delivered accuracy’s.
The object detector are classified into one-stage and two-
stage detectors depending upon the backbone of training and
inference method used. Table V covers popular and recently
published object & lane detection approaches for autonomous
driving. Table V is formulated on Al model performance over
the popular driving datasets (covered in Table IX), hardware
implementation, detection methods, and speed (FPS) which is
crucial for real-time deployment. For the 3D detection the ini-
tial approach and technique involves pre-processing of the 3D
point clouds data and adopting them into the data structure
required for the existing deep learning algorithms, thus pro-
viding an output based on the algorithm. Recent researches
have proposed to process the LiDAR point clouds directly on
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deep neural network without converting them to any represen-
tations. For example [245], [246] proposed different form of
deep neural net architectures, called as Pointnets and Frustum
Pointnets respectively. These deep learning architectures have
shown higher performance and have proved as benchmark for
3D perception based detection such as object classification
and semantic segmentation. Pointnets++ architecture [247]
proposed by Qi et al. is capable of both classification and
semantic segmentation of 3D point clouds by learning the local
and global feature vector from the raw point clouds. Zhou et al.
presented VoxelNet [401], a deep learning architecture detect-
ing 3D bounding boxes based on reading of LiDAR Point
clouds, here the LiDAR point clouds were divided into 3D
voxel spaced equally. The architecture successfully detects and
gives high performance for the car, cyclist and pedestrians. The
most prominent 3D object detector Frustum-Pointnet [245]
is presented by Qi et al., which predicts the bounding box
on an object based on instance segmentation and the bound-
ing box estimation. A similar method Pointfusion [345] is
proposed by Xu et al. which utilizes the Pointnet [246] and
ResNet [296] architecture for estimating the 3D frustum and
object classification.

1) 2D Object Detection: 2D object detection in an
autonomous vehicles are primarily based on the single or
multiple cameras connected to sense the environment or sur-
rounding of the car. The 2D object detection architecture or
algorithm requires the raw image as an input, and outputs the
bounding box with the class or label of the detected object.
In 2D object detection the bounding box is an axis-aligned
rectangle, which is precisely estimated on the position of the
multiple objects or classes in that image, here the bounding
box can be parameterized as (Xmin, Xmax> Ymin> Ymax) Where
(Xmin» Ymin) are the pixel coordinates of the bottom-left bound-
ing box corner, and (Xmax, Ymax) are the pixel coordinates of
the top-right corner. An example of the un-annotated captured
image and point cloud from the KITTI dataset [205] is shown
in Figure 10; the image shows the front camera view and the
generated LiDAR point cloud.

Benchmarked 2D object detectors for real-time appli-
cations on camera frames include SqueezeNet [115],
SqueezeDet [337], YOLOv7 [320], and SSD [191]. These
architectures utilize convolutional neural networks (CNNs) to
process the image through filters and layers, extracting feature
maps that encompass the entire image. The selected object
regions are then mapped onto these feature maps and trans-
formed into region feature vectors. Based on the class scores,
these detectors predict the type of object and propose the cor-
responding bounding box. This process allows for efficient
object detection and localization in real-time scenarios.

2) 3D Object Detection: 3D object detection is dependent
upon sensors such as RGBD camera, 3D radars, LiDAR or
combined sensed values, as they can represent the vehicle sur-
rounding in 3D setting. For inference the raw sensed values are
processed using the deep learning algorithm, which requires
the image with length, width and depth information or the
LiDAR point cloud in sparse or dense format as an input. The
output from these deep learning algorithm are as follows: At
first it detects and classifies the object present in the scene
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TABLE V

STATE-OF-THE-ART DNN ARCHITECTURES BENCHMARKED OVER KITTI AND COCO DATASETS. THE TABLE IS ARRANGED
ACCORDING TO THE TIMELINE, DATA AND METHOD USED FOR COMPUTATION, AND ON-BOARD INFERENCE SPEED
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Detection Type Ref Year Data Method Speed (fps) Analysis
Faster R-CNN [255] 2016 | Camera 2Stage 17 (V100)
SSD [191] 2016 | Camera | 1 Stage 22 (Titan X) Dependent on the single or multiple cameras
Yolo [320] 2023 | Camera | I Stage 161 (V100) Connected to sense the environment
SqueezeNet [115] 2017 | Camera | 2 Stage 17 (Titan X)
SqueezeDet [337] 2017 | Camera | 2 Stage 30 Models are initially trained on powerful GPU
2-D Object CornerNet [156] 2018 | Camera | 2 Stage 33 (Titan X) and later deployed on embedded device
FSAF [405] 2019 | Camera | 2 Stage 38
CenterNet [66] 2019 | Camera 1 Stage 28 (Titan Xp) Real-time inference and SW acceleration
Bottom-up [399] 2019 | Camera | 1 Stage 43 (Titan X) depends on DL frameworks
Foveabox [145] 2020 | Camera 1 Stage 35 (V100)
IntPred [293] 2020 | Camera 1 Stage 42.8 (GTX 1080)
Baidu [163] 2016 LiDAR 2 Stage
Vote3deep [67] 2017 LiDAR 2 Stage 28.6
MV3D [46] 2017 | Ca+ Li | 2 Stage 2.8 Previous approach was to transform point
PointFusion [345] 2018 | Ca+ Li | 2 Stage 5 clouds into images and later use them
VoxelNet [401] 2018 | Ca+ Li | 2 Stage 2 on cnn architecture
Deep 3D [177] 2018 | Ca+ Li | 2 Stage -
IPOD [359] 2018 | Ca+ Li | 2 Stage 37
PIXOR [356] 2018 | Ca+ Li | 2 Stage 28.6 Frustum based approaches improved direct
Hdnet [355] 2018 | Ca+ Li | 2 Stage 20 use of raw-point cloud on DNN however
Frustum PointNets [245] | 2018 | Ca + Li | Fusion 29 lacked processing speed for real-time
3-D Object Second [353] 2018 | Ca+ Li | 2 Stage 40 embedded deployment & Applications
Squeezeseg [338] 2018 | Ca+ Li | Fusion 50
Pointpilllars [155] 2019 | Ca+ Li | I Stage | 25 (GTX 1080 Ti)
PointRCNN [276] 2019 | Ca+ Li | I Stage 10 Data Fusion pipelines improved the
Lasernet [206] 2019 | Ca+ Li | I Stage 83 segmentation application on point clouds
Class-Balanced [404] 2019 | Ca + Li 1 Stage 42
Sparse-to-dense [360] 2019 | Ca + Li Fusion 10
Mono3d++ [97] 2019 | Ca+Li | I Stage 20 Approaches such as machine-learned pillar
Pointpainting [319] 2020 | Ca+Li | I Stage 2.5 encoders are learned in an end-to-end manner
SA-SSD [95] 2020 | Ca+ Li | I Stage 25
Infofocus [323] 2020 | Ca+ Li | I Stage | 31 (GTX 1080 Ti)
3dSSD [358] 2020 | Ca+Li | I Stage 25 LiDAR 3d object detection networks heavily
SE-SSD [396] 2021 | Ca+ Li | I Stage 32 rely on labeled training data
SPG [349] 2021 | Ca+Li | I Stage 41.56
Voxel-Transformer [203] 2021 | Ca+ Li | I Stage 43
Pyramid-RCNN [201] 2021 | Ca+ Li | I Stage - Grid based methods converts the point-
Channel-wise [274] 2021 | Ca+ Li | 1 Stage 39 cloud unstructured data to pixel & voxel
Voxel-To-Point [167] 2021 Li 2 Stage 41 for 2D and 3D convolution processing
Voxel-RCNN [56] 2021 | Ca+ Li | I Stage 40.8
Multi-View to H-3D [57] | 2021 | Ca+ Li | 1 Stage Recent approach involves using encoders
SA-Det3D [29] 2021 | Ca+ Li | I Stage 36 for detection refinement of far and distant
X-View [343] 2021 | Ca+Li | I Stage 47 objects, these decoders enhances the point
CenterPoint [367] 2021 | Ca+ Li | Fusion 16 feature through hierarchical aggregation.
Vpgnet [159] 2017 Ca 2 Stage 20
LaneNet [332] 2018 Ca 2 Stage 50 Most DNN model uses RGB Images for input
Lane E2E Lane Det [223] 2018 Ca 1 Stage - which is challenging in real-world situation
Spatial as Deep [233] 2019 | Ca+ Li | I Stage - as per changed weather & Light Condition
3DLaneNet [78] 2019 | Ca+ Li | I Stage 53
Gen-LaneNet [91] 2020 | Ca + Li 1 Stage 60 3D lane detection improves constraints such
Real-time Lane-det [294] | 2021 Ca 1 Stage 48 as making turns or merging to another lane
Low-light Lane [281] 2021 Ca 1 Stage - with inclusion of sensors: radar, LIDAR

and secondly it predicts a 3D bounding box for the detected
objects in the line of sight. In the 3D object detection pipeline,
the backbone of the architecture uses neural network with con-
volutional layers. The convolutional layers are responsible for
feature extraction method from the scenes in the local feature
map and the global feature map. The next stage comprises
of deconvolution layer. The parameters weights obtained after
the deconvolution layer are used for two process, in first it
is fused together using probabilistic approach to generate and
aggregate a score for the detected feature and they secondly
they are processed on the pooling layer to fuse them further
to obtain the detected object and the predicted bounding box.
3D bounding box can be parameterized as (x, y, z, [, w, h, 0).

Here the (x, y, z) is the 3D coordinates of the bounding box
center, the (I, w, h) is length, width and height, respectively
of the bounding box, and 6 is the yaw angle of the bounding
box. Two different approaches of 3D object detection based
on image and LiDAR point clouds is shown in Figure 6 and
Figure 7, where the object detection is used using fusion from
the LiDAR point cloud and the respective camera image.
Most of the statistical or deep learning related algorithms
for near real-time 3D object detection and semantic segmen-
tation [133], [134] are based on PointNet [246], the models
proposed here are trained and evaluated on the KITTI dataset,
which contains images and LiDAR point clouds collected from
the forward facing stereo camera and velodyne LiDAR. Recent
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point-cloud based architectures such as [46], [154], [155],
[275], [367] have made it easier to directly use the raw point
cloud for efficient detection on hardware. As reviewed in this
section, research in perception category have mainly focused
on improving accuracy of the DNN model, multi-object detec-
tion and tracking, and implementation on embedded devices,
the challenges and opportunities for energy efficient addressed
from this sections are: high computational demand, data
fusion, collaborative learning models.
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Takeaways:

1) Computational Efficiency: Existing models consist of
sequential convolution and fully connected layers with
a primary objective of achieving high accuracy on a
driving dataset. Deployment of such models is strictly
dependent on high-performance devices which increases
the onboard, computing and energy costs. Processing
such neural networks on a resource-constrained embed-
ded device by maintaining benchmark accuracy remains
an open challenge.

2) Data Fusion: Camera and LiDAR sensors data is used as
independent or in combination to detect an object from
the vehicular surroundings. However, the current prac-
tices remain to process data on individual pipelines and
perform a fusion at the last stage. This leads to excessive
use of computation resources for the same operation.

3) Domain Gap: Remarkable progress in object detection
can be credited to intelligent algorithms trained on auto-
motive datasets. The sensory technologies used for data
collection frequently change in generations (e.g., LIDAR
and improvement in resolution). However, little attention
has been given to domain adaptation of these algorithms
for the next generation of datasets.

B. HD Map

High-definition map in an autonomous vehicle can provide
dynamic and static conditions, such as semantic information,
topology, and geometric information, from the vehicle sur-
rounding using cameras and LiDAR sensors [127]. One of
the key requirements in autonomous driving is to accurately
localize itself with respect to its surroundings and the infras-
tructure, and gathered information from an HD map can be
used to support this function including vehicle motion control,
motion planning, and perception [249], [250]. Therefore, maps
are essential components for level 4 and beyond autonomous
driving. Previously maps were used as a driver assistance fea-
ture [287] to guide in navigation from source to destination.
Google and Apple were the first of the few organization to
collect street, city, and highway data which later enabled the
flexible transportation and mobility by using GPS devices or
map based applications on the regular smartphones. With the
advancement in technology and algorithms the 3D maps of
cities such as New York, Washington were created. HD maps
for autonomous driving is the result of advancements in sensor
and driving use-cases [127], [287].

Current HD maps lack specifications about the data type
or standard guidelines, such as annotated information that
should be stored while creating them. The automotive edge
computing consortium (AECC) has proposed a version of
an HD map consisting of four layers. This map version
is based on Local Dynamic Map initially proposed by the
European Telecommunications Standards Institute (ETSI). The
layer includes two static and dynamic layers, which are fur-
ther classified according to the timelines and changes expected
within the vehicular ecosystem (Figure 8). Current use-cases,
includes creating an HD map from the raw sensor data and
updating an existing map using crowd-sourced data from the
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vehicles and infrastructure sensors in the vehicle-edge-cloud
setting. The four layers proposed in the AECC version [131]
are as follows:

o Permanent static layer serves as the foundation by provid-
ing a static map of the surroundings. This layer consists of
road maps, buildings, and roadside infrastructures. This
layer consists of map data and information that does not
change frequently.

o Transient static layer contains information about sce-
narios that may be subject to change over a few days
to a few hours. As shown in the Figure 8 this layer
may contain information on the change to static layer
for, e.g., snowfall, road construction, maintenance and
accidents.

o Transient dynamic layer contains information on sur-
rounding that frequently changes. Here, change can occur
in a few minutes and last a few hours. It may contain
information on road obstacles, heavy rainfall and storms.

o Highly dynamic layer frequently changes; in a few sec-
onds to a few minutes. Thus contains information about
moving objects such as other vehicles, pedestrians and
motorcyclists. This section has not included information
requiring frequent updates that may be less than a second
interval in an HD map.

Relevant work in HD maps in using deep neural networks
includes: Hdnet, Vectornet, Exploiting sparse semantic HD
maps [127], [165], [249], [250]. Machine learning based
approach and workflow for creation of high definition seman-
tic map is presented in [127]. In this paper author discussed
the steps from data capture using sensors, annotations, and
map generation. Use-case such as pose estimation, traffic sign
and line mapping, lane/road marking were also discussed.
In the similar context a complete HD map framework for
autonomous driving is presented in [250]. The authors com-
prehensively presented the HD map application by describing
the pre-built maps, storage in cloud, locally built maps and
update in the global map based on change in static semantic
conditions. In this paper, the framework is distributed into
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on-vehicle mapping, user-end localization, and on-cloud map-
ping.

For on-vehicle mapping traditional semantic method, pose
estimation, perspective transformation and local mapping have
been used [216], [250], [305]. On-cloud mapping is responsi-
ble to merge and aggregate map data from multiple vehicles.
Functions are used to merge local data timely such that the
global map is up-to-date. As the size of data and volume is not
fixed, a function to compress the map data is also implemented
at the On-cloud mapping. Lastly, the user-end localization are
vehicles requesting map information from the cloud. When
the vehicle receives the map, an algorithm to decompress map
data is implemented and data is further processed through a
semantic localization pipeline.

Researchers have also predicted that around 10% of the
roads or static conditions changes every year because of the
construction and related scenarios. Therefore, crowd-sourcing
based HD map update have been proposed to update the global
map using individual vehicles [102], [165], [180], [236], [383].
In [383], authors proposed to use sensors, such as GNSS, IMU
and camera, to detect the change in the HD map using BiseNet
architecture as semantic baseline and visual SLAM for local-
ization and mapping. For experiment authors used arrow sign
as an example from the surrounding and by using vectoriza-
tion and matching approach detected the change in existing
map data. Similar approach to update HD map using edge-
servers is proposed in [165]. In this paper authors discussed
the issue of diminishing marginal utility and premature conver-
gence of map data from individual vehicles. To this end, task
distribution mechanism which uses adaptive time period divi-
sion mechanism is proposed. In the experiments using edge
devices and computing unit the effectiveness is verifies using
coverage, cost and efficiency.

A crowd-sourcing based approach to create HD map using
graph-SLAM [23] is proposed in [180]. The authors used
GNSS, odometry, point cloud data, and land marking to be
processed using a graph-SLAM algorithm. The authors used
pose estimation, smoothing filter, trajectory alignment for the
landmarks. Road model inference and lane geometry is used
to create the functions for lane boundary lines, connections
and point observations. To evaluate the approach, an exper-
iment with the ground-truth data was implemented. Deep
learning methods using crowd-source based HD map update is
proposed in [102], [236]. In [236], authors proposed a change
detection algorithm using boosted particle filter. The particle
filters are applied during the localization along with a clas-
sification algorithm. In [102], authors proposed a framework
that maps the sensed image/frame from camera to probabilities
of HD map change. As the HD map data consist of geo-
metric information and lane marking, deep learning metric is
used to reduce the domain gap. In experiments authors imple-
mented object detector with a pixel-level change detection
from the input/sensed image, evaluated on city-scale dataset.
A combination of frames and point-cloud for mapping is
proposed on a low-power ARM and FPGA platform. This
approach improves performance through global map encoding,
LiDAR localization, and multisensor fusion [340]. Experiment
on public datasets such as Apollo shows reduced latency and
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power consumption compared to other acceleration methods,
making it suitable for large-scale urban scenes.

Other interesting techniques that can be explored for
HD map creation and development are neural radiance
field [208], [299], and mean-field game [110], [111]. Instead
of using three coordinate system (X, y, z), in neural radiance
field [208] a five coordinate system including (X, y, z, «, @)
are used, where the last two are viewing direction. Authors
used fully connected neural network to generate 3D scenes and
frames based on the trained 2D images. For comparative study,
performing techniques such as neural volumes, scene represen-
tation networks and local light field fusion is used to directly
predict a multi-plane image for the input. The approach is very
useful for 3d models of object captured from camera. Similar
approach is proposed in block-nerf [299] to represent sur-
rounding in large scale view. In [299], architecture layers are
modified using pose refinement, generative latent optimization,
to adapt image appearance embedding as different images
could be captured in different environment conditions. For
experiments and evaluation, authors reconstructed 3D scenes
using 2.8 million images captured from camera. Interesting
work using mean-field game is proposed in [110], [111].
In [111], authors proposed a computational framework by
categorizing the scenario into microscopic and macroscopic
perspective to control velocity for vehicles, and further develop
traffic flow for autonomous vehicles. A comprehensive study is
presented to characterize equilibrium solutions in both contin-
uous MFGs and discrete differential games, a similar approach
can be implemented in HD map creation and update, which
requires strategic interaction between connected autonomous
vehicles.

The challenges and opportunities in energy efficient
approaches with HD map applications are as follows:

1) Data Collection and Processing: An hour of driv-

ing approximately corresponds to 1.5TB data from
a car. Processing and interpretation of collected data
requires efficient algorithms and high-end computational
resources.

2) Map Storage and Sharing: One of the primary challenge
is the design of common energy-efficient framework
for edge servers which can store and share the HD
map to the autonomous vehicle through local wireless
(802.11p), cellular or hybrid communication approach.

3) HD Map Update: Approximately 10-15% of surround-
ing or street scenes are expected to change because of
the development in infrastructure. Therefore an energy-
efficient approach and scheme to update the existing HD
map, rather updating the database in periodic manner.

4) Intelligent Driving: The amount of information per-
ceived by sensors in city and highway driving is dif-
ferent, intelligent algorithms developed for Edge server
assisted HD map update can help to identify the sensory
information needed to map and update.

Takeaways: HD map is essential and an emerging technique
in autonomous driving. Present HD maps are available from
the semantic and geometric perspective. HD maps can be cre-
ated locally every-time using vehicular computing unit, but this
tends to be compute intensive. NRF, MFG and deep learning
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techniques can be explored for data generation, map cre-
ation and global HD map update. Crowd-sourced map update
is promising approach, however data merge, schedule and
aggregation approaches should be regularly optimized.

C. SLAM

Simultaneous Localization and Mapping often abbrevi-
ated as SLAM has been widely researched in robotics, and
autonomous systems, including indoor applications focusing
on warehouses and manufacturing units. In an autonomous
vehicle, SLAM is a process utilizing algorithms to estimate
the real-time position of the vehicle by continuously perceiv-
ing and sensing the environment using embodied sensors. The
goal of using SLAM is to create a virtual environment for the
vehicle by identifying the obstacles, and infrastructure, thus
assisting in creating a path for safe navigation.

In [113], [136], authors have proposed maps [236], [347],
[394], also referred to as 3D maps, in combination with SLAM
for efficient and precise localization. SLAM techniques are
mostly dependent on algorithmic approaches such as prob-
abilistic roadmap (PRM), rapidly-exploring random graph
(RRG), rapidly-exploring random tree (RRT), and parti-game
directed RRTs (PDRRTs). These algorithms are designed to
accurately search the subset of euclidean space over the high-
dimensional geometry by randomly building a space-filling
tree (RRT). SLAM application demands low latency (5ms
or less) and high computational resources, thus consuming a
significant amount of energy from on-board computing unit.
Recent SLAM approaches have been proposed without the use
of a Global Positioning System (GPS), and can be separated
into two categories: Filter-based techniques and Optimization-
based techniques. The filter-based category is primarily built
on the Bayes theorem, thus utilizing Probabilistic estimation
using Bayesian filters.

Some of the commonly used approaches are: Kalman
Filter, Extended Kalman Filter (EKF), Unscented Kalman
Filter (UKF). In the same category other used techniques are
particle-filters such as FastSLAM, Rao-Blackwellized Particle
filters and Monte Carlo filters, commonly practised as learning
algorithms for dynamic Bayesian networks. Table VI shows a
list of popular slam approaches that are based on line of sight
sensors, radar, and their fusion. Recently visual or 3D SLAM
approaches have been a popular method to localize the vehi-
cle within the environment. The table categorizes the type of
SLAM techniques such as 2D SLAM (Camera) or 3D SLAM
(RGBD camera and LiDAR). Depending on the input data,
a grid, voxel, or point cloud map is used for projection or
visualization of SLAM methods. The Optimization-based cat-
egory for SLAM is primarily based on Graph SLAM, which
is also motivated by the Bayesian theorem and is primarily
a graphical representation of it by utilizing the matrix form
and thus relating the state of the vehicle within the environ-
ment. The matrix consists of values or information related
to vehicle pose, which can be used to solve the localization
problem.

The techniques utilizing Graph SLAM are: Oriented fast
and Rotated Briefs-SLAM (ORB SLAM), Large-Scale Direct
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THE TABLE SHOWS DEEP LEARNING MODELS PROPOSED FOR VEHICULAR SLAM APPLICATION. IT ALSO INCLUDES APPROACHES
PROPOSED WITHIN THE INDOOR ENVIRONMENT, WHICH ARE SCALABLE FOR THE OUTDOOR SCENES

Comparison of SLAM techniques for Autonomous Driving Services
Reference Type Method Projection Localization | Real-time C}(:g‘n“[]);te Environment
Real-time Loop [104] 2D SLAM EKF Grid Map Good Yes Low Indoor
Duality-based [39] 2D SLAM Graph Grid Map Medium Yes Medium Indoor
Particle Grid-mapping[88] | 3D SLAM Particle Grid Map Good No - Outdoor
Tiny SLAM [84] 3D SLAM Particle Point Cloud Map Good Yes Low Indoor
Rotating 3D SLAM[71] 3D SLAM Particle Point Cloud Map Good Yes High Indoor
Surfel-Based [23] 3D SLAM Graph Point Cloud Map Medium Yes High -
CPFG-SLAM [124] 2D SLAM Probabilistic Grid Map Good Yes High Indoor
IMLS-SLAM [60] 3D SLAM Least-Square Point cloud Excellent No Low -
MC2-SLAM [237] 3D SLAM Scan-Map Point Cloud map Medium Yes High -
LIMO [86] 3D SLAM Probabilistic Point Cloud Map Good Yes - -
STEAM-L [302] 3D SLAM Scan-Map Point Cloud Map Medium Yes - -
M3RSM [228] 3D SLAM Scan-Scan Point Cloud Good Yes Low Indoor + Outdoor
LOAM [379] 3D SLAM Particle Point Cloud Excellent - Low Indoor
V-LOAM [380] 3D SLAM Particle Point Cloud Good Yes Low Indoor + Outdoor
ORB-SLAM [216] 3D SLAM Graph Point Cloud Excellent Yes High Indoor + Outdoor
Deepfactors [54] 3D SLAM Probabilistic Depth Map Good Yes High Indoor
CodeSLAM [31] 2D SLAM Keyframe Map Good Yes Low Indoor
Structured-SLAM [172] 2D SLAM Graph Plane Segmentation Good Yes High Indoor
CNN-SLAM [305] 3D SLAM Graph Semantic Excellent Yes High Indoor
LOAM Livox [181] 3D SLAM Graph Point Cloud Good Yes High Outdoor
F-LOAM [321] 3D SLAM | Map-matching Voxel Excellent Yes Low Indoor + Outdoor
DV-Loam [329] 3D SLAM Frame-Frame Point Cloud Excellent Yes High Outdoor
LR-UNet-ResNet [68] 3D SLAM Frame-Frame Semantic Excellent Yes Low Outdoor

Monocular SLAM (LSD-SLAM). Other commonly used
techniques are based on deep learning practices such as:
CNN-SLAM, DeepFusion, Deepfactors, Structured-SLAM,
DRM-SLAM. These practices are promising bases on their
evaluation and performance on driving datasets such as KITTI,
however, they still pose a challenge based on efficient and
faster computation scenarios required in non-identical practical
driving situations. Compared to SLAM approaches involving
point clouds, visual SLAM is a more preferred approach in
terms of cost which uses significantly less expensive cam-
eras compared to LiDARs. A low-rank convolutional neural
network (CNN) architecture for real-time semantic segmen-
tation in vehicle SLAM applications is proposed using a
combination of UNet and ResNet model [68]. This method
utilizes tensor decomposition techniques to achieve a bal-
ance between complexity and accuracy. The implementation
is benchmarked on Raspberry Pi 4, NVIDIA Jetson Nano 2
GB to meet low-power, low-cost requirements while ensur-
ing optimal performance. The model achieves test accuracy of
85.46%, with a device storage cost around 2 MB. However,
visual SLAM may not be precise and as accurate as point
clouds based SLAM approaches, but it is significantly faster
on standard computing devices [329]. To overcome computing
challenges: a low-complexity projection method and column-
scanning scheduler, a high-parallel method for coarse-grain
feature point detection, and a high-parallel conditional prior-
ity queue for fine-grain feature point selection is proposed
in [289]. Experimental results on the KITTI dataset demon-
strate superior accuracy and energy efficiency compared to
state-of-the-art implementations on GPU and FPGA platforms,
achieving 584 FPS and energy efficiency improvements of
11.7x and 9.0x, respectively.

A disadvantage of visual SLAM is being sensitive to the
changes in the scenes, illumination and appearance. The accu-
racy and precision of proposed SLAM approaches could
perform differently in dynamic or bad weather conditions.
In terms of advantage, visual SLAM has better graphic cov-
erage than point-clouds unless multiple LiDAR are used.
Deployment of SLAM in Edge AI environment bring several
challenges and opportunities, key points can be highlighted as:

Takeaways:

1) Computation: In general the SLAM application demands
high computation cost for smaller maps, several prob-
lems with respect to processing and accuracy can be
encountered with respect to non-ideal conditions and
size of data captured for processing. At present pow-
erful GPU devices are required for processing, which
brings the overall cost of vehicles high.

2) Latency Time: For real-time execution, latency must be
lower than 5 ms if incorporated using Edge or Cloud
Computing.

3) Algorithm: DNN approaches used for SLAM makes it
suitable to operate in familiar environment. However,
change in location, weather and daylight conditions can
bring additional complexities as the sensed output will
be inconsistent and DNN model will not be able to
process it.

4) Execution: Future connected vehicles are expected to
execute services in distributed manner (at the vehi-
cle, edge-server or cloud). With the current DNN
algorithms, computational, latency and network band-
width requirement, it is more realistic to process and
execute SLAM at the vehicles on-board computing
unit.
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TABLE VII
LONG RANGE COMMUNICATION TECHNOLOGIES FOR AUTONOMOUS DRIVING

Long Range Communication Technologies

\ |
| Technology | Standard | Spectrum | Range | Modulation | Latency (ms) | Security | Field Trial |
| DSRC | 8021lp | 58-59GHz | 1Km | OFDM | 0 | B | Yes \
| C-V2X | 3GPP | 800/I800MHz | 5Km | SC-FDMA | 10 | B | Yes \
| WiMax | 80216 | 25GHz | 50Km | MIMO, OFDM | 10 | B | Yes \
| SGNRV2X | 3GPP | 24-86GHz | 5Km | OFDM | 1 oA Yes \
| Short Range Communication within Vehicles |
| Technology | Standard | Spectrum | Range | Modulation | Latency (ms) | Security | Bit rate |
| WiFi | 802ilac| 5GHz | 100m | 1,2,3,57 | NA | 24-bit CRC | 1 Gb/s \
| BLE | 802151 | 24GHz | 30-50m | 4 | 4-6 | 24-bit CRC | 1 - 24 Mbs \
| ZigBee | 802154 | 24GHz | 75-100m | 1,6 \ 30 | 16:bit CRC | 20-250 Kb/s |
| UWB | 802153 | 31-106GHz | 75m | 1,7 | NA | 32-bit CRC | 10 Mb/s \
\

Modulation Type (Short Range Communication) - “BPSK = 1, CCK = 2, COFDM=3, GFSK = 4, M-QAM = 5, O-QPSK = 6, QPSK = 7"

D. Vehicular Communication

Communication within vehicular environment plays a key
role in self-driving functionality [283]. V2X or vehicle to
everything communication is another key factor in the self-
driving vehicle ecosystem that allows and enables the com-
munication between vehicles to any relevant entity in the
environment for example pedestrians, traffic lights, data cen-
tres. V2X comprises of several sub-components and stan-
dards such as V2V (Vehicle to Vehicle Communication),
V2I (Vehicle to infrastructure), V2P (Vehicle to Pedestrian),
V2N (Vehicle to Network), and V2G (Vehicle to Grid)
has also been included considering the electric vehicles,
charging stations and their involvement in the infrastruc-
ture. The Ideal system in V2X communications comprises
of pair of radio devices often called as On-Board units
(OBU), and Road-side units (RSU). OBU’s are placed in the
car, sharing car-related information to the RSU and receiv-
ing the traffic or surrounding related information from it.
Some of the popular modules include [295], [313] which
has already been released in the past 4 years. Also hybrid
communication approaches combined with cellular technol-
ogy (CV2X) [248], Dedicated Short-range communication
modules (DSRC) [74], [107], [138], also with the LTE based
systems and 5G [1], [215], [218], [286] has been proposed.
In [118] authors explored reliable connected-vehicle services
using wireless local area network, ad-hoc network or hybrid
communication architectures using cellular connectivity. To
estimate the time duration for connection establishment prob-
abilistic model implementing single-hop communication link
in vehicular networks [137] is explored. To further ensure the
reliability of communication in vehicular ecosystem a reliable
emergency message dissemination scheme (REMD) [26], has
been presented by authors. Results from REMD scheme shows
high reliability which is around 99% in each hop with low
overhead, delivering the message for time-critical applications
meeting the low-latency requirements for sensitive applica-
tions. The authors also employ the zero-correlated unipolar
orthogonal codes to combat the hidden terminal problem. In

the approach the periodic beacons are exploited, to precisely
estimate the reception quality of 802.11p wireless link in each
cell; then, uses this information to determine the optimal num-
ber of broadcast repetitions in each hop. In addition, to ensure
reliability in multi-hop, cooperative communication within
the network is also enabled, The simulation results show
that REMD outperforms the existing well-known schemes for
reliable communication.

The initial vehicular communication was developed consid-
ering the local wireless networks such as dedicated short-range
communication or Wi-Fi (802.11p) which is an updated ver-
sion of 802.11b to enable wireless access in a vehicular
environment. However based on the scalability some other
versions such as C-V2X [248] were proposed which oper-
ates in both the 5.9GHz spectrum and also in the cellular
spectrum thus providing channels for long-range communica-
tion between vehicles and the surroundings, Table VII shows
some of the popular long-range communication technologies.
The solutions consisting of proposed combinations can provide
low-latency, high reliability and throughput demand [107].
Also to overcome these challenges another approach such as
next-generation V2X (NG V2X) or New radio technology
(NR V2X) [218] has been proposed, as per the results, these
approaches overcome the challenges and have better network
performance and parameters. Key communication technologies
proposed for vehicular communication are discussed below.

DSRC: One of the initial technology proposed for medium-
range vehicular communication is dedicated short-range
communication (DSRC). This technology can be used in
autonomous vehicles to deploy applications within a trans-
mission range of 25-100 meters. It is a sub-protocol within
vehicle-to-everything (V2X) that can enable communication
between vehicle-to-vehicle (V2V). V2V supports automated
message propagation and exchange of vehicle information
(e.g., velocity, acceleration, separation distance, the direction
of travel) with nearby vehicles. The purpose of exchang-
ing these messages and vehicle information is to improve
traffic conditions and to implement safety applications, such
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as collision avoidance and safe overtaking [76]. With the
increase in message transmission capability, recently proposed
methods also include cooperative perception using V2V com-
munication [105], [369]. Potential driving and safety-critical
applications developed and tested with DSRC are collision
warning systems and emergency braking [8], [107], [138].
However, with the evolution of next-generation vehicular
communication technologies and use-cases requiring high-
volume data transmission, the technology has not been widely
adopted by automotive manufacturers and communication
providers. Approximately two decades ago for the develop-
ment of communication applications, Federal Communications
Commission (FCC) proposed reallocating spectrum in the
5.9 GHz band to serve the evolving needs of transporta-
tion communication better. The proposal designates the lower
45 MHz for unlicensed uses like Wi-Fi, allowing for larger
channels and supporting innovative applications. The remain-
ing 30 MHz would be reserved for transportation-related
communications technologies, prioritizing automotive safety.
Additionally, the upper 20 MHz would be allocated for
Cellular Vehicle to Everything (C-V2X) technology, which
enables direct communication between vehicles and other enti-
ties on the road. This proposal has received support from
major stakeholders such as policymakers, consumer groups,
and industry [256].

C-V2X: Cellular-V2X is based on the sidelink LTE radio
interface enabling point-to-point communication with nearby
vehicles and devices. As described in 3GPP, C-V2X gener-
ally operates in two channels, i.e., 10 MHz or 20 MHz, and
includes LTE-V2X and 5G-V2X [248]. C-V2X utilizes a time-
frequency resource structure, where the time is divided into
Ims sub-frames, and the frequency channel is divided into
180 kHz wide resource blocks. These resource block exists
in the same sub-frame and can be further clustered into sub-
channels [1]. Resource allocation schemes and optimization
techniques were proposed in [1], [248] to improve network
latency performance. Network performance measurements
and scenario-in-loop field-testing method for 5G-V2X were
presented in [292], where applications for testing involved
braking, obstacle detection, and tracking. A shortcoming in
C-V2X technology, in comparison to DSRC is that the vehi-
cles cannot process and exchange messages directly, as it is
dependent on the LTE. Another flaw in the current approach
is the inability to work in remote or geo-locations with poor
cellular/network coverage.

NR V2X: New Radio (NR) V2X is designed to comple-
ment the applications that are not fully supported in C-V2X
because of varied latency, bandwidth and throughput require-
ments [218]. NR V2X use-cases comprises of efficient and
reliable delivery of aperiodic messages, which was not very
well supported in C-V2X [22], [252]. As compared to V2X,
NR V2X also supports groupcast and broadcast transmis-
sion methods which are specifically required for applications
such as vehicle platooning [22], [52], [218]. The develop-
ment in this category will bring several opportunities for
urban and highway driving services, such as platooning,
predictive planning, and real-time edge analytics involving
traffic flow management and forecasting. Several challenges
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exist in vehicular communication in terms of latency, privacy,
and reliability.

Lessons Learned:

1) Latency: In an urban driving scenario, multiple vehicles
could be in the same location and will be communicat-
ing with the local edge server. This situation brings a
challenge for real-time low latency applications such as
SLAM, which requires transmission of huge data from
vehicle sensor to edge server and vice versa.

2) Privacy: In vehicular communication, some sensitive
information such as vehicle registration number, vehi-
cle health, real-time status along with sensors data,
and statistic models is shared. Sharing this information
exposes a threat of data poisoning, model weights
manipulation and adversarial attack on the system.

3) Collaborative Application: As mentioned a local edge
server will be communicating with multiple vehicles,
and the vehicle is also communicating with a peer
vehicle for the applications implementing collaborative
driving. The collaborative driving applications require
data aggregation methods and processing practices at
the edge server to combine similar data from multiple
sensors sources and have a common prediction.

E. Energy Efficient Approaches in Autonomous Driving

Autonomous systems such as robots, unmanned aerial vehi-
cle are mostly powered by fixed battery source. The same
assumption can be made for the future vehicles depending
upon the availability of fuels and planning of the future
sustainable transportation systems. For the current deployed
autonomous vehicle, It is important to consider the energy
required and used by sensors, automotive embedded proces-
sors and embedded devices, such as GPU, TPU and CPU while
sensing the surrounding data and processing of algorithms.
The energy consumed from the processor and devices can be
derived by sampling the power consumption at the training of
deep neural network model or architecture [77]. Another brute
force method could be to use power measurement devices with
the embedded devices during the inference, and log the power
consumption over the processing of algorithm. However these
approaches are not very much effective as the autonomous
driving ecosystem consists of heterogeneous types of devices,
in which some might not be equipped with TPU or GPU, there-
fore it is important to consider a neutral method to calculate
the power usage, in which power consumption from each of
these devices or nodes is categorically calculated [267] based
on the type of processor. To estimate the total power consump-
tion for heterogeneous devices in distributed learning settings,
a summation of the total training time on each of them can
be used along with energy consumption through communi-
cation. However, the limitations can be encountered, as the
training time between participating devices can significantly
vary and the fundamental of federated learning is based on the
communication rounds between the devices and the ultimate
convergence rate.

Based on the computational ability, only certain available
devices are chosen for training during each communication
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round, as based on the specification the participating devices,
they might not offer the equal computational capability [2].
Also another factor in case of distributed training is the total
time needed to train the model as it highly depends upon the
communication efficiency between the participating devices
and the server. It is important to note that in addition to the on-
board energy consumption, these approaches also brings into
account the energy consumption caused due to communication
between devices, network stations and server [147]. Figure 9
is shown based on compare and contrast approach, to merge
the content and show an overlap of energy-efficient methods
covered in this survey paper. As shown the topics are divided
into machine learning based application for autonomous driv-
ing services, Edge computing based methods for autonomous
driving and the vehicular communication. As these approaches
have varied system demands, based on latency, memory and
computational requirement, an attempt to show the overlapped
area where software approximation can be applied has been
made. The emerging areas are Tiny ML (promotes deep learn-
ing in compressed form in embedded processors), Distributed
Machine Learning & FL which implements collaborative train-
ing and inference among several embedded and edge devices.
Mobile Edge computing has also emerged as a popular topic
which allows processing of data and decision making process
close to the Edge thus overcoming latency and memory draw-
backs. Rest of this section discusses computing-efficiency and
compression methods.

1) Computing Efficiency: DNN based vision oriented
systems such as object classification, 3D object detection and
SLAM are usually computational intensive, high resource and
energy consuming tasks. The computing complexity relatively
increases for real-time applications when these larger weight
DNN are implemented on the embedded systems with lim-
ited memory [153]. For example the currently deployed level
3 autonomous vehicles [150], [243] are mostly dependent on
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vision sensors systems and consumes significant resources
in terms of memory and energy. The scalability of these
applications on embedded systems with fully connected coop-
erative autonomous vehicles is yet to be known incorporating
full ADAS features. With the implementation of fully con-
nected autonomous driving, the common assumption is the
complex calculation and usage of deep/dense neural network
will increase the calculation time, thus making some real-time
applications difficult to process within the required latency,
and on the other hand, the large weights of the neural network
will also bring challenges to some embedded systems with
limited memory [89], [152], [253], [303], [316]. Therefore,
there is a need to implement and develop low-weight and
compressed neural network for efficient and low-latency cal-
culations.

2) Compression: Compression is an approximation tech-
nique which can be implemented for the model and the data to
allow the real-time inference on resource constrained devices.
Some of the popular compression technique in deep learn-
ing involves pruning, low-rank approximation, quantization,
knowledge-distillation, sketching. Deep Compression [94]
proposed by Han et al., implements combination of prun-
ing, quantization and Huffman coding on the state-of-art deep
neural network such as Alexnet, VGG-16 by maintaining the
architecture accuracy. In federated learning practices along
with the deep learning approximation technique, the compres-
sion is also implemented in communication algorithms using
sparsification of gradients. In this section this survey paper dis-
cusses these compression approaches by also mentioning some
popular inference methods for resource constrained embedded
devices.

Low-Rank Approximation: A direct mathematical approach
to compress a dense neural network is low-rank approxima-
tion. As traditional neural network are developed on filters and
layer comprising of several matrix, factorization [258], [291]
and decomposition [14], [59], [90], [117], [119], [158], [334],
[351] of these matrix has helped in reducing the parame-
ters from the neural network, the popular approaches involves
singular value decomposition [90], [117], tucker decomposi-
tion [141] and canonical polyadic decomposition [21]. For
decomposition the approach can be targeted to reduce the
parameter for overall dimension reduction or targeting a chan-
nel through decomposing the relevant filter. In [90] authors
proposed a method in which convolutional filter with low
rank are decomposed into several depth-wise and point-wise
filter. With this approach the large scale model size is com-
pressed and could be easily deployed on mobile and edge
devices, however accuracy loss for the network is higher as few
high ranked filter could still be decomposed in this approach
based on the assumption from a neighbor low-ranked filter.
Another approach to prevent accuracy loss is implementing
sparse regularization [14], [211] in an hierarchical manner as
this approach can enhance network learning by grouping the
filter which can be decomposed based on magnitude. Other
techniques [117], [158] involves finding kernel or filter with
low magnitude during training to enhance the model learning
(Accuracy) and later applying a singular value decomposition
to achieve a better compression ratio.
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Pruning: Pruning is originally a technique applied in
agriculture or horticulture to remove certain parts of tree or
plant (branch, leaves, stubs) which are not effectively con-
tributing. Inspired from this idea, researcher has applied and
implemented pruning in convolutional or deep neural network
to compress and reduce the overall parameter of these neu-
ral networks and to enable deployment an easy process on
resource constrained embedded device for real-time applica-
tion which also requires smaller models with fast computation
process. In current practice there are two popular approach for
pruning, removal of weights [98], [99], [100], [126], [162],
[182], [200] and removal of neurons [164], [166], [194],
[197], [219], [298], [372] respectively. Removal of weights
from neural network does not affect the accuracy of model
as only those weights are removed which have a magnitude
close to zero. Since the implementation of weights removal
is based on sparse matrix computation, in some cases it
requires dedicated processors to apply this method in neu-
ral network [162], [200]. For these methods authors have
also proposed Structured Sparsity Learning (SSL) framework
designs for hardware (e.g., mobile computing, FPGA frame-
work) [162]. In [98], [99] the approach covers pruning the
soft-filter where filters are pruned while training a DNN model
in iterative manner after the model has been trained for an
epoch, based on the magnitude or score. The methodology
used for scoring the filter is based on (I; or lp) normalization.
Once the model is pruned, there are changes in the hyper-
parameter and dimension of the network, therefore it is impor-
tant to adjust them by reconstructing the pruned filter using
forward and backward propagation. The second approach
which involves removal of neurons is based on heuristic meth-
ods and directly impacts the accuracy and overall performance
of the neural network however the model performance can be
optimized with the fine-tuning [342], [346] or model retraining
practices.

Quantization: Uniform and non-uniform quantization tech-
niques are popular methods to compress an Al model. In
the uniform quantization technique [49], [72], [398], a lin-
ear approach is used to distribute the quantized values over
the space uniformly. While in non-uniform quantization, the
logarithmic or exponential approach is used to distribute the
quantized values non-uniformly. Methods to quantize deep
neural network non-uniformly is presented in [121], [129],
[179], [357], which is based on quantization interval learn-
ing. Here the quantization intervals are parameterized over the
intervals, and the obtained function is applied over the weights
and activation of the deep neural network to achieve model
compression. Quantization has also helped reduce CNN’s over-
all weight and size, which consists of many convolutional
layers. Quantization for layers has been proposed in [5],
[83], [235], [406] by using the statistical parameter or scal-
ing factor for the layer. This granular based approach can
significantly reduce the model size, however it also results
in relative loss of model accuracy as a kernel or filter con-
taining important feature will loose its weights because of
another kernel or filter with no feature present in the same
layer. A better approach to counter this problem is quan-
tization in group [272], [374], [375], where kernel or filter
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with no feature or weights can be grouped together and
removed. This approach maintains the architecture accuracy
but requires additional scaling parameter for each layer. Recent
used approach in granular quantization is with channels [112],
in this approach the length of activation and weights are scaled
for each channel to reduce the overall weight [170], [397]
for each convolution filter during training. The scaling fac-
tor is applied on input feature maps and output feature
maps of the channels as they have different lengths, which
results in parameter reduction without loss in accuracy. Some
applications require to modify or rearrange the parameter
of convolution or deep neural network after the model is
trained, this approach is often termed as quantization aware
training and post-training quantization. Quantization aware
training process includes retraining the model with methods
such as: straight through estimator [69], [366], [407], target
propagation [55], [157], [225], regularization [220], [262].

Knowledge-Distillation: Another efficient approach of
deploying large sized neural network to edge devices is
Knowledge distillation. This technique [6], [S50], [128], [187],
[210], [238], [261], [310], [365] consists of two processes, in
first part the large model is trained over a complete set of
dataset on high performing devices, which results in output
feature maps predictions. In the second process a compressed
version of the large model is trained over the dataset (sam-
pled form + ground truth), which results in output feature
maps predictions, which is then combined with the output fea-
ture maps of larger model thus providing knowledge (distilled)
from larger model to the compressed one by still marinat-
ing accuracy and net loss. Some approaches involves [261]
direct correspondence between layer of large and smaller
model sometimes also referred as utilising the soft proba-
bilities from larger network to train smaller network rather
than the ground truth, as this information not only contains
the output feature maps but also the activation maps thus
making the smaller network learning faster. This approach
has shown potential for transferring the large models from
high performance devices to edge devices or embedded pro-
cessors, but to achieve high model compression ratio with
soft probabilities or direct correspondence is still a challenge.
As the other approaches such as pruning and quantization
is capable of balancing a trade-off between accuracy and
compression ratio. Some approaches [140], [175], [227] also
involves using combination of multiple compression tech-
niques: knowledge distillation, pruning, and quantization to
achieve better accuracy and compression ratio.

3) Role of Edge Al: This section discusses the influence
of edge computing and related applications on autonomous
driving. As the volume of data keeps on growing with the
number of sensors, a research direction is focused on pro-
cessing data near the sensing device. Cloud computing, cloud
centralized intelligence [195], [270] was initially proposed as
solution for fully connected autonomous driving, however the
latency requirement for time sensitive applications and the
expected bandwidth (Table VIII shows comparison of Edge
and Cloud intelligence) for data transmission became a chal-
lenge. To address this challenge Edge Intelligence has been
proposed as a suitable solution, which allows processing of
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TABLE VIII
EDGE INTELLIGENCE & CLOUD INTELLIGENCE PARAMETERS
COMPARISON FOR SELF-DRIVING VEHICLES

Vehicular Edge Cloud
Parameters . .
Intelligence Intelligence
Architecture Heterogeneous ASIC CPU, GPU,
Accelerator TPU, FPGA
Computin . .
Perfonl')mancge Medium High
Storage Limited Highly Scalable
Power Consumption Low High
C()Cn(:le;(l::?i\;vlzre Applicable Not Applicable
Architecture Topology Distributed Centralized
Deployment Cost Low High
Reliability High High
Security High Limited
Communication Wireless Wireless + Optical
Computation Locally Central Server
Bandwidth Requirement | Low transmission rate | High transmission rate
Latency Low High

data closer to the edge device rather than in a centralized
cloud.

In [402] the authors presented in detail about the motiva-
tion and benefits of using edge intelligence where the primary
concepts highlighted and can be linked with autonomous vehi-
cles are: the volume of data generated by vehicle senors at the
edge device need machine and deep learning approaches for
processing and decision making process thus proposing the
concept of Al at the Edge. The concept has been proposed
in several stages where the primary focus is on transmis-
sion of sensed data to the server or cloud for processing and
decision making. The first stage contains the parameters of
cloud intelligence shown in Table VIII, thus allowing train-
ing and inference via a centralized cloud. The second stage
comprises of edge-server joint training and inference. In this
stage depending upon the requirement and processing ability
the model can be jointly trained at the edge and server or at the
server and inference occurs at both using distributed learning
and computing methods.

The last stage of edge intelligence allows the training and
inference occurrence on the device itself or near the device
(edge) through data offloading and real-time compressed sens-
ing approaches [387]. For autonomous driving applications
Pi-Edge [301] and AVe [73] are the two initial proposed
framework consisting of driving services with data offload-
ing and resource allocation techniques. Later proposed edge
Al framework for autonomous driving [300], is also influ-
enced by Pi-Edge and proposed data offloading and resource
allocation scheme, thus allowing edge-server joint inference
using hybrid communication architecture. However the frame-
work misses energy saving mechanism and the assumptions on
trade-off which data offloading and compression brings on the
end-to-end accuracy of the model. In [259], [260] the authors
propose intelligent edge architecture for autonomous driving
vehicles with OpenStack and ETSI open-source MANO. Using
the architecture the allocated and resources of edge devices
can be visualized at the server or cloud and also allows
managing of mutli-access edge and mobile computing, thus
allowing to free edge device memory from raw data using
offloading.
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In [116] the authors proposes an edge architecture with
low latency communication and resource allocation scheme
for compute intensive tasks. Using the reference architecture
the authors designed an advanced autonomous driving com-
munication protocol to enhance and facilitate communication
between edge device, servers, data centers and the centralized
cloud. Here the cloud contains legacy or ground truth data
contributed from the vehicle sensors, servers, infrastructure
sensors and the vehicular surrounding. For the decision mak-
ing process a deep reinforcement learning approach is used
for training and inference. The edge frameworks, offloading
schemes and approximations are comprehensively covered in
Sections IV and V.

F. An Overview of Dataset for Autonomous Driving

An important requirement to develop machine/deep learn-
ing based autonomous driving services or tasks is dependent
dataset. Several datasets has been made available by the uni-
versities research groups, and the automotive companies in
the last decade. In this article an attempt to categorise these
datasets has been made on the basis of sensors and the driving
application which can be derived as a result. Based on con-
volutional neural network, one of the most researched topic
is object detection containing several classes such as pedestri-
ans, traffic signs, lane, vehicles (cars, truck, ambulance, school
bus). The advancement in minor features recognition from the
image or video frames also resulted in development of applica-
tions such as: vehicle model detection, license plate classifier,
and other cooperative applications. Some of the commonly
used datasets are KITTI [205], Cityscapes [53] and PASCAL
VOC [317]. After 2017 high quality data comprising of multi
sensors primarily camera and LiDAR has been collected and
released for development of advanced applications targeting
level 5 autonomy [106], [290] also shown in Figure 10.

To prevent developing biased Al models, the traffic scenes
or data were also combined from multiple continents, coun-
tries and cities. The EU Long-term dataset [354] is collected
in several location within Europe, nuscenes [37] collected
in Singapore and USA, comprises of multi-sensor suite.
Argoverse [41] dataset collected by Ford is one of the unique
datasets which also provides functionality to try and test
the high definition map applications based on LiDAR and
camera sensors. However, the class imbalance remains an
open challenge that has not been addressed for training Al
models [135].

As the sensor/data fusion approach is being researched for
low powered embedded devices, the driving tasks, such as
adaptive cruise control, path planning, and SLAM has involved
usage of radar sensor values with the LiDAR point clouds and
the camera frames. Radarscenes [266], Astyx HiRes [207],
Ford multi av [4], Neolix [324], Pixset [61], are some datasets
which provides the annotations on data based on these three
sensors. Similarly another high quality dataset also comprising
of HD Map annotation has been made publicly available by the
Deep Route Al targeting the level 4+ Full-stack self-driving
system. Table IX shows list of open-sourced datasets available
for the Al model development and testing.



TABLE IX

KATARE et al.: A SURVEY ON APPROXIMATE EDGE Al FOR ENERGY EFFICIENT AUTONOMOUS DRIVING SERVICES

PUBLICLY AVAILABLE DATASET FOR AUTONOMOUS DRIVING. URL’S WERE LAST ACCESSED ON 10-JUNE-2023

2733

Sensors Included

Year Dataset Camera | LIDAR | Radar | GPS/GNSS | IMU | HD MAP URL
2012 - 2022 KITTI [205] Y Y N N Y N KITTI
2015 - 2019 KAIST Dataset [51] Y Y N Y Y N KAIST

2016 HDIK [143] Y Y N N N N HDI1K

2016 CVC-14 [130] Y N N N N N CVC-14

2016 Braind4Cars [120] Y N Y Y N N Brain4Cars

2016 JAAD [146] Y N N N N N JAAD

2016 Cityscapes [53] Y N N Y Y N CITYSCAPES

2016 Udacity Y N N N N N UdaCity
2016 - 2019 comma.ai driving dataset [264] Y N Y Y Y N Comma datasets

2017 TRoM [192] Y N N N N N TRoM

2017 Raincouver [309] Y N N N N N Raincouver

2017 VPGNet [159] Y N N Y N N VPGNet

2017 TuSimple Y N Y N N N TuSimple

2017 TorontoCity [326] Y Y N N N N TorontoCity

2017 CityPersons Y N N N Y N CityPersons

2017 Mapillary Vistas [221] Y N N N N N Mapillary Vistas

2017 Multi-spectral (Univ of Tokyo) [92] Y N Y N N N Multi-spectral

2018 CULane [233] Y N N Y Y N CULane

2018 DBNet [47] Y Y Y Y Y N DBNet

2018 IDD [315] Y N N N N N IDD

2018 MVSEC (U Penn) [403] Y Y N N N N MVSEC

2018 NightOwls [222] Y N N N N N NightOwls

2018 Road Damage [199] Y N N N N N Road Damage

2018 Wilddash [377] Y N N N N N wildDash
2018 - 2020 BDD-100K [370] Y Y N Y Y N Berkeley
2018 - 2020 ApolloScape [113] Y Y N Y Y N Apollo
2018 - 2020 Honda Driving [239] Y Y N Y Y N HDD

2019 Argoverse [41] Y Y N N N Y Argo

2019 Astyx HiRes [207] Y Y N N N N Astyx

2019 BLVD [352] Y Y N N N N BLVD

2019 Boxy Driving [24] Y N N N N N BOSCH

2019 EuroCity [34] Y N N N N N Eurocity Persons

2019 EU Long-term Dataset [354] Y Y Y Y Y N EU Dataset

2019 IceVisionSet [240] Y Y N Y N N IceVision

2019 StreetLearn [209] Y N N N N N Street Learn

2019 PandaSet Y Y N Y N N PandaSet

2019 WoodScape [368] Y Y N Y Y N ‘WoodScape

2019 Unsupervised Llamas - Bosch [25] Y Y N Y N N Bosch

2020 4—Seasons [336] Y N N Y Y N 4-Seasons

2020 A*3D [242] Y Y N N N N ASTAR-3D

2020 nuScenes [37] Y Y Y Y Y Y nuscenes

2020 POSS [234] Y Y N N N N POSS

2020 DDD20 [108] Y N N Y Y N DDD20

2020 Highway Driving [139] Y N N N N N Kaist

2020 Lyft Level 5 [106] Y Y N N N Y lyft

2020 Brno Urban Dataset Y Y Y Y Y N BRNO

2020 Ford Multi AV [4] Y Y N Y Y Y Ford Seasonal

2020 A2D2 [80] Y Y N N N N Audi

2020 LIBRE [38] Y Y Y Y Y N LIBRE

2020 Toronto-3D Y Y N Y Y N Toronto-3D

2021 NEOLIX [324] Y Y Y Y Y N Neolix

2021 CADC [244] Y Y N Y Y N CADC

2021 RadarScenes [266] Y N Y Y Y N RadarScenes

2021 CARRADA [230] Y N Y N N N CARRADA

2021 ‘Waymo [290] Y Y N N N Y Waymo Open

2021 SODAI10M [93] Y N N N N N SODA10M

2021 PixSet:LeddarTech [61] Y Y Y Y Y N PixSet

2021 ONCE [202] Y Y N N N N ONCE

2021 Deep Route Al Y Y Y Y Y Y Deep Route

2021 DurLAR[169] Y Y N Y Y N DurLAR

2022 MUADI75] Y N N N N N MUAD

2022 SHIFT Y Y N N Y N SHIFT

2022 Rope3D[364] Y Y N Y N N Rope3D

2022 CODA[168] Y Y N Y N N CODA

2022 View-of-Delft [232] Y Y Y Y Y N Delft-View

2023 LiDar-CS [70] N Y N N N Y LiDar-CS

2023 ZoD [11] Y Y N Y Y N ZoD

2023 Race-Car [151] Y Y Y Y Y N Race-Car

Lessons Learned:

1) Adversity: Popular datasets do not include unexpected

or undesirable uncertainties,
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trained/validated on such a dataset might not be
generalisable.

2) Biases: The majority of the datasets are collected from
urban driving conditions. This does improve the accu-
racy and development of an Al model for urban driving
scenarios but also brings significant challenges to the
model’s adaptability to diverse and dynamic conditions
such as highway driving or severe weather conditions.

3) Disparity: A form of bias can be inherited in AI models
due to the disparity of annotated classes. Popular driving
datasets generally discuss the number of scenes, annota-
tions, and bounding boxes covered for training-testing.
However, they lack a discussion on diversity and the
distribution of classes covered. For example, the anno-
tations of vehicles, and traffic signs are much higher
represented as compared to cyclists, motorcyclists, or
pedestrians.

4) Data Fusion and Collection Format: Statistical mod-
els are developed and adapted as per the format of
datasets. Current datasets vary in logging approaches
which brings challenges to model or cross-data trans-
formation which can also create a bias on the developed
Al algorithm.

IV. EDGE Al FOR AUTONOMOUS DRIVING

Edge computing systems have already been used and tested
IoT use-cases or applications, which require relatively less
computation, and power [174], [389]. Hardware manufacturers
such as Nvidia, IBM, Intel, Qualcomm, NXP has developed
and released edge computing hardware with respect to the
dedicated tasks such as speech recognition and vision based
applications. For autonomous driving the edge intelligence
demands data processing pipeline which should be capable
of data management, analysis and data storage. Popularly
used vehicle edge computing devices include Nvidia’s Jetson
and Xavier Platform. These devices are largely used in com-
bination with on-board sensors such as: cameras, LiDAR,
radar, IMU, GNSS and V2X module or router for com-
munication with other devices and server. As per current
description the subsystems required to enable fully connected
autonomous vehicle comprises of: the autonomous vehicle
containing cellular or edge connectivity, the roadside units
connected with the infrastructure, Edge server, the micro data
centers, and lastly the cloud or main server having connec-
tivity with all the mentioned subsystem and the autonomous
vehicle, a description and layers are shown in Figure 11. It
is important to note that the introduction of vehicular edge
computing and intelligence [373], have further strengthened
the scope and area of vehicle-to-everything communication
(V2X) [1], [212]. The key components for enabling edge
artificial intelligence for autonomous driving includes edge
training, inference, caching, optimization, and communica-
tion. Vehicular communication has already been covered in
the previous section, however distributed approaches such as
federated learning remains, therefore this section first dis-
cusses Edge training and inference, Edge computing-based
applications for autonomous driving, and recently proposed
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Fig. 10. Frames and point clouds from popular datasets. Images are from
Lyft, KITTI, nuScenes, ApolloScape, and ONCE dataset [37], [106], [113],
[202], [205], respectively.

federated learning approaches, cooperative and collaborative
autonomous driving.

A. Edge Computing and Intelligence

The future of autonomy in vehicle has been previously
proposed with centralized cloud [270] and machine/deep learn-
ing algorithms deployed at cloud [195], however transmitting
the large volume data from the vehicle to cloud and receiv-
ing the model weights from cloud to vehicle brings latency
issues for the time critical applications such as SLAM. This
technical challenges leads to bringing artificial intelligence
closer to the edge using distributed learning, in this context
edge device (present in vehicle) and edge-server (present in
vehicle surrounding), corresponding abstraction of Edge Al
layer is shown in Figure 11. Some of the proposed collabo-
rative applications and approaches includes perception [44],
SLAM [10], [103], [348], HD map [383], collision warning
systems [58], [81] and path planning [308].

In cooperative perception applications at edge,
F-cooper [44] provides collaborative object detection
using high level fusion from multiple vehicles LiDAR point
clouds. For object detection authors used voxel feature fusion
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Fig. 11. Edge Al layers for connected vehicles.

(as shown in Figure 6), and spatial feature fusion approach.
The object detection methods were lightweight and allows
the transmission and sharing over dedicated short range
communication. The presented approach is deployed in the
edge device and the method was tested using real-world
data. Similar approach is presented in [20], here the authors
proposes an early fusion scheme and late fusion scheme. The
early fusion scheme is used for detecting the objects and
the late fusion scheme is used to propose the bounding box
on the detected objects. For testing the proposed approach
the authors used the synthetic dataset over a T-junction
and roundabout vehicle environment. For evaluation of the
proposed schemes the precision, communication cost and
on-board computational latency has been compared. An
approach based on value-anticipating networking is proposed
in [105], here the vehicle based on previous learning decides
about transmitting the sensed information to other vehicle.
Another cooperative perception [18] is proposed using deep
reinforcement learning for connected autonomous vehicles.
The proposed model uses scheme to select sensed data for
transmission amongst the connected vehicles. The authors
further develops a cooperative vehicle simulation platform for
object detection and communication.

Similar to perception, collaborative SLAM using edge-
server [348] has been proposed for highly automated vehicles.
As mentioned previously SLAM suffers with high com-
putational demand and low latency requirement. To over-
come computational requirement cloud-based SLAM has been
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proposed [265], however some drawbacks in centralized
approach are the extreme low latency requirement and the cur-
rent uplink bandwidth. Edge assisted SLAM [10], [103], [348]
approaches includes efficient computation, task scheduling
algorithms, data offloading and sharing strategies. The back-
bone used in [10], [348] is ORB-SLAM [216] and ORB-
SLAM?2 [217] which provides the algorithm centimeter level
localization accuracy. The approach uses distribution of SLAM
block from ORB-SLAM2, across the edge-device and server
thus overcoming the edge-device(on-board) computational
complexity and processing the computation at the edge-server.
To further improve the results and high precision, approaches
involving crowd-source semantic mapping or fusing the results
with HD map [180] can be proposed.

B. Edge Training and Optimization

In collaborative learning setting for autonomous driving,
training or retraining a model will be common practice as
edge devices present in vehicles collaborate to train, a deep
neural network model with the help of server acting as mode of
parameter or weight updates for edge devices. For autonomous
driving the edge training and optimization model should con-
sist of model that needs to be trained, training acceleration
methods, optimization parameters and model uncertainty esti-
mation. Inspired from this, an edge training and optimization
process consist of training dataset present as either raw-sensed
values or as the legacy data, and the tunable parameters.
For edge devices training can be organized for an individual
edge device or for group of edge devices [388]. While train-
ing a model on single edge device no inputs or parameters
exchange occurs, however in group training the participating
edge devices communicates and share the model weights and
parameters as per the set iterations.

The computational demand and memory requirements for
individual training is much higher, therefore using dis-
tributed and collaborative learning approach, attention has
been given to group training [363] to address the computa-
tional demand. In the group training of devices an attention
is also given to communication-efficient approaches to bet-
ter energy-efficiency, improve the communication round and
decrease the training time. In [304], authors proposed a
stochastic gradient descent method for improving the con-
volutional neural network training on the edge devices. The
approach consist of sparse methods to improve the conver-
gence rate and overall performance parameters of the model.
To implement compression the gradient sparsification methods
are used, which reduces the communication cost by identify-
ing the gradients needed to share. To counter the convergence
rate, which can be caused by the frequent sparse updates,
a momentum residual is proposed. For evaluation, a model
training using MNIST dataset was implemented.

C. Edge Inference

Edge inference is the process of converting raw sensed data
into decision making task by processing them over the Al
models deployed on edge device. As mentioned previously
the approach is already being used for perception, SLAM,
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HD map and video analytics applications. Data flow and
process of edge inference is shown in Figure 12. As cov-
ered in Section II most of the existing Al models for per-
ception and SLAM are developed on the devices/machines
which are powerful and consist of high-end graphic pro-
cessing units and excessive memory. Therefore to make
the Al model deployment possible on resource constrained
embedded/edge device [160], [327], compression and software
approximation approaches are implemented on the pre-trained
models [307].

Current Edge Inference practices for autonomous vehi-
cles can be classified into three categories: local Inference
on the edge device (vehicle), inference at Server, and joint-
inference at the vehicle and server [402]. In the case of
local inference, the sensing and decision-making process is
performed on-board, this approach is currently in practice
and requires large memory space and expensive computation
devices [116]. Local inference is very useful for lightweight
applications such as on-board speech recognition. However,
for heavy computational tasks, this approach suffers from
computational complexity, data storage, and energy consump-
tion problems. In server based inference, the sensing takes
place on the vehicle or infrastructure sensors, and the data is
uploaded to Server using wireless communication. The server
is deployed with heterogeneous computing devices, process-
ing the received data on the deep learning model, which are
responsible for decision making process [114]. An example
of analytics oriented applications are presented in [65], [387],
which contains of edge framework deploying edge intelligence
based on a hierarchical manner. The approach is very useful to
bring down the on-board computational cost and energy con-
sumption, however, this practice brings challenges based on
latency for time-critical applications, privacy, and security of
data and model which is being shared over a wireless chan-
nel. Also, communication delay can be encountered from a
corresponding server if it is responsible for the processing
of data from too many vehicles at the same time. Edge-
Server joint inference for connected vehicular applications is
proposed in [300], [325]. In these proposed approaches, the
sensing takes place on-board, and based on the available on-
board computational resources, part of the computation and
decision-making process takes place on-board, which contains
a lightweight or compressed Al model, and the remaining
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takes place at the server, which contains the global or dense
model. After the model weights are generated individually,
using an aggregation approach the model weights are com-
bined and the decision process takes place. Edge-assisted
SLAM, perception, HD map updates are some practiced and
proposed methods. Some of the frameworks and approaches
proposed in this category are [42], [43]. In these approaches,
the common practice is to split and partition the deep neu-
ral network amongst the participating devices and server.
Resource allocation scheme [198], [224], communication-
efficient algorithms [122], [278], task scheduler [214], [371],
early-exit models [152], [316] and heterogeneity-aware
layer [189], [382] are proposed in Edge-Server joint inference
to take advantage of on-board and server resource to imple-
ment energy-efficient approaches. For further optimization of
joint inference methods, a hardware acceleration approach
such as parallel computation using heterogeneous architecture
device [193], [378] is proposed. In similar category, software
acceleration approaches [224], [267] involve resource manage-
ment, Edge Al pipeline design, approximating compilers, and
compression of models.

Lessons Learned From Subsections A, B and C:

1) Latency: For functional-safety applications, latency is
a key parameter. Applications such as obstacle detec-
tion, adaptive cruise control, emergency braking, local-
ization requires strict latency. This property can be
considered as one of reason for shift from vehicu-
lar cloud intelligence to edge computing and Edge Al
applications.

2) Heterogeneous Networks: Connectivity within the
ecosystem can be separated from short-range to
long-range communication. Within the dynamic oper-
ational environment, proposed communication and
delivery schemes should be capable of adapting to
the diverse distributed network (Base stations, V2X,
Cellular (4G/5G/6G), road-side units, edge-servers,
cloud etc.).

3) Resource Management: Similar to a heterogeneous
network, computing devices within the vehicle-edge
ecosystem is also expected to be distributed. Devices
may consist of distributed CPU, GPU, FPGA, TPU,
and accelerators. Resource allocation and management
schemes at the edge-server are required to process
the sensed and transmitted data. Deployed resource
allocation and management schemes can also counter
other challenges such as excessive energy consump-
tion from computing, data filtration, pseudo labeling,
re-training approaches and update for the global Al
model.

4) Joint-Inference: Strict latency, network bandwidth con-
straint and high volume data in connected vehicu-
lar applications provide an opportunity to focus on
approaches that allows computation distributions at
the vehicular and edge-server level. Early-exit DNN,
federated learning, data aggregation and model parti-
tion approaches are the potential solutions when com-
bined with communication-efficient Al approaches and
mechanisms.
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D. Federated Learning and Autonomous Driving

Concept and applications of federated learning were
initially proposed in [144], [204], with the aim of training
a large machine learning model in a distributed man-
ner across several devices to accelerate the process. In
recent years exploration and scope of federated learning
have been further extended to reducing the communication
costs [42], [122], enabling privacy preserving methods and
enhancing security of the model and data [33], [63], [224],
[363], and resource allocation/management schemes for the
participating devices [171], [224], [341]. For connected and
autonomous driving applications federated learning have also
been proposed with edge computing to jointly utilize the com-
putation power of edge servers, and to take advantage training
the model with dynamically distributed data over the edge
devices, by further encouraging privacy preserving methods
at the edge node or system level. Based on communica-
tion and computation approaches, the research topic covered
below are further categorized as: “Communication efficient
algorithms™ [42], [43], [62], [144], [263], [391], “Resource
constrained devices” [161], [198], [273], [327], [330], [341],
“Heterogeneity aware” [43], [63], [171], [224], [307], “Energy
efficient approaches” [16], [214], [254], [277].

Resource Constrained: Edge device-server joint inference
and optimization [273], [330], [341], involving edge device
computation capability and associated local model accuracy
with minimum cost. The resource in this context is computa-
tion, power capability and communication overhead between
edge device and server. Joint optimization is prioritized using
vehicle parameters such as position and velocity to ensure a
round of communication and parameter update with local edge
server. The system [341] comprises of connected autonomous
vehicles where edge device handles the initial computation
requiring less resources and offloads the heavy computational
tasks to the distributed edge servers in the urban driving
scenario, with local model training, selected model aggrega-
tion [363], computation complexity and weights transmission
as primary matrices. For computation optimization a self-
adaptive global best harmony search (SGHS) algorithm is
used. For on-device resource allocation combination of SGHS
and on-board computing and transmission power optimization
algorithm is used to enhance the local model accuracy.

Heterogeneity Aware: In collaborative driving the data
obtained from multiple sources such as infrastructure sensors,
legacy data available in server or from other vehicle sensors is
of heterogeneous form [122]. This basis and requirement bring
heterogeneity aware distributed learning as a primary criterion
for fully connected autonomous driving. Federated learning
by choosing edge devices is addressed by [43], [224], [307]
to counter the computational capability and communication
bandwidth. In the approach edge server randomly chooses the
client for model aggregation and requests for current commu-
nication and computation resource available for processing,
based on the received information the edge server distributes
the model parameters to the edge devices with high avail-
able resources for the model aggregation and which uses
batch normalization approach for updating the global model.
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Another distributed approach is studied in [63] where the
heterogeneous data is combined in subsets to minimize the
aggregation loss from edge devices and improve the con-
vergence, combination of these approach is also followed
in [171], where low latency communication is ensured through
quadratic convex functions.

Communication Efficient: A semi-supervised federated
learning (SSFL) is proposed in [62], to alternatively train the
statistical model at the edge server with unlabeled data using
semi-supervised fixmatch [123], [390] and mixmatch learning
method [28]. For acceleration and better convergence of local
model, static batch normalization technique is used which is
adaptation of batch normalization [123] and group normaliza-
tion [390]. In alternative training the local model at edge server
is aggregated by retraining with the ground truth or legacy data
to enhance the model accuracy at each round of training and in
the next round of communication between the node and server
the aggregated model weights are transmitted to update the
global model and legacy data. Similar joint learning method
is proposed in [42], [43], where the local model is re-trained
over edge devices and is transmitted over cellular network to
the base stations for global model aggregation. To minimize
the model learning loss and to collectively use the commu-
nication bandwidth, the base station categorically select the
edge device using greedy approach by proposing a resource
allocation and power allocation schemes at base station and
edge device respectively. For the power allocation scheme
at the edge devices two primary criteria: retraining of local
model and power needed for model or weights transmission is
considered. Other proposed method includes sparsification of
data and gradient, quantization for minimizing communication
bandwidth, which has been discussed below.

1) Sparsification: For collaborative or federated learning
the commonly used approaches for sparsification is to com-
press the gradient and/or the data. Edge computing or pro-
cessing near the edge is being adopted as a popular approach
for an autonomous vehicle. Instead of transmitting the data or
raw data, the model weights processed at the edge is transmit-
ted to the devices participating in communication. Reducing
the transmission time [15] or using efficient delivery scheme,
such as REMD is also proposed as communication-efficient
approach in FL setting [118]. Another approach [333], [400]
proposed in FL use-case is to use of a lower-limit value
in which the gradients with certain magnitude and greater
than the predefined lower-limit are sent from the edge to
the server and the left-over gradients are not used to weight
or model aggregation. Using this approach the compression
on the up-link and down-link communication can be imple-
mented. However, the challenge is to choose the favorable
lower-limit value, as similar to soft-filter pruning, the quanti-
zation and selection of the wrong lower-limit value can directly
impact the overall model aggregation, which may provide an
overall reduced model size but decreases the accuracy.

To overcome the previous challenge, stochastic gradient
descent with k-sparsification is proposed in [285], by reduc-
ing the data and model size and also improving convergence
through error compensation for the transmission taking place
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between edge and server. A similar approach is used in [7],
the method proposes to fix the sparsity rate. The commu-
nication or transmission of the gradient is only enabled for
a fraction of the gradient with the highest magnitudes and
keeping the unused gradient in the container. The sparsity
rate used by the authors is p = 0.001, and this approach
has relatively less impact the learned model overall accu-
racy and performance. To further overcome this performance
gap, authors in [184] proposed modifications to the existing
approach through deep gradient compression. Deep gradient
compression uses approaches such as: momentum correction,
local gradient clipping, for the convolutional neural network
and recurrent neural network. Results show that gradients
are compressed by ratio of 270-660 following a hierarchi-
cal approach, without slowing down the model convergence.
Sparsification methods were initially proposed with the func-
tion of improving and promoting distributed and parallel
training among the cloud and data-centers. However, these
methods lacked model convergence and aggregation as a scope
which is currently a most essential metrics for the federated
and distributed machine learning. Similarly, attention should
be given to the number of edge devices participating in the
transmission and the server participating in collaborative train-
ing. As the study in [184] shows the communication between
the edge and server will not be compressed and reduced if
the number of devices participating in training is less than the
chosen sparsity value.

2) Quantization: Along with the usage for compression
of deep neural network, the approach is also used in
communication-efficient algorithms, with the goal of minimiz-
ing the communication bandwidth between the edge device
and server. Quantization in communication applications with a
federated learning setting, can approximate the weight updates
on edge devices by limiting the update to a certain set of
values. One such implemented approach on independent and
identical distributed data is signSGD [27]. In the proposed
method authors quantized each gradient update to the allo-
cated binary sign and reduced the bit size, with a value of 32.
It is important to note that signSGD also implements com-
pression at the server by approximating the gradient received
from edge devices and further contains investigation and the-
oretical analysis of algorithm in distributed machine-learning
setting. In this approach the participating devices transmits
the information of the associated gradient to the local server
which transmits back the updated and aggregated gradient sign
to the participating devices for the local model aggregation.
The analysis shows that this approach achieve a similar vari-
ance score in comparison to other contemporary methods and
has a better convergence rate to a stationary point of a general
non-convex function. Similar approaches of scalar quantization
through stochastic methods are proposed in PowerSGD [318],
ATOMO [322], TernGrad [335], QSGD [12], [13].

ATOMO [322] and QSGD [12] propose to quantize the
gradients with a better convergence rate allowing faster
distributed training of neural networks, which is highly suit-
able for enabling collaborative learning within the vehicle-
edge environment. However, the performance analysis in the
vehicle-edge surrounding should consider trade-off such as

IEEE COMMUNICATIONS SURVEYS & TUTORIALS, VOL. 25, NO. 4, FOURTH QUARTER 2023

accuracy-efficiency-reliability for safety-critical and real-time
applications while accuracy-energy for the latency tolerable
applications. While deploying such methods focus can be also
given to compression ratio and convergence rate, as for com-
munication and federated learning within autonomous vehicles
it is necessary to consider compression in uplink and down-
link transmission and communication. In [12], [13] authors
theoretically analyse the quantized stochastic gradient descent
to balance the trade-off with federated learning parameter:
convergence and communication cost. In this approach, the
edge devices are allowed to adjust the number of bits trans-
mitted in each iteration of communication according to the
variance. As shown in [12] the device in a federated setting
can transmit around 2.8n+-32 bits in one communication round
(here n is the number of parameters in model). This setting
leads to 5x approximate bandwidth saving. Similarly, to speed
up the training amongst participating devices an approach is
presented by [268] to perform gradient quantization using
one bit, which can make the distributed training to be 10x
faster. For evaluation in [268], authors used neural network
with speech recognition which is highly anticipated use-case
in autonomous driving [300], [301].

Dedicated uplink compression has been explored in [279]
by using the quantization theory. In this work authors explores
the transmission of trained model by identifying the avail-
able channel bandwidth through quantization scheme. The
authors further propose an encoding-decoding approach con-
sisting of partitioning, dithering, quantization and entropy
coding at the encoding function and entropy decoding, dither
subtraction, collecting and model recover at the decoding
function. The evaluation of proposed quantization system is
demonstrated through numerical study which shows error
is mitigated through federated averaging and high federated
learning performance gains. Contrary approach to scalar quan-
tization methods, for the uplink and donwlink compression is
vector quantization method [280]. As compare to scalar meth-
ods, vector quantization offers dimension reduction along with
the quantization scheme in federated learning setting. In the
vector quantization method [280], numerical studies similar
to [279] were conducted. The method comprises of encod-
ing strategy similar to [279] and analysis using probabilistic
quantization. However a different decoding step of dither sub-
traction is applied to reduce the distortion and minimize the
error. The approach also involves using of lossless source
coding scheme in entropy coding and entropy decoding to
generate non-uniform distribution of the quantized outputs.

Lessons Learned:

1) FL using Edge: Collaborative or joint-learning applica-
tions, such as Edge computing and Edge Al, comple-
ments federated learning. The advantages of using these
techniques in conjunction with each other allow a reduc-
tion in communication bandwidth to the cloud and also
promote privacy by not sharing/transmitting sensitive
data.

2) Compression: It is extremely challenging to implement
traditional federated learning techniques within con-
ventional edge devices. Model compression approaches
have been explored to accelerate the training/inference
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by reducing the and
requirement.

3) Re-Training: Al models deployed for connected vehicle
applications can often encounter unseen data. Property
of FL to retrain the model and update the weights
through convergence benefits use-cases, such as HD map
update.

4) Communication Reduction: Current federated learning
approaches focus on reducing the communication over-
head through compression by overlooking the explo-
ration of protocols that are lightweight in nature.

3) Overcoming Communication Overhead: An open chal-
lenge for autonomous vehicles in federated or distributed
learning environment is overcoming the computational com-
plexity and communication overhead. Federated averag-
ing [204] proposes methods to reduce the communication
frequency to overcome communication delay by not initi-
ating communication between device and server after every
iteration. Rather the federated averaging method computes the
weight for every participating device using multiple iterations
of stochastic gradient descent. Implementing the approach on
convolutional neural network and recurrent neural network,
the analysis shows that communication between participating
devices can be delayed upto 100 iterations by still maintaining
the convergence rate. A key requirement for this convergence
rate is that the data should be independent and identically
distributed between the participating devices. The communi-
cation round can be further increased with a higher delay, but
as a trade-off it increases the computational cost on partici-
pating devices. As shown in above subsections, the work to
overcome communication overhead combines the use of spar-
sification and gradient quantization [33], [171], [307]. These
methods however do not have a better convergence rate.

A ternary quantization-based federated learning approach is
proposed in [273] to overcome the communication overhead in
uplink and downlink communication. The quantization method
is implemented on the participating devices and the server
thus implementing local training and global model update
through weights. This approach also reduces the model com-
plexity for the edge and server devices. For evaluation authors
performed simulation considering the battery powered vehi-
cle with connected autonomous driving capability to achieve
fast inference and low communication overhead thus making
inference possible on resource-constrained embedded and edge
devices [62], [198].

Challenges for Vehicular Services: Distributed learning has
been a popular approach to tackle computation and communi-
cation challenges. Federated learning has provided alternative
methods to re-train and deploy AI models with low com-
munication and computation cost in dynamically distributed
heterogeneous settings. Deployment of connected autonomous
driving services (e.g., OTA update, traffic monitoring, and
forecast) using federated learning approaches will enhance the
privacy of data used for training and can also prevent attacks
on the Al model. However, for real-time applications such as
vehicle localization, and mapping, challenges exist in terms of
computational resource requirement, latency, and communica-
tion bandwidth. A typical SLAM application in the vehicular

computational complexity
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application is deployed using large sensed data from a camera,
LiDAR, and radar. The data size is approximately in gigabytes
and should be processed by the Al model in less than Sms,
which also makes it challenging to transmit it to a nearest
participating device for computation.

Deployment of FL using Edge Al for vehicles can be con-
sidered as an optimization problem. The complexity further
increases when energy-efficiency is considered as a direct
parameter. A major challenge currently encountered for opti-
mizing such efficient applications with FL context is the
unavailability of the real-world large-scale dataset. As the
problem has to be tackled by considering the communication
and computing cost.

V. ENABLING FRAMEWORKS FOR AUTONOMOUS
DRIVING SERVICES

Due to the limited computation, storage, and communica-
tion resources of edge nodes, as well as the privacy, security,
low-latency, and reliability requirements of Al applications,
a variety of autonomous driving oriented edge Al system
architectures have been proposed and investigated for efficient
training and inference. This section gives a comprehensive
survey of different Edge AI frameworks and their related
architecture. It starts with a general discussion on different
architectures and categorically comparison.

A. Autonomous Driving Framework

Since the development of deep neural network supporting
perception and SLAM applications, researchers have focused
on the design and development of simulators, software often
referred to as a framework. Nvidia Drive [32], Waymo [3],
ApolloAuto [19] are some commercially released driving
frameworks supporting vehicular applications. Autoware [136]
based on ROS is developed for an embedded platform that
was released in 2018. OpenCDA [350], is one of the recently
released and most complete open-sourced driving frameworks
consisting of communication modules, real-time feedback and
a simulation environment, thus providing a platform for coop-
erative driving applications. Following section details the
architecture and components of these frameworks.

1) Autoware: Autoware [136] is ROS [251] based frame-
work. It is developed on the concept of the sense-think-act
model, also shown in Figure 13. It is primarily designed for
vehicles driving in urban areas. Autoware is dependent upon
perception-based sensor suites such as cameras and LiDAR
for enabling object detection, tracking, and localization using
deep neural networks. The sensed information is fused from
both sensors to also create 3D maps around the vehicle, which
helps in precise localization by combining it with SLAM algo-
rithms and sensors such as GNSS and IMU. The other major
components are planning and control, which is based on prob-
abilistic robotics utilizing deep neural networks. The software
can be installed on the autonomous embedded platform con-
taining Ubuntu operating system by using ros packages and
dependencies to enable self-driving functionality in urban sce-
narios. Additional software module development and sensors
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integration such as radar is in progress which is required for
the highway and related driving scenarios.

2) Apollo Software Platform: Apollo software platform has
seen multiple revisions since its release, the currently avail-
able version integrates processing components: localization,
perception, prediction, planning, control, and communication
(V2X). At present, the platform incorporates deep learn-
ing models to perform major tasks through a dedicated
computing unit comprising of CPU and GPU. One of the
unique components of this platform is HD Map which can
be also be tracked on the generic display monitor to per-
form and visualize accurate localization. The platform can
be easily integrated with autonomous embedded platforms
running UNIX operating systems. However, one of the impor-
tant to calibrate with respect to the sensors and computing
hardware installed on-board. The components in the apollo
framework [19]:

Perception: The perception module majorly focuses on
obstacle detection, traffic lights and lanes. The perception
module is mostly performing 3D object detection and is imple-
mented using a deep neural network focusing on the region
of interest on the high precision map. The output from the
object detection module comprises 3D bounding boxes around
the object based on the class, height, width and probabil-
ity of the detected object. In the background a detection
to track algorithm is used in order to identify the individ-
ual objects with respect to the timestamps, this timestamp is
logged in the system and later serve as feedback to improve
the accuracy for the similar detected objects. The perception
module utilises the data fusion strategy using the Kalman
filter.

Localization: In the platform, multisensory fusion localiza-
tion is used which is based on GPS, IMU, LiDAR, radar,
and HD maps. The localization module is based on the
fusion approach of the Kalman filter comprising of two-step
prediction update cycle. It comprises of two major blocks, the
GNSS localization which provides the position and velocity
information and the LiDAR localization which provides the
position and heading information. Finally, the inertial naviga-
tion solution is used for the prediction step of the Kalman filter,
while the GNSS and LiDAR localization is used to update the
measurement step of the Kalman filter.

Communication

Infrastructure

IEEE COMMUNICATIONS SURVEYS & TUTORIALS, VOL. 25, NO. 4, FOURTH QUARTER 2023

K

—————— -~
P ! Steering 1
! Motion Planning i 1 R <
I e o | Braking 1
e e - -
-------------- SrnmnemRmr sy I .
: Path Planning ;| ! _ Acceleration J

Intra-Vehicle

Sense-Think-Act model, which has been used as a backbone for autonomous driving frameworks [136], [350].

HD Map: The high definition map [102] component in
apollo comprises legacy data collected by sensors contain-
ing information related to road definitions, intersections, lanes,
traffic signals. It is used to reduce the computational demand
of the hardware by integrating the existing information of
the street or lane the vehicle is currently driving on. In the
apollo platform, it is also used as a safety feature provid-
ing centimetre level accuracy in localization of the vehicle.
The steps involved in the development and publication of HD
Maps include sensor data sourcing, processing, object detec-
tion and manual verification. In case of road or lane change,
the existing platform utilises updates of HD maps in data cen-
tres through crowd sourcing which can involve data collected
by other autonomous vehicles, smartphones and other sensors
on the intelligent map production platform.

Simulation: Along with the on-device implementation,
apollo platforms also provides the function to virtually cre-
ate the driving scenarios by choosing the above-mentioned
modules, dedicated deep neural networks and test driving
scenarios, validate, and optimise the existing models. The sim-
ulation results of the driving scenario can be logged which
can be further utilised as feedback for the development of
algorithms and tackling the false-positive scenarios.

3) OpenCDA: OpenCDA [350] is one of the driving frame-
works designed for cooperative driving with simulation and
prototyping capability, it contains three major components
which are: cooperative driving system, co-simulation tools and
scenario manager. In the background the cooperative driving
system is also based on the sense, think, act model and com-
prises of perception, communication, planning and control as
the fundamental blocks to enable individual as well as cooper-
ative driving. There is an application layer also present which
is responsible for enabling cooperative perception, cooper-
ative localization, platooning, and cooperative merge. For
the second component, i.e., simulation part, this framework
utilises CARLA [64] for autonomous driving simulation and
SUMO [148] for traffic simulations, and with combined inte-
gration of these two, the traffic scenes and simulation can
be created for example vehicle platooning, traffic merge. The
simulation tools exchanges information with the sensor and
processed data, it continuously provides the HD map data
to the system and receives control commands. The third
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component which is scenario manager exchanges information
with simulation tools and cooperative driving system, to evalu-
ate the cooperative driving states, and trigger special event and
provide it to the simulation tools. The framework is developed
in python and is also scalable for the 64-bit OS UNIX
system.

4) Openpilot: This is another framework in the category of
conditional or partial automation. The framework is developed
by http://comma. ai/ [30] and was released in 2017, and
with revisions and additions of new features from 2017-2021,
it is primarily dependent upon vision sensors and provides
assistance to the driver with the driving services such as adap-
tive cruise control (ACC), forward collision warning (FCW),
lane departure warning (LDW), and automated lane centring.
The framework is dependent upon the services or compo-
nents which can be divided as: Sensors and actuators, Neural
network runners, Localization and calibration, Control, and
System Logging & miscellaneous services. The versions of the
framework can be integrated into embedded devices supporting
the android or UNIX operating system.

5) Autopilot: Autopilot [150] provides assistance to the
driver by sensing the environment around the vehicle through
high definition automotive cameras and ultrasonic sensors.
The software stack comprises of assistance and safety fea-
tures such as automotive emergency braking, collision warning
(front, rear and side), obstacle detection and also include smart
navigation systems thus providing actuation and control. The
framework on the backend uses a deep neural network per-
forming object detection, semantic segmentation, and depth
estimation to further provide the feedback and output for
motion and path planning algorithm which suggests optimal
route and actuate according to the destination set in the naviga-
tion. The software framework was initially designed to support
the driver for highway driving scenarios and is also being
tested for urban driving conditions.

6) CARMA: This framework [35] falls in the category
of cooperative driving by enabling connected vehicles. The
software stack is programmed in C++ programming lan-
guages and is configured using the ROS environment for
the Ubuntu operating system. The framework utilises the
Autoware citeAutoware for enabling level 3 automation capa-
bility and additionally contains a communication module in
the sensing layer which includes DSRC, V2X and cellular
connectivity, thus initiating communication and exchange of
information with other vehicles, infrastructure and the cloud.
The cooperative feature of this platform consists of four
levels of planning for the vehicle which includes route plan-
ning, maneuver planning, trajectory planning and command
planning.

7) AutoC2X: AutoC2X [308] is a cooperative driving
framework that is a combination of two software: Autoware
cittAutoware and OpenC2X citeOpenC2X developed for
cooperative driving applications. OpenC2X is cooperative
intelligent transport system software that is open source and
is helpful for prototyping solutions such as traffic manage-
ment, and platooning. AutoC2X setup comprises of pair of
devices which is a computing unit and router, installed with
AutoC2X-AW and AutoC2X-OC software at the car and
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infrastructure respectively. The flow of information can be
from car to infrastructure or from infrastructure to car. For
the test experiment, the authors enabled cooperative driving
services such as perception, coordinate transformation, local-
ization, path planning through a proxy cooperative awareness
V2X messages. The results from the experiment show that
cooperative perception messages using AutoC2X were deliv-
ered within 100 ms.

Lessons Learned:

1) Stack: The discussed autonomous driving framework
incorporates popular deep-learning algorithms to per-
form perception, localization, mapping and path-
planning tasks.

2) Resource: These frameworks require an onboard high-
performance computing device with extensive memory
capacity to process large-volume data and deploy intel-
ligent algorithms such as CNN, DNN, or RNN.

3) Energy: The presence of extreme resources and comput-
ing devices results in high on-board energy consumption,
which has been overlooked.

4) Communication: Initially proposed driving frameworks
lacked the presence and usage of a communication
unit/module, which is highly important to enable col-
laborative driving and fully autonomous vehicle.

B. Application Oriented Frameworks

In autonomous driving frameworks, the other proposed
approaches are tasks oriented and are strongly influenced
by distributed or collaborative learning approaches. Popular
research directions for an energy-efficient edge in these cat-
egories are data partition, model partition, Offloading, and
communication. In the data partition method [270], the col-
laborative compressed sensing approaches are used, which
allows the distribution of data amongst participating devices,
thus leveraging repetitive computational load on an individ-
ual device. Model partition approaches [288] utilize resource
allocation schemes [387], which are based on the avail-
ability of computing resources at the participating devices.
A large DNN model is split into smaller forms for col-
laborative training and inference. Using the server as the
central or primary mode of communication in edge-server
joint inference applications computation offloading-based edge
inference systems [109], [213], [393] has been proposed. The
approach involves offloading data or offloading a part of the
inference load or the entire task to the edge server in the
surrounding. In this context, communication and resource-
aware techniques are also implemented, which decides on
choosing a server amongst the available server based on
latency.

Lessons Learned:

1) The approach proposed in these application-oriented
frameworks for connected vehicles considers either
data reduction or model reduction, which can result
in energy-saving mechanisms from either computa-
tion delay or communication perspective. However, for
energy-efficient connected vehicles, both metrics need
joint optimization and acceleration.
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2) The communication approach proposed in these
use-cases generally considers ideal conditions in com-
munication. However, the communication in the vehic-
ular ecosystem is often dynamic and heterogeneous,
which consists of several low, and mid-range protocols
with minor differences in distances. Therefore, another
limitation of these frameworks is the inability to work
in dynamic network conditions.

3) Similar shortcomings can be seen in computation as
well. Edge in the vehicular ecosystem is constructed
from heterogeneous devices with different computing
abilities. Al models proposed in these application-
oriented frameworks does not account for computing
heterogeneity which may lead to miscellaneous cost.

C. Energy-Efficient Edge Frameworks

1) OpenVDAP: Open vehicular data analytic platform
(OpenVDAP) [384] is a data analysis framework developed
for connected autonomous vehicles (CAV) with the design
requirements of edge computing. The services included in
OpenVDAP are real-time diagnostics, advanced driver assis-
tance systems, infotainment, and other quality-of-experience
services. The platform is developed to deal with low latency
applications in autonomous driving by collaborating with the
other edge nodes (other vehicles), base stations, local servers,
and the cloud in the driving environment. With respect to the
application, the platform consists of on-board heterogeneous
computing, a communication unit, an edge-based vehicle oper-
ating system (EdgeOS,), a driving data integrator, and edge
computing aware libraries for vehicular data processing. The
primary purpose of using these components is to intelligently
allocate the on-board computing resource to the algorithms
for the data processing, implement the data offloading strate-
gies and also enable communication between the vehicle and
infrastructure.

2) CAVBench: The benchmark suite [331] was proposed
to evaluate the performance of edge computing frameworks
and software in connected autonomous driving services.
Applications or services included in the CAVBench are object
detection, tracking, SLAM, battery diagnostic, edge video
analytics, and speech recognition, which are similar to the
components included in OpenVDAP [384]. The services and
deep learning algorithm associated are evaluated based on
latency (on-device processing), and power consumed as these
can help in the development of an end-to-end autonomous
driving application. For the evaluation purpose, the state-of-art
algorithms such SSD [191], ORB-SLAM [216] were imple-
mented and resulted in observations such that the priority is to
be given real-time applications with the latency demands for
instances the demand for localization and processing is greater
than the tracking. Therefore, the system demands a process-
ing layer or container to execute the driving data and tasks in
a hierarchical manner. The observation also shows end-to-end
deep learning applications can decrease the processing latency
of computing units with heterogeneous structures. Therefore,
distributed algorithms can perform better than the baseline for
some of the autonomous driving services.
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3) m-Edge: To enable the computational intensive tasks
simultaneously on resource-constrained embedded systems,
m-Edge [301] is proposed which enables edge intelligence on
the low powered embedded devices using the operating system
m-0OS. As the present embedded devices contain heteroge-
neous computing structure [257], [389], the authors proposed
a heterogeneity aware run-time and scheduling layer to exe-
cute the tasks by targeting the on-board energy efficiency. The
framework also contains a component that enables the com-
munication between edge-node and server and also performs
the data offloading tasks to save the on-board power consump-
tion. For offloading experiments, authors used applications and
data from object detection and speech recognition, as their
latency demand (requires approx 100 ms) is more compared
to SLAM applications (should be performed within 4-5 ms).
The offloading algorithm is implemented through collaboration
between edge-node(vehicle) and the server where it categor-
ically searches for edge-node where data can be offloaded
and estimate a time required for this application along with
the needed computational resources. If the server is not capa-
ble of offloading the data the information is shared over the
network with the purpose of executing the offloading task on
the next available local server. The results were demonstrated
by integrating the framework on Nvidia Jetson devices which
consume 11 W of power.

4) MobileEdge: As connected autonomous vehicles are
processing and integrating multiple driving services at the
same time, the vehicle computing unit can face significant
load because of computational complexity. To address these
issues several distributed computing approaches in the vehic-
ular ecosystem has been proposed. MobileEdge [325] is one
such edge computing framework that utilises the main vehicle
computing units and the other resource-constrained edge-node
or devices such as raspberry pi or Hikey970, present in
the vehicular ecosystem. The architecture of the MobileEdge
framework consists of two processes one which is executed
on the vehicle computing unit and the second process which
occurs on the random edge-node. The vehicle computing unit
further consists of a management system and device resource
monitor, the on-board task scheduler and the task execution
process. while the edge-node consists of resource monitor,
task receiver and task execution process. The communica-
tion between the vehicle computing unit and edge-node is
initiated over the local wireless network. The resource mon-
itor on both devices is responsible to track the system usage
and being aware of the power consumed. The task scheduler
manages the incoming raw data from the sensors and passes
them for execution or to offload it to free resources. The task
executor process the driving services associated such as video
analytics or speech recognition. Task receiver module which
is present on the edge-node receives offloaded data from the
vehicle-computing unit and pass it to task execution mod-
ule of edge-node, by implementing the distributed computing
application.

5) LoPECS: LoPECS [300] is another low power edge
computing system for real-time autonomous driving. It has
addressed the challenges of implementing computational
intensive tasks on resource-constrained embedded devices and
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can be considered as an extension of m-Edge as it replaces the
m-OS with the real-time OS which is lightweight as compared
to traditional used ROS. The architecture of LoPECS con-
tains four major layers: services classification, runtime layer,
heterogeneous aware layer and edge-server coordinator. The
services classification layer helps in the identification of tasks
and features which needs real-time execution and associated
power consumption. The second layer is runtime which con-
tains the real-time OS, architecture-aware scheduler and API.
The architecture-aware scheduler can be further categorized
into the inter-core scheduler and inner-core scheduler. This
scheduler helps in processing the incoming data and acts as
a data pipeline to the systems GPU, CPU, video and audio
accelerator. The last layer is the edge-server coordinator and
it performs the data and algorithm management strategies by
enabling communication in the vehicular environment. This
layer is also responsible to implement data offloading strate-
gies. For the evaluation purpose, the framework combining
SLAM, object detection and speech recognition is imple-
mented on Nvidia Jetson TX1 (15 W capacity) with consuming
3.5 W on GPU, and 4.2 W on CPU from these tasks and still
allows resource and memory for implementing other driving
tasks.

6) AC4AV: AC4AV [385] framework is designed for con-
nected autonomous vehicles and proposes the access control
techniques for the autonomous vehicle. The framework also
utilises a data processing and abstraction method in which
the sensed data from the sensors is identified and applied for
access related applications. The primary purpose is to pro-
tect the sensed data from phishing attacks or being maligned
from the vehicle environment. The architecture of AC4AV
comprises of three-layer to prevent the raw sensor data from
unauthorized access which are: access control engine, action
control, and lastly a logger database. The access control engine
provides dynamic authentication to access the data and also
incorporates a data processing layer that identifies the type of
data and its relevant use in the autonomous driving services,
as the vehicle is sensing from several sensors and the same
data can be used for multiple algorithms. The action con-
trol service layer is responsible for two tasks which are
action capturing and responding. The last layer is the log-
ger database which captures and records the actions. The
information from the logger database can be used as an audit
for future actions as it can help in improving latency for tar-
geted applications. The implementation is based on publishing
and subscribing, a classic approach for message and communi-
cation within an embedded environment. A similar framework
autonomous vehicular edge [73], is based on ant colony
optimization, which includes offloading and task scheduling
strategies with a decentralized approach. In this paper, the
task scheduling strategies use a generalization assignment
problem and is categorized according to the driving priority
and latency demand. The computational complexity using a
greedy algorithm and ant colony optimization were analysed
in which the computational power is measured along with
the latency and ant colony optimization results in latency less
than 1 ms.
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Key Takeaways and Lessons Learned:

1) OS: Traditional autonomous driving frameworks used
ROS or similar open-source systems integrated with
Unix to deploy CAV. In contrast to the on-board vehic-
ular frameworks, the discussed edge frameworks are
integrated using a custom lightweight OS to reduce com-
putational delay for computing-intensive applications on
resource-constrained devices.

2) Scheduler: As the vehicular services are hierarchy-
oriented and require execution within a short time-
frame. These edge frameworks focused on integrating
a scheduling algorithm also sometimes referred to as
the runtime layer to optimize the data processing for
vehicular services.

3) Communication: The discussed edge frameworks mostly
used the combination of OBU and RSU to exchange
vehicle data and model weights. A few frameworks also
used local wireless networks (802.11b) installed custom-
arily at the road intersection to initiate communication.
However, the frameworks lacked testing the commu-
nication heterogeneity using the combination of edges
such as base stations, RSU, cellular stations, and embed-
ded devices integrated with wireless modules. Strict
latency transmission of information to The communi-
cation approach proposed in these use-cases generally
considers ideal conditions in communication. However,
the communication in the vehicular ecosystem is very
dynamic and heterogeneous, which consists of several
low, and mid-range protocols with minor differences in
distances. Therefore, another limitation of these frame-
works is the inability to work in dynamic network
conditions.

4) Data: A shortcoming in the edge frameworks is the
inability to handle high-volume data from the vehi-
cle sensors in case of collaborative inference between
multiple vehicles. These frameworks do not propose any
modules to offload or aggregate the sensed data at the
edge. This may result in flood of data at the edge and
repetitive computation for the redundant data.

VI. RESEARCH OUTLOOK AND OPEN PROBLEMS

This survey studies a comprehensive and categorized review
of approximation techniques and energy-efficient methods
for autonomous driving services. The perspective and basis
on selection of topics is based on previously and recently
proposed Al and Edge Computing approaches for the driv-
ing services considering model size and real-time deployment
for the low powered embedded devices, and the relevant con-
clusive factor of these approaches is based on the heavy
computation complexity which results into high energy con-
sumption on embedded devices. The main question asked in
this survey is, What are the current approaches and trends
which can promote the concept of Level 5 self-driving by
enabling the Artificial Intelligence at the Edge Devices with
an energy-efficient approach. During the process, some of
the secondary questions related to development of model,
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Optimization and Inference approaches such as Federated
learning were explored. However there are some research gaps
and open problems which needs to be considered such as:
Data management and process techniques on the Edge devices,
Categorization for autonomous driving use-cases for real-time
use-cases, autonomous driving tasks hierarchical categoriza-
tion and energy implications of them. These topics are covered
in the following subsections.

A. Connected Vehicle Service and Case-Study

1) HD-Map: Vehicle drivers has been regularly using 2-D
map (for example: Google Maps, Apple Maps) with the cel-
lular technologies to have a precise and short duration travel
within or between the cities. For Self-driving vehicle this is
been replaced by High Definition maps or 3D maps which are
a result of mapping the roads and infrastructure using high
definition cameras and LiDAR sensors to localize the vehicle
precisely in the 3D environment and by saving the information
over the data centers or cloud services. The average roads or
dynamic scenes in a developed country changes only 5% -
13% [102] over the year, due to construction or any other
dynamic events. Therefore an approach can be implemented
along with SLAM technique to update the previous captured
HD Map in the cloud based on change in the scenarios. Lately,
research approaches [383] has been proposed to have a DNN
model to update the HD map data available in the cloud from
the crowd-sourced data.

2) Vehicular Networks and Communication: For Edge-
Assisted autonomous driving learning a cooperative approach
needs to be implemented and practiced for collaborative
decision making. Federated Learning has been proposed as
potential solution for this problem, however open directions
remains on the topics including common framework and
deployment for heterogeneous vehicular networks, resource
allocation using Federated Learning, communication, comput-
ing, and caching strategies for FL, data privacy and model
security, collaborative intelligence.

B. Enablers for Edge Application in Autonomous Driving

1) Data Management for Edge-Assisted Services: The cur-
rent autonomous driving practices involves individual imple-
mentation of tasks such as Classification, Detection or
Localization. One of the reason associated with individual pro-
cessing is non-availability of data management techniques and
practices for the edge devices. If data management techniques
can be proposed a heterogeneity aware layer can be integrated
to serve as a data flow between the Sensor and DNN algorithm.
Having Data Management techniques for the Edge-devices can
simultaneously enhance the collaborative driving functionality
and also improve the offloading strategy thus enabling each
vehicle to make independent decisions and also share the out-
put for cooperative driving use-case. Real-time compression
of streaming data (from IoT/camera) and to be stored on the
Edge for tracking or monitoring.

2) Collaborative Edge Intelligence: The limited data band-
width over wireless communication may lead to failure
with decision making process in an autonomous cars as in
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case of cooperative driving the autonomous vehicle should
continuously transmit data between the vehicle and the cloud.
Implementing AI at the Edge on large scale can enable
autonomous cars to efficiently process data and also enabling
communication between vehicles, to overcome the network
and communication related issues, distributed edge computing
and federated learning approaches can be implemented which
can enable the data processing and computation close or near
to the vehicle as compare to the approaches in cloud com-
puting where the processing and computation takes place in
the centralized cloud. With the computation occurring close
to the vehicle challenges and critical requirement such as
accuracy, low-latency, reliability, power, and energy consump-
tion, of autonomous vehicles [183] can be achieved. However,
bringing services near the vehicles’ network where connectiv-
ity of the cars and their data is increasing at a tremendous rate
often becomes highly crucial due to scalability issues in terms
of functionality, administration, and load. Moreover, the con-
nectivity among a large number of devices results in a flood
of data production that can hinder the edge node to perform
analytic on such a large-scale data by meeting strict latency
requirements of autonomous cars. An adequate consideration
must be given to resolve the edge-related issues for enabling
successful deployment of autonomous cars.

3) Training and Inference at the Edge: As covered in this
survey, the volume of data from the sensors and the quality
of data is rapidly changing and increasing depending upon the
change in dynamic layer. To ensure the adaptability of Edge
Al algorithm for a new or different data from the autonomous
driving services environment, it becomes necessary to perform
and implement Al model training and inference at the edge.
As this will ensure the real-time update of legacy or ground-
truth data available near Edge and will also ensure the timely
update of global model by exchanging binary weights with
the backend cloud. The training and inference approach at
the edge device can counter two major challenges: Inference
latency which can be caused when the model is trained over
other device or system (for example cloud) and Secondly the
privacy as on device training will prevent the data from being
shared over cloud.

4) Common Edge Framework: The implementation of
approach such as Federated Learning, in autonomous driving
demands a common Edge Al framework to be implemented
across entities involved. A common edge framework across
Vehicles, Edge Server, Infrastructure Sensors and Centralized
cloud needs to be deployed to increase the efficiency and accu-
racy of applications. A common edge framework can bring the
performance of individual devices to optimum level with need-
basis collaboration from the vehicles and infrastructure sensor,
Also it is important for privacy and security features.

C. Energy Efficiency Evaluation of DNN Implementation on
Embedded Devices

Resource Constrained Devices: Deep neural networks have
delivered competitive accuracy for detection, segmentation,
mapping and localization-related tasks for autonomous driving
and with the advancement, in libraries and frameworks, they
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Fig. 14. Edge-assisted driving services: The pipeline consists of on-board vehicle sensors in the car, the computation and decision-making process, Edge-server,

infrastructure sensors & devices, and the remote cloud.

have also been deployed on resource-constrained devices such
as smartphones, FPGA. However, there are several drawbacks
which cannot be overlooked. The best-in-class accuracy from
the state-of-the-art DNN is delivered at the extreme computa-
tional cost caused during training and inference [231] which
significantly increases the overall energy consumption in the
autonomous driving ecosystem. Literature covered in this sur-
vey shows several methods that have been proposed to improve
the accuracy and speed of DNN processing by optimizing met-
rics involved, for example optimizing the binary weights and
operations involved in complex layer such as convolutional,
Fire modules. These approaches do not necessarily make a
significant improvement on the embedded device deployment
and applications. Therefore there is an open requirement to
propose an efficient DNN model for autonomous driving train-
ing and inference applications which simultaneously tackle
the problem of low latency applications by overcoming the
challenge of data and the energy consumed.

Real-time applications such as SLAM or vision related tasks
requires low latency and high precision by the embedded
devices. The relevant literature covered in this survey mostly
exploits high-end GPU which is cost-intensive for large scale
deployment. To enable these tasks on edge embedded devices

a combined software and hardware acceleration approaches
can be proposed which integrates data offloading strategies
and energy or power saving techniques by simultaneously
enhancing the accuracy and performance of these resource-
constrained devices.

D. Outlook of Edge Al Pipeline

Takeaways and lessons learned from this survey highlight
the need for an Edge AI processing pipeline that can pro-
cess large volumes of data to carry out decision making
processes. Figure 14 shows an overview of the Edge Al pro-
cessing pipeline envisioned for future connected autonomous
driving services, where the design of this pipeline corresponds
to the joint processing of data at the vehicle on-board comput-
ing unit and at the Edge-server. In the proposed scenario, the
Al processing pipeline consists of four major components. The
first component comprises of the sensing unit present in the
vehicle (camera, LiDAR, radar, GPS, and the communication
unit (on-board unit + cellular connectivity), which is capturing
data from the vehicles surrounding.

The second component consists of computation and
decision-making process, it involves an edge device placed
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in the vehicle processing the data through a deep neural
network thus enabling driving services such as perception,
SLAM and communications. The computation and decision-
making process is a complex task while incorporating energy-
efficient autonomous driving service through edge intelligence.
Therefore, it is necessary to highlight the process which
consumes a significant amount of on-board energy. Further,
the computation and decision-making process is divided into
data processing pipeline and computing respectively. The data
processing pipeline is assigned with tasks, such as offload-
ing, labelling, real-time compression, legacy data update and
sharing the refined data with other entities involved in the
surrounding, such as other vehicles, or edge servers. The
processes carried out in the data processing pipeline can solve
the primary concern of memory and power for resource-
constrained edge embedded devices. The computing part
involves processing the refined data over a deep neural network
to generate the weights for driving applications. With the pos-
sibility of optimizing deep neural networks further acceleration
and approximation techniques such as deep neural network
model compression, data fusion or approaches such as early
exit deep neural networks can be used. It is important to
note that tasks such as SLAM, object-tracking, obstacle detec-
tion has low-latency and high bandwidth requirements, which
makes it necessary and practical to process sensed data at the
vehicle’s on-board computing unit for these tasks instead of
processing at the edge or remote cloud. Therefore, one of the
inputs from the vehicle sensors bypasses the data processing
pipeline and is directly used for computational purpose.

The third component of the proposed edge Al processing
pipeline consists of an edge server that is responsible for the
processing of large-volume data and enabling communication
in the vehicular ecosystem. The communication here can be
categorized as: vehicle to edge server (for sharing of raw
data), Edge server to a vehicle (for sharing of DNN model
weights and refined or processed data), Edge server to infras-
tructure, and lastly edge server to backend cloud. To reduce
the extensive on-board energy consumption in an autonomous
vehicle, it is important to process the computationally intensive
tasks over the edge-server, which implements lossless com-
pression, optimization, and software approximation approach,
which can help in achieving overall end-to-end energy
efficiency.

The fourth component consists of roadside infrastructure
which includes a sensor suite (CCTV, traffic lights, LiDAR,
communication unit, GPS) similar to the vehicle and helps
in tasks and applications such as smart traffic flow, traffic
monitoring, map update etc. As illustrated in Figure 14 the
component also comprises of similar data processing pipeline
executing tasks such as offloading, labeling, real-time data
compression and data or model sharing over wired communi-
cation with the edge server and backend cloud. The backend
cloud is communicating with the vehicle, server and infras-
tructure sensors in case of DNN model update, or legacy
data update. To improve the accuracy and enable collaborative
driving, the model weights and data update should be shared
between the backend cloud, vehicle and edge server over
wireless and wired networks respectively.
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VII. CONCLUSION

This paper has explored and reviewed autonomous driving
applications of perception, SLAM, HD map, vehicular
communications, and inference approaches deployed on
autonomous embedded platforms and edge devices. Attention
has been given to exploring the currently available datasets and
autonomous driving frameworks. Focusing on the impact of
computational complexity and energy-efficiency on resource-
constrained devices, we highlight the communication efficient
approaches and software approximation techniques, including
low-rank approximation, pruning, quantization and sparsifica-
tion, which aim at reducing the statistical model parameters
for inference. In addition, we also covered the energy-efficient
deployment of Al applications on resource-constrained devices
using allocation schemes, heterogeneity-aware mechanisms
and federated learning. Our purpose is to provide a ded-
icated review of energy-efficient approaches for connected
autonomous driving, ranging from vehicular communication,
edge computing, approximation techniques to novel software-
hardware frameworks. Besides identifying research gaps, we
highlight the existing challenges and open problems that
deserve further research investigations from the community.
Finally, based on the identified gaps, we envision an Edge Al
processing pipeline to share our outlook on potential develop-
ment of energy-efficient applications for level 4 and beyond
edge-assisted autonomous driving applications.
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