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Abstract—Today’s cyber attacks have become more severe
and frequent, which calls for a new line of security defenses
to protect against them. The dynamic nature of new-generation
threats, which are evasive, resilient, and complex, makes tradi-
tional security systems based on heuristics and signatures struggle
to match. Organizations aim to gather and share real-time cyber
threat information and then turn it into threat intelligence for
preventing attacks or, at the very least, responding quickly in
a proactive manner. Cyber Threat Intelligence (CTI) mining,
which uncovers, processes, and analyzes valuable information
about cyber threats, is booming. However, most organizations
today mainly focus on basic use cases, such as integrating threat
data feeds with existing network and firewall systems, intru-
sion prevention systems, and Security Information and Event
Management systems (SIEMs), without taking advantage of the
insights that such new intelligence can deliver. In order to make
the most of CTI so as to significantly strengthen security pos-
tures, we present a comprehensive review of recent research
efforts on CTI mining from multiple data sources in this article.
Specifically, we provide and devise a taxonomy to summarize
the studies on CTI mining based on the intended purposes (i.e.,
cybersecurity-related entities and events, cyber attack tactics,
techniques and procedures, profiles of hackers, indicators of com-
promise, vulnerability exploits and malware implementation, and
threat hunting), along with a comprehensive review of the cur-
rent state-of-the-art. Lastly, we discuss research challenges and
possible future research directions for CTI mining.
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I. INTRODUCTION

IN THE wake of the massive disruptions that have
been caused by the COVID-driven social, economic, and

technological changes of the 2020s, cybersecurity adversaries
have refined their tradecraft to become even more sophisti-
cated. A series of high-profile attacks followed, such as the
SolarWinds supply chain attack [1], which rocked many orga-
nizations and marked a turning point in cybersecurity. As the
process of collecting, processing, and analyzing information
about threat actors’ motives, targets, and attack behaviors,
Cyber Threat Intelligence (CTI) assists organizations, govern-
ments, and individual Internet users in making faster, more
informed, data-backed security decisions and changing their
behavior in order to fight threat actors from a reactive to a
proactive one.

Several definitions exist for CTI. An example of what CTI
is defined as is “evidence-based knowledge, including context,
mechanisms, indicators, implications, and actionable advice
about an existing or emerging menace or hazard to assets
that can be used to inform decisions regarding the subject’s
response to that menace or hazard” [2]. In [3], CTI refers
to “the set of data collected, assessed and applied regarding
security threats, threat actors, exploits, malware, vulnerabili-
ties and compromise indicators”. Dalziel [4] describe CTI as
“data that has been refined, analyzed, or processed such that
it is relevant, actionable, and valuable”. Generally speaking,
the input of the CTI pipeline is the raw data about cybersecu-
rity, while the output is the knowledge that can help in future
decision-making for proactive cybersecurity defense, includ-
ing strategies for limiting the extent and prevention of cyber
attacks.

By using CTI to observe cyber risks, organizations of
all shapes and sizes can better understand their attackers,
respond quicker to incidents, and proactively get ahead of
what threat actors will do in the near future. For small and
medium-sized enterprises, CTI data is of great benefit to them
because it allows them to access a level of protection they
were previously unable to achieve. Meanwhile, enterprises
with large security teams can reduce costs and increase the
effectiveness of their analysts by leveraging external CTI.

Driven by the increasing awareness of proactively striv-
ing to achieve cyber resilience, some research efforts have
been made to review related works. The existing surveys
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TABLE I
LIST OF ACRONYMS USED THROUGHOUT THIS PAPER

on CTI are summarized in Table II. Specifically, the semi-
nar work [5] presented a study on the darknet as a practical
approach to monitoring cyber activities and cybersecurity
attacks. This study [5] defined darknet data components as
scanning, backscatter, and misconfiguration traffic, and pro-
vided a detailed analysis of protocols, applications, and threats
using a large volume of data. Case studies such as Conficker
worm, Sality SIP scan botnet, and the largest DRDoS attack
were used to characterize and define the darknet. The paper
also reviewed the contributions of darknet measurement by
analyzing data extracted from it, including cyber threats and
events and identified technologies related to the darknet.
Additionally, Robertson et al. [6] proposed a system consisting
of a crawler, parser, and classifier to locate sites where security
analysts can gather information, as well as a game theory-
based framework for simulating an attacker and defender in

the process of CTI mining and analyzing as a security game
involving past attacks and security experts.

Further, Tounsi and Rais [7] classified the existing threat
intelligence types into strategic threat intelligence, operational
threat intelligence, and tactical threat intelligence. With the
focus mainly on the Tactical Threat Intelligence (TTI) that
was mainly generated from the Indicators of Compromise
(IOCs), the work [7] provided a comprehensive study on the
TTI issues, emerging research trends, and standards. With the
advancements in Artificial Intelligence (AI), Ibrahim et al. pro-
vided a brief discussion on how to apply AI and Machine
Learning (ML) approaches to leverage CTI to stop data
breaches. Rahman et al. [11], [12] further provided a holis-
tic discussion of various technologies in the area of ML
and Natural Language Processing (NLP) for automatically
extracting CTI from the textual descriptions. As the usage of
CTI is one of the key steps to maximizing its effectiveness,
Wagner et al. [8] reported the investigation on the state-of-the-
art approaches to sharing CTI and the associated challenges
of automating the sharing process with both the technical and
non-technical challenges. Abu et al. [9] gave an overall survey
on CTI definition, issues and challenges. Ramsdale et al. [14]
summarized the current landscape of available formats and
languages for sharing CTI. They also analyzed a sample of
CTI feeds, including the data they contain and the challenges
associated with aggregating and sharing that data.

Beyond the research works on CTI, the use and implementa-
tion of CTI is a common practice in government organizations
and enterprises, reflecting the growing recognition of the crit-
ical importance of cyber security. These two parties have
dedicated teams responsible for collecting, analyzing, and dis-
seminating threat intelligence information, often through spe-
cialized CTI platforms and tools. For example, the Information
Sharing and Analysis Center (ISACs) are centralized non-
profit organizations that are established to facilitate the sharing
of CTI and other security-related information among their
members. ISACs serve a variety of industries and sectors,
including critical infrastructure, financial services, healthcare,
technology, and others. They bring together organizations from
within a specific industry or sector to share threat intelli-
gence and best practices, as well as collaborate on incident
response and mitigation efforts. ISACs are often supported by
government agencies and other organizations, and they typ-
ically follow strict security and privacy protocols to ensure
that sensitive information is protected and shared only among
authorized individuals.

According to the 2022 Crowdstrike threat intelligence
report, CTI is increasingly being recognized as a valuable
asset, with 72 percent planning to spend more on it over
the next three months in 2022 [15]. Government organiza-
tions and enterprises alike are investing significant resources
into enhancing their CTI capabilities, recognizing that staying
ahead of the constantly evolving threat landscape requires con-
tinuous improvement and adaptation. Such efforts include the
development of in-house expertise, the establishment of part-
nerships with other organizations and industry leaders, and
the use of cutting-edge technologies and methodologies. The
efforts made by government organizations and enterprises to
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TABLE II
OUR NOVEL CONTRIBUTIONS IN CYBER THREAT INTELLIGENCE MINING AND HOW THEY DIFFER FROM PREVIOUS SURVEYS. UNDER THE CATEGORY

OF MAIN TOPICS, “○”,“�”, AND “○␣” REPRESENT COMPREHENSIVE REVIEW, PARTIAL REVIEW, AND NOT REVIEW, RESPECTIVELY

improve their CTI capabilities demonstrate the commitment
to protecting their critical assets and safeguarding against the
risks posed by cyber threats. CTI is a crucial component of a
comprehensive cyber security strategy and an essential tool in
the ongoing efforts to secure digital systems and networks
for organizations and enterprises. Furthermore, according
to the 2022 SANS CTI survey conducted by Brown and
Stirparo [13], 75 percent of the participants believe that CTI
improves their organization’s security prediction, threat detec-
tion, and response. The survey also revealed that 52 percent
of the respondents considered detailed and timely information
as the most crucial characteristic for the future of CTI.

As a result of the surge in cyber attacks in recent years, a
large number of attack artifacts have been reported extensively
by public online sources and actively collected by different
organizations [16], [17]. By mining CTI, organizations can
discover evidence-based threats and improve their security
posture by detecting early signs of threats and continuously
improving their security controls. The source data for mining
CTI can be retrieved from private channels, such as com-
pany internal network logs, as well as public channels, such
as technical blogs or publicly available cybersecurity reports.
In particular, cybersecurity information written in natural
language comprises the majority of the CTI. Cybersecurity-
related data can be gathered from a wide variety of sources,
and this provides a stepping stone on the path towards min-
ing CTI. However, mining robust, actionable, and genuine CTI
while keeping pace with the rapidly increasing cybersecurity-
related information is challenging. Although there is a positive
trend towards higher levels of context, analysis, and rele-
vance of CTI, 21 percent of the participants in the 2022
SANS CTI survey [13] do not perceive any improvement
in their organization’s overall security situation due to CTI.
Currently, many organizations concentrate on fundamental
usage scenarios that involve merging threat data feeds with
their current network and firewall systems, intrusion preven-
tion systems, and Security Information and Event Management

systems (SIEMs). However, they do not make the most of the
valuable knowledge that such new intelligence can provide.
Consequently, it is important to study CTI mining consumption
at fine granularities to develop effective tools. To be specific,
to investigate what kind of CTI can be obtained through CTI
mining, the methodology to achieve it, and how to use the
acquired artifacts as proactive cybersecurity defense. Based
on the above motivation, we conduct a comprehensive liter-
ature review of how CTI can be acquired from diverse data
sources, especially from information written in the form of
natural language texts from various data sources, to defend
against cybersecurity attacks proactively. This perspective has
not been explored in the existing survey works despite the fact
that CTI has been extensively studied in the previous literature
review.

The primary focus of this paper is to review recent studies
on CTI mining. In particular, our work provides a summary of
the CTI mining techniques and the CTI knowledge acquisition
taxonomy. Our article presents a taxonomy that classifies CTI
mining studies based on their objectives. Additionally, we offer
a comprehensive analysis of the latest research on CTI mining.
We also examine the challenges encountered in CTI mining
research and suggest future research directions to address these
issues. Below is a summary of the contributions highlighted
in this paper:

• Our review summarizes a six-step methodology that
transforms cybersecurity-related information into
evidence-based knowledge through perception, com-
prehension, and projection for proactive cybersecurity
defense using CTI mining.

• We collect and review the state-of-the-art solutions and
provide an in-depth analysis of collected work with the
proposed taxonomies based on CTI consumption, partic-
ularly seeing through the eyes of attackers for proactively
defending against cyber threats.

• As part of our efforts to expand the perspectives of other
researchers and CTI communities, we discuss challenges
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Fig. 1. Methodology of Cyber Threat Intelligence Mining for Proactive Security Defense.

and open research issues as well as identify new trends
and future directions.

As follows is an overview of this survey. Firstly, Section II
provides an overview of CTI mining, including its method-
ology of CTI mining and taxonomy. Section III presents a
comprehensive review of existing work in the field of CTI
mining according to our proposed taxonomy. Section IV dis-
cusses the challenges and future direction in this area. Finally,
Section V concludes the paper. Table I lists and describes the
acronyms used throughout this paper.

II. CYBER THREAT INTELLIGENCE MINING

METHODOLOGY AND TAXONOMY

Based on the surveyed papers, we summarize the method-
ology for CTI mining and the taxonomy for CTI knowledge
acquisition. The process of CTI mining gradually evolved peo-
ple’s insights about cybersecurity from the perception of data
in the environment to an understanding of the meaning of the
data and finally to a projection of future decisions. Moreover,
the taxonomy summarizes the most valuable information
for various purposes of CTI mining and provides a new
perspective on CTI mining.

A. Research Methodology

As shown in Figure 1, the methodology consists of
six steps: cyber scenario analysis, data collection, CTI-
related information distillation, CTI knowledge acquisition,
performance evaluation, and decision-making. Cyber scenario
analysis and data collection enable the perception of the spe-
cific environment across time and space. The data distillation
and CTI knowledge acquisition help the comprehension of the
data perceived in the previous steps by locating the targets and
acquiring useful information. The last two steps, evaluation
and decision-making, constitute the projection stage, where
decisions are made efficiently and effectively.

1) Step 1 - Cyber Scenario Analysis: CTI mining is a
process for turning raw data into actionable intelligence for
decision-making and taking immediate action as needed. As
the first step of the threat intelligence lifecycle, the cyber sce-
nario analysis stage is crucial because it sets the roadmap for
specific threat intelligence operations that will be conducted
in the future. There are a variety of primary cyber scenarios in

the reviewed studies, including Fintech security, IoT security,
critical infrastructure security, and cloud-based CTI as a ser-
vice. There will be a planning stage where the team will agree
on the goals as well as the methodology of their intelligence
program based on the requirements of the cyber scenario with
various stakeholders involved in the project. Among the things
the team may discover are: (1) What the attackers are and what
their motivations are, as well as who they are in a specific
cyber scenario? (2) Is there a surface area that is vulnera-
ble to attacks? (3) How can their defenses be strengthened
in the event of an attack in the future? Examples of primary
cyber scenarios in our reviewed studies: Fintech security, IoT
security, critical infrastructure, and CTI-as-a-service.

2) Step 2 - Data Collection: As a way of protecting orga-
nizations and the security community against fast-evolving
cyber threats, many efforts have been made for sharing threat
intelligence. There is no doubt that public sources are a sig-
nificant contributor to CTI, regardless of the platform used
to access it. To share unclassified CTIs, a few approaches
such as AlienVault OTX [18], OpenIOC DB [19], IOC
Bucket [20], and Facebook ThreatExchange [21] have been
established. The information shared on these platforms can
help organizations identify and mitigate security risks, prior-
itize their security efforts, and respond more effectively to
cyber threats. As an example of a crowd-sourced platform,
Facebook ThreatExchange [21] is open to any organization
and allows participants to share real-time threat intelligence
information, including information about malware, phishing
campaigns, and other types of cyber attacks. The CTI data
are usually available for Web crawling once published on
online platforms. For example, we can obtain vulnerability
records from the National Vulnerability Database (NVD) [22]
as well as historical data breach reports in Verizon’s annual
Data Breach Investigations Reports (DBIR) [23]. Data gen-
erated by technical sources (i,e., security tools and systems)
including log files, network traffic, and system alerts, were
used as valuable sources for predicting cybersecurity inci-
dents [24]. In addition, APIs are provided by various kinds
of social media, such as Twitter, to analyze the data within
these social media sites and collect threat information shared
by individuals and organizations. For the restricted assessed
CTI, platforms such as the Defense Industrial Base (DIB) vol-
untary information sharing program [25] have been created
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Fig. 2. Taxonomy of Cyber Threat Intelligence Mining for Proactive Security Defense.

to help organizations better protect themselves and their cus-
tomers from cyber threats. These platforms provide a secure
and collaborative environment for exchanging threat intelli-
gence information between certified participants. For example,
the DIB voluntary information sharing program restricted to
DIB participants only is specifically designed for the Defense
Industrial Base and is aimed at improving the security and
resilience of the DIB against cyber threats. The program allows
DIB participants to share threat intelligence information and to
work together to enhance the security of the DIB against cyber
threats, foreign interference, and other security risks. Last but
not least, it is worth mentioning that illegal online market-
places and forums through dark Web sources can provide
information about ongoing cyber threats.

3) Step 3 - CTI-Related Information Distillation: After col-
lecting data, it is important to distill information (i.e., articles,
paragraphs, or sentences) that are related to CTI in order
to prepare for the CTI knowledge acquisition. Classification
is one of the widely adopted approaches for classifying the
pieces of target information related or unrelated to CTI. Using
examples from a variety of annotated classes (e.g., CTI-related
or non-CTI-related), researchers have built machine-learning
classification models to predict the classes of unseen data.
Unsupervised machine learning algorithms can be considered
as an alternative method of distilling information associated
with CTI based on the similarity between the contents of the
data clustered together.

4) Step 4 - CTI Knowledge Acquisition: Following the
completion of the CTI-related information distillation, it is

necessary to conduct data analysis in the form of CTI knowl-
edge acquisition to pinpoint and locate pertinent and accurate
information based on the users’ requirements. The researchers
and CTI community have employed NLP and ML tech-
niques to extract CTI from textual data. Figure 2 shows a
detailed taxonomy of the six specific categories of CTI knowl-
edge acquisition based on the collected literature, respectively
cybersecurity-related entities and events, cyber attack tactics,
techniques and procedures, the profiles of hackers, indicators
of compromise, vulnerability exploits and malware implemen-
tation, and threat hunting.

5) Step 5 - Performance Evaluation: In the fifth step, we
evaluate the extracted CTI’s performance against our expected
objectives. It is usually measured according to various metrics
in order to assess performance. Most classification or clus-
tering tasks involve using a few standard metrics, including
accuracy, recall, precision, False Positive Rate (FPR), and F1-
score. In order to depict the trade-offs between benefits and
costs, graphical plots are used, such as Receiver Operating
Characteristic (ROC) curves with the TPR plotted on the y-
axis and the FPR plotted on the x-axis. The area under the
ROC curve indicates the strength of ROC curves cumulatively.
Furthermore, there is a high expectation that less time will be
spent on extracting requested information with the real-time
CTI experience. A major challenge for cybersecurity tasks,
including CTI knowledge acquisition, is often FPR because
the false alarms result in excessive costs associated with man-
ual verification, which, in many cases, is the result of the false
alarms. In a way that has never been seen before, an emerging
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CTI is expected to discover, for the first time, that the goal of
pursuing performance is usually to maximize TPR while mini-
mizing FPR. It is possible to determine whether a specific CTI
knowledge acquisition approach produces satisfactory results
by leveraging comprehensive evaluation metrics. If unsatis-
factory results are achieved, it is recommended to repeat the
process with the required alternations.

6) Step 6 - Decision-Making: Depending on how CTI is
extracted within different categories, it can be used for a
variety of purposes for decision-making. Following is a sum-
mary of key applications of acquired CTI in the process
of decision-making, including CTI sharing, alert generation,
threat landscape, search engine, education, and countermea-
sures.

CTI sharing: It is a practice in which a variety of
information relating to cybersecurity is shared in order to iden-
tify risks, vulnerabilities, threats and internal security issues as
well as to share good practices in this regard. The extracted
CTI under various categories is expected to be shared between
multiple organizations, including government agencies, IT
security firms, cybersecurity researchers, etc. CTI sharing is
typically driven by legal and regulatory factors (e.g., General
Data Protection Regulation (GDPR) [26]), as well as economic
factors (e.g., reducing the cost of resolving the consequences
of data breaches).

Alert generation: According to the definition from
National Institute of Standards and Technology (NIST) [27],
information about a specific attack directed at an organiza-
tion’s information systems is called an alert in cybersecurity.
An alert regarding current vulnerabilities, exploits, and other
security issues that are usually human-readable can be gener-
ated directly from the extracted CTI under various categories.
Several outputs can be produced, including vulnerability notes,
bulletins, and recommendations.

Threat landscape: The threat landscape refers to the full
spectrum of potential and recognized cybersecurity threats
affecting specific industries, organizations, or user groups
in a particular period. The threat landscape is constantly
changing as new cyber threats emerge every day. Using the
extracted CTI from the text, security experts can gain a
deeper understanding of the threat landscape based on the
extracted CTI.

Cybersecurity domain search Engine: The extracted CTI can
serve as the basis of a cybersecurity search engine. Generally
speaking, information retrieval refers to the science of find-
ing information from text, images, and sounds, as well as
information from metadata that describes the data that are
being searched for [28]. Through search engines, information
can be found on the Internet. Cybersecurity domain search
engines are increasingly focusing on explainable cybersecu-
rity contexts to emphasize that the amount of information
users digest does not depend on the number returned, but
rather on their understanding of the returned information. For
example, Shodan [29] is a cybersecurity search engine for
Internet-connected devices.

Education and training: There is currently a shortage of
qualified cybersecurity professionals throughout the world at
the moment. This shortage could reach 18,000 in Australia

by 2023, according to AustCyber. By providing explainable
and structured illustrations of the cybersecurity context, the
extracted CTI will contribute to cybersecurity education and
training. On the one hand, the education system helps address
the shortage of skilled cyber professionals by building a
pipeline of skilled professionals in the industry. On the other
hand, cybersecurity education is also expected to help peo-
ple who lack a solid understanding of cybersecurity domain
knowledge increase their awareness of cybersecurity incidents
and threats.

Risk management: By using CTI, organizations can enhance
their risk management procedures with access to valuable
intelligence on the most recent vulnerabilities, attack methods,
and exploits. Keeping current with emerging risks and vulnera-
bilities can enable organizations to adopt preemptive measures
to identify and manage risks before they are exploited, ulti-
mately reducing the potential cost and impact of a security
incident.

B. Cyber Threat Intelligence Mining Definition and
Taxonomy

As far as we know, there is no formal definition of Cyber
Threat Intelligence Mining. However, the definition of data
mining has been proposed by several researchers and practi-
tioners in the field of computer science, statistics, and data
analysis. According to the definition from IBM, data mining,
also known as knowledge discovery in data, is the process
of uncovering patterns and other valuable information from
large datasets. As one of the most widely cited definitions
provided by Fayyad et al. [30], “Data mining is the applica-
tion of specific algorithms for extracting patterns from data”.
Chakrabarti et al. [31] further explained the definition from
Fayyad et al. [30] as “the process of extracting and discovering
patterns in large data sets involving methods at the intersection
of machine learning, statistics, and database systems”. By lim-
iting the scope of data in the concept of data mining, in
this survey, we define Cyber Threat Intelligence Mining as
the collection and analysis of large amounts of information
from various Cyber Threat Intelligence data sources to iden-
tify information relating to cyber threats, attacks, and harmful
events.

As introduced in Section II-A, the methodology of CTI
mining, as shown in Figure 1, essentially turns the data
broadly related to cybersecurity into the digestible CTI for
final decision-making. As the bridge linking the perception
and projection stages, the comprehension stage plays a role in
distilling information related to CTI only and locating useful
information according to various goals. As shown in Figure 2,
using the stages of comprehension of CTI as a starting point,
we categorize the reviewed work on CTI mining based on the
aims of CTI knowledge acquisition. To shed more light on the
rationale behind the identified six categories of CTI mining, in
the following, we draw an analogy between CTI mining and
a generic disease-treatment process.

1) Cybersecurity Related Entities and Events: The iden-
tification of cybersecurity-related entities and events in CTI
mining is like a diagnosis step that identifies the nature of
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a particular illness or disease. In cybersecurity entity and
event extraction, named entities in the unstructured text are
located and classified into predefined cybersecurity categories,
such as impacted organizations, locations, vulnerabilities,
etc, while events are classified into predefined cyber attack
categories, such as phishing, Distributed Denial-of-Service
(DDoS) attacks, etc.

2) Cyber Attack Tactics, Techniques, and Procedures: In
this task category, the goal is to determine how cyber threat
actors and hackers prepare and execute cyber attacks by ana-
lyzing their Tactics, Techniques, and Procedures (TTPs). This
is analogous to pathology study in healthcare, which aims to
understand the causes and effects of disease or injury.

3) The Profiles of Hackers: The third category in our tax-
onomy of CTI mining is called profiles of hackers which trace
the origin of cyber attacks. The establishment of a hacker pro-
file aims to uncover the sources and resources of a threat actor,
including cyber threat attribution and hacker assets. This is
similar to the identification of pathogens in biology, which
refers to the step of finding any organism or agent (e.g., a
bacterium or virus) that can produce disease.

4) Indicators of Compromise: The extraction of IoCs aims
to find pieces of forensic data that provide evidence of
potentially malicious activity on an organization’s system, for
example, the names, signatures, and hashes of malware. IOCs
are similar to physical or mental symptoms which indicates a
condition of disease.

5) Vulnerability Exploits and Malware Implementation:
This category includes literature on studies analyzed docu-
mentation, such as literature and user manuals, to discover
vulnerabilities under a particular product or service, predict
exploits, and find information about malware implementation
for predicting software characteristics. Like the complication
of potential disease, exploiting vulnerabilities and implement-
ing malware is highly relevant to the consequences of cyber
threats.

6) Threat Hunting: The purpose of this category of task
is to identify previously unknown or ongoing non-remediated
threats within an organization’s network. This process can be
analogous to the genetic testing conducted in a generic disease-
treatment process, which predicts the likelihood of a healthy
individual developing a specific disease in the future [32].

III. STATE-OF-THE-ART STUDIES: A PROACTIVE

DEFENSE PERSPECTIVE

A. Cybersecurity Related Entities and Events

Cybersecurity attacks and incidents are widespread and have
a wide range of consequences and implications, from data
leaks to the potential loss of life and disruption of critical
infrastructure [24]. It is crucial to develop cyber defenses
based on the authoritative record of cyber events reported in
the media as well as their key dimensions (e.g., exploited vul-
nerability, impacted system, duration of events). Cybersecurity
event details recorded at fine granularity can assist various
analytics efforts, including identifying cyber attacks, devel-
oping predictive indicators of attacks, tracking cyber attacks

over time and space, and integrating them into cybersecu-
rity graphs to assist automated analysis. In this section, we
review the corresponding works that acquire knowledge about
the cybersecurity related entities and events through CTI
mining.

1) Summary of Representative Work: The entity extraction
technique in NLP automatically extracts specific data from
unstructured text and categorizes it based on predefined cat-
egories. Furthermore, knowledge of the entities present in
a sentence can provide information that is useful for con-
firming the category of events and predicting event triggers.
Researchers are studying cybersecurity related entities and
events extraction for CTI mining, which is key to dealing with
heterogeneous data sources and the huge volume of cyber-
security related information. A summary of the survey of
representative studies is listed in Table III.

As a preliminary study, several approaches [33], [34]
were proposed to quickly extract cybersecurity events with-
out labeled data for the training process. A weakly super-
vised ML approach was proposed in [34] with no training
phase requirement to extract events from Twitter stream
data rapidly. The study [34] focuses on three high-impact
categories of cybersecurity attacks, including data breach,
DDoS and account hijacking, to demonstrate how to identify
cybersecurity events based on convolution kernels and depen-
dency parses. The highest precision in successfully detecting
cybersecurity-related events can obtain 80% in this work [34].
In addition, work [33] utilized an unsupervised ML model
(i.e., Latent Dirichlet Allocation (LDA)) to cluster the relevant
posts in hacker forums, which demonstrates a method that can
effectively extract CTI in the aspect of cybersecurity events.
Although Deliu et al. [33] only evaluated the performance
of the estimated cybersecurity events on the number of top-
ics and time elapsed, the work demonstrated the approach
for quickly extracting relevant cybersecurity topics and
events.

The categories of automatically identified cybersecurity
related entities and events have grown with the introduc-
tion of datasets with annotations and the development of
NLP and deep learning techniques. Dionísio et al. [35] anno-
tated cybersecurity related Twitter data with 5 categories of
entities (as shown in Table III) that considers descriptions
from the European Network and Information Security Agency
(ENISA) risk management glossary [39]. In this work [35],
the Bidirectional Long Short Term Memory (BiLSTM) Neural
Network (NN) were implemented for name entity recogni-
tion. Pre-trained word embeddings that refer to embeddings
learned in one particular task that is used for solving another
similar task, including GloVE [40] and Word2Vec [41] were
applied to provide a starting point for the semantic value.
The BiLSTM model achieved an average F1-score of 92%
in recognizing the six categories of cybersecurity related
entities. The annotated data (i.e., cybersecurity related enti-
ties) built in work [35] are publicly available through their
GitHub website,1 which provides the groundtruth for name
entity recognition in CTI domain. Satyapanich et al. [36]

1https://github.com/ndionysus/twitter-cyberthreat-detection
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further expanded additional cybersecurity related entities and
events by creating a corpus2 of 1,000 English news articles
that were labeled with rich, event-based annotations which
covers cyber attacks and vulnerability related cybersecurity
attacks. Along with the BiLSTM layer, the work [36] also
applied attention mechanisms that have been used and proved
with great advancement in NLP for learning the highlighted
important parts of the text. In addition, the work [36] used
Word2Vec [41] and BERT [42] embeddings in the word
embedding layers, and further concatenated the embedding lin-
guistics features to form the embedding layers, including Parts
of Speech (PoS), position of the words, etc. Totally, there are
20 cybersecurity related entities (e.g., file, device, software)
and 5 events (e.g., phishing) defined and can be automatically
detected through the proposed approach [36].

The Graph Neural Network (GNN) that represents data
as graphs aims to learn features from the graph level to
classify nodes, which began to be applied in the field of
information extraction [43]. The complexity of entities in the
field of cybersecurity makes it difficult to capture non-local
and non-sequential dependencies in name entity recogni-
tion [37]. Hence, the recent research [37], [38] proposed

2https://github.com/Ebiquity/CASIE

to use both local context and graph-level non-local depen-
dencies extracted by GNN to conduct cybersecurity entity
recognition. In the work [37], Fang et al. aimed to identify
four types of entities from the cybersecurity articles, which
are composed of PERSON (PER), ORGANIZATION (ORG),
LOCATION (LOC) and SECURITY (SEC). During the pro-
cess of graph construction, each node in the graph repre-
sented a word in each sentence and each edge constructed
local context dependencies and non-local dependencies. In
addition, the word level embeddings (i.e., Word2Vec [41])
and character level embeddings that capture the contextual
information of the words in the sentence were applied. The
CyberEyes model proposed in the work [37] can finally
obtain an F1-score of 90.28% for the four types of cyber-
security entities. Trong et al. [38] annotated a large dataset
that includes 30 subcategories cybersecurity events under four
different stages of a cyber attack, respectively DISCOVER,
PATCH, ATTACK and IMPACT. The state-of-the-art Multi-
Order Graph Attention Network based method for Event
Detection (MOGANED) and Attention [44] was applied with
Word2Vec [41] and BERT [42] embeddings. Although the
highest F1-score of cybersecurity event extraction achieved is
68.4% for their annotated dataset [38] by using a Document
Embedding Enhanced Bidirectional Recurrent Neural Network
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(RNN). When MOGANED with BERT was applied to the
cybersecurity entities datasets proposed by [36], the F1-score
was increased by 6.56% to 86.5%.

2) Discussion: The previous subsection reviewed seven rep-
resentative studies mining cybersecurity related entities and
events. A summary of the surveyed studies is presented in
Table III, where we showed the critical difference in each work.
Particularly, cybersecurity related entities and events defined
in these studies are summarized in Table IV and Table V.

In our reviewed studies, the main techniques used in mining
cybersecurity entities and events are divided into the fol-
lowing categories: (1) Unsupervised learning approaches, in
which unsupervised algorithms are used without hand-labeled
training examples; (2) Supervised learning approaches that use

feature engineering in conjunction with supervised learning
algorithms. The majority of the reviewed works have adopted
Deep Learning (DL) based approaches that automatically dis-
cover classification representations by learning hierarchical
representations of the data through multiple layers in a Neural
Network. DL based approaches are particularly effective at
detecting cybersecurity-related entities and events and grow-
ing rapidly. Traditional feature-based approaches require a
significant amount of feature engineering skills and domain
expertise, but data mining based on DL effectively learns
useful representations and underlying factors from raw data.
With DL, features for entity recognition can be designed in a
more efficient manner. In addition, non-linear activation func-
tions enable DL based models to learn complex and intricate
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features from data. Compared with linear models (e.g., lin-
ear chain Conditional Random Fields (CRF)), the non-linear
mappings are generated from input to output, which benefits
cybersecurity entities and events recognition.

A comparative study of the reviewed works shows that they
all rely on unstructured texts such as tweets, security arti-
cles, and hacker forums. This indicates a pressing need for
a structured database to store CTI data. Among the differ-
ent models used, those employing Name Entity Recognition
(NER) method, neural network, and BiLSTM perform better.
This is because NER can identify and extract entities in sen-
tences, ensuring that irrelevant words are not considered as CTI
entities, leading to better performance. Furthermore, the two
works with the highest F-1 score, namely [35] and [36], utilize
character-based embedding to complement the deficiency of
word-based embedding. Character-based embedding can cap-
ture morphological information such as prefixes and suffixes,
which may be lost in word-based embedding, leading to more
accurate and robust performance. Overall, these findings sug-
gest that the use of NER and character-based embedding could
significantly enhance the accuracy and effectiveness of CTI
models in identifying and mitigating cyber threats.

In the context of natural language processing, the word
embedding technique is widely regarded as the major break-
through in deep learning. A vector can be translated into

a relatively low-dimensional space known as an embed-
ding. Machine learning is made easier using embeddings
when dealing with large inputs, such as sparse vectors rep-
resenting words. By placing semantically similar inputs close
together in the embedding space, an embedding captures some
of the semantics of the input. It is possible to learn and
reuse embeddings between models. In the papers surveyed
in this subsection, six out of seven work utilized pre-trained
word embeddings, including Word2Vec [41], GloVE [40] and
BERT [42]. Moreover, some cybersecurity entities use words
in a flexible way. The word Gh0st, for example, refers to a
remote access Trojan that contains both uppercase and lower-
case letters. Further complicating identifications are irregular
abbreviations and nesting issues within entities. To address
the above challenge, character-based embeddings were applied
and demonstrated in work [35] that improved entity extraction
performance. The final representations of words are typically
based on word-level and character-level representations, as
well as additional information (e.g., linguistic features [36]
and linguistic dependency [34], which are then fed into context
encoding layers.

It is noted that most of the reviewed work focused
exclusively on cyber-related entities and events extraction,
rather than extracting relations between entities. In the pro-
cess of event annotation, many challenges were encountered,
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including annotating entities, events, and coreference relation-
ships between events. Several distinct actions, for example, can
be included in a description of a cyber attack. It is beneficial
to incorporate global context across sentences or to con-
sider non-local dependencies among phrases when performing
information extraction tasks - such as name recognition,
relationship extraction, event extraction, and coreference res-
olution [45]. Knowledge of a coreference relationship, for
instance, can provide insight into the type of entity men-
tioned that is difficult to categorize. Furthermore, a sentence’s
entities can be used as inputs for event extraction, which
can lead to useful information about event triggers. As a
future direction, entities, events, and event coreference rela-
tionships will be combined to tap into joint CTI potentials
by mining between entities in the same or adjacent sentences,
while dynamic updates will model long-range cross-sentence
relationships.

B. Cyber Attack Tactics, Techniques and Procedures

The concept of Tactics, Techniques, and Procedures (TTPs)
is crucial to CTI. The goal of identifying TTPs is to identify
patterns of behavior that can be used to defend against specific
threats and strategies employed by malicious actors. TTPs refer
to the behaviors, including methods, tools, and strategies, that
cyber threat actors and hackers utilize to prepare and execute
cyber attacks. Based on the definition from the United States
National Institute of Standards and Technology (NIST) [46], the
tactic is the highest-level description of this behavior, techniques
give a more detailed explanation in the context of a tactic, and
procedures provide an even more detailed description in the
context of a technique. This section reviews works on mining
CTI about cyber attacks tactics, techniques, and procedures.

1) Summary of Representative Work: In Cyber Threat
Intelligence, TTPs describe attack behavior associated with

Fig. 3. Examples of TTP in STIX schema from [47].

specific threat actors [53]. Cyber threats can be effectively
identified, mitigated, and responded to when such information
is collected. An example of TTPs in the Structured Threat
Information eXpression (STIX) schema [54] is shown in
Figure 3. The works target at mining TTPs, as summarized
in Table VI, are limited but emerging due to the robust-
ness of the roles of TTPs playing in identifying cyber
threats.

The study by Husari et al. [48] described attack patterns
and techniques of cyber threats using a threat-action ontol-
ogy named TTPDrill. The ontology was constructed based on
the MITRE’s CAPEC [50] and ATT&CK [49] threat repos-
itory, which covered the procedure of pre- and post-exploit
malicious actions. The threat actions and the corresponding
kill-chain context in terms of tactics and techniques were
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captured from micro-level (e.g., delete log file) to macro-
level (e.g., defense evasion). Their work proposed an approach
based on the established ontology that mapped the extracted
TTPs from the unstructured data sources to the established
ontology in a structured way, such as the STIX Attack Pattern
schema [54] widely used in CTI. An NLP tool named Stanford
typed dependency parser [55] was used to identify and extract
the candidate threat actions. In addition, a set of regular
expressions for common objects in the developed ontology
were built to parse the special terms (e.g., strings fil_1.exe)
that are used in threat reports confusing NLP tools. The can-
didate threat actions were applied to generate bag-of-words
query and mapped to threat actions in ontology based on the
calculation of similarity score.

You et al. [52] presented a novel threat context-enhanced
TTP Intelligence Mining (TIM) framework for extracting TTP
intelligence from unstructured threat data. The TIM framework
utilizes TCENet (i.e., Threat Context Enhanced Network) to
identify and categorize TTP descriptions, defined as three
consecutive sentences, from textual data. You et al. [52] fur-
ther enhanced the TTP classification accuracy of TCENet
by utilizing the element features of TTP in the descriptions.
The evaluation results demonstrate that the proposed method
achieves an average classification accuracy of 94.1% across
the six TTP categories. Furthermore, adding TTP element fea-
tures improves classification accuracy compared to using only
text features. TCENet outperforms previous document-level
TTP classification works and other popular text classification
methods, even in the case of few-shot training samples. The
resulting TTP intelligence and rules aid defenders in deploy-
ing effective long-term threat detection and performing more
realistic attack simulations to strengthen their defenses.

Ge and Wang’s by proposing SeqMask as a solution for
identifying and extracting TTPs for CTI using a Multi-
Instance Learning (MIL) approach. SeqMask uses behavior
keywords from CTI to predict TTPs labels using conditional
probabilities. To ensure the validity of the extracted key-
words, SeqMask employs two mechanisms, one involving
expert experience verification, and the other blocking exist-
ing keywords to assess their impact on classification accuracy.
The results of experiments conducted with SeqMask demon-
strate a high F1 score (i.e., 86.07%) for TTPs classifications
and an improved ability to extract TTPs from full-size CTI
and malware.

Although the ontology based TTPs mining is able to cover
a comprehensive list of tactics and techniques defined in
MITRE’s CAPEC [50] and ATT&CK [49] threat repository,
it is difficult to adapt to diverse cyber scenarios, such as
e-commerce tactics. As demonstrated in work [47], when
applying TTPDrill to discover e-commerce TTPs, the recall,
precision, and F1-score dropped to 50.25%, 22.38%, and
30.97% respectively. TTPDrill captured the TTPs in the tradi-
tional steps (i.e., in the phase of Cyber Kill Chain) of cyber
attacks. As attacks occur before, during, and after the pur-
chasing process, the e-commerce underground marketplace
cannot be fully mapped to a conventional kill chain. To address
this challenge, Wu et al. [47] built a TTP Semi-Automatic
Generator (i.e., TAG) that incorporated NLP techniques,

including topic term extraction and name entity recognition
for identifying the e-commerce TTPs. According to the obser-
vation that topic terms in the TTPs usually share a similar
semantic and lexical structure, the newly appearing topic terms
were captured based on semantic and structure similarity with
prevalent topic terms in [47]. In addition, the name entity
recognition techniques as introduced in Section III-A com-
bined with rule learning (i.e., a set of grammatical structure
based rules for TTP entity recognition) were utilized for auto-
matically extracting TTP entity from the unstructured data
sources. After identifying TTP terms, the STIX TTP gener-
ator proposed by [47] converted the TTP terms extracted from
unstructured data to the STIX schema [54]. A total of 6,042
TTPs were identified with 80% precision by TAG, which shed
new light on previously unknown e-commerce CTI trends by
analyzing the TTPs identified.

2) Discussion: In Table VI, the reviewed work is summa-
rized, while the cyber attack tactics, techniques, and proce-
dures are listed in Table VII. Since changing the attack tactic,
techniques, and procedures is costly for the adversary, TTP is
considered more robust and more lasting than IOC. For exam-
ple, it is easy for the adversary to use IOC (e.g., different
malicious domains) than to change his TTP (e.g., bulletproof
hosting infrastructure) [47]. An IOC is one of the forensic
artifacts that shows that a system has been infiltrated by an
attack, while a TTP is one of the patterns or groups of activities
associated with an individual or group of attackers. By hav-
ing TTPs available, it is possible to investigate illicit activities
using specific TTPs under cyber attacks in a variety of scenar-
ios. During the recent boom in e-commerce, a number of attack
patterns have emerged (such as order scalping), which have
been extensively reported by public online sources. Detection,
response, and containment of different types of security threats
can be achieved through rapid threat analysis and deployment
of TTPs to various security systems. To make TTPs tractable,
a standardized and structured representation is required.

A cybersecurity corpus in contrast to an open domain corpus
lacks annotation, which means more attention and effort needs
to be put into it by the NLP community. Husari et al. [48]
utilized the ontology based approach to sort out TTP related
terms in line with the cyber kill chain. In work [47], NER was
used along with human validation to guarantee the quality of
critical outputs under the e-commerce TTPs domains. By using
machine learning, TTP can be automatically generated from
prior TTPs as the groundtruth, with the new context contin-
uously enhancing the precision of TTPs. The TTPs extracted
from [48] and [47] involve different languages, respectively
English and Chinese. Dependency parsing and language pro-
cessing depend heavily on language patterns. For example,
a key prerequisite to language processing is the segmenta-
tion of words. In Asian languages (such as Chinese, Japanese,
and Thai), words are not delimited by white space like in
English. Nevertheless, TTPs can also be extracted from lan-
guages other than English. It is highly anticipated that TTPs
will be extracted and converted across languages in this field.

Despite the decent performance of ML based approaches in
discovering TTPs, these approaches face challenges in improv-
ing accuracy and explaining results due to their black-box
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nature. The current extraction methods suffer from three
primary limitations, namely insufficient data, incomplete veri-
fication, and a complex process. While identification methods
determine classification accuracy, they do not provide rea-
soning behind their predictions. A simple yet comprehensive
approach that combines data interpretation and high accuracy
is required to obtain a complete picture of TTPs labels and
evidence.

C. Profiles of Hackers

It is a never-ending game between cybersecurity attack-
ers and defenders. By utilizing various resources, attackers
are becoming more efficient and intelligent in carrying out
their hacking activities. To better count hacking attempts, it
is important to identify the source and resources of threat
actors. This section reviews works on mining CTI for identify-
ing the profiles of hackers, including cyber threats attribution
and hacker assets.

1) Summary of Representative Work: Identifying the entity
responsible for an attack is complicated and usually requires
the assistance of an experienced security expert [61].
According to Hettema [62], attribution is one of the most
intractable problems associated with an emerging field as a
result of the technical architecture and geographies of the
Internet. As the representative work shown in Table VIII,
under different cyber scenarios (e.g., mobile malware, fin-
tech security), the corresponding profiles of attackers are
appropriately established with the attribution and assets.

Targeting for mobile malware threat actors as a starting
point, Grisham et al. [60] used Long Short-Term Memory
(LSTM) RNN architectures to identify the mobile malware

attachments from CTI in online hacker forums. Furthermore,
social network analysis was further utilized in this work [60]
to recognize the key threat actors by understanding the threat
actors’ social groups and capabilities. By using networks and
graph theory, social network analysis investigates social struc-
tures [63]. A networked structure is characterized by nodes
(i.e., individual actors) and edges (i.e., relationships or inter-
actions) between them. Particularly, in work [60], for a forum
context, two-mode networks comprising two separate types
of nodes (i.e., actor nodes affiliated with event nodes) were
transferred to one-mode networks with actors linked to each
other through posts in a shared thread. Hence, it is adaptable
to calculate the potential centrality measures (e.g., closeness,
betweenness) for a network of threat actors and further rec-
ognize the key threat actors in work [60]. It is possible,
however, for the same malware to be reused by multiple actors.
The actor who used malware to commit an attack might be
different from the malware’s author. Besides the utilized mal-
ware, a number of clues about the identity of the attacker
can be gleaned from information collected during an incident.
Perry et al. [58] proposed a method of identifying attack attri-
bution named SMOBI (i.e., SMOthed BInary vector) based on
CTI reports to recognize novel previously unseen threat actors
and the similarities between known threat actors. The vector
representation for cybersecurity related documents based on
word embeddings (i.e., domain-specific word embeddings gen-
erated based on 20,630 cybersecurity articles and posts) was
employed in work [58] to enhance the algorithms and reach
full potential of the proposed attack attribution identification
method.

For defending against data breaches, work [56] leveraged
hacker source code, tutorials, and attachments directly from
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underground hacker communities to identify malicious assets,
such as crypters, keyloggers, SQL Injections, and password
crackers to develop proactive CTI. In their work [56], classifi-
cation models, such as Support Vector Machine (SVM), were
implemented to classify the coding language. After that, LDA
was used to analyze the forums’ code, as well as comments,
post contents, and attachments to identify malicious topics. As
the last step, the metadata associated with the malicious topics
was used to build social networks for identifying the attribution
(i.e., key hackers) of the identified malicious topics.

The banking and financial sector is often the ‘tar-
get of choice’ for financially motivated Cyber Threat
Actors (CTAs) [64]. Hence, it is necessary and urgent to
ensure that Financial Technology (FinTech) is protected and
secured against sophisticated cyber attacks from different
CTAs, including state-sponsored or state-affiliated actors.
Noor et al. [57] developed a machine learning based FinTech
CTA framework. In their work [57], the cyber threat actors
were profiled based on the high level attack patterns (e.g.,
Tactics, techniques and procedures taken from ATT&CK [49]
MITRE [49]) extracted from CTI reports through Natural
Language Processing. The accuracy of the classification model
with DL achieved was 94%.

2) Discussion: It is challenging to establish a profile of
hackers due to the fact that they always try to hide their iden-
tity and the assets they employed in the hacking. To profile the
hackers, hybrid analyses were conducted on data sources from
a variety of CTI, including code analysis, malware attachments
analysis, documents (e.g., posts and comments in underground
forums), and network analysis, as the representative work
summarized in Table VIII.

In order to be effective, actionable CTI should incorporate
not just traditional, internal approaches, but also external, open
information [65]. This enables CTI to be more proactive by
identifying threats before they occur, helping to understand
attackers, and identifying hacker tactics. It is necessary to

combine data with contextual information in order to provide
relevant threats (i.e., internal incidents with external knowl-
edge). Especially, online hacker forums are one rich-external
data source that can be used to develop proactive CTI. Hackers
use many venues for communicating and sharing information,
including Internet-Relay-Chat (IRC), carding shops, DarkNet
Marketplaces, and hacker forums [66]. Underground or hack-
ers forums are among the ways hackers can freely share
malicious tools (e.g., malicious attachments) [67], which
provides practical resources for learning how threat actors
operate and establishing hackers’ profiles. Researchers have
discovered that key hackers contribute significantly to their
communities (e.g., forum moderators or senior members) [68].
Therefore, locating the key threat actors and identifying their
groups through their interactions with other hackers is crucial.

D. Indicators of Compromise

Indicators of Compromise (IOCs) serve as forensic evidence
of potential intrusions into a system or network. It is possi-
ble to detect intrusion attempts or other malicious activities
using these artifacts by information security professionals and
research community. Additionally, IOCs provide actionable
threat intelligence that can be shared within the community
to increase incident response and remediation efficiency. This
section reviews works on mining CTI to extract IOCs and their
relations.

1) Summary of Representative Work: Every year, cyber
attacks are spreading widely and causing severe consequences,
including data breaches, economic losses, hardware damage,
etc. [76]. In view of the fast-spread speed of cyber attacks, it
is imperative to proactively develop prevention methods based
on recorded cyber attack event reports and log files. IOCs are
pieces of forensic data identifying potentially malicious activity
on an organization’s system, such as system log entries or
files. Examples of IOCs include attacker names, vulnerabilities,



1762 IEEE COMMUNICATIONS SURVEYS & TUTORIALS, VOL. 25, NO. 3, THIRD QUARTER 2023

TABLE IX
REPRESENTATIVE WORKS ON MINING INDICATORS OF COMPROMISE

IP/domain, hashes (MD5, SHA1, etc.), file names and addresses,
and servers [69]. The use of IOCs aids information security
and IT professionals in the detection of data breaches, malware
infections, and other threats. In Table IX, we summarize the
state-of-the-art work on obtaining CTI based on IOCs.

Work [69] proposed to automatically extract IOCs from
unstructured texts. Liao et al. [69] proposed a method that
firstly crawls blogs and removes unrelated articles. After split-
ting each article into multiple sentences, the method applies
context terms and regular expressions to find those sentences
likely have IOCs. This work [69] firstly proposed an approach
that converts IOC candidates and relationships among them
into a graph mining problem so that relationships can be
detected according to the graph similarities. The precisions
in finding IOC articles and extracting IOCs and relationships
can reach up to 98% for both works.

The Bidirectional Long Short-Term Memory Neural
Network (BiLSTM) and Conditional Random Fields
(BiLSTM-CRF) aims to work on name entity recognition
tasks, which have been shown to be applied in the field of
IOC identification. Zhou et al. [70] are the first that applies
the BiLSTM-CRF to IOC extraction from attack reports. The
proposed approach [70] encoded the input sequence with
attention-based and Word2Vec embedding. This work [70]
functions well even when the number of training data is
limited by using some token spelling features. The average
precision in work [70] of automatically extracting and label-
ing IOCs is 90.4%. Based on the work of Zhou et al. [70],
Long et al. [71] improved the model of Neural Network with
the BiLSTM method using a multi-head self-attention module
as well as more features and applied their approach to both
English and Chinese datasets. The model [71] has more token

features for improving the performance on a limited number
of data, including spelling features, contextual features, and
usage of features (i.e., the connection of spelling features
and contextual features). The average precision scores of this
model are 93.1% and 82.9% in the work of identifying IOCs
from English and Chinese datasets, respectively. In addition,
work [72] proposed a multi-granular attention Bi-LSTM-CRF
model to extract IOCs with different granularities from
multi-source threat texts and model the context of IOCs with
a Heterogeneous Information Network (HIN). The study [72]
manually defined meta-paths to present the relationships
among several IOCs for better exploring contexts, which
focuses on six common categories of IOCs, including the
attacker, vulnerability, device, platform, malicious file, and
attack type. In the work of IOC extraction, the highest
precision is 99.86%, although extracting different items with
different precision. The precision of threat entity recognition
with the multi-granular model is 98.72% among all the
experimented methods.

Given the multi-stage and varied techniques utilized in
cyber attacks, knowledge graphs offer a distinct advantage in
comprehensively depicting the entire attack process and iden-
tifying similarities with other attacks. For example, Li et al.
[75] proposed AttacKG, a new method to aggregate threat
intelligence from multiple CTI reports and create an attack
graph that summarizes attack workflows at the technique level.
They [75] introduced the concept of a Technique Knowledge
Graph (TKG) to describe the complete attack chain in CTI
reports by summarizing causal techniques from attack graphs.
Li et al. [75] parsed CTI reports to extract attack-relevant
entities and dependencies and used technique templates built
on procedure examples from the MITRE ATT&CK [49]
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knowledge base. A revised graph alignment algorithm was
then designed to match technique templates in attack graphs,
align and refine entities, and construct TKGs. The technique
templates aggregate new intelligence from real-world attack
scenarios in CTI reports, and attack graphs utilize this knowl-
edge to create TKGs that introduce the report with enhanced
knowledge.

It is challenging to extract a whole attack process from the
CTI data, despite the fact that it is the prerequisite to under-
standing hacking activities and developing defense strategies.
Fortunately, an attack process can be projected by identify-
ing IOCs and their relationships. Zhu and Dumitras [73] and
Liu et al. [74] split the malware delivery campaign into dif-
ferent stages so that the attack process can be better analyzed.
Zhu and Dumitras [73] adopted Natural Language ToolKit
(NTLK) and Stanford CoreNLP to represent a sentence as a
directed graph to describe the actions among IOCs. Word2Vec
was applied to calculate semantic similarity, and Named Entity
Recognition (NER) technique was used to locate IOC candi-
dates. Four binary neural networks were designed to classify
IOCs and determine whether a candidate is an IOC. Four
stages (i.e., baiting, exploitation, installation, and command
& control) from STIX [54] defined the process as a set of
indicators and stages in work [73]. In summary, work [73]
achieved the highest precision score of 91.9% in detect-
ing IOCs and an average precision of 78.2% in classifying
campaign stages. Similarly, Liu et al. [74] designed a trigger-
enhanced system to generate CTI from unstructured texts,
extract IOCs, and describe the connections between IOCs
and campaigns. Particularly, after crawling reports and pre-
processing, the system [74] utilized regular expression and a
fine-tuning BERT model to identify the IOCs. This work [74]
focused on six common types of IOCs (i.e., IP address, domain
name, URL, hash, email address, and CVE). With the IOCs
and related sentences, a trigger vector can highly explain the
campaign stages. The highest precision that this system can
reach is 86.55% in the work of classifying campaign stages.

2) Discussion: As summarized in Table X, all six studies
in the surveyed research adopted the methodology consisting
of data pre-processing (e.g., transferring images to text, break-
ing text into sentences, etc.), IOC candidate identification and
relationship among IOCs extraction.

In the IOC candidates identification, all of the six stud-
ies used the REGular EXpression (i.e., REGEX) as a quick
and effective method to search words or patterns with specific
formats as token spelling features to select IOC candidates.
Designing a good set of REGEXes aids in quickly identify IOC
candidate terms and improve the performance of the model.

Across the six works, the methods on relationship extraction
can be categorized into the following categories: 1. Transform
an IOC sentence into a dependency graph, or tree and discover
the relationships among IOCs [69], [73]. 2. Treat those words
that can present the characteristics of the neighbor words as
contextual keywords and generate contextual features from
the keywords for the IOC candidates [70], [71]. 3. Create
meta-paths to describe the relationship chains among multiple
IOCs [72]. A dependency tree is a directed graph that can
represent the relationships among all words in a sentence.
However, the dependency tree may represent every word in
a sentence, including non-useful words. The contextual fea-
ture captures the context surrounding each IOC, however, it
needs to locate the keywords that are hard to distinguish from
IOC terms in some scenarios. Meta-path approach can eas-
ily extract the relationships among IOCs, but the meta-paths
need to be defined manually, and the number of them would
increase exponentially with the increase of the number of IOC
types [77]. It is expected that these methods will be assembled
into an efficient approach that can be generalized to a variety
of types of IOCs relationship extraction.

It is worth mentioning that most of the reviewed studies
mainly focused on IOC identification and a few on relation-
ship extraction. A possible direction for future research is
to predict cyber attacks that may damage our hardware or
software based on the extracted IOCs and their relationships.
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Extracting the detailed information and features of the attack,
including but not limited to the attack type, exploiting vul-
nerabilities, and the target victim, is achievable to generate
an attack report for cyber security experts to predict cyber
attacks as well as develop a defense strategy. For example,
building a series of knowledge graphs periodically with IOCs
and relationships, then learning the evolutionary graphs by dig-
ging into the changes between graphs and predicting the next
possible event is a feasible solution.

E. Vulnerability Exploits and Malware Implementation

It is becoming increasingly common and dangerous to be
exposed to cybersecurity risks and malware threats. There
are a wide range of vulnerabilities that can lead to data
leaks, and threat agents can exploit them to compromise
secure networks. Despite much attention paid to vulnerabil-
ity and malware detection using code semantics, mining CTI
sources beyond code is limited in terms of discovering prac-
tical information about vulnerability exploits and malware
implementation. In this section, we comprehensively review
representative works that successfully identified vulnerabilities
that might be exploited and malware implementation through
CTI mining.

1) Summary of Representative Work: Recently, there has
been an increase in the number of software vulnerabilities
exploited. Vulnerabilities are weaknesses that can be exploited
by cybercriminals to gain unauthorized access to computer
systems. The exploit of a vulnerability can lead to mali-
cious code being run, malware being installed, and sensitive
data being stolen by a cyberattack. It is therefore necessary
to prioritize the response to new disclosures by assessing
which vulnerabilities are likely to be exploited and ruling out
those that are not. Furthermore, malware detection increas-
ingly relies on machine learning techniques that focus on code
semantics in order to distinguish malware from benign soft-
ware. For example, human intuition and knowledge are key to
the effectiveness of these techniques. In light of adversaries’
efforts to evade detection, as well as the increasing amount of
resources available on malware behavior online, feature engi-
neering likely draws on a small fraction of these sources. It is
therefore expected that multiple data sources will be consulted
in order to obtain knowledge about vulnerability exploits and
malware implementation beyond the code itself.

In work [78], Sabottke et al. studied vulnerability-related
information in the wild for early exploit detection prior to
the public disclosure of vulnerabilities. The study mined a
large number of disseminated on Twitter that contained cyber-
security vulnerability information and constructed a machine
learning model to detect which vulnerability was more likely
to be exploited in the real world. In addition to mining Tweet
text for word features and Twitter traffic for statistics features,
information from National Vulnerability Database (NVD) [22]
and Open Sourced Vulnerability Database (OSVDB) [85] are
also collected and used for exploit detectors. As far as we
know, this work [78] is the first technique ever used for
early detection of real-world exploits using social media.
Furthermore, Nunes et al. [86] developed an operational

system to collect and identify vulnerability exploits and mal-
ware development information from the darknet and deepnet
discussions, particularly from hacker forums and marketplaces.
After extracting and structuring the information from Web
pages in real-time, they [86] combined supervised and semi-
supervised approaches to discover products and topics related
to malicious hacking. This provided threat warnings about
newly developed malware and vulnerability exploits that have
not yet been deployed in a cyber attack. With limited labelled
data available on the darknet and deepnet, the proposed
approach reached a precision of 80% by requiring less expert
knowledge and costs.

In order to detect malware, researchers propose a growing
number of features derived from human knowledge and intu-
ition that are used to characterize malware behavior. Due to
adversaries’ efforts to evade detection and increasing publi-
cations on malware behavior, the feature engineering process
probably draws on a fraction of the available data. In order
to gain greater benefit from a considerable amount of CTI
regarding malware behavior, FeatureSmith [79] proposed by
Zhu and Dumitraş adopted scientific papers as the source of
information to discover and collect malware detection features
automatically. Through the pipeline of data collection, behav-
ior extraction from literature, behavior filtering and weighting,
semantic network construction, feature generation, and expla-
nation generation, FeatureSmith identified abstract behaviors
associated with malware and then presented them as con-
crete features for malware detection. As a proof of concept,
FeatureSmith’s automatically engineered features showed no
performance loss in detecting real-world Android malware,
with 92.5% true positives and 1% false positives compared to
a state-of-the-art feature set produced manually.

Recent literature has explored how NLP can significantly
improve humans’ understanding of the cybersecurity context.
In the area of vulnerability exploits and malware implemen-
tation, work [80] introduced a method to annotate malware
reports, which provides semantic-level information on the text
and helps researchers quickly understand the capabilities of
specific malware. Lim et al. annotated Advanced Persistent
Threat (APT) reports with attribute labels from the Malware
Attribute Enumeration and Characterization (MAEC) vocab-
ulary as the groundtruth for the NLP tasks. They began
by classifying whether a sentence is malware related or not
and then predicting the tokens, relations between tokens,
attribute labels, and malware signatures based on the text
that describes the malware. In addition, the work of [81]
leveraged diverse resources, including unlabeled text, human
annotations, and specifications (i.e., MAEC vocabulary) about
malware attributes to conduct malware attribution identifi-
cation. WAE (Word Annotation Embedding) was applied
to encode information from heterogeneous information. The
results tested on SemEval SecureNLP classification task [87]
showed that the model trained on features generated from
the proposed annotation approach outperformed the annota-
tion approach presented by [80], as well as the embeddings
features learned by [88].

In recent studies, it has been shown that software doc-
umentation can be used to predict software vulnerabilities
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without relying on the program code at all. Chen et al. [82]
developed a tool that enables automatic inspection of system
security specification documents instead of relying on pro-
gram code analysis (e.g., model checking) to predict logic
vulnerabilities in payment syndication services. They explored
the use of NLP to discover logical vulnerabilities from
the syndication developer’s guide according to the payment
models and payment service’s security requirements. They
extended the Finite State Machine (FSM) that was usually
manually extracted for evaluating payment services by using
the dependency parse tree of sentences in the developer
guide to extract the parties involved in the process and the
contents transmitted between them. Software documentation-
specific NLP techniques were fine-tuned for the proposed
approach. Furthermore, Chen et al. [83] continually applied
the NLP techniques, including textual entailment and depen-
dency parsing, to analyze Long-Term Evolution (LTE) doc-
umentation of cellar networks for Hazard Indicators (HIs).

A total of 42 vulnerabilities were found in the LTE Non-
Access Stratum documentation and reported to authorized
parties through the proposed approach by Chen et al. [83],
proving the effectiveness of this method of finding
vulnerabilities.

In addition, the Knowledge Graph (KG) helps trans-
form free-text cybersecurity into more structured formats
with semantic-rich knowledge representations insights. As an
example of constructing a KG from data about malware,
Piplai et al. [84] proposed a cybersecurity KG from malware
After Action Reports (AARs), which encloses insightful anal-
yses of cybersecurity incidents and hereby delivers reliable
information to security analysts. AARs can help deal with
unidentified cybersecurity incidents by matching patterns with
the predefined incidents since they provide crucial data about
detection and mitigation techniques. Specifically, in work [84],
the malware entity extractor based on Stanford NER [89] was
created for the construction of the cybersecurity KG, and it
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was trained based on data from CVEs and security blogs to
identify entities required for the cybersecurity KG.

2) Discussion: In the face of enormous source code and
the advancement of technology, automated vulnerability anal-
ysis and detection have emerged as a current research hotspot.
Research on vulnerabilities and malware detection is antic-
ipated to expand beyond analyzing source code to mining
CTI from multiple data sources. It will significantly enhance
the ability to identify, prioritize, and fix vulnerabilities if
insights knowledge can be mined on vulnerabilities exploits
and malware implementation.

An early identification of vulnerabilities can prevent dis-
astrous consequences associated with their exploit. The
information on vulnerabilities and malware is available in a
variety of sources, including open source and classified data.
There are several repositories of structured and semi-structured
information on vulnerabilities and malware, including the
NVD [22], IBM’s XFORCE [90], US-CERT’s Vulnerability
Notes Database [91], and others. Informal sources, such as
computer forums, hacker blogs, social media, etc, also con-
tribute to these knowledge bases. While such unstructured
sources are noisy, redundant, and often contain misinforma-
tion, they can be mined and aggregated to track the spread of
new malware and vulnerabilities and alert security experts to
take action. Technology in ML and NLP has enabled powerful
automatic feature extraction techniques to mine features from
documentation, making them more viable and timely strate-
gies to identify relevant semantic information and understand
vulnerabilities in multiple data sources, thus replacing manual
detection.

F. Threat Hunting

Threat hunting is the practice of proactively searching for
cyber threats that are lurking undetected in a network. Based
on the definition from IBM, threat hunting is a proactive
approach to identifying previously unknown, or ongoing non-
remediated threats, within an organization’s network [59].
During threat hunting, the suspicious activity patterns that
may deemed to be resolved but isn’t or have been missed
are inspected. This section reviews works on mining CTI to
conduct threat hunting.

1) Summary of Representative Work: The importance of
threat hunting lies in the fact that sophisticated threats can get
past automated cybersecurity systems [100]. A well-prepared
attacker will be able to penetrate any network and avoid detec-
tion for up to 280 days on average [59]. Attackers can do
less damage by reducing the time between intrusion and dis-
covery by utilizing effective threat hunting. Knowledge about
cybersecurity threats (e.g., malware employed in APT cam-
paigns) is covered in a variety of CTI resources and presented
in various formats, including natural language, structured,
semi-structured, and unstructured forms. Due to the fact that
the hackers usually meet online to discuss the latest hack-
ing techniques or tools [101], work [92] applied text mining
to identify the terms related to emerging cyber threats from
the online chatters, such as Twitter and dark Web forums.
Furthermore, [93] proposed a diachronic graph embedding

framework that helps in dynamically capturing the evolution
of hacker terms over time.

There are, however, fragmented views of cyber threats that
can be extracted by approaches focusing on extracting terms
related to emerging threats, such as signatures (e.g., hashes
of artifacts), file names, IP addresses and timestamps. Using
predefined rules, such as correlating suspicious threats using
heuristics, we could discover emerging threats. It is hard and
lacks the precision to show the complete picture of how the
threat evolved, especially over long periods. Hence, recent
research efforts are dedicated to correlating the relationships
between threat terms (i.e., IOC artifacts) and representing the
attackers’ steps in the form of graphs, which includes clues
on the behavior of the attacks. In this case, even if the hack-
ers update their strategies (e.g., signatures) to conduct attacks,
threat hunting is still effective compared to concentrating on
the threat terms only. Satvat et al. [94] extracted the full
picture of the attack behavior from the CTI reports and repre-
sented it as a group to identify the APT. Through the proposed
approach by work [94], the complicated descriptions from the
CTI report are processed to be as a provenance graph, where
nodes signify the entities (e.g., domain names, username and
file), and the edges point to system calls (e.g., write, send,
decode and log). Furthermore, Milajerdi et al. [96] bridged
the gap between the low level system-call view and the high
level APT kill chain view by building an intermediate layer
between them. The intermediate layer is established based
on MITRE’s ATT&CK [49] threat repository that describes
hundreds of behavioral patterns defined as TTPs, which sum-
marizes the observations from the nodes and edges in the
provenance graph.

It’s expected that threat intelligence will gather information
from multiple sources to provide more insights. Gao et al. [95]
proposed an approach that described the CTI instances involv-
ing different types of threat infrastructure nodes (i.e., domain
name, IP address, malware hash, and email address) and edges
(i.e., relation matrices between nodes). By utilizing the open
source CTI, such as Common Vulnerabilities and Exposures
(CVE) [102] to discover the relationships of exploiting the
same vulnerability, it can be possible to discover more
information between two malware hashes. Using heteroge-
neous graph convolutional networks, a threat infrastructure
similarity measure-based approach for modeling and identi-
fying threats (e.g., malicious code, Botnet, and unauthorized
access) involved in CTI has been proposed [95]. Meta-path
and meta-graph were defined in work [95] to capture the
high level relationships over nodes from various semantic
meanings. Another example of combining CTI from multiple
sources is that Milajerdi et al. [97] adopted a novel similarity
metric to assess the alignment between attack behavior graph
extracted from IOC open standards and system behavior graph
from kernel audit logs. Furthermore, THREATRAPTOR, a
system created by Gao et al. [99], enables the process of
threat hunting with the use of Open Source Cyber Threat
Intelligence (OSCTI). The system accomplishes this by devel-
oping an unsupervised NLP pipeline that extracts organized
actions from unstructured open source CTI. These organized
actions can be effortlessly searched using the proposed domain
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specific query language, query synthesis mechanism, and
query execution engine.

2) Discussion: Keeping up with cyber threats and respond-
ing to potential attacks rapidly is becoming increasingly
important as enterprises strive to stay ahead of the latest
threats [103]. An effective threat hunting strategy is one that
proactively searches for cyber threats lurking in a network
that go undetected. Threat hunting digs deep into the target
environment to find malicious actors that have slipped past its
endpoint security measures. Upon sneaking into a network, an
attacker can gain access to data, confidential information, or
login credentials that will allow later movement. Organizations
often lack the advanced detection capabilities to detect
advanced persistent threats once adversaries evade detection
and penetrate their defenses. Hence, threat hunting is an

essential part of any defense strategy. Hence, threat hunting
is an essential part of any defense strategy.

There are several challenges involved in threat hunting
inside an enterprise: (1) Attackers often perform their attack
steps over long periods of time, for example, lurking over sev-
eral months before discovery [59]. In this manner, a significant
data breach can be launched by siphoning off data and expos-
ing enough confidential information to enable further access.
A method of linking related IOCs together is therefore neces-
sary due to the attack activities occurring over a long period of
time [104]. (2) Effective threat hunting must be able to iden-
tify whether an attack campaign will affect system, even if the
attacker has modified artifacts like file hashes and IP addresses
to avoid detection. Hence, a robust approach should uncover
the entire threat scenario, instead of looking for matching IOCs
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Fig. 4. Future Directions of Cyber Threat Intelligence Mining for Proactive Security Defense.

in isolation [24]. (3) In order for a cyber analyst to analyze and
respond to a threat incident in a timely manner, the approach
must be efficient and not produce many false positives so those
appropriate cyber-response operations can be initiated [97].

To overcome the above mentioned limitations and build a
robust detection system for threat hunting, it is important to
consider the correlation between indicators of compromise.
CTI reports present information about cybersecurity threats in
a variety of forms, such as natural language, structured, and
semi-structured. The security community has adopted open
standards such as STIX [54] and OpenIOC [19], in order to
facilitate the exchange of CTI in the form of IOCs and enable
the characterization of TTPs. A standard’s description of indi-
cators or observables often illustrates how they are related
to each other to provide a better perception of attacks [7].
The relationships between IOC artifacts provide essential clues
about attacks inside a compromised system, which are tied to
attacker goals, and are therefore difficult to change [97].

IV. CHALLENGES AND FUTURE DIRECTIONS

Despite numerous investigations advocating the use of CTI
mining to achieve proactive cybersecurity defense, as discussed
in Section III, there remain a multitude of challenges that must
be addressed. This section will delve into the difficulties encoun-
tered in this field. To combat these challenges, potential future
directions will be outlined in accordance with the perception,
comprehension, and projection process pipeline, which was
introduced in Section II and is depicted in Figure 4.

A. Perception

1) Future Direction 1 (Mining CTI From Combined Data
Sources): We have seen a paradigm shift in understanding
and defending against evolving cyber threats, from pri-
marily reactive detection to proactive prediction, driven by
the increasing scale and high profile cybersecurity incidents
related to public data in recent years [24]. The amount of
information about cybersecurity is rapidly increasing from
multiple sources, including open source cyber threat intelligence
and restricted-access classified information.

While the vast amount of information sources makes it pos-
sible to mine more valuable CTI than ever, it is common
for threat reports to contain a significant amount of irrelevant
text [105]. In other words, only a small portion of the report is
dedicated to the description of attack behavior. For instance,
describing the geographical origin of the attacker is of interest.
However, it does not contribute to clarifying the attack behav-
ior in an attacking activity if that information is not provided.
In addition, in previous research, most work only used one
source of data, even though different studies employed differ-
ent sources. For instance, Table III summarizes recent work on
mining cybersecurity-related entities and events, where only
data from a single source was used in most works.

It is envisioned that CTI will be extracted from multiple
data sources by aggregating information from these different
resources in the future. Furthermore, it is expected that the
relationships between these data sources will be investigated
in order to provide a holistic picture of the attack activity by
using multi level information about CTI, such as with the aid
of heterogeneous knowledge graph. In addition, it is important
to check for issues related to quality, such as false alarms and
consistency, when it comes to extracted CTI.

2) Future Direction (Quality Evaluation for Maximization of
CTI’s Impact): CTI can be obtained from a variety of sources,
including but not limited to government agencies, security
vendors, research organizations, and open-source information.
The challenge lies in identifying credible and reliable sources
of CTI, as the quality of the information can vary greatly. In
addition, the dynamic nature of CTI means that the information
is constantly changing and evolving, making it crucial to care-
fully evaluate the quality of the information and its sources
when trying to understand and predict potential cyber threats.
Collecting high-quality CTI is a challenge that requires a thor-
ough understanding of the sources and a systematic approach
to evaluating the credibility and reliability of the information,
which ultimately decides the impact of CTI.

There have been a few studies on accessing the quality of
CTI and its sources in recent years [106], [107], [108]. For
example, Schaberreiter et al. [106] and Griffioen et al. [107]
proposed the quantitative assessment of parameters to evaluate
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the quality of CTI, such as extensiveness, maintenance, com-
pliance, timeliness, completeness, etc. Schlette et al. [108]
proposed a series of quality dimensions and showcased how to
make quality assessment transparent. The field of cybersecu-
rity is constantly evolving, and the exploration of CTI and its
quality is an ongoing pursuit. As more is understood about the
dynamics of CTI and the factors that influence its quality, orga-
nizations can better assess the CTI they receive and make more
informed decisions about their security posture. The continued
development of methodologies and frameworks for evaluating
the quality of CTI will help to ensure that organizations can
effectively use CTI to improve their security posture.

Furthermore, it is crucial to consider the impact of CTI
on evaluating its quality and the quality of its sources. The
assessment of CTI’s quality should be based on solid evi-
dence instead of subjective opinions. For example, in a study
by Liao et al. [69], the authors utilized IOCs to track emerging
cyber threats and determined high-quality intelligence sources
by evaluating the comprehensiveness, timeliness, and depend-
ability of their IOCs. This integrated approach of considering
both the quality of the information and its impact provides
a more comprehensive evaluation of CTI. Developing a sys-
tematic and evidence-based method for assessing the quality
of CTI and its sources is essential for ensuring that the
information is accurate and reliable and can be effectively used
to protect against cyber attacks.

3) Future Direction 3 (Contextual Processing With Domain
Specificity): Furthermore, among the assumptions made by
the reviewed studies is that the text structure of the CTI
reports follows a relatively simple structure [109]. For exam-
ple, grammatically follows a specific pattern, assuming the
cybersecurity related terms can be captured by regular expres-
sion, taking into account stable grammatical relations in the
form of subject, verb, and object in the sentence. The fact is
that CTI reports, in general, contain a great deal more com-
plex domain-specific context than most other reports [110].
As a result of the complex syntactic and semantic structure
of CTI reports, the prevalence of technical terms, as well as
a lack of proper punctuation in these reports, these factors
can easily influence how the report is interpreted and how the
attack behaviors are extracted.

A few research efforts worked on creating cybersecurity
domain groundtruth datasets. Satyapanich et al. [36] created
and published a corpus containing 1000 annotations for five
types of cybersecurity attacks, thus providing a foundation
for simplifying the process of extracting cybersecurity related
information from the raw data and facilitating the development
of domain-specific groundtruth. Behzadan et al. [111] man-
ually labeled 21,000 cybersecurity related tweets for future
usage. In addition, in contrast to general pre-trained models
(e.g., word2vec [88], glove [40]), cybersecurity specific NER
models and word embeddings (e.g., sec2vec [112] modified
by EmTaggeR [113]) are shown to improve performance in
processing complex domain-specific contexts [36], [114].

B. Comprehension

1) Future Direction 4 (Towards Understandable, Robust
and Actionable CTI Extraction): In recent years, researchers

have made significant contributions to the automation of the
extraction of CTIs from multiple data sources [12]. However,
there are still some challenges to overcome: (1) Due to the
severe shortage of experienced professionals, many organi-
sations cannot handle the flood of CTI feeds, causing them
to be burdened. (2) As a result of fake CTI generated by
adversaries, false alarms might occur. In addition, adversaries
can make use of fake CTI to corrupt cyber defence systems.
(3) The extracted CTI can be difficult to utilise for action-
able advice, for example, prioritizing the following actions for
cybersecurity defence. It is essential that the next generation of
CTI is understandable, robust, and actionable in order to over-
come these challenges. Firstly, understandable CTI facilitates
people without strong cybersecurity domain knowledge with
the interpretation of key security elements. For example, in
work [115], 15 categories of entities related to cybersecurity
events were extracted and indexed from text through super-
vised approaches based on neural networks. Cybersecurity
related information, such as the impacted date, time and
organisation of a security event, is extracted and used to
explain a specific cybersecurity event. With the interpretation
of the annotated entities, the CTI becomes more accessible
and understandable for further analysis. The explainability of
CTI can be improved by including more entities and variety
that will facilitate the explanation of CTI by expanding enti-
ties through enlarging the groundtruth data and embedding
supplementary semantic features to concatenate with word
embedding. In addition, because cybersecurity events are lan-
guage independent, the study on turning unstructured text from
sources across different languages into a structured format is
expected.

Secondly, robust CTI ensures the extracted data is genuine
instead of fake by adversaries. Fake CTI examples are used
as input to corrupt cyber defence systems, which serve for
attackers to achieve malicious needs through training models
on incorrect inputs [116]. Recent work [116] demonstrated
that the majority of fake CTI samples generated by GPT-2
transformers are labelled as true even by cybersecurity profes-
sionals and threat hunters. Linguistic errors and disfluencies
that generative transformers commonly produce but humans
rarely are expected to be explored and utilised as the key
features to distill genuine CTI. To detect fake CTI samples,
aspects such as aesthetic, readability, source credibility, nov-
elty, and propagation identified through the analysis of users’
propagation and perceptions of real and fake cyber news [117]
are worth investigating.

Last but not least, actionable CTI delivers complete and
accurate information that is relevant and trustworthy to the
consuming organisation. The CTI can be called actionable if
the CTI is relevant and trustworthy to the operations of organ-
isations, provide complete and accurate information, and can
be ingested into CTI sharing platforms [12]. The output of CTI
mining aims to provide actionable suggestions, including risk
mitigation, security practice recommendation, and relationship
establishment between the extracted CTI. For example, users
are expected to be provided with actionable CTI outputs with
the help of publicly available security datasets, recommenda-
tions, and knowledge graphs that represent the relationships
among various CTI.
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2) Future Direction 5 (CTI Discovery for the Evolving
Threats): Cyber defence tools are constantly updating and
becoming more and more sophisticated [118]. Yet, we are
still facing a slow response to the ever-evolving of cyber
threats, such as phishing to steal our information, ransomware
to encrypt our data and demand a ransom in exchange, and
malware to compromise our critical infrastructures. Ensuring
the timely and automated intelligence discovery of evolving
threats from publicly available sources, such as hacker forums
and threat reports, is paramount in helping organizations
keep pace with ever-changing threat landscapes. However,
existing threat intelligence extraction techniques ignore the
ever-evolving nature of cyber threats. Recent development in
AI compounds the problem by taking advantage of adver-
saries that can adapt to attacks, generate variants, and evade
detection: “This new era of offensive AI leverages various
forms of machine learning to supercharge cyberattacks, result-
ing in unpredictable, contextualised, speedier, and stealthier
assaults that can cripple unprotected organizations”, Forrester
Consulting [119].

Current approaches to extracting open source CTI, use
various NLP and machine learning ML techniques, for exam-
ple, text memorization, information extraction, named entity
recognition, decision tree and neural networks, to understand
the means and the consequence of different cyber attacks.
However, current CTI work has three major limitations:
(1) static and isolated CTI hardly depicts the dynamics of
threat attacks and the vast landscape of threat events; (2) frag-
mented views of CTI, such as suspicious domain names and
hashes of artifacts, can hardly help security analysts to hunt
down the target of an advanced persistent threat in an enter-
prise; (3) the inter-dependency among CTI, which can help us
to reveal a big picture of how the threat behaviors, are unex-
plored. Furthermore, AI-powered adaptive cyber attacks bring
more challenges in those different variants of the attack can
develop and multiple cyber attacks can even cooperate to cause
large-scale organized crime. In general, CTI extraction is a
significant and challenging task for enterprises and individuals
and current work cannot address this growing issue of national
intelligence and security. Hence, to develop focused theory and
techniques for the automatic extraction of interconnected and
evolving CTI from heterogeneous open sources, constructing
a dynamic CTI knowledge graph to uncover how cyber attacks
evolve and how multiple cyber attacks coordinate in infiltrat-
ing a system is expected to realise timely and responsive cyber
threat hunting in a complex system.

C. Projection

1) Future Direction 6 (Practical CTI Implementation): CTI
mining studies have the challenge of transforming the research
studies into practical implementations and applications of CTI
and demonstrating their practical significance to the maximum
extent possible. Many CTI tools are available on the market
that facilitate the collection, analysis, and sharing of CTI data.
In our review of the existing CTI tools, we summarized them
into four categories: (1) Open source and enterprise tools that
can access threat intelligence and offer advanced management

options (e,g., functions including filtering, analysis, finding
correlations, search). (2) The CTI protocol set is a set of lan-
guages for describing and sharing CTI information. (3) The
sharing platforms for CTI. (4) Incident response systems given
the collected CTI.

Though many organizations wish to share their CTIs, a
universally accepted format for CTI exchange is expected.
For example, in order to facilitate CTI exchange, MITRE
developed the STIX scheme [54] that is widely adopted by
research studies and CTI applications. It is important that data
formats are compatible with the different systems of stakehold-
ers. In order to exchange CTI in a timely manner, unnecessary
data transformations must be avoided.

It is the core idea behind CTI sharing that by sharing
information about the most recent threats and vulnerabilities
among stakeholders, as well as implementing the remedies as
quickly as possible, stakeholders will become aware of the
situation [8]. CTI sharing offers a new way to create situ-
ation awareness among sharing stakeholders. In addition, it
is seen as a necessity to prepare for future attacks in order
to preempt them rather than react to them as in the current
practice. CTI sharing is expected to become an integral part
of proactive cybersecurity for organizations in the future to
share their information. Implementing the way of CTI shar-
ing in a way that consumes and disseminates information in a
timely manner will be of great benefit to the industry, whose
future depends on how well the CTI is comprehended and
implemented its remedies.

2) Future Direction 7 (CTI Applications for Threats
Preliminary Mitigation): By taking a more proactive, forward-
thinking approach from the start, companies can address and
mitigate future disruptions and cyber threats [120]. Working
actively to prevent threats promotes complete control over
the cybersecurity strategy. This helps to prioritize risks and
address them accordingly. By identifying vulnerabilities early
on, and preparing for the worst-case scenarios ahead of time,
we will be able to take action rapidly and decisively during
a cyber incident. While proactive measures help to prevent
breaches, reactive measures strike if and when a breach occurs.
The proactive security market was worth USD 20.81 million
in 2020, and it is expected to grow to USD 45.67 million by
2026 [121].

Threat mitigation is the process of reducing the severity of
threats from physical, software, hardware, etc., of IT systems.
From the perspective of CTI mining applications, we illustrate
how threats can be mitigated in a proactive manner. First, the
acquired CTI can assist in organisational strategies that refer to
physical security measures, training, and education. Secondly,
in terms of networking strategies that use technical implemen-
tations for threats mitigation, monitoring network activities
from the CTI and anticipating cyber attacks are potential future
directions. For example, by using security events data from
commercial intrusion prevention systems, Shen et al. [122]
predict the specific steps that will be taken by the adver-
sary to perform cyberattacks. The demand for special security
solutions that are customized to the organization is also on
the rise. It is expected that organizations have access to spe-
cialized security expertise that can easily analyze a system
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and transform its security from zero to a significant level
within a short timeframe. For example, an innovative method
for integrating heterogeneous data into customized and under-
standable cybersecurity information was proposed in recent
research work [123], which can be applied for cybersecurity
consultation and specialized security solutions.

3) Future Direction 8 (CTI Applications for Attacks
Prevention): Recently, the number of cyber threats is con-
stantly increasing. There are ten times more malwares now
than ten years ago. More and more security organizations
start collecting threat details and applying measures to prevent
them. Thus, threat prediction is essential to detect and prevent
potential attacks and loss.

By collecting massive CTI reports and forums from exter-
nal sources and extracting useful information, including attack
name, characteristics, vulnerabilities the attack may explore,
objects, etc., it is possible to predict whether a threat may
attack specific devices [72]. For example, if there is an attack
report that illustrates that an attack damaged a device by
exploring a vulnerability and the same vulnerability exists
in a device of an organization, the attack may also dam-
age the organization device. As a result, a security expert
is able to apply defenses prior to the possible unhappened
attacks.

However, this method can only predict happened attacks,
which means that only attacks and threats that appear in the
collected texts can be predicted. How to predict unhappened
attacks keeps being a problem and challenges.

V. CONCLUDING REMARKS

A. Lessons Learned

Cyber Threat Intelligence (CTI) mining is a powerful tool
that can provide valuable insights into potential cyber threats
and attacks, enabling proactive defense measures to be taken.
To generate robust and actionable intelligence, we need to
conduct CTI mining with diverse data sources, including open-
source and classified information. This involves a variety of
techniques, such as data collection, pre-processing, feature
extraction, and machine learning algorithms, which must be
carefully selected and optimized to achieve accurate and reli-
able results. However, CTI mining has its challenges. The
high volume and complexity of data, the need for real-time
analysis, and the difficulty of distinguishing between genuine
threats and false positives can all pose significant obstacles.
Quality control is essential in CTI mining to ensure accu-
racy and consistency in the extracted intelligence, avoiding
the risk of making decisions based on incomplete or inaccurate
information. CTI mining is an ongoing process that requires
constant monitoring and adaptation to keep pace with the
rapidly evolving threat landscape. Nonetheless, it can have sig-
nificant benefits for both academia and industry. These include
improved threat detection and response, enhanced cybersecu-
rity posture, and increased awareness of emerging threats and
trends. Overall, our review of the state-of-the-art works on CTI
mining revealed that this field is complex and challenging, but
ultimately valuable, capable of enhancing our ability to defend
against cyberattacks.

B. Conclusion

In this survey, we provided a detailed review of the most
significant works on CTI mining that have been published so
far. In our paper, we proposed a classification scheme for
organizing and categorizing existing research works on the
basis of the purposes of CTI knowledge acquisition, and we
highlighted the methodology adopted by the existing stud-
ies. In accordance with the proposed classification scheme,
we thoroughly review and discuss current works, including
cybersecurity related entities and events, cyber attack tactics,
techniques and procedures, profiles of hackers, indicators of
compromise, vulnerability exploits and malware implementa-
tion, and threat hunting. Furthermore, we discussed current
challenges and promising future research directions. Over the
past several decades, there has been tremendous interest in
CTI mining, specifically for proactive cybersecurity defense.
Many people have come to the attention that an enormous
number of new techniques and models are developed every
year. Hopefully, this survey helps readers understand the crit-
ical aspects of this field, clarifies the most notable advances,
and sheds light on future research.
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