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Abstract—Healthcare systems are under increasing strain due
to a myriad of factors, from a steadily ageing global popula-
tion to the current COVID-19 pandemic. In a world where we
have needed to be connected but apart, the need for enhanced
remote and at-home healthcare has become clear. The Internet
of Things (IoT) offers a promising solution. The IoT has cre-
ated a highly connected world, with billions of devices collecting
and communicating data from a range of applications, including
healthcare. Due to these high volumes of data, a natural synergy
with Artificial Intelligence (AI) has become apparent - big data
both enables and requires Al to interpret, understand, and make
decisions that provide optimal outcomes. In this extensive survey,
we thoroughly explore this synergy through an examination of the
field of the Artificial Intelligence of Things (AIoT) for healthcare.
This work begins by briefly establishing a unified architecture of
AloT in a healthcare context, including sensors and devices, novel
communication technologies, and cross-layer AI. We then exam-
ine recent research pertaining to each component of the AloT
architecture from several key perspectives, identifying promis-
ing technologies, challenges, and opportunities that are unique
to healthcare. Several examples of real-world AloT healthcare
use cases are then presented to illustrate the potential of these
technologies. Lastly, this work outlines promising directions for
future research in AloT for healthcare.

Index Terms—Artificial intelligence of things, Internet of
Things, machine learning, healthcare.

I. INTRODUCTION

EALTHCARE systems have long been strained by a
Hglobally ageing population and a rise in chronic ill-
ness. This has been increasingly apparent since the outbreak
of the COVID-19 pandemic, which pushed many healthcare
centres to breaking point - during significant outbreaks, many
patients suffering from COVID-19 and other unrelated ill-
nesses were cared for in makeshift facilities [1] and via
telehealth technologies [2].
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The Internet of Things (IoT) offers promising solutions in
providing improved standards of healthcare both in and out
of clinical settings. The IoT is broadly defined as a network
of interconnected devices that are able to gather, exchange,
store, and process data using an Internet backbone. IoT as it
pertains to health applications is often referred to as Healthcare
IoT (H-IoT) or Internet of Medical Things (IoMT).

IoMT is being increasingly utilized around the world.
The global value of this field estimated to exceed $158
billion USD in 2022, with approximately one-third of this
cost attributed directly to connected medical devices [3].
Significant applications for the IoMT lie in the diagnosis,
monitoring and management of chronic conditions such as
diabetes [4], dementia [5], Parkinson’s disease [6], epilepsy
and other seizure disorders [7], and sleep disorders [8]. Other
applications include rehabilitation after medical events [9],
medication adherence [10], assisted living [11], digital twin
development [12], and the treatment of patients and manage-
ment of outbreaks in pandemic events such as COVID-19 [13].

Existing communications technologies including narrow-
band IoT (NB-IoT) and 5G have facilitated increased con-
nection of medical devices to the IoT, and this will continue
to increase as emerging communications technologies such as
5G New Radio Reduced Capability (RedCap), 6G, and IoT-
over-satellite are implemented. As more medical devices are
connected to the 10T, a key challenge that has arisen is manag-
ing and utilizing the quantity of data that is generated by these
devices [14]. This massive data cannot realistically be pro-
cessed by individuals, and thus a need for artificial intelligence
(AD) to make sense of the vast quantities of data becomes
apparent. The natural synergy between Al and IoT has become
apparent in recent years; Al needs to learn from large amounts
of data to make successful discoveries, and IoT needs assis-
tance in making meaningful discoveries from the vast data that
it generates.

This synergy has lead to the emergence of the Artificial
Intelligence of Things (AIoT) [15], a new era of IoT systems
empowered by Al that is the driving the paradigm shift from
Healthcare 4.0 to Healthcare 5.0 [16]. The era of Healthcare
4.0 saw the introduction of highly-connected, patient-centric
care highly dependent on IoT; however, these systems often
do not provide smart health management, or emotive and
personalised care. Healthcare 5.0 builds on the strengths
of Healthcare 4.0 while simultaneously seeking to over-
come its weaknesses. In particular, Healthcare 5.0 leverages
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advanced technologies in an AloT architecture to provide
pervasive care that includes intelligent remote monitoring,
smart self-management, personalized medicine, and emotive
telemedicine. This paradigm shift will see high-quality health-
care available to more people, regardless of location and other
limiting factors.

A. Contributions of This Survey

The literature contains several excellent reviews offering a
variety of perspectives on Al and IoT in the healthcare field.
These are discussed and compared in detail in the following
subsection. In this work, we fill a key gap in the literature by
focusing on the synergy between Al and IoT that has lead to
the emergence of AIoMT. The key contributions of this work
are as follows:

1) We fill a gap in the literature through conducting a thor-
ough review of the synergy between Al and IoT as it
pertains to healthcare. This is in contrast to previous
works, which have considered Al and IoT as separate
entities.

2) We present a unified architecture for the Artificial
Intelligence of Medical Things (AIoMT) identifying
key levels of computing and communications. Novel
concepts including 5G New Radio Reduced Capability
(RedCap), embedded Al, swarm learning, and explain-
ability are considered. We further propose a new cross-
layer Al paradigm for the unified AIoMT architecture.

3) We explore the use of AIoMT for the entire pipeline of
healthcare, including monitoring, diagnosis, prognosis,
treatment, and disease discovery.

4) We present several use cases highlighting how AIoMT
can be utilised to support care for prevalent diseases and
conditions, including dementia, stroke, breast cancer,
and COVID-19.

5) We conclude our work by summarising the lessons
learned, highlighting the existing challenges and oppor-
tunities in the literature, and providing suggestions for
future research.

This thorough review critically examines current literature
on healthcare AIoT (AIoMT). To guide further research in
the AIoMT domain, we also identify the open challenges and
recommend future directions for research in this important
field.

B. Related Work

Artificial intelligence and the Internet of Things have both
been active fields of healthcare research in recent years, and
thus many survey papers have previously considered these two
topics separately. However, the fusion of Al with IoT into a
unified Artificial Intelligence of Things has not been broadly
considered in previous surveys. Additionally, previous review
papers have not considered emerging technologies in the AloT
domain, including explainability, embedded Al, and swarm
learning.

Current trends and future directions for IoT in healthcare
were examined by two recent surveys [17], [18]. Both reviews
focused on developing an IoT architecture for healthcare,
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along with identifying key requirements. The key topic of Al is
briefly mentioned, without in-depth exploration or discussion
of the fusion between AI and IoT.

In contrast, a survey by Qadri et al. [21] comprehen-
sively explored recent advancements in healthcare IoT across
a more complete architecture. Their examination of the litera-
ture included AI, however discussion is limited to several case
studies without in-depth focus on algorithms and fusion with
IoT. Edge computing is discussed, however embedded Al is
not explored. Additionally, this review omits the crucial topic
of explainability.

Explainability is considered in the context of healthcare by
one recent review by Markus et al. [19]. However, their work
does not consider IoT. Thus, key topics such as embedded Al
are overlooked, and the synergy between Al and IoT is not
explored.

Another review [20] considers embedded Al and explain-
ability. However, the broader IoT architecture is not consid-
ered. Healthcare is mentioned as an application, however use
cases are not explored.

The literature on artificial intelligence and IoT for health-
care is rich, however no survey to date has comprehensively
reviewed all of the key technologies that comprise unified
AloT healthcare system. In this review, we investigate how
Al and IoT can be used together to create robust, accurate,
and explainable AloT systems for healthcare.

C. Organization

The remainder of this paper is structured as follows:
Section II constructs a unified architecture for AIoMT,
informed by previous research in the AloT and IoMT domains.
It further analyses key technologies in AIoMT, including sen-
sors, communication technologies, and computing resources.
Section III then broadly categorises and several domains of
AIoMT research across the healthcare pipeline, including mon-
itoring, diagnosis, prognosis, and explainability. Section IV
then explores several timely use cases for AIoMT, examin-
ing how AIoMT can be leveraged across the entire healthcare
pipeline for specific applications including dementia care,
stroke and stroke recovery, and pandemic management. In
Section V, we summarise our findings and recommendations,
highlighting the key challenges and opportunities that remain
in the AIoMT field. Finally, Section VI concludes this work.
The key content of this paper is illustrated in Figure 1 for
convenience.

II. ENABLING TECHNOLOGIES OF AIOT FOR
HEALTHCARE

A. AIoMT Architecture

This subsection discusses the architecture for healthcare
AloT applications. In this work, we adapt a three-layer com-
putational hierarchy as shown in Fig. 2. We also consider
the application layer, which includes a variety of healthcare
domains that will utilize AloT.

As shown in Fig. 2, the device computing layer is com-
prised of devices that interact directly with the user. Perception
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Fig. 1. Overview of the contents of this paper.
TABLE I
COMPARISON OF RECENT SURVEYS IN AT AND 10T FOR HEALTHCARE
Reference Internet of Machine Sensors and Embedded AI Explainability Health AloT Synergy of AI
Things Learning Devices Use Cases and IoT
Aghdam er al. 4 X X X X X X
[17] 2021
Bhuiyan et al. v X X X X X X
[18] 2021
Markus et al. X v X X v X X
[19] 2021
Murshed et al. X v X v v X X
[20] 2021
Qadri et al. 4 v X v X X X
[21] 2020
This Work v v v v v v v

devices include wearable devices that measure health parame-
ters from the user, as well as devices such as phones and tablets
that are often equipped with simple sensors for fundamen-
tal health monitoring. Devices for monitoring the environment
and a patient’s compliance with treatment plans also fall within
perception devices. On the other hand, actuating devices are
those that act to assist a person - for example, a robot that aids
a person in rising from bed, or a smartphone application that
alerts a diabetic person to low blood-glucose levels. Actuators
would typically exist in systems with multiple perception
devices. As most devices have very little computational power,
only extremely lightweight AI algorithms can typically be
deployed at this level; more computationally intensive work
needs to be offloaded to higher levels at the cost of latency.

At the edge computing layer, an increase in computational
power is provided by higher-power devices such as phones,
tablets, computers, and gateways. The term ‘edge’ is used with
some inconsistency in the literature, in some instances refer-
ring to peripheral sensing devices and in other cases referring
to a device (such as a phone or gateway) that is connected to
said peripherals. For clarity, we distinguish between ‘embed-
ded’ and ‘edge’ layer devices in this work. However, it is worth
noting that certain devices such as phones can exist in either
edge or design layers; some are able to directly sense health
data from a user, while others can only provide supporting
computational power for peripheral devices.

The edge layer is not essential for all applications; in
many loT networks, embedded layer devices will communicate
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Fig. 2. Architecture for healthcare AloT.

directly with cloud layer devices using long-range commu-
nications such as NB-IoT or LoRA. The cloud computing
layer provides significant computational storage and process-
ing power to support information sharing and applications with
higher data loads.

Al algorithms can be implemented on one or more lay-
ers of the model for healthcare AloT shown in Fig. 2.
Traditional IoT network structures focused on conducting
machine learning at the cloud computing layer, with lower-
level devices focusing on gathering data and applying simple
pre-processing techniques. However, much recent research has
focused on developing lightweight edge and embedded Al
algorithms [22], [23] for direct implementation on lower-
powered devices, as well as investigating Al implementations
on enabling hardware technologies such as field-programmable
gate array (FPGA) and complementary metal oxide semicon-
ductor (CMOS) devices [24], [25].

Another approach that has been the subject of research
interest is cross-layer Al, where lightweight Al algorithms are
employed on the device or edge layer for tasks such as data
quality assessment, preprocessing, and intelligent offloading
scheduling [23], [26]. More traditional Al algorithms can then
be implemented at the cloud computing layer. This approach
can have several advantages, including decreased latency and
improved handling of data fusion from multiple devices or
sensors, whilst also maintaining good accuracy [27].

and Actuation

The remainder of this section investigates recent advance-
ments in the technologies that form the healthcare AloT
architecture, namely sensors and devices, communications,
computing resources, and artificial intelligence.

B. Sensors and Devices

Sensors and devices for healthcare applications are many
and varied, and thus specific healthcare sensor applications and
types have been the topic of entire reviews [28], [29], [30].
In this work, we briefly overview commonly used healthcare
sensors and devices in AloT research, as well as identifying
emerging technologies that offer significant potential to the
future of the AloT field.

1) Sensors: Wearable sensors remain the key enabling
technology for AIoT research due to a myriad of advan-
tages including low form factor, user comfort, and ease
of deployment. Two common sensors for cardio-respiratory
health monitoring are photoplethysmogram (PPG) and elec-
trocardiogram (ECG) sensors. PPG sensors are routinely used
to measure the vital signs of heart rate and blood-oxygen satu-
ration. PPG involves directing light into an artery, where some
of the light is absorbed by the blood. The remaining light is
reflected back or passed through the artery, with a photodi-
ode or similar sensor used to measuring this non-absorbed
light and thus capture heart activity waveforms and vital sign
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information. Meanwhile, ECG uses one or more electrodes to
record the electrical activity of the heart, with the recorded sig-
nals commonly used to assess cardiac health in detail. Both
PPG and ECG are available as wearable sensors, and thus
recent research has investigated their use for a myriad of tasks
including blood pressure monitoring [31], [32], respiratory rate
measurement [33], cardiac abnormality identification [34], car-
diac event prediction [35], and respiratory illness detection.
ECG and PPG waveforms have also been used to assess stress,
fatigue, and depression. Both PPG and ECG sensors are also
readily available within or as add-ons for commercial research
and fitness devices, including Empatica EmbracePlus [36] and
Apple Watches [37]. These factors have lead to the use of ECG
and PPG for general and specific health monitoring remaining
an active field of research, and Al is increasingly prevalent in
this domain.

Aside from ECG and PPG, there are several other sen-
sors in the literature for the measurement of cardiovascular
health parameters. Numerous studies have investigated the use
of electromechanical sensors, such as high-sensitivity pres-
sure and strain sensors, to measure the key parameters of
heart rate [38], [39] and blood pressure [38], [39], [40]. Such
sensors are commonly based on materials that change in elec-
trical resistance or capacitance in response to applied pressure
or strain. Further works have also explored the use of elec-
troacoustic sensors for collecting audio-based heart activity
waveforms that can be utilised to calculate heart rate and
related parameters [41]. The key focus in recent literature has
been making these sensors more wearable through use of novel
materials and manufacturing techniques, so substantial oppor-
tunity remains in developing machine learning techniques for
interpreting the data produced by these sensors.

Recent studies have also explored many methods for res-
piratory monitoring outside of ECG and PPG. Devices such
as strain sensors and inertial measurement unit (IMUs) have
been used to quantify changes in respiratory pressure during
breathing in several studies [42], [43]. Strain sensors cap-
ture movement of the chest wall via changes in resistance
or capacitance of the sensing material during inhalation and
exhalation cycles, while IMUs use their inbuilt accelerome-
ters and gyroscopes to gather rich information about chest
wall movement which can be used to extract respiratory
information. Mechano-acoustic sensors have also been increas-
ingly explored [44], [45] to capture respiratory information
from respiration sounds. The use of electrodes affixed to
the chest to measure changes in thoracic impedance during
the respiratory cycle has also shown promise [46]. There
is significant potential for artificial intelligence to be uti-
lized with each of these sensor types for tasks such as
measurement of respiratory rate, monitoring of respiratory
symptoms, and diagnosis and management of respiratory
ailments.

Various sensors discussed so far provide vital sign mon-
itoring for four of the five vitals: heart rate, blood-oxygen
saturation, blood pressure, and respiratory rate. The fifth vital
sign is temperature. Generally speaking, temperature sensing
is a largely solved problem, however challenges remain in
sensing core body temperature. The key challenge is ensuring
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reliable contact between sensor and skin to enable accurate
readings. This has been the subject of several recent studies on
body temperature sensing, which have focused on improving
the degree and consistency of contact between sensor and body
through developing temperature-sensitive fibres and films [47],
[48], [49], [50], [51] that could be implemented into textiles
and patch-based devices.

Aside from wearable sensors for monitoring vital signs,
there has also been an increase in research into non-contact
solution. One method that has been gaining interest for mea-
suring cardiorespiratory vital signs is remote PPG (rPPG), also
known as non-contact PPG (ncPPG) or imaging PPG (iPPG).
Standard PPG involves directing a light source into an artery,
and measuring the amount of light that is reflected back. A
similar principle is used by rPPG, which employs image pro-
cessing techniques to record light reflections in spectra of
interest from video footage of a patient or user, with this then
converted to heart activity waveforms. Signals obtained from
rPPG can thus be used for many of the same applications as
standard PPG, and thus recent research has explored its use
for estimating heart rate [52], blood pressure [53], respiratory
rate [54], and blood-oxygen saturation [55]. There is strong
potential for computer vision artificial intelligence techniques
to be utilized in this domain to better extract tPPG waveforms
from video and subsequently utilize the waveforms to make
measurements and predictions.

Measurement of vital signs is just one domain for wear-
able and non-contact healthcare sensors. Much research is also
being conducted on the development and usage of sensors for
monitoring of specific health parameters relevant to various
conditions. One prevalent topic is the measurement of blood
glucose levels with non-invasive sensors based on sweat [56]
and interstitial fluid [57], [58], which would offer significant
advantages to people living with diabetes and related condi-
tions. These sensors are electrochemical sensors that typically
utilize an enzyme as a receptor for the molecule or com-
pound of interest. The chemical reaction is converted into
a small electrical current, which can then be measured and
utilised to quantify the presence and concentration of the tar-
get molecule or compound. While much research to date has
focused on diabetes management, sweat sensors have also
recently showed promise for monitoring of parameters such as
lactate levels during exercise [59], blood-alcohol content [60],
and electrolyte levels [61].

Another prevalent topic in the literature is the use of elec-
troencephelogram (EEG) data to detect and diagnose various
neurological conditions, as well as identifying and predicting
neurological events. EEG sensors utilise electrodes placed
across the scalp to monitor the electrical activity of the brain.
There are many EEG sensors commercially available, includ-
ing Emotiv EpocX [62] and NeuroSky devices [63]. EEGs
are commonly used in clinical settings, however the use of
many electrodes placed across the scalp does not enable long-
term wear. Some research has thus aimed to improve the
wearability of EEG. Several studies have utilized single-lead
EEGs for diagnosing and monitoring conditions such as sleep
apnea [64], [65], epilepsy [66], mild cognitive impairment
(an early sign of dementia) [67], insomnia [68] and more.
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The majority of these works utilized artificial intelligence
algorithms to process EEG data [64], [65], [66], [67], [68].

There is also research interest in non-EEG solutions for
the detection and prediction of seizure events. Several works
have identified PPG [69], [70] and surface electromyography
(sEMG) [71], [72] as candidates for seizure identification. The
use of accelerometers and IMUs [73], [74] is also prevalent
in the literature, where researchers aim to use information
about movements to identify, classify, or predict seizure events.
The complexity of using sensor data describing movement to
identify seizure events has lead to recent researchers utilizing
machine learning to ensure accurate results [73], [74].

Accelerometers and IMUs are also widely used in other
healthcare monitoring applications. A prevalent topic in the lit-
erature is the use of accelerometers for fall detection [75], [76],
a significant risk for older persons and those living with motor
and mobility disorders. Accelerometers have also explored for
identification of freezing-of-gait (FoG) events in Parkinson’s
disease and related disorders [77], as well as general gait
pattern recognition for purposes such as rehabilitation [78],
identification of multiple sclerosis [79], and general fitness
management [80]. Accelerometers have also been used in
monitoring disease progression and symptoms for those with
Parkinson’s disease [26] and multiple sclerosis [81]. In many
accelerometer-based studies, artificial intelligence has been
used to process data and make meaningful predictions [76],
[771, [781, [80].

Virtual reality (VR) and extended reality (ER) devices have
also been shown to offer much promise in the AloMT domain.
Several studies have shown that VR can reduce anxiety and
stress during medical treatment, from routine dental care [82]
to cancer treatment [83]. VR has similarly been shown to
reduce anxiety in persons living with dementia in aged care
facilities [22], and there is some evidence that it may be use-
ful in treatment of medical phobias [84] and phantom limb
pain [85]. Aside from treatment uses, there is also evidence
that VR approaches can be combined with various sensors
to aid in the diagnosis of developmental disorders, includ-
ing attention deficit hyperactive disorder (ADHD) [86] and
autism spectrum disorder (ASD) [87], as well as neurological
disorders such as dementia [88].

Overall, the literature is rich with sensors and devices suit-
able for monitoring and assessing a wide range of health
parameters and conditions. As this topic is extremely broad,
this section serves to overview the key wearable and non-
contact sensing technologies that are foundational to AloT
healthcare systems.

C. Communications

Communications technologies for IoT applications are many
and varied, and have thus been the topic of many high-
quality and focused reviews [89], [90]. In this section, we
provide an introductory overview of prevalent and upcom-
ing communications technologies, as well as briefly intro-
ducing IoT-over-Satellite which can operate in both types
of bands. We categorise current and emerging communica-
tions technologies for IoT-based healthcare broadly into three
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categories: unlicensed-band terrestrial, licensed-band terres-
trial, and satellite-based communications.

1) Unlicensed-Band: Many communications technologies
operate in the industrial, scientific and medical (ISM) radio
frequencies. In terms of long-range communications, the most
prevalent unlicensed-band standards are LoRaWAN (Long
Range Wide Area Network) [91] and Sigfox [92].

LoRaWAN is a medium access control (MAC) protocol
built upon the Long Range (LoRa) physical layer protocol,
which uses chirp spread spectrum (CSS) modulation over
a bandwidth of at least 125 kHz to minimise the impacts
of interference due to high traffic in the unlicensed bands.
Multiple access is managed using an ALOHA type of proto-
col [91]. LoRaWAN operates in a star-of-stars topology [91],
with each gateway having a range of approximately Skm
in urban areas [93]. A single gateway can support approxi-
mately 40,000 nodes, with each node assigned a unique 64-bit
Extended Unique Identifier (EUI-64) key for addressing [94].
It operates in the unlicensed bands of 868 MHz in Europe
and 915 MHz in the U.S., with a high network capacity, data
rates of 0.25 to 5.5 kbps [94], and a maximum payload size of
243 bytes [93]. LoRaWAN can be accessed in several ways;
users can pay for access to networks owned and operated
by LoRaWAN Public Network Operators, or can develop and
maintain their own LoRaWAN Private Network [95]. The flex-
ibility and accessibility of LoRaWAN networks have made
it a popular choice in recent research in the healthcare IoT
domain [96], [97].

Sigfox also operates in the 868 MHz and 915 MHz bands.
It operates in star topology, and achieves a range of approxi-
mately 10km in urban areas [93]. Sigfox nodes are typically
designed to be uplink only, limited to 140 messages per day
with a maximum payload size of 12 bytes. Downlink mes-
sages can be requested 4 times per day [92]. Sigfox has
good coverage in much of western Europe, with limited cover-
age available in many other countries [92]. The Sigfox MAC
layer relies on random frequency time division multiple access
(RFTDMA), with addressing performed using a unique 32-
bit device ID [98]. Sigfox uses ultra narrow band modulation
using differential binary phase shift keying (D-BPSK) to sup-
port power efficiency and reduce device cost [98]. Despite
having several compatible healthcare devices listed on their
website [99], recent research has not focused on Sigfox as
an enabling technology for healthcare. Additionally, Sigfox
faced significant financial difficulties in 2022 and filed for
bankruptcy before being acquired by UnaBiz [100]. For these
reasons, it is suggested that LoRaWAN is currently a more
suitable open-standard long-range communications technology
for the healthcare space.

In terms of short range communications, Bluetooth [101]
and Wi-Fi [102] continue to dominate the healthcare IoT
space. Bluetooth Low Energy (BLE) operates on the ISM
2.4GHz band using frequency hopping spread spectrum
(FHSS) to minimise interference with other standards on this
band. Modulation is performed using Gaussian frequency shift
keying (GFSK) [101]. BLE networks can be configured in
either star or mesh topology, and range is typically short,
ranging from 25-125m [103]. Typical data rates range from
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800-1400 kbps [104]. BLE devices are identified using a 48-bit
unique address, with security supported by the four available
pairing modes and encryption [101], [104]. These features
have made it attractive for short-range healthcare applications
in research, including contact tracing [105] and emergency
room triage [106].

Wi-Fi has several standards with potential to be leveraged
in healthcare IoT. In terms of classic Wi-Fi, the latest gen-
eration in use at time of writing is Wi-Fi 6E (802.11ax),
with Wi-Fi 7 (802.11be) currently in development. Each
of these standards is designed for operation in the 2.4, 5,
and 6 GHz open bands. Wi-Fi 6 can achieve data rates of
up to 9.6 Gbps [102], with Wi-Fi 7 expected to exceed
40 Gbps [107]. The Wi-Fi 6 standard utilizes 1024 quadra-
ture amplitude modulation (1024-QAM) [102], with Wi-Fi 7
expected to utilise 4096-QAM (also called 4K-QAM) [107].
Wi-Fi 6 utilises orthogonal frequency division multiple access
(OFDMA) to manage multiple devices, and MAC addressing
follows the EUI-48 format [102]. The most prevalent use for
these classic Wi-Fi standards is in connecting devices to a
local network for delivery to the cloud or a health service
directly [108]. Another standard of interest is Wi-Fi HaLow
(802.11ah), which operates between 750 MHz and 928 MHz
and offers a longer range of up to 1km. It supports modula-
tion techniques including BPSK, quadrature phase shift keying
(QPSK), and up to 256-QAM [109]. Although Hal.ow has
been designed for IoT, there has not been widespread adop-
tion or real-life validation. Thus, Wi-Fi HalLow has potential
suitability for healthcare, but further validation is required.

A final open-band technology worth noting is radio
frequency identification (RFID) technology, particularly the
ultra-short range near field communication (NFC) standard.
NFC is a device-to-device communication standard that oper-
ates on the 13.56 MHz band using amplitude shift keying
(ASK) modulation. It typically achieves a range of less than
2cm and a data rate of up to 424 kbps [110]. NFC enables
lower-powered device design, as NFC readers provide the
power needed for an NFC tag to respond. This means that
NFC-enabled health monitoring devices only need to have suf-
ficient power for any on-board sensors, enabling small stick-on
wearables [111] and implantables [112]. As NFC is readily
built into many smart phones, apps can be readily designed
to interface with NFC-enabled devices and objects, supporting
at-home healthcare applications [113].

2) Licensed-Band: Licensed-band communications tech-
nologies are primarily cellular standards, with networks oper-
ated by telecommunications companies. Key communications
technologies of interest are narrowband IoT (NB-IoT), 5G,
5G New Radio Reduced Capability (RedCap) and the upcom-
ing 6G. In the context of healthcare, 5G offers attractive
features such as high security, high data rates, strong relia-
bility, and low latency [89]. 5G operates in various closed
frequency bands, with the majority of commercial opera-
tors using spectrums in the range of 3.3-4.2 GHz. However,
sub-GHz and millimetre wave frequencies of 26 GHz and
40 GHz are also available [114]. Modulation and access
control vary between 5G networks, however QAM and orthog-
onal frequency division multiplexing (OFDM) schemes are
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common. Large-scale multiple access typically uses OFDMA,
however non-orthogonal multiple access (NOMA) schemes
have been proposed to further increase network capacity for
5G and future 6G networks [89], [115]. Common uses for
5G-IoT in healthcare include serving as a backbone for con-
nectivity to cloud or health facilities [108] and telehealth
supported by wearable devices and video services [116].

The upcoming 6G standard promises to reduce latency and
increase reliability further, as well as supporting a greater num-
ber of connections. 6G will also feature increased data rates
to enable faster communication of larger data formats, such
as livestream video [115]. The benefits of these improvements
in the healthcare IoT domain are clear, as high reliability and
low latency are vitally important for time-critical health emer-
gencies. In terms of spectrum, 6G is expected to operate in
the same closed bands as 5G, while also expanding into tetra-
hertz frequency bands including optical [115]. Operation in
the THz bands will enable higher data rates at short range,
which would have significant benefits for applications such as
telesurgery and health robotics. Other applications for 6G-IoT
in healthcare include rapid-response unmanned aerial vehi-
cles (UAV), remote diagnosis and treatment of illness, and
enhanced connectivity between first responders and hospitals
during emergencies [115].

NB-IoT is another key cellular technology. It differs from
5G and 6G in that it has been designed specifically for IoT
applications, prioritising range, signal penetration, and low
power usage [117]. It serves as a competitor to open standards
like LoRaWAN and Sigfox. NB-IoT operates in the licensed
Long-Term Evolution (LTE) and Global System for Mobile
Communications (GSM) bands, meaning that it can coexist
with widely deployed 3G and 4G technologies [114]. This is a
significant advantage in terms of coverage, as 3G particularly
is widely deployed. NB-IoT features a data rate of 26 kbps
in downlink and 66 kbps in uplink, with higher latency of
1s [118]. NB-IoT utilises QPSK or 16-QAM modulation, with
multiple access managed using OFDMA for downlink and sin-
gle carrier frequency division multiple access (SC-FDMA) for
uplink [90]. For this reason, NB-IoT is best suited to smaller
data packets from wearable healthcare devices, as opposed to
data types such as imagery or video.

An upcoming technology for small-to-medium data packets
is RedCap, which has been primarily developed for low-power
devices such as wearables. It offers lower latency and higher
reliability than NB-IoT [119], and is capable of delivering
larger packets such as low-resolution video. RedCap devices
will be required to support 64-QAM and will utilise existing
5G access methods [120]. As deployment of RedCap begins,
the key limitation will be a lack of coverage; 4G remains
much more broadly deployed than 5G. However, for those
with access to it, RedCap-enabled devices will offer significant
advantages over their NB-IoT predecessors.

3) Satellite: Another communications technology of
interest in modern healthcare IoT applications is satellite.
Satellite communications operate in a wide spectrum of
frequencies, from 1-40 GHz [121]. This spectrum overlaps
with several open-band frequencies, but predominantly
includes licensed bands. The key advantage of satellite
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communications in healthcare is simple: it enables connec-
tivity in rural areas that are not covered by cellular or other
communications standards, thus supporting health monitoring
of persons in hard-to-reach locations [122].

A high-coverage constellation of low-Earth orbit (LEO)
satellites is ideal for health applications, as these constella-
tions provide the lowest latency of all satellite types [123].
However, LEO satellite communications still have high latency
and power consumption compared to cellular and other open-
band standards - thus, this technology is only recommended
for use in geographical areas that have no alternative coverage,
or for applications that are not time-critical.

D. Machine Learning Algorithms

The final building block of the AIoMT architecture is artifi-
cial intelligence. Machine learning (ML) algorithms are many
and varied, and many recent works hybridize or slightly mod-
ify prominent algorithms. In this section, we broadly overview
ML algorithms that have been utilized in recent healthcare Al
and AloT literature, before briefly overviewing key metrics for
assessing and comparing Al models in different contexts.

1) Convolutional Neural Networks: Convolutional neural
networks (CNNs) are a prevalent group of machine learning
algorithms that are particularly prominent in the image recog-
nition field, particularly in the medical domain [124]. They
are prevalent in the healthcare domain due to their strong
ability to identify features, regardless of the location or orien-
tation of the objects or features of interest within an image
or waveform. CNNs achieve this by stepping through the
image piece by piece, inspecting one small segment at a time
and using convolutional operations to extract feature repre-
sentations. Deeper CNN structures effectively perform feature
extraction on the lower-level feature representations, enabling
them to learn increasingly complex features.

Due to their ability to identify features in images, they
have commonly been used in medical imaging tasks such as
neurodevelopment prediction [125], brain tumour identifica-
tion [126], and COVID detection [127]. However, CNNs and
hybrid CNN models have also found use in processing medical
waveforms such as PPG and ECG [31]. Hybrid CNN mod-
els have been found to be more successful than pure CNN
models where there is a temporal dependency; for example,
pure CNN has been found to underperform compared to mod-
els where CNN is hybridised with long short-term memory
(LSTM) models in predicting blood pressure from time-series
PPG waveforms [31], [128].

2) Recurrent Neural Networks: Recurrent neural networks
(RNNs) are supervised learning algorithms that are com-
monly used to interpret sequential data, such as language
or time-series waveforms. They have the ability to ‘remem-
ber’ what they have seen in the past by passing information
from a previous time step forward to the next time step.
However, classic RNNs still struggle to understand dependen-
cies between features that are a long way apart; leading them
to be largely replaced by long short-term memory (LSTM)
networks.

LSTM networks are an advanced RNN that sweeps through
a sequence of data one item at a time, using several gates to
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determine which information to remember and what to for-
get between steps. As they are designed for sequential data
analysis, LSTM models have been used to interpret time-
series and other data in many healthcare applications including
emotion recognition [129], cardiac arrhythmia detection [130],
and epilepsy detection [131]. In one study, both RNN and
LSTM elements are used to predict depression risk from ECG
waveforms [132]. Interestingly, LSTMs have been found to
underperform in scenarios where raw time-series data is con-
verted into other formats. One example is seen in [133], where
EEG signals were represented in other formats prior to being
analysed by LSTM and SVM models; in this scenario, SVM
achieved close to 100% accuracy while LSTM never exceeded
80% accuracy. Similarly, a recent study which applied LSTM
to time-series vital sign measurements (as opposed to raw sen-
sor data streams) was shown to underperform in predicting the
onset of COVID-19 [134].

Another common variation on classic RNN and LSTM
networks involves passing the data through forwards and back-
wards, known as bidirectional usage. This allows the network
to learn from past and future items in the sequence, which
has been shown to improve performance when interpreting
healthcare signals such as PPG and ECG [33], [135].

3) Support Vector Machines: Support vector machines
(SVMs) are supervised machine learning models that are rela-
tively low in complexity. The simplest SVM seeks to generate
a line that can be drawn to separate data points belonging to
two different classes to enable binary classification; the seper-
ating line is called a hyperplane. Where a 2-dimensional line
is insufficient to divide the data accurately, it is possible to use
3-dimension or higher SVMs, which seek to find a plane that
can separate the two classes of data. SVMs can also be used
for multiclass classification by finding hyperplanes between
every one-versus-all combination of classes, or can be used for
regression by treating the hyperplane as effectively a line of
best fit. The simplicity of SVMs to implement and understand
has seen them widely used for healthcare applications, partic-
ularly where the input features are relatively simple. Recent
research has explored the use of SVMs and their variants for a
wide range of problems, including fatigue identification from
heart rate variability parameters [136], COVID-19 diagnosis
from laboratory test results [137] and Parkinson’s disease diag-
nosis from voice features [138]. SVMs have also been utilised
for human activity recognition [139], [140], where data from a
variety of motion and activity sensors are fused to predict the
onset of dementia; however, in both works SVM was found
to severely underperform compared to other simple algorithms
such as random forest. This suggests that SVM performs bet-
ter on preprocessed features, and is less successful in sensor
fusion tasks.

4) Random Forest Models: Another common supervised
learning algorithm in the healthcare domain is random for-
est (RF), most commonly used for classification problems.
RF is an ensemble method, with RF models comprised of
a large number of decision trees with different configura-
tions, which are then trained to predict the desired output.
Each individual decision tree makes a number of sequential
decisions based on conditions applied to the features, before
generating a final output. The overall output of the RF model
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is typically determined by majority vote - whichever output
is selected by the majority of trees becomes the output of
the whole forest. RF is therefore highly suited to applica-
tions such as choosing the correct diagnosis and identifying
risk factors. Its simplicity to implement and interpret is its
greatest advantage in the healthcare domain, and has seen RF
used in many recent research papers seeking to differenti-
ate between mental health conditions [141], diagnose breast
cancer [142], and predict mortality in acute kidney injury
patients [143]. While RF can perform well in many sce-
narios, it has also been found to severely underperform in
interpreting sensor data for depression and anxiety assess-
ment, achieving an accuracy of just 65.3% [144]. Similarly,
RF showed underwhelming performance in predicting respira-
tory rate using complex features extracted from Wi-Fi channel
state information, achieving just 79% [145]. This suggests that
RF performs at its best where relatively simple data is used,
and shows underwhelming performance when faced with more
complex features.

5) Autoencoder Models: Autoencoders are a group of self-
supervised machine learning models that have recently gar-
nered much attention, primarily for reconstructing image data.
They are comprised of two stages: encoder and decoder.
The encoder stage compresses the input data into a lower-
dimensionality representation of the original data, while the
decoder aims to reconstruct the compressed data back to its
original state. Autoencoders are typically trained on high-
resolution and clean data, and the trained model can then
be used to enhance data that is low-resolution, noisy, or
in greyscale. Additionally, they can be used for abnormal-
ity detection as the reconstructed output can be compared to
the true input to identify any areas of difference. For this
reason, autoencoders have been increasingly researched in
the medical imaging space, in applications including denois-
ing of retinal tomography images [146], resolution enhance-
ment for MRI [147], and localisation of anomalies with
regional enhancement for COVID-19 identification in chest X-
rays [148]. However, at least one study has identified that novel
transformer models outperform autoencoder-based models in
diagnosing COVID-19 from chest X-rays [149], suggesting
that autoencoders may not be the most suitable model for
healthcare image processing in all situations.

6) Attention Models: A key weakness of the classic
machine learning models discussed so far is that they strug-
gle to interpret the broader context of an image or sequence;
even LSTMs begin to ‘forget’ what they’ve seen in longer
sequences. The concept of attention was introduced to address
this problem for sequence-to-sequence (seq2seq) models, such
as those translating one written language to another. Attention
mechanism generate encoding vectors that reflect how impor-
tant other components of a sequence or image are with respect
to a particular point in that sequence or image. Attention mech-
anisms therefore enable the machine learning model to better
understand the context of an input by considering all or a
subset of the inputs when tuning the weights for the output,
known as global and local attention, respectively.

Attention is a mechanism rather than a standalone model,
and thus it can be applied to classic models such as CNNs
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and LSTMs to improve their context awareness and thus
overall performance. This has been has been demonstrated
in healthcare applications such as dementia detection from
magnetic resonance spectroscopy [150], abnormal ECG clas-
sification [151], and video-based heart rate extraction [152].
However, a recent study investigated the performance of atten-
tion mechanisms in the prediction of diabetes based on discrete
health features, and found that the attention-based models
did not align with general statistical analysis, and thus cau-
tioned that these models had limitations in certain clinical
settings [153].

Generally, attention is implemented as an additional
encoder-decoder or encoder-only layer within such models.
One disadvantage of classic attention models is that train-
ing and testing takes longer than it would without attention.
Another key disadvantage is that the inputs are only consid-
ered with respect to the output, rather than an input being
able to interact with all others and thus self-determine which
other inputs are important to it. Both of these problems have
been addressed through the introduction of transformer and
self-attention models, discussed in the following subsection.

7) Transformer Models: Transformer models are a recent
advancement in attention-based models, introducing the novel
self-attention mechanism which enables direct interaction
between inputs, such that the model can learn what attention is
should be given to each input by all other inputs and itself. This
is done via a series of encoding vectors that represent the impor-
tances of inputs to one another. These are ultimately aggregated
and fed through a decoder to produce an output. Transformer
models can replace RNNs and CNNs entirely, unlike classic
attention mechanisms. Their shallower architecture leads to
significantly faster training times compared to classic attention
models, a key advantage in domains such as natural language
processing (NLP) and computer vision. Transformers are also
typically trained using self-supervised learning followed by
supervised fine tuning; a significant advantage as less manually
labelled data is required for them to succeed.

Transformers were originally developed for seq2seq prob-
lems such as label generation and report summarization,
and in healthcare this has been leveraged for applications
such as ECG abnormality identification and labelling [154]
and automatic disease coding based on descriptive diagnostic
text [155]. One limitation of classic transformers, however, is
that the decoder produces one token at a time; it effectively
is producing text from left-to-right and is unable to see items
from the future of the output sequence.

This limitation has lead to the development of the
Bidirectional Encoder Representations from Transformers
(BERT) pre-trained model [156], which utilises only the
encoder component of the transformer architecture. The
encoder is capable of seeing tokens from both past and future,
thus enabling the model to learn from a more complete context.
The BERT model is pre-trained for masked language model
and next sentence prediction tasks using a document-level lan-
guage corpus comprised of over 3 billion words. BERT has
been used in recent literature to develop models for depression
risk identification [157], epidemic surveillance [158] and
interpretation of radiology reports [159].
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The success of transformers for language models has lead
to an interest in these algorithms for other applications, partic-
ularly computer vision. Vision transformers treat images as a
sequence of ‘patches’. Recent works have explored the use of
vision transformers for healthcare for radiology applications
such as COVID-19 lung screening [160] and breast tumour
malignancy assessment [161], with vision transformers found
to routinely outperform CNN where large data is available.
Transformers also have the advantage of being readily explain-
able in the spatial domain, as the patch-based approach can
be used to visually highlight the areas that contributed to the
prediction [160].

Several recent works have also explored vision-language
transformers, which use vision transformer encoders and lan-
guage transformer decoders to generate text reports based on
an image. In healthcare, vision-language transformers have pri-
marily been explored for generating radiology reports [162]
and describing pathology images [163]. Transformers are gen-
erally well regarded in the literature for image processing and
are currently a hot topic, but they are not a guaranteed solution.
At least one recent study has shown that transformer-based
models can still underperform with image-based data, with a
transformer composite model achieving only 60% accuracy
in identifying COVID-19 in lung ultrasound images [164].
This indicates that the quality and quantity of the data is still
essential in developing high-performing transformer models.

Transformer models are an interesting development for the
AloT. They require large quantities of data to train suc-
cessfully, meaning they are naturally synergistic with IoT
technology. Due to their strong performance with analysing
sequential data, it is highly likely that transformers could be
broadly used to interpret time-series data from healthcare IoT
devices - however, this has not been widely investigated. The
ability to train on unlabelled data is also high advantageous
in the AIoT context, as manually labelling such a significant
volume of data is infeasible. Despite these key advantages,
exploration of transformers for healthcare applications is in its
infancy, and thus is a suggested direction for future research.

8) Key Metrics for Al Algorithms: In subsequent sections,
we discuss the performance of Al algorithms in the literature
based on a range of key metrics. For binary and multiclass
classification, these metrics include fundamental statistical
measures of accuracy, specificity, sensitivity, precision, and
F1 score. Ability to discriminate between two classes is com-
monly quantified in medical Al using area under the receiver-
operator curve (AUROC) and area under the precision-recall
curve (AUPRC), as these metrics are less affected by imbal-
anced data. For regression problems, statistical measures of
mean absolute error (MAE), root mean squared error (RMSE),
standard deviation (SD), and Pearson’s correlation coefficient
(PCC) are commonly used to understand error.

E. Layers of Learning and Cross-Layer Al

A key requirement of many AloT systems is the imple-
mentation of Al on devices with varying computational capa-
bilities. An AIoMT system will typically include embedded,
edge, and cloud implementations of Al algorithms. In this
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section, we introduce the three layers of learning and current
advancements in each layer.

1) Embedded AI: Embedded Al is an emerging field of
research focused on developing lightweight Al algorithms
for implementation on low-powered devices, such as smart-
watches and other wearables.

In the healthcare context, researchers have primarily focused
on training low-complexity machine learning algorithms such
as RF [165], SVM [166], and shallow CNNs [167] for
implementing embedded Al. Other shallow NN structures,
including recurrent and hybrid structures, would also be strong
candidates from embedded Al applications.

Aside from designing lightweight Al architectures, research
into implementing embedded Al onto efficient hardware such
as FPGA [24] and CMOS [25].

2) Edge Al: Edge Al is often used synonymously with
embedded Al in the literature, however in this work we consider
these as two separate domains. Here we define edge Al algo-
rithms as those operating one step away from the end device,
such as the smartphones and computers illustrated in Fig. 2.

The computational capabilities of edge devices varies
greatly, ranging from relatively low-powered smart phones
through to high-end computers with powerful graphics cards.
As such, a broad range of Al algorithms have been imple-
mented at this layer in healthcare applications.

In lower-powered devices, many of the same algorithms
utilised in embedded AI again find use in edge Al, again
including RF [168], [169], SVM [169], and CNN [170], [171].
Additional algorithms including LSTM have also been utilised
on the edge [172].

3) Cloud AI: Any Al algorithm that can be implemented
in edge or embedded devices can also be implemented in the
cloud; however, cloud Al is most commonly used where there
are extremely large data sets or collaborative data sets. Cloud
computing resources are also typically needed to support com-
plex models such as transformer models, which generally
need significant quantities of data and are computationally
expensive to train. In the context of healthcare, cloud Al is
commonly used for medical imaging applications due to the
size of this data [173], [174]. Cloud Al is also commonly uti-
lized for pre-training of algorithms before they are deployed
to edge Al devices such as smartphones [169].

4) Cross-Layer Al: Different layers of learning have dif-
fering advantages. Edge and embedded Al offers low-latency
and high preservation of privacy, while cloud computing
offers significantly higher computational power. Cross-layer
Al offers a solution that leverages the advantages of multiple
layers of learning. Several recent studies have utilized cross-
layer Al to conduct initial processing on the edge before
offloading to the cloud for higher-level processing [170],
[175], decreasing latency whilst simultaneously leveraging
high-power computing resources where required.

Another application of cross-layer learning is in federated
learning, a distributed learning architecture highly suited to the
healthcare context. To create machine learning algorithms that
generalize to a global population, large and diverse databases
are required. However, patient privacy is paramount and thus
centralized databases cannot be created. Federated learning
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addresses this problem through training of machine learn-
ing models on decentralized edge devices, with the resulting
model then shared via cloud computing resources. Models
from all participating edge devices are fused, and the result-
ing model can be returned to the participating edge devices
for further use [176]. Preliminary studies have illustrated
the benefits of federated learning for applications such as
functional MRI analysis [177] and classification of clinically
significant prostate cancer using apparent diffusion coefficient
imagery [178].

While federated learning is privacy preserving, the depen-
dency on a central server for learning creates a single point
of failure; if the central server is compromised, then par-
ticipating nodes all suffer. To address this issue while still
preserving privacy, the concept of swarm learning was recently
proposed for medical contexts [179]. Swarm learning is sim-
ilar to federated in that all nodes conduct local learning on
embedded or edge devices and only share the results of that
learning, however it differs in that the nodes aggregate the
local learnings using a peer-to-peer structure with blockchain
technology. The use of blockchain ensures that only legiti-
mate nodes can join the network, and the peer-to-peer structure
ensures that the system is resilient against failures of a single
node. Swarm learning has been tested for medical applications
including tuberculosis detection and COVID-19 diagnosis,
with promising results [179].

FE. Lessons Learned

In this section, it was found that many of the physical
building blocks required for such a system are now read-
ily available. Many health sensors such as PPG, ECG, and
EEG are well-established and widely available, providing
researchers with much opportunity to collect data for AloMT
studies and applications. In the materials science space, novel
sensors such as sweat and interstitial fluid sensors remain an
active field of research for detecting and managing both short-
and long-term conditions, from lactic acid build-up to dia-
betes. Non-contact sensing methods are also a prevalent topic
in recent literature, with techniques such as rPPG and channel
state analysis increasingly explored for the measurement of
various health indicators, from vital signs to physical activity.

Additionally, recent advancements in communications tech-
nology have provided several highly suitable standards and
approaches for AIoMT systems, with upcoming technologies
further benefits. 6G is expected to extremely fast communi-
cation and significant network capacity, and thus will drive
advanced telehealth applications, from rapid-response medical
UAVs and telesurgery. Meanwhile, RedCap is a clear successor
to NB-IoT, offering lower latency and higher reliability due to
its 5G backbone. This will primarily support lower-powered
devices, but will be capable of sending larger quantities of data
than its NB-IoT predecessor. Lastly, satellite-based IoT com-
munications will be critical for healthcare to be truly pervasive;
dense LEO constellations can provide coverage in regions
where cellular networks are unavailable.

In terms of machine learning, it was interesting to note
that many of the studies identified in this literature review
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used fundamental ML models such as SVM and RF. These
approaches typically involved extensive feature extraction
from image or time-series data, which has the potential to
introduce human bias. Relatively few papers considered the
application of ML models directly to raw data, despite the
clear suitability of LSTM and transformer models for time-
series and other sequential data types. Furthermore, very few
papers investigated the application of emerging ML models
such as transformers and autoencoders to healthcare problems,
and thus there is much opportunity remaining in applying
advanced models to such problems.

Our review also identified many novel technologies that
have changed the shape of AloT for healthcare applications
in recent years. The gradual shift of Al towards the edge and
embedded layers has significantly altered the traditional model
of simply offloading to the cloud. Continued development
of embedded and edge Al algorithms will lead to health-
care systems with lower latency, enhanced privacy, and higher
fault tolerance. Cross-layer Al has also emerged as a solu-
tion to problems with higher computational needs, enabling
some processing to occur at the embedded or edge layer before
offloading the remainder of the work to higher-powered edge
or cloud devices.

In terms of preserving privacy where cloud Al is utilised,
the techniques of federated and swarm learning both offer
significant promise. Both techniques involve the training and
subsequent sharing of local models, without sharing the data
that enabled that training. It is suggested that swarm learn-
ing offers stronger benefits than federated learning, due to the
robust and decentralized peer-to-peer structure of the approach.

III. AIOT FOR HEALTH DOMAIN CHALLENGES

With the components of the AIoMT now established, this
section explores the key domains of healthcare where AloMT
can be utilized to improve outcomes for clinicians and patients
alike. This section begins with the fundamental domain of
health monitoring, before exploring how this can be further
applied for diagnosis and prognosis. Lastly, we examine the
literature on using explainability techniques within AIoMT to
improve clinician trust and general understanding of diseases
and outcomes.

A. Health Monitoring

The most fundamental application of AloT is monitoring
of health parameters, both for general health and manage-
ment of specific conditions. A typical AloT health monitoring
system utilizes on-body devices and/or environmental sen-
sors to acquire data from the patient, as shown in Fig. 3.
Machine learning techniques are then used to extract mean-
ingful information from this data.

1) Wearable Monitoring: In one recent study, an AIoMT
system was developed for monitoring workers in hot environ-
ments for signs of heat stroke [180]. The developed wearable
device incorporated humidity, temperature, and multiple PPG
sensors, along with a 3-axis accelerometer. Metrics including
heart rate, activity, and a personalised heat stress temperature
were derived and used as inputs to several machine learning



1272

Activity

Fig. 3.
literature.

Types of health monitoring where AIoMT has been utilised in the

models. It was found that a simple k-nearest neighbours model
was stronger for this task than more complex algorithms such
as RF and SVM. The complete system was validated in a
high-temperature work environment, and was found to identify
96.7% of heat stroke cases.

Mental fatigue is another key health and safety risk in any
workplace. One recent study [136] proposed an AIoMT system
that linked heart rate variability (HRV) parameters with men-
tal fatigue. HRV statistics were extracted from ECG signals
obtained via a chest-worn device. Several machine learning
models were trained to conduct binary classification (fatigued
or not fatigued), with SVM found to outperform k-nearest
neighbours (kNN) and linear regression (LR) approaches.

Cardiac health monitoring was considered in a critical
care setting by another recent study [181]. Information about
existing health status gathered from patient interviews was
fused with features of the ECG signal, blood oxygen sat-
uration, and body temperature measurements obtained via
wearable devices. RF, SVM, and shallow fully-connected neu-
ral networks (FCNNs) were trialled for identifying a patient’s
cardiac health status as healthy or unhealthy on a continuous
basis. The RF model achieved the highest accuracy of 80%
on a dataset of 12 patients.

There have also been several studies seeking to moni-
tor chronic health conditions with AIoMT systems. In one
study [182], such a system was developed for the monitor-
ing and classification of seizures in patients with epilepsy. A
device that can be worn on wrist or ankle was used to mea-
sure electrodermal activity via sweat sensor, accelometry, and
blood pulse volume via PPG. These parameters were then pro-
cessed by a shallow CNN with the aim of identifying a seizure
and classifying the type. The best results for seizure detection
were seen using only accelerometer and PPG data, achieving
an AUROC of 0.752. Interestingly, the model utilizing only
accelerometer data as an input performed more strongly in
classifying the type of seizure, achieving the highest AUROC
for classifying 5 of the 9 considered seizure types.

Glucose and glycated haemoglobin are key parameters for
monitoring the health of people with diabetes, however current
methods for obtaining these parameters are somewhat invasive.
One recent pilot study [183] developed an AIoMT system
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that leverages non-invasive wrist-worn sensors to measure
heart rate via PPG, body temperature, electrodermal activ-
ity and accelometry. Random forest models are then used to
assess 27 glucose variability metrics and glycated haemoglobin
levels. It was found that 11 of the 27 glucose variability param-
eters could be predicted with <10% error, as could glycated
haemoglobin. The study also reported the importances of each
input parameter in successfully predicting each output param-
eter. The results indicate that input feature importance varied
greatly depending on the parameter of interest, however in all
cases it was clear that data from all four sources contributed
strongly to successful measurement of glucose variability and
glycated haemoglobin parameters.

2) Non-Contact Monitoring: Incorporating environmental
monitoring devices, such as camera or radar, can also be
useful in many health monitoring applications. In one recent
study [133], an AIoMT system for monitoring fatigue was
developed, fusing data from forehead-wearable EEG sensors
and video-derived eyelid features for classification by SVM
and LSTM models. It was found that LSTM can identify
fatigue with up to 75.71% accuracy without any calibration
to an individual user. It was further found that SVM can iden-
tify fatigue with up to 99.64% accuracy when fine-tuned to
an individual. Interestingly, models trained on fused data only
performed slightly better than those trained on eyelid features
alone but significantly better than those trained on EEG data
alone.

Some AIoMT studies move away from wearables entirely,
using only environmental sensing devices. In one such study,
non-contact monitoring of HR and RR is conducted in a neona-
tal cohort using image data gathered from a camera [184]. A
CNN model is used to identify the region of interest - in this
case, the infant’s face - before cardiorespiratory activity data
is extracted from colour and motion artefacts. These are then
used to calculate RR and HR.

Another study developed a non-contact AIoMT system for
measurement of RR using channel state information, with a
Wi-Fi router used as the transmitter [145]. A respiration signal
is obtained based on reflectance of the signal from the patient,
with feature extraction then conducted. Four machine learning
models were trialled for the measurement of RR based on the
obtained signal. The strongest model was a KNN approach at
83.33% accuracy, with RF and SVM close behind at just over
79% accuracy. This approach has the advantage of being non-
contact and privacy-preserving, as no image data is recorded.

Another privacy-preserving AIoMT health monitoring
scheme using solely environmental sensing is presented
in [185], where channel state information is for activity clas-
sification. Radar spectograms are gathered from interference
with Wi-Fi signals, and several machine learning models are
trialled for accurate classification of activities such as walk-
ing, sitting, and falling. The strongest performing model was
a CNN, achieving an accuracy of 95.30%.

Overall, monitoring is a the most fundamental domain for
AIoMT systems. Without monitoring, the diagnosis, progno-
sis, and explanations discussed in the following subsections
would not be possible. This section has identified that AloMT
is highly suitable for enhanced monitoring in non-invasive and
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Fig. 4.  Health conditions for which AloMT-based diagnosis has been
explored in the literature.

wearable ways, which has the potential to greatly improve
remote health services, support independent living for at-risk
individuals, and enhance other forms of care.

B. Diagnosis

Monitoring of health status is important for providing
instantaneous snapshots of a person’s health and how it
changes over time. However, this alone does not enable for
diagnosis of health conditions that may affect a person. The
domain of AloMT-enabled diagnosis focuses on leveraging
modern technology to better identify a wide range of men-
tal and physical health conditions, as well as developmental
disorders, as shown in Fig. 4. In this subsection, we explore
AloMT-based diagnosis in these three areas.

1) Physical Health: Accurate and early diagnosis of
COVID-19 has understandably been a prevalent topic of
research since the beginning of the pandemic, and this includes
research in the AIoMT field. In one study, an AIoMT system
for early detection of COVID-19 infection was developed
in [186]. ECG signals were obtained via Apple Watches,
then features describing the heart rate variability (HRV) and
resting heart rate (RHR) were extracted. Several machine
learning techniques were trialled for detecting COVID-19
infection from these parameters, with a gradient boosting deci-
sion tree approach achieving the strongest performance. After
fine-tuning, the model achieved 77% accuracy and 76.8%
sensitivity.

In another recent study, laboratory results from EHRs
were used to identify patients with COVID-19 using various
machine learning models [137]. It was found that an SVM
model was the best performer in diagnosing COVID from 15
clinical variables, achieving accuracy of 93.33% and AUROC
of 0.88.

Another serious short-term illness prevalent in several
regions of the world is malaria, a mosquito-borne disease
caused by a parasite. Malaria is endemic in regions of
Africa, and rapid diagnosis is required for saving lives and
preventing outbreaks. One recent study developed a prototype
low-cost AIoMT system for field diagnosis of malaria [187].
Microscopy is used to collect images of slides containing
blood samples taken from participants, with a CNN-based
model then used to identify the presence of parasites. The
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diagnostic sensitivity was 91.1%, with species of parasites
also accurately identified in 92-93% of cases. Additionally, the
model attempted to identify parasite density within the slides.
However, this was less successful; the model was within +£25%
of the reference microscope count in only 23% of slides.

There are also many long-term illnesses where outcomes
can also be improved through early diagnosis. One clear exam-
ple is chronic kidney disease (CKD), which ultimately causes
renal failure. If caught in early stages, treatment is substan-
tially more effective. To address this, one recent study [188]
developed a straightforward AIoMT tool for diagnosing early-
stage CKD at low cost, using simple vital sign measurements
along with results of urine and blood tests. They trained
multiple machine learning models for this diagnostic task and
found RF to be the strongest performer, with a diagnosis
accuracy of 99.50%.

Outcomes for heart disease can also be improved through
early diagnosis. One recent study used a novel digital twin
approach based on AIoMT to accelerate identification of heart
issues [12]. ECG sensors are used to gather cardiac activ-
ity signals, with LSTM then used to identify the presence of
several different types of heart arrhythmia. Digital twins of
each patient are created, where both raw sensor data and Al
arrhythmia assessments are stored for clinician access. This
approach showed high accuracy in assessing most types of
arrhythmia, and the digital twin approach allows for clini-
cians to receive timely updates and make prompt decisions;
it also supports comparison between multiple patients’ digital
twins to enable identification of similar cases and thus further
support treatment planning.

Cancer is another longer-term illness where early diagno-
sis is critical. Many late-stage cancers are difficult to treat
and result in high mortality across the world; however, early
diagnosis can greatly improve outcomes for many types of
cancer. Skin cancer is one prevalent cancer where early detec-
tion is critical. In one recent study, cancerous skin lesions were
identified using image data [189]. Images were segmented to
identify potential lesions, with various features then extracted.
These features were then processed by an ensemble SVM and
RF classification approach, which achieved 85.31% diagnos-
tic accuracy. This strategy is promising, as many people have
access to smartphone cameras; thus, regularly taking photos of
suspicious lesions could lead to significantly earlier detection
of skin cancer.

Prostate cancer is another prevalent form of cancer where
early intervention can greatly improve outcomes. In one
recent study, an AIoMT system utilised a photoacoustic probe
to identify potential prostate cancers [190]. Features were
extracted from the photoacoustic spectrum, with linear dis-
criminant analysis (LDA) and quadratic discriminant analysis
(QDA) used process the data and identify cancers. The QDA
model performed slightly more strongly, with a diagnostic
accuracy of 81.7% and a sensitivity of 78.2%. The authors
suggest that these results indicate stronger performance than
MRI whilst being less invasive than biopsy.

Early diagnosis is also critical for breast cancer.
Mammography is a common imaging technique for detect-
ing breast cancer, and is reasonably accurate. However, it is
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less accurate in younger people and requires specialist anal-
ysis. Automatic diagnosis has the potential to address these
issues, and thus was considered by a recent study which used
an extreme learning FCNN approach for identifying potential
cancers in mammographs [191]. On one database, their model
achieved 91.13% diagnostic accuracy and 0.95 AUROC; on
another database, it achieved diagnostic accuracy of 100%
and AUROC of 1. Their results also indicated a strong ability
to classify tumours as malignant or benign, achieving 100%
accuracy on the small test set. Further validation on a large
set would be required to confirm the strong performance of
this model.

Diagnosis of diseases that are chronic or degenerative has
also been widely considered in the literature. In one study,
an AIoMT system was developed for the diagnosis of dia-
betes [192]. Data from sensors including photoplethysmogram,
body temperature, glucometer, and blood pressure sensors
were obtained via an Arduino. Several demographic features
were also gathered by means of a questionnaire. All data was
processed by an ensemble learning method including logistic
regression, kNN and SVM models; then a voting approach
was used to summarise the outputs, which in turn was passed
to a RF model for final diagnosis prediction. This method
achieved an diagnostic accuracy of 98.4% and 0.984 AUROC
on the collected dataset.

Early diagnosis of Parkinson’s disease can improve the
efficacy of several treatments, and thus has been a topic of
interest in the literature. One recent study [138] developed
an AIoMT tool that utilises SVM to process features of
vocal patterns, namely vowel phonations, in order to diag-
nose Parkinson’s disease. This model achieved a diagnostic
accuracy of 92.21%. Voice signals were also considered in
another recent work [193], where machine learning methods
including kNN, RF, and Naive Bayes were applied to features
extracted from open-access voice recordings. RF performed
strongly, achieving 95.58% diagnostic accuracy.

Alzheimer’s disease is another common degenerative dis-
ease; it causes the brain to atrophy over time. It is the
most common cause of dementia, leading to cognitive and
physical decline as the condition progresses. Early diagnosis
enables management of symptoms to support a high quality
of life for a longer period. In one recent study, data gath-
ered from environmental motion sensors was used to predict
the early onset of dementia based on the participants’ activ-
ity [140]. Several machine learning models were trialled,
including FCNN, RF, and SVM. The strongest model was
a boosted decision tree model, which achieved an accuracy
of 92.59%. Brain imagery has also been used in recent stud-
ies seeking to diagnose Alzheimer’s disease; one such study
recently developed a hybrid CNN and SVM model for pro-
cessing MRI images [194], achieving an accuracy of 94.8%
and AUROC of 0.997.

2) Mental Health: Recent literature has sought to diagnose
a broad range of depression and anxiety disorders. In one
recent study [144], a low-cost AIoMT system was proposed
for diagnosing major depressive disorder using EEG, eye
tracking, and galvanic skin response sensors. Several machine
learning models were trialled for processing the input data,
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including RF, logistic regression, and SVM. The logistic
regression model exhibited the highest performance, achiev-
ing an accuracy of 79.63% in diagnosing major depressive
disorder.

Depression has also been diagnosed using electronic health
record (EHR) and medical imaging along with machine
learning. In one study, clinical, laboratory and demographic
data were collected from EHRs [195]. After training several
machine learning models, it was identified that RF was the
most suitable algorithm; achieving an accuracy of 89% and
AUROC of 0.87. In another study [196], functional connec-
tivity brain maps were processed using an SVM classifier,
achieving an AUROC of 0.99 for distinguishing persons with
and without depression in a small cohort.

Bipolar disorder is another common depressive disorder
which is characterised by significant mood swings between
depression and mania, however it is frequently misdiagnosed.
One recent study [197] aimed to address this issue through
the development of an AIoMT system that utilises EEG sig-
nals to identify the condition. After trialling multiple machine
learning methods, it was identified that a gradient boosting
approach could accurately diagnose bipolar disorder in 94% of
cases using features extracted from the EEG signals. SVM and
decision tree also performed quite strongly, achieving an accu-
racy of over 87.48%. It is possible that an RF approach would
prove a strong candidate for this application given that a single
decision tree was able to achieve such strong performance.

Diagnosis of anxiety disorders have also been considered
in the literature. In one recent study, motion data from smart-
phones and IMUs was used for the identification of anxious
behaviours including hair pulling and hand tapping [198].
Multiple machine learning methods were trialled for classi-
fying anxious behaviours based on the acquired motion data,
with CNN and LSTM found to be 92% accurate. This has sig-
nificant diagnostic potential; smartphones are widespread, and
thus a tool such as this could be broadly deployed to identify
warning signs of anxiety disorder.

Panic disorder is a common anxiety disorder that can coexist
with other anxiety diagnoses. However, it is critical to identify
where panic disorder is present so that treatment can be tai-
lored to reduce the effects of panic on the patient. This issue
was considered by a recent study that sought to develop an
AlIoMT system to distinguish panic disorder from other anxi-
ety disorders using heart rate variability (HRV) metrics [199].
The HRV metrics are extracted from an ECG device, and sev-
eral machine learning models were trialled for using these
metrics to diagnose panic disorder. Simple logistic regression
was found to be the strongest model, achieving an accuracy of
78.4%. This is significant as HRV parameters can be extracted
from ECG or PPG in readily-available wearable devices and
smartphones.

Post-traumatic stress disorder (PTSD) is an anxiety dis-
order caused by a stressful event or prolonged traumatic
experience in the patient’s life. Symptoms overlap with other
anxiety disorders, as well as major depressive disorder. As
such, accurate identification of PTSD is critical for ensur-
ing that patients receive the correct treatment. In one recent
study, SVM was used to process P300 wave data from EEG



BAKER AND XIANG: AloTs FOR SMARTER HEALTHCARE

sensors to diagnose PTSD, both on its own and in the pres-
ence of comorbidities [200]. SVM was able to distinguish
between healthy controls and PTSD sufferers in 82.09% and
82.56% of cases for mono and comorbid PTSD, respectively.
Additionally, SVM could distinguish between PTSD and major
depressive disorder in 70.34% of cases.

3) Development Disorders: Accurate diagnosis of devel-
opmental and behavioural disorders, particularly in young
children, is critical for early and appropriate intervention to
ensure that the right support can be provided. As such, this
topic has attracted increasing interest in recent literature.

Autism Spectrum Disorder (ASD) is one prevalent devel-
opmental disorder, and is often challenging to diagnose. Early
diagnosis can aid in the development of individualised sup-
port plans that improve outcomes for persons with ASD.
For this reason, several recent studies have sought to use
AIoMT technology to improve diagnosis of ASD. In one
recent study [201], a system was developed wherein machine
learning is used to process home videos to identify charac-
teristic ASD behaviours. Features were extracted from the
uploaded home videos, with machine learning models includ-
ing SVM, RF, and logistic regression trialled for identifying
children with ASD. SVM showed the highest performance,
achieving an accuracy of 91.79% and AUROC of 0.946.

In another recent study, demographic information from
EHRs as well as responses to survey questions were processed
by various machine learning methods to diagnose ASD in tod-
dlers, children, adolescents, and adults [202]. The SVM model
showed the best performance, achieving accuracies 97.82% for
the toddler subset, 99.61% for the child subset, 95.87% adoles-
cent subset, and finally 96.82% for the adult subset. Another
study used EHR information to identify ASD in persons where
overlapping diagnoses were present, namely anxiety disorders
and conduct disorder [203]. It was found that RF was suit-
able for this task, with results showing sensitivity of 0.89-0.94
across all RF models trialled.

Another common developmental disorder that primarily
affects learning is dyslexia, which is primarily characterised
by difficulty in reading. Children with dyslexia can also expe-
rience speech impairments and difficulties in retaining new
information. With tailored support, many people with dyslexia
can succeed in school and work environments; thus, early
diagnosis is critical for improving outcomes. In one recent
study [204], eye movements were recorded while participants
completed several reading and other visual tasks. SVM and
linear regression models were then trialled for processing the
eye movement features, with linear regression found to accu-
rately identify dyslexia in 81.25% of cases either reading tests
or LED-based saccade eye movement tests.

Behavioural disorders are another group of developmen-
tal disorders, and one of the most prevalent is attention-
deficit/hyperactivity disorder (ADHD). Despite it being well-
known, ADHD is commonly under-diagnosed, particularly in
girls and women [205]. Persons with ADHD can experience
symptoms including learning difficulty, impulsive risk-taking
behaviour, and aggression; if left untreated, ADHD has also
been associated with the development of depression and anx-
iety. As such, accurate diagnosis is critical so that individuals
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Fig. 5. Example of prognosis decision making process commonly used for
serious illness or injury.

with ADHD can develop strategies for managing their symp-
toms. As such, one recent study [206] developed AloMT
system for diagnosing ADHD using features extracted from
EEG signals. The strongest model was SVM, achieving an
accuracy of 94.2% and AUROC of 0.964 in distinguishing
ADHD and non-ADHD individuals. A similar approach was
used in another recent study [207], where raw EEG signal seg-
ments were used as inputs to several machine learning models.
LSTM was shown to be the strongest performer for this task,
achieving an accuracy of 90.50% in identifying individuals
with and without ADHD.

Overall, diagnosis is a key area for AIoMT in healthcare.
Many conditions, both physical and mental, are difficult to
diagnose and distinguish from one another; particularly in
low-resource settings without access to specialist equipment
and clinicians. AloMT-enabled diagnostics offers significant
potential to rapidly identify potential conditions, streamlin-
ing the process of receiving a correct diagnosis and suitable
treatment.

C. Prognosis Assessment

Diagnosis of health conditions is critical to enable early
intervention and a higher level of care. However, it is also valu-
able to know the severity and likely outcome of a condition;
this helps clinicians to make more informed decisions about
treatment paths, and ultimately can improve outcomes for a
patient. This is the domain of prognosis assessment. As illus-
trated in Fig. 5, the goal of prognosis is to predict outcomes
and their severity in patients who are hospitalized or under-
going continuing treatment for an injury or health condition.
Prognosis is another area where the AIoMT offers significant
advantages.

1) Short-Term Outcomes: One critical application for
AlIoMT in prognosis assessment is in predicting serious out-
comes in critical care units. Mortality is clearly the most
serious outcome in this setting, and early prediction of mortal-
ity risk can aid in decision making regarding treatment paths.
One recent study [208] monitored variations in vital signs over
a 24-hour period, using a hybrid CNN-LSTM machine learn-
ing model to classify patients as high- or low-risk of mortality
within several time windows. The strongest performance was
an AUROC of 0.884 when predicting mortality risk within a
3-day window, which provides a significant time window for
clinicians to make decisions that may change the outcome.

In another study, mortality of patients diagnosed with sep-
sis in low-resource critical care settings is predicted using
only heart rate variability information [209]. A wearable patch
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obtains an ECG signal over a 24-hour period, with various
heart rate variable parameters then extracted. An LSTM model
is then used to interpret these parameters and identify risk of
mortality, with the final model achieving an AUROC of 0.70.

The strong link between sepsis and mortality has also lead
researchers to develop AIoMT systems for predicting onset of
sepsis early. In one novel sepsis prediction study [210], a flex-
ible ECG sensor is used to obtain 30-second signals. Fourteen
time-series parameters are extracted from the signal before an
embedded fully-connected NN algorithm calculates the risk
of sepsis within several time windows. The embedded Al
algorithm achieved a 95% accuracy in predicting sepsis onset
within 1-hour, however performance decreased significantly
for increasing time windows, dropping to 77.5% accuracy
for 6-hour onset. To address this, the AIoMT system was
expanded through offloading the embedded AI’s prediction to
the cloud for fusion with EHR information for the patient in
question. This lead to a significant increase in sepsis onset
prediction for time windows as large as 6-hours. Where only
demographics were known, fully-connected NN performed
strongly; where both demographics and comorbidities were
known, linear and logistic regression showed the highest
performance.

Aside from sepsis and mortality, there are several other seri-
ous outcomes in critical care units that must be considered by
clinicians. One recent study proposed an AIoMT system for
predicting serious outcomes [211], including adverse neuro-
logical, respiratory, circulatory, and infection outcomes. RR
and HR were continuously acquired from ECG signals, while
PPG was used to obtain HR and blood oxygen saturation.
Additionally, systolic blood pressure (SBP) and diastolic blood
pressure (DBP) were intermittently measured using an ambu-
latory monitoring device. An AUROC of 0.91 was achieved
using a boosted ensemble model, significantly outperforming
simpler models including kNN and RF.

In the pediatric cohort, acute kidney injury (AKI) occurs
after kidney impairment and currently is treated only through
supportive care. A recent study aimed to predict whether
patients were likely to suffer AKI so that injury could be
prevented before it occurred [212]. Vital sign, laboratory
results, and other clinical information were utilized to train
an age-dependent ensemble learning model to predict the
outcome of AKI up to 48 hours prior to the outcome occur-
ring. An AUROC of 0.89 was achieved, indicating strong
prediction performance. Additionally, the developed model
provided actionable feedback to clinicians based on current
treatments, enabling them to intervene early and potentially
prevent AKI in some patients.

2) Long-Term Outcomes: Long-term outcomes are also
important for many cohorts. In babies born preterm, there is
an increased risk of adverse neurodevelopmental outcomes.
Several recent studies [213], [214] developed AIoMT models
for predicting Bayley-III scores [215] at age 18-24 months,
with these predictions indicating the likely neurodevelopmen-
tal trajectory of the infant and thus allowing for early inter-
vention where necessary. Both studies used CNNs to predict
neurodevelopment based on structural and functional brain
maps that were derived from magnetic resonance imagery
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(MRI) and diffuse tensor imagery (DTI) [213], [214], while
one work [214] also measured and included clinical variables.
Across these two studies, mean absolute error (MAE) ranged
from 10.7-11.7, representing approximately a relatively low
error margin of approximately 10%.

Predicting recurrence of cancers has also been considered in
the literature, including cancers affecting the breast [216] and
bladder [217]. One recent study investigated the prediction of
breast cancer recurrence [216], using various machine learn-
ing models including random forest and logistic regression.
They used data from EHRs including free-text histopathology
reports as the inputs, achieving strong sensitivies exceeding
90% for most models. Meanwhile, another study investigated
the prediction of bladder tumor recurrence using features
extracted from pathological images. SVM and RF were tri-
alled, with the RF successfully predicting 86.7% of cases of
recurrence within a 2-year period. In both cases, these tools
prove useful in determining which patients are at the high-
est risk of cancer recurrence, a useful tool for clinicians in
determining post-cancer care requirements.

Overall, AIoMT systems have been applied to a broad
range of prognosis challenges. Promising results have been
seen in identifying both short- and long-term prognosis for a
range of illnesses, and similar techniques could be applied for
understanding prognosis in many more.

D. Explainability

The ability to diagnose disease and predict outcomes is a
powerful tool provided by AIoMT. However, another advan-
tage of modern AIoMT systems is their ability to explain how
those predictions were made to clinicians, improving trust in
the tool and enabling more informed decision making. The
advantages of explainability do not end there; explainable
AIoMT systems can also be used to better understand the
risk factors, biomarkers, and other features associated with
a particular condition or outcome. This in turn can lead to
targeted medical research to support better treatment and pre-
vention strategies for a wide range of conditions and outcomes.
Explaianbility is also critical for the development of socially
responsible Al [218], as it can be used to improve trustworthi-
ness and dependability of a model. It can also unveil hidden
biases or reliability issues, allowing the approach to be revised
until a truly responsible model is achieved.

1) Medical Images: Improving clinician trust in artificial
intelligence tools is a key objective of explainability tech-
niques in healthcare. Explanation of diagnosis decisions,
particularly in medical images, is a key application of explain-
ability in the AIoMT domain. A common approach in the
literature is the development of heat-mapping techniques that
highlight the areas a model used to make its decision, as illus-
trated in Fig. 6. This approach visually highlights areas that
the model has used to make an outcome, thus improving clin-
ician trust. In one recent study [219], a novel heat-mapping
approach dubbed High-resolution Activation Mapping (HAM)
was applied to an attention-based model for the diagnosis and
subsequent explanation of Alzheimer’s disease in MRI images.
Evaluation of the explanations found that white matter was
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Fig. 6. Illustration showing MRI scan of brain affected by a tumour (left),
and a heat map approach highlighting the tumour (right). Image adapted
from Bobjgalindo (https://commons.wikimedia.org/wiki/File:MRI_brain_tu
mor.jpg), https://creativecommons.org/licenses/by-sa/4.0/legalcode.

generally identified correctly, outperforming several previous
approaches to heat-mapping.

In another study [220], brain tumours were identified in
MRI images using a lightweight CNN model. Brain tumours
were further classified by malignancy and type, with a heat-
mapping approach known as class-activation mapping (CAM)
then applied to localise the tumour. The explanations made by
the model were evaluated by a small group of 10 clinicians,
who were provided with a series of survey questions regarding
the usability and trustworthiness of the system. The survey
results suggested that trust in the Al model’s decision making
was improved by the provided explanations, however a larger
sample size of clinicians would be required to validate this
claim.

Brain tumour identification and classification was also con-
sidered in [221], where explainability techniques LIME (local
interpretable model-agnostic explainability) [222] and SHAP
(SHapley Additive Explanations) [223] were applied to explain
predictions made by a CNN model. SHAP acts by highlight-
ing areas that the model associated with the outcome in red,
and areas that went against the outcome in blue. This helps
clinicians to better identify cases where the model was unsure
- thus reducing the risk that trust is lost with a single incor-
rect prediction. Meanwhile, LIME was used in this context to
segment the regions of the brain that the model considered
relevant; this performed less well than SHAP.

Another recent study [224] applied multiple explainability
techniques including LIME (local interpretable model-agnostic
explainability) [222], CAM approaches, and RISE (random-
ized input sampling of black-box models) [225] were com-
pared for explaining COVID-19 diagnoses made by a deep
CNN model based on CT images. It was found that the areas
highlighted by RISE most closely matched human annota-
tion by experts. Fifty clinicians were then asked to evaluate
the explanations made by the various models using a survey-
based approach, with understanding of the model’s decisions
found to generally increase as a result of explanation. It was
suggested that trust also improved with explanation, how-
ever feedback from clinicians indicated that domain expertise
remained necessary to validate the model’s predictions, as they
were not always accurate or precise. This indicates that there
remains room for improvement in explaining CT images.
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Explanation techniques can also be used to identify areas
within medical images that are associated with a particular
diagnosis or outcome. Despite medical advances, the brain
remains an enigmatic organ; there is still relatively little known
about it. To uncover some of the mysteries of the brain, sev-
eral recent studies have turned to explainability techniques.
In one such study [125], a CAM-based approach was utilised
to identify regions of the brain associated with atypical motor
development in infants, with predictions made by a CNN using
MRI images. Their heat-mapping approach indicated several
regions of the brain were strongly correlated with motor devel-
opment outcomes, including the motor cortex, somatosensory
regions, cerebellum, and occipital and frontal lobes. In another
study [214], atypical neurodevelopment in infants born preterm
was predicted using a CNN model to process MRI and clinical
features. Predictions were explained through the calculation of
feature importances using a partial derivative approach relat-
ing each feature of interest to the predicted outcome. Using
this approach, several functional and structural white matter
connections were identified as strongly predictive of adverse
neurodevelopmental outcomes. Results of these and similar
studies can be leveraged by future researchers aiming to bet-
ter understand and ultimately improve neurodevelopmental
outcomes by providing potential regions of the brain to target.

2) Other AIoMT Data: Aside from medical imaging, much
AIoMT data is in the form of discrete or time-series values.
It is often useful for explainability techniques to be applied to
AloMT systems operating with such data, as this can again aid
in improving clinician trust in systems, while also contributing
to biomarker discovery.

Mortality prediction is one area where explainable AloMT
systems are essential. Treatment decisions made based on mor-
tality prediction by an AIoMT system could be the difference
between life-or-death. As such, clinicians need to under-
stand how a system has made the prediction. In one recent
study [226], an explainable AIoMT system was proposed
wherein mortality in a neonatal cohort was predicted from vari-
ation in vital sign data using a shallow CNN-LSTM structure.
Predictions were then explained using SHAP scores, which
revealed parameters including gestational age and median res-
piratory rate in a twelve-hour period to be strongly predictive
of mortality. This in itself helps to build clinician trust, as
the relationship between gestational age and mortality is well
established in clinical practice. SHAP was then further used
to assess individual predictions, producing force plots that
indicated which parameters contributed towards the prediction
(and any that went against it). The results of SHAP force
plotting give clinicians a snapshot of how the model made an
individual decision, as well as how confident it was in that
decision; thus supporting interpretation of the prediction. The
findings also highlight which vital sign parameters are most
critical to monitor in this cohort.

In another study focusing on an adult cohort of sep-
tic patients, mortality was predicted using an RF and then
explained with both SHAP and LIME scores [227]. SHAP
scoring was applied in a global context to identify features
which are predictive of mortality in this cohort, ultimately
identifying parameters including Glasgow Coma Score (GCS),
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first-day urine output, and blood urea nitrogen to be criti-
cal. LIME scoring was then applied in a local context to
generate force plots highlighting which features contributed
most strongly to individual mortality predictions. The global-
level results from SHAP highlight the critical biomarkers of
mortality in this cohort, which may help to guide overall
improvements in treatment and practice into the future; mean-
while, the local results from LIME serve to support clinician
trust in individual model predictions.

Identification of key biomarkers for illnesses has also been
considered by several works. SHAP scoring has recently
been applied to explain predictions of chronic kidney ill-
ness made by an RF model based on a large number of
laboratory values [188]. A global-level view was taken to iden-
tify key biomarkers of the condition. Parameters including
haemoglobin concentration, packed cell volume, and serum
creatinine were identified as key biomarkers for the condition.
These results provide meaningful information that both vali-
date that the model is making sensible predictions, whilst also
highlighting the relative importance of various parameters to
support future treatment development.

Understanding regions of the brain associated with men-
tal health conditions has also been considered [200], where
an SVM model was used to classify PTSD and depression
from time-series EEG data. A feature selection approach was
implemented to identify the EEG features that best discrimi-
nate between the two conditions, and between each condition
and a healthy control. Through their study, several character-
istics of the P300 wave derived from EEG were identified as
predictive of PTSD, including reduced amplitudes and pro-
longed latency. The results provide insight into signal features
that may be helpful for accurately diagnosing PTSD into the
future.

Explainability techniques have also been applied to wear-
able sensor networks to identify sensor readings predictive
of different kinds of human activity [228]. In this recent
study, an LSTM-based model was used to classify 12 dif-
ferent human activities based on time-series data from gyro-
scopes, accelerometers, magnetometers, and ECG sensors
placed across the body. Global-view LIME explanations were
then applied to the model to reveal which sensor values
were most strongly linked with each type of movement. The
results of this analysis are valuable for designing more reli-
able systems for the interpretation of human activity, which is
essential for robust detection of falls and unusual behaviours
in persons who are elderly or unwell.

Heat-mapping has also been applied to explain predictions
from time-series data. A modified CAM approach was used
in one recent study to explain arrhythmia diagnoses made by
an autoencoder model from ECG waveforms. The CAM-based
approach used colour to highlight the parts of the waveform
that were most predictive of arrhythmia, commonly highlight-
ing local peaks and spikes. This technique serves to flag
key areas to expert clinicians, who can then evaluate the
model’s prediction to finalise a diagnosis. It may also serve
to highlight novel regions of interest within ECG waveforms
associated with arrhythmia for future research and enhanced
diagnosis.
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Overall, explainability techniques offer significant potential
for developing socially responsible AIoMT systems that clin-
icians can place their trust in. Explanations can also lead to
the identification of novel biomarkers for various illnesses and
conditions, which in turn supports research into improved,
targeted treatments. Many different types of data can be
explained using a range of techniques, from discrete laboratory
values to complex medical images.

E. Lessons Learned

In terms of health monitoring with AIoMT, it was found
that well-established wearable technologies including PPG and
ECG are still widely used in the literature, with novel meth-
ods for extracting healthcare metrics from these non-invasive
wearables continuing to be found. Furthermore, several pilot
studies have utilised sensor fusion to synthesize data from
multiple fundamental devices including PPG, accelerometers,
and sweat sensors for enhanced health monitoring. Sensor
fusion approachs have shown promising results in monitoring
complex conditions such as heat stress, epilepsy, and diabetes
with non-invasive and wearable healthcare devices, albeit on
small cohorts. Promising results have also been seen where
sensor fusion is used to combine information from wearable
and non-contact sensors for fatigue monitoring. These promis-
ing results suggest that there is much information that can be
extracted from relatively simple physiological signals where
the correct Al model is applied to the task.

An active topic of research in health monitoring is the use
of entirely non-contact monitoring systems. In our review, it
was identified that imagery and channel state information are
the two key data types utilized in non-contact monitoring.
Imagery is particularly useful for obtaining rPPG to mea-
sure cardiorespiratory health parameters, while channel state
information approaches can be utilized to assess activity in a
privacy preserving manner.

Advancements have also been made in the areas of diag-
nosis and prognosis using AIoMT. It was learned that many
recent studies achieved strong results using data obtained
from wearable devices, often in conjunction with other patient
information such as demographic or clinical variables. In terms
of diagnosis specifically, studies that sought to diagnose phys-
ical health conditions generally showed stronger performance
than those seeking to identify mental health conditions or
developmental disorders; likely due to there being greater
existing knowledge in the assessment and diagnosis of physi-
cal health. The majority of diagnostic studies were treated as
a binary classification problem - i.e., was the disease present
or not - rather than using multiclass approaches to identify
severity. For diseases such as cancer, multiclass classification
to grade and stage cancer severity is an important direction
for ongoing research.

For prognosis, the majority of studies again sought to clas-
sify outcomes in a binary manner - for example, mortality ver-
sus non-mortality, or cancer recurrence versus non-recurrence.
Several studies focusing on neurodevelopment in babies born
prematurely aimed to predict outcomes more specifically, by
developing regression models that provided a developmental
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score on a continuous scale. This approach provides signif-
icantly more information to the clinician about the infant’s
likely outcomes than a binary classification approach.

Several explainability techniques were found to be prevalent
in the literature, particularly heat-mapping such as CAM and
feature importance identification approaches such as SHAP
and LIME. CAM and SHAP were shown to be particularly
useful for image and waveform data, capable of clearly high-
lighting regions of an image used to make a decision. For
discrete features, both SHAP and LIME were commonly used
to understand feature importances in local and global deci-
sion making. In all cases, these methods clarify how AIoMT
models make decisions - however, most studies do not con-
sider whether clinician trust is genuinely improved through
the use of explainable tools. One area where explainability has
been shown to offer potential is in identification of biomarkers;
the illustration of features considered important by an AIoMT
system can aid researchers in determining potential character-
istics of a disease to target with treatment, new metrics for
monitoring the progression of a condition, improved methods
for diagnosis, and much more. There remains much opportu-
nity in applying explainability to medical datasets to identify
potentially novel markers of disease.

IV. USE CASES FOR AIOMT

We have now explored the overarching domains of health-
care where AIoMT can be utilized to improve outcomes for
patients and carers. In this section, we examine several spe-
cific use cases for AIoMT technology, and explore how the
AIoMT techniques and technologies identified in previous sec-
tions can be applied to provide comprehensive care throughout
the entire healthcare pipeline. In particular, we highlighting
several recent studies applicable to the selected use cases and
further provide recommendations on how these systems could
be enhanced to further improve outcomes and quality of life.

A. Dementia Care

Dementia is a collection of cognitive and behavioural symp-
toms caused by various neurological conditions, including
Alzheimer’s disease and Parkinson’s disease. As dementia
progresses, individuals can experience changes in behaviour
including aggression and wandering, as well as cognitive
changes such as memory loss and difficulty expressing their
thoughts and feelings. There is currently no cure for dementia,
but early identification of dementia can help affected individ-
uals and their support networks to develop appropriate care
plans.

AIoMT can provide valuable tools for all stages of demen-
tia care, starting with early identification of dementia. Several
studies have used an activity recognition approach, using
machine learning to process data from wearable [140] or
non-contact [140] motion sensors to determine whether a per-
son is experiencing mobility symptoms caused by dementia.
Other studies have used machine learning to identify dementia
from data including EEG signals [229], MRI images [194],
and a combination of keystroke data and basic activity
information [230]. Virtual reality was employed in another
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From: Smart House

Hi carer, your
grandma is acting
confused - please

check in on her

Fig. 7. Example of a smart home system for non-invasive monitoring of
persons with dementia.

recent study aimed at early diagnosis of dementia [231].
Participants were given navigation tasks in a virtual 3D envi-
ronment, with metrics about performance then analysed using
a RF model to identify dementia with high accuracy.

After a dementia diagnosis, many people will continue to
live independently for some time. As dementia progresses, the
risk of falls and other injuries gradually increases. AIoMT
can support dementia patients and their families by monitor-
ing daily activity and identifying abnormal behaviour; such
information can be used to alert caregivers when their assis-
tance is needed, as illustrated in Fig. 7. One novel study was
able to detect abnormalities in behaviour by using machine
learning to analyse smart meter recordings that captured a per-
son’s interactions with electronic devices in their home [232].
This approach has the advantages of being non-invasive and
privacy-preserving. Other AIoMT approaches that offer similar
advantages are those which use channel state information for
activity classification [145], [185] could be applied to dementia
care in the future.

Caregivers for people with dementia can also be supported
by AIoMT technologies. Aggression and agitation are com-
mon symptoms of dementia, and can put caregivers at risk
of harm. To address this, one pilot study [233] developed
an AIoMT system where wearable devices and environmental
monitoring were utilized to identify distressed behaviour in
dementia patients. Motion and physiological parameters were
obtained from accelerometer, photoplethysmogram, sweat, and
skin temperature sensors in a wrist-worn device, and fur-
ther activity data was gathered via multiple cameras. Machine
learning was used to process this data and predict distress and
agitation. In a subsequent study, the same research group iden-
tified that the wearable device alone provided strong accuracy
in identifying agitation [234].

Expressing emotions to caregivers can also be challenging
for people with dementia, and can itself lead to frustration and
aggression. To address this, one recent study [235] proposed
an AIoMT system that utilises machine learning to classify
the emotions of the dementia patient based on data from
wearable EEG sensors. Novel machine learning models, par-
ticularly transformer-based models, have also been developed
to identify emotion from speech [236] and image-based [237]
data; such technology may also be suitable for dementia
cohorts. Such technologies could greatly aid caregivers in
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understanding what their patient is feeling and what care they
might require at that point in time.

A digital twin framework for supporting carers and health-
care providers for people with dementia has also been recently
proposed [238]. In the proposed framework, AIoMT systems
such as those for agitation and emotion assessment would pro-
vide real-time feedback to carers while also being utilised to
build a digital twin of the patient. When new patients are
assessed, Al or other algorithms would be used to find the
most similar digital twins from previous patients, before fus-
ing these to create a template digital twin for the new patient.
The digital twin profiling can also be used by clinicians to
identify signs of deterioration or other relevant trends in a
patient’s condition.

Dementia can cause much distress to patient and care-
givers alike. Unfortunately, there is still much that remains
unknown about dementia, and no cure exists for any dementia-
causing condition. Several recent studies have therefore sought
to identify factors associated with dementia and dementia-
causing conditions to aid future research and care decisions.
In one study, demographic and health risk factors for future
dementia diagnosis were identified using SHAP scores [239];
providing insight into areas where risk could be reduced. In
another study, biomarkers were identified from a range of cog-
nitive tests and medical imaging by assessing the relationship
between each individual parameter and cognitive decline out-
comes [240]. Such results would aid clinicians in identifying
at-risk persons.

Other studies have also sought to understand how demen-
tia appears in the brain. One study [241] used LIME scoring
to understand which features of MRI imagery and which
gene expressions indicate Alzheimer’s disease - offering future
researchers valuable information regarding areas to target for
diagnosis and treatment into the future. Meanwhile, another
study used an explainable machine learning model with a
heat-mapping approach was developed to identify regions of
the brain associated with Alzheimer’s disease [219]. Such a
tool could be used to improve clinician trust and enhance our
understanding of the condition.

Overall, dementia is a collection of symptoms which can have
devastating effects on patients and carers alike. However, AloMT
offers many promising solutions for improving diagnosis and
care for people with dementia. It has also shown promise in
identifying risks and biomarkers for dementia that will certainly
guide future research; it is quite likely that discoveries made by
AIoMT will contribute to the discovery of new and improved
treatment options for dementia into the future.

B. Stroke and Stroke Recovery

Stroke, also known as cerebrovascular accident (CVA),
occurs when there is a disruption of blood flow to the brain.
Rapid diagnosis and treatment can minimise damage to the
brain, however long-term impacts affecting speech and mobil-
ity are common in stroke survivors. AIoMT has the potential
to improve the entire stroke care pipeline.

A comprehensive AIoMT system would begin with identifi-
cation of at-risk persons from routine healthcare information.
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Diagnosis: Stroke
Arriving 5 mins

Fig. 8. Example of pre-hospital stroke assessment in a smart ambulance
environment.

Several recent studies have demonstrated that machine learning
can identify individuals who are at risk of future stroke using
a combination of clinical and demographic variables obtained
through EHRs and health monitoring. In one study [242],
several approaches were used to predict ischaemic and hem-
orrhagic stroke. An AUROC of 0.974 was achieved using a
hybrid CNN to predict ischaemic stroke; meanwhile an SVM
approach achieved the highest AUROC of 0.970 in predicting
hemorrhagic stroke. In another study [243], an ensemble
approach was used for predicting stroke from fundamental
demographic and health information in [243], achieving an
AUROC of 0.989. The risk prediction step is crucial as where
risk is known, it can be lowered through a range of preventative
strategies.

Even where risk factors are reduced, stroke risk cannot be
completely eliminated. Where stroke does occur, it is crucial
to identify it as quickly as possible to enable early treatment
and minimise brain damage. It has previously been shown that
stroke can be diagnosed using CNNs to process computed
tomography (CT) images of the brain [244]. Some research has
also indicated that stroke may be able to be identified prior to
hospital admission using RF to process EEG features [245] or
SVM to process paramedics’ text reports [246], as illustrated
in Fig. 8. Another recent study used a biomarker discovery
approach incorporating FCNN, RF, and SVM to identify gene
expressions that are linked with the occurrence of a stroke, ulti-
mately finding several microRNA molecules as candidates; this
knowledge could be useful to accelerate diagnosis of stroke in
inpatients. Overall, utilising AIoMT for pre-hospital and in-
hospital assessment of the patient could greatly improve speed
of diagnosis, and thus support faster treatment of this critical
condition.

While treatment can minimise damage, post-stroke impacts
including speech and mobility difficulties are common.
Assessing the likely long-term outcomes for a stroke survivor
can improve treatment decision making. It has been shown
that this can be achieved using FCNN to process clinical,
medication, and demographic information obtained via moni-
toring and clinician reports [247], [248]. One study [248] also
identified parameters associated with adverse outcomes, which
included Glasgow Coma Score, atrial fibrillation information,
type of stroke, and age.

Where long-term outcomes are non-ideal, interventions
such as stroke rehabilitation are commonly used to support
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recovery. However, adherence to rehabilitation exercises is a
challenge after patients are discharged from hospital. Recently,
an AIoMT system was developed to identify when participants
were performing the prescribed exercises using accelerom-
eter data. Furthermore, the system tracked changes in how
the exercises were being completed to identify how the
patient’s condition changed over time [249]. While recov-
ery is ongoing, falls are a common source of further injury;
a recent study [250] has shown that this can be mitigated
through AIoMT systems implementing ML-enabled fall detec-
tion based on IMU data, with wearable airbags then deployed
to minimise impact of a fall.

Overall, stroke care is a clear use case for AIoMT tech-
nology. Early identification of risk using AIoMT can enable
patients to reduce their risk where possible. In the event where
stroke still does occur, AIoMT can be utilized to support rapid
diagnosis and post-stroke care. Finally, explainable techniques
can be used to identify biomarkers and risk factors associ-
ated with stroke, enabling further enhancements to diagnostic
systems and treatment planning, as well as offering avenues
for future research into stroke prevention.

C. Breast Cancer

Cancer is a leading cause of deaths worldwide. Types of
cancer are many and varied, and AIoMT has the potential to
aid in many stages of diagnosis, treatment, and recovery. In
this case study, we focus on the most commonly occurring
cancer globally - breast cancer. Due to its prevalence, breast
cancer is one of the highest causes of cancer-related mortality.
However, if diagnosed and treated at an early stage, survival
rates are between 95-100% in Australia [251].

AIoMT can aid in improving the breast cancer care pipeline,
through improving diagnostics, assessing prognostics, assess-
ing suitable treatment paths, and identifying patients at risk of
recurrence. Each of these tasks greatly aids in detecting new
or recurring cancer early, maximising the chance of patient
survival.

Early diagnosis is currently dependent on access to health-
care and specialist doctors. However, recent research has
suggested that AIoMT may enable at-home screening for
breast cancer. In one novel study [252], infrared images of
the breast taken via a smartphone are processed by several
CNN-based models to assess whether the participant has breast
cancer. Many of their experiments showed accuracy exceed-
ing 95%, and importantly sensitivity to breast cancer was also
high. Performance was highest where coloured infrared images
were available, although modest accuracy was also achieved
with greyscale images. One limitation of this work is that
the database only contained images of breast cancer versus
healthy persons; no images of persons with non-cancerous
breast lumps or tumours were included. Another study [253]
aimed to address this issue through using a deep CNN model
to distinguish between benign and malignant breast lumps
in mammography images, achieving a significant accuracy of
99.12%.

After diagnosis of breast cancer, it is also useful to identify
the severity. As such, several recent studies have investigated
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AIoMT approaches for grading and staging breast cancers.
Histological grading of tumours indicates how rapidly a
tumour will grow and spread, and thus is useful when develop-
ing treatment plans. One novel study utilised gene expression
information from health records along with breast tumour
samples to assign a histological grade to the tumour using
a gradient-boosted decision tree approach [254]. The results
were promising, with an accuracy of 90% and an AUROC
of 0.88 achieved. In another work [255], microscopy images
of breast cancer tumours are processed using a CNN model
to identify the stage of cancer; stage indicates how far the
cancer has spread. The accuracy achieved for breast cancer
staging was 97.81%, and accuracies exceeding 98% were also
recorded for identifying the type of breast cancer. Histological
grading and staging both provide important information about
the severity of the cancer. Improved assessment of cancer
characteristics can minimise the misdiagnosis or underdiag-
nosis of high-risk cancer, whilst also reducing over-treatment
of low-risk cancer.

In addition to grading and staging, several studies have
also investigated AIoMT techniques for predicting response to
treatment. Neoadjuvant chemotherapy (NAC) is used to reduce
the size of the cancer prior to surgical intervention or radio-
therapy, however standard usage is only effective in roughly
70% of patients [256]. Adjustments to treatment can be made
to improve outcomes for patients who do not respond to NAC,
and thus early identification of non-responsiveness could aid in
accelerating the treatment course. In one study [256], features
extracted from computerized tomography images were pro-
cessed by boosted decision trees to identify whether tumors
would shrink by at least 30% in response to treatment.
An accuracy of 88% was achieved, however AUROC was
only 0.632. In another study [257], features extracted from
MRI images were fused with clinical variables to predict
responsiveness to NAC. Using a FCNN network structure, an
AUROC of 0.975 and an accuracy of 91.2% were achieved.

In some cases, NAC can result in a pathologic complete
response (pCR); a lack of cancer tissue identified in biopsy
samples. This is a positive scenario as the patient is then con-
sidered to be in remission, with no further treatment required
unless the cancer reoccurs. Identifying candidates for whom
PCR may occur following NAC has the potential to greatly
aid in developing treatment plans. As such, one study sought
to predict the occurrence of pCR in patients receiving NAC
using demographic and clinical parameters from EHRs. After
trialling several ML models, it was found that a boosted deci-
sion tree approach was the strongest for this task, achieving
an AUROC of 0.810.

After breast cancer has been successfully treated, there
remains a significant risk of recurrence; an outcome linked
with mortality. Identification of patients at high risk of recur-
rence could aid in earlier detection of recurring cancer,
thus improving outcomes for the patient. Additionally, recur-
rence can be minimised through additional treatment. Due
to these clinical benefits, one recent AIoMT study sought to
predict the risk of recurrence from features of histopatholog-
ical microscopy images [258]. Using a boosted decision tree
approach, an AUROC of 0.72 was achieved. Additionally, a
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Tumour detected in
left breast
Malignancy risk: High
Likely Grade: 2
Likely Stage: 1
Predicted response to
NAC: Good

Predicted response to
surgical intervention: Good

Fig. 9. Example of explainable AIoMT system for diagnosing, staging, and
predicting treatment outcomes from breast cancer imagery.

feature importance ranking approach identified several poten-
tial predictors of recurrence were identified from among the
features. One limitation of this work is that no distinction was
made between regional recurrence or distant recurrence (also
known as metastasis), with the latter known to be strongly
correlated with mortality; a similar approach that made this
distinction would likely be more useful in guiding treatment
planning.

While the AIoMT approaches explored in this case study
have the potential to improve cancer diagnosis and treatment
planning, the unfortunate fact remains that not all cancers
will respond to existing treatments. Due to this, breast cancer
remains a significant cause of mortality globally. Improving
upon existing treatments and identifying new ones is therefore
critical to reduce mortality rates in breast and other cancers,
and is of constant interest to cancer researchers. Treatment
development is another area that AIoMT, and particularly
explainable Al, has the potential to assist with. In one recent
study [259], ribonucleic acid (RNA) sequencing of immune
cells in the tumour microenvironment (the healthy cells imme-
diately surrounding the cancerous ones) was conducted, and
SHAP scores were calculated to understand which microen-
vironment features were related to positive outcomes. Their
work identified that B cells, CD8+ T cells, MO macrophages,
and NK T cells are critical microenvironment features associ-
ated with >5 year survival rates. These results can aid future
researchers in targeting treatments towards altering tumour
microenvironments to be more hostile to the tumour, thus
improving prognosis. In another study [260], a heatmapping
approach was used to highlight morphological features of
histopathology images that are linked with molecular features
such as gene expressions, and thereafter linked with prognosis.
This identification of molecular features associated with prog-
nosis can greatly aid future cancer researchers in developing
targeted treatments and applying precision medicine.

Overall, this case study highlights that AIoMT technologies
offer great value to breast cancer diagnosis and treatment, as
well as improving our understanding of breast cancers. As
illustrated in Fig. 9, the diagnosis, grading and staging, and
predicted treatment outcomes of breast cancer could all be
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combined into a single system, offering great benefit to low-
resource settings. Many of the AIoMT strategies explored here
can be easily adapted to other cancers, and thus AIoMT has
the potential to have a significant positive impact on a much
broader cohort of cancer patients and their loved ones.

D. COVID-19 Management

The SARS-CoV-2 virus was first identified in late 2019,
and it rapidly began to spread. COVID-19, the disease caused
by the virus, has since lead to millions of deaths around the
world. Despite improvements in treatment and increasing rates
of vaccination, the highly virulent SARS-CoV-2 continues to
spread and result in significant deaths.

Due to the significant global impact of COVID-19, the
development of AIoMT techniques and systems to diagnose,
treat, and manage the spread of the disease has been an
extremely active field of research. In this case study, we high-
light how AIoMT can be used in the ongoing fight against
COVID-19.

Early detection of SARS-CoV-2 infection is critical to min-
imise the spread of the disease. To assist with this, several
recent studies have investigated the use of AIoMT techniques
based on common devices to detect the onset of COVID-19
in early stages. In one study [261], an AIoMT framework is
proposed wherein symptoms are collected via a smartphone
using a combination of sensing and survey-based approaches.
Several machine learning models were trialled for identifying
COVID-19 from such data, with a FCNN approach achiev-
ing the strongest performance of 0.955 AUROC and 92.89%
accuracy.

Another recent study [134] sought to identify the onset of
COVID-19 prior to the development of symptoms. Time-series
vital sign information was obtained using a commercially-
available wrist-worn device, and an LSTM model was
developed to process the data. An AUROC of 0.68 and a
sensitivity of 0.73 were achieved. While these numbers leave
room for improvement, detection of any cases prior to symp-
tom onset is a significant outcome for reducing the spread
of SARS-CoV-2, as quarantine can begin prior to the more
infectious symptomatic period.

Another approach for COVID-19 diagnosis is medical
imagery AIoMT systems, which can be helpful for process-
ing many patients quickly in lower-resource settings. One
study [262] trialled various CNN structures for distinguishing
COVID-19 from healthy and pneumonia-affected lungs in CT
images, achieving an accuracy of 99.51% and an AUROC of
0.994. Another study [263] trialled a broad range of ML mod-
els for distinguishing between COVID-19 affected and healthy
persons based on chest x-ray images, achieving an accuracy of
94.7% with both a ResNet and an SVM structure. Lung ultra-
sound images have also been considered as a data source, with
one pilot study [164] applying a vision transformer approach
and achieving a sensitivity of 60%; a result that could likely
be improved upon with further research. Of these approaches,
an x-ray based method is likely the most useful. X-ray images
are generally cheaper and faster to gather than CT scans, and
strong accuracy has been achieved in research to date.
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Check your
symptoms

O Muscle aches
Headache

O Cough

O Congestion
Runny nose

Patient: John Doe
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Temperature: 37 (improved)
Cough: Mild (stable)

RR: 16 (stable)
New symptoms: Headache
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Fig. 10. Example of COVID-19 remote monitoring fusing wearables with
self-reporting.

After COVID-19 diagnosis, many high-risk patients require
ongoing monitoring so that deterioration can be identified.
In Australia, many high-risk patients are admitted to virtual
care [264], where clinical staff remotely monitor symptoms
and request hospitalization in cases where the patient’s condi-
tion worsens. However, the monitoring is predominantly based
on self-reporting and clinicians do not always check in daily. A
better solution would be to remotely monitor health parameters
automatically and continuously, so that potential issues can be
flagged quicker. This was the focus of one recent study [265],
where a wearable sensor mesh built into a vest was developed
containing PPG, ECG, electromyography, acoustic cardiogra-
phy, and acoustic myography. Cough and breathing sounds
are classified into COVID-19 and non-COVID-19 categories
using CNNs in a generative adversarial network approach.
Preliminary results showed that this enabled identification of
COVID-19 in 80% of cases, but the authors indicate that the
intention of this system is to eventually monitor the condition
and recovery of patients in a telehealth context. In a similar
way, the diagnostic study presented in [134] would be extend-
able to remotely monitor recovery of virtual ward patients.
Such monitoring could be fused with existing systems for self-
reporting symptoms to further improve assessment of patient
condition, as illustrated in Fig. 10.

In terms of determining which patients should be admitted
to virtual or physical wards, AloMT-based models for identify-
ing severity of illness and prognosis offer much potential. One
recent study used RF models to classify COVID-19 severity
based on features extracted from CT scans along with clinical
variables [266]. Severity was classed as moderate, severe, or
critical based on clinical staging. Distinction between mod-
erate versus severe/critical was achieved with an AUROC of
0.927, and subsequent distinction between severe and critical
was achieved with an AUROC of 0.929. Furthermore, par-
tial vs prolonged recovery was classified with an AUROC of
0.960; complete recovery was not included as insufficient com-
plete recovery cases were available. Lastly, RF regressors were
developed to predict length of treatment parameters includ-
ing duration of hospitalization, duration of intensive care stay,
and duration of oxygen inhalation. Root mean square errors
(RMSEs) of 0.88, 0.69, and 0.92 weeks were recorded for
these three parameters, respectively. Each of these findings
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provides valuable information for clinicans making triage deci-
sions, particularly in hospitals that are at or over capacity due
to COVID-19 outbreaks.

Each of the metrics assessed by [266] are very useful for
triaging patients, however they do not consider the prediction
of mortality risk. Mortality prediction can further aid in
triage by identifying the most critically ill patients, allow-
ing for prioritisation of resources. As such, several studies
have investigated mortality prediction for COVID-19. In one
study [267], variables including demographics, clinical and
laboratory results, and CT image features were processed
using gradient boosted RF models, achieving an AUROC
of 0.9521 in distinguishing mortality from non-mortality. In
another study [268], clinical variables extracted from EHRs
were utilised to predict mortality, achieving an AUROC of
0.941 with a RF approach. Using univariate analysis, it was
further identified that individual features could predict mortal-
ity with reasonably high AUROC, particularly leukomonocyte
percentage, urea, age, and blood oxygen saturation. It was
found that each of these features on its own yielded AUROCs
of 0917, 0.867, 0.826, and 0.704, respectively. Another
study also sought to understand the clinical factors associ-
ated with COVID-19 mortality, first developing a RF model
that achieved 83.4% accuracy in mortality prediction before
applying principal component analysis. Age, impaired renal
function, and elevated C-reactive protein (an indicator of acute
inflammation) were the three factors related most strongly to
mortality.

In patients who survive COVID-19, particularly after severe
illness, there is a prevalent risk of developing so-called ‘long
COVID’, characterised by prolonged post-COVID symptoms
that include fatigue, respiratory symptoms, and cognitive diffi-
culties and may last for several months. Relatively few studies
have investigated the prediction of long COVID over a long
period. In one early study [269], demographic and clinical
variables obtained during initial SARS-CoV-2 infection were
processed using various ML techniques to predict indicators
of long COVID six months after infection. An ensemble learn-
ing approach that combined models including RF, SVM, and
FCNN achieved strong results in predicting the presence of
long-COVID indicators after 6 months. In particular, AUROC
values of 0.81, 0.75, 0.72, and 0.6 were achieved for predicting
the presence of any CT abnormality, severe CT abnormality,
lung function impairment, and symptoms, respectively.

The use cases of AIoMT in management of COVID-19 are
not limited to treatment of individuals. AIoMT approaches
have also been investigated on a population-wide level to
model the spread of COVID-19, enabling governments and
healthcare providers to better prepare for outbreaks. In one
study [270], forecasting of next-day recovered and new con-
firmed cases based on case data from the previous 5 days was
conducted using a variety of models. A CNN-LSTM model
was the strongest performer, predicting next-day cases with
a mean absolute percentage error (MAPE) of 0.628-6.021%
across a range of different countries. The CNN-LSTM model
also was the strongest at predicting recovered cases, with
MAPE values of 1.180-5.395% in most countries of interest,
with the exception of India where a MAPE of 16.113% was
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achieved. It is possible that this is due to how recoveries
are recorded, rather than a fault of the model. In another
study [271], confirmed case numbers are predicted one week
in advance using data about current case numbers and enforced
COVID-19 policies such as mask wearing and capacity limits
on gatherings. Several models were trialled, with LSTM show-
ing the strongest performance. In most of their tests, MAPE
<10% was achieved. However, MAPE exceeded 100% in two
scenarios where the model was applied to data from Brazil. It
was hypothesized that this was due to reporting issues. Overall,
methods for forecasting upcoming case numbers offer valu-
able information that can support hospitals and health centres
in preparing for case spikes, which in turn supports better
outcomes for patients.

AloMT techniques have also been utilised to identify poten-
tial medications that may aid with improved treatment of
COVID-19. In one novel study, a FCNN was used to identify
compounds that interacted with various COVID-19 proteins of
interest, in an effort to identify candidate drugs for COVID-19
treatment. Using an explainable AI technique of leave-one-
out random sampling, several candidate medications were
identified - including medications already approved for use
against other conditions such as hepatitis C. These results
are significant and may aid in accelerating the develop-
ment and implementation of novel and effective treatments
for COVID-19, which in turn would greatly improve patient
outcomes.

Overall, the use of AIoMT systems is critical in the ongo-
ing fight against COVID-19. From this case study, it is clear
that AIoMT can be used to support rapid diagnosis, triage
patients based on their risk, and identify patients at risk of
long COVID. On a population scale, AIoMT can also be used
to model the spread of COVID-19, enabling health systems to
better prepare for outbreaks. Lastly, treatment discovery can
be supported by AIoMT; this may also be applied to devel-
opment of enhanced and longer-lasting vaccinations as new
variants of SARS-CoV-2 continue to emerge.

E. Lessons Learned

Through our exploration of multiple case studies, we have
identified that AIoMT systems offer significant benefits to a
broad range of healthcare problems, from the patient level
through to the community level. Our case study analysis has
also highlighted how AIoMT can be used throughout the entire
care pipeline for a range of illnesses; from diagnosis, through
to monitoring and management, and in some cases to treatment
and recovery.

The use cases examined here focus on a select few prevalent
health conditions, however it is clear that many of the tech-
niques applied could be transferred to other widespread health
conditions. Many of the techniques developed for dementia
care - including activity detection and emotion communication
- can be adapted for use in other forms of assisted living, and
for other persons with high care needs. Research on stroke
recovery have identified the potential of AIoMT for use in
rehabilitation; this could be explored for many other forms
of rehabilitation from injury and illness. The usefulness of
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the AIoMT techniques utilised for breast cancer diagnosis,
management, and treatment have clear applications to other
forms of cancer. Finally, many of the technologies utilized
for COVID-19 management could be adapted for use in the
management of influenza and other epidemics.

One limitation that was clear across all use cases examined
is that most works to date have applied Al retrospectively to
data gathered by IoT; very few works have conducted real-
time trials of end-to-end AIoMT systems. As such, many
systems require testing in real healthcare settings to confirm
their performance and assess their impact before they can
be deployed at scale. This should be a key goal for future
research, and will require collaboration between technology
and health experts.

V. FUTURE RESEARCH DIRECTIONS

Our review has identified that AIoMT is already making
an impact on health monitoring and management. However,
there are many areas where improvements can be made. This
section highlights key challenges and opportunities that future
researchers should consider.

1) Advanced Machine Learning Methods: Many of the
AIoMT studies that gather time-series data such as PPG,
ECG, EEG, or respiration signals then proceed to extract
only a few features before the machine learning stage [133],
[136], [145], [180], [181], [182], [183], [184], [186], [272].
While many of these works obtained reasonable results, it
is likely that performance could be improved through the
use of advanced models such as LSTM-based networks and
transformers to interpret. Such models have previously been
successfully used to interpret PPG, ECG, and EEG signals in
previous works [31], [129], [130], [131], [154].

A similar limitation is evident in the AIoMT studies that
seek to process image-based data [133], [184], [185], which
primarily use CNN or SVM. Incorporating advanced computer
vision models such as autoencoders and vision transformers
would likely lead to significant improvement in performance.
As such, there are substantial research opportunities which
remain in the application of advanced ML models to raw image
or time-series data.

2) Embedded and Edge AI: Most AIoMT studies to date
have primarily focused on one level of Al computing; gener-
ally edge computing performed on desktop machines or cloud
computing. Significant research opportunity remains in devel-
oping and implementing lightweight Al algorithms that can be
moved to the embedded level or lower-powered edge devices.
In scenarios where more computational power is required, it
would be beneficial to utilise intelligent offloading and cross-
layer Al approaches to optimise the use of available resources.
This is therefore suggested as a direction for future research
in this area, as cross-layer approaches would reduce latency,
increase system robustness, and support patient privacy.

3) Data Fusion: Through our exploration of diagnosis
systems in Section III-B, it was identified that many stud-
ies used different types of inputs to achieve diagnostic goals.
For example, the studies which focused on diagnosing depres-
sion [144], [195], [196] each used different types of inputs.
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Two studies used image-based data, while another used clini-
cal and demographic information. Each of the studies showed
promising results, and thus it is likely that performance could
be improved further by fusing multiple data sources together
- for example, a combination of EEG, other clinical variables,
demographic parameters, and medical imagery would likely
provide higher diagnostic performance than any single data
source can provide alone. As such, data fusion for diagnostics
and prognostics remains an open research opportunity and is
recommended as a future direction.

4) Reducing Dependency on Clinical Parameters: Another
limiting factor with many recent studies is a dependence on
clinical and laboratory variables. While these may be read-
ily available for hospitalised patients, they are unavailable for
persons with limited access to healthcare or in telehealth appli-
cations; thus, such systems offer little value outside of clinical
settings. Future AIoMT studies would benefit from investigat-
ing strategies to reduce dependence on parameters obtained in
clinical settings, and instead develop systems that can mon-
itor and diagnose based solely on data from wearables and
environmental sensors.

5) Descriptive Illness Classification: In terms of diagno-
sis and prognosis, a key limitation of many studies is that
outcomes are classified in a binary manner where further clas-
sification would be more meaningful. In one study, binary
classification of ‘serious outcomes’ [211], however it would
be more meaningful to further classify these outcomes into
categories such as neurological, respiratory, and infection.
Additionally, categorization of AKI severity would further
improve the work presented in [212], as would identification of
when cancer recurrence is most likely to occur in [216], [217].
This would better enable clinicians to devise treatment plans
and thus further improve outcomes for these patients. A sim-
ilar approach would also be helpful in diagnostics, where
classification of cancer stage or identification of anxiety type
would greatly aid in treatment decision making for clini-
cians. As such, the development of more descriptive prognostic
and diagnostic tools is a significant opportunity for future
researchers.

6) Explainability: Explainability tools offer much poten-
tial, and a significant area for future research is simply apply-
ing these tools to complex diseases. This can aid in identifying
biomarkers and characteristic features of diseases, conse-
quently guiding development of enhanced diagnostic practices,
novel medications, and other improvements to patient care.
Application of established explainability techniques such as
SHAP and LIME offer significant research opportunity in this
domain. The development of enhanced explainability tools is
also recommended as a future direction for research; studies
in this domain should use SHAP and LIME explainability as
a benchmark for comparison.

The use of explainability tools for communication of indi-
vidual decisions to clinicians is also a promising domain.
Clinician trust is critical for adoption of AIoMT systems in
the healthcare space. Studies that have utilised heat-mapping
and feature importance plotting techniques can clarify how
a model makes a decision, however relatively few studies
have sought to confirm whether these explanations actually
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improve clinician trust and understanding. It is thus essential
that future research seeks to validate developed explainability
tools through surveying expert clinician cohorts, as this will
help to ensure that developed AIoMT systems are socially
responsible and genuinely useful to healthcare providers. The
development of a standardized framework for validating and
comparing explanation tools would have a significant impact
in this domain.

Overall, significant advancements have been made in the
AIoMT domain in recent years. However, many studies still
focus on either IoT or Al It is critical that future research
considers the synergy between these two technologies, as they
offer more benefit to healthcare systems when used together
rather than apart.

VI. CONCLUSION

In this work, we have conducted a scoping review of state-
of-the-art literature in the AIoMT domain, highlighting the
strong synergy between Al and IoT technologies. Our review
begins with an exploration of the key building blocks of
AloMT, first examining prevalent and emerging sensors and
devices in the literature, with a particular focus on non-
invasive and privacy-preserving approaches. Communications
in the licensed and unlicensed bands are also considered,
along with IoT over satellite. Upcoming communications
standards including RedCap and 6G-IoT are included in
our exploration. Machine learning algorithms for healthcare
applications are then explored, covering a broad range of
well-established and novel algorithms that have been imple-
mented for a wide variety of healthcare problems in recent
research. We conclude our exploration of the AIoMT archi-
tecture by examining the layers of learning; the computing
resources on which AIoMT depend. Embedded, edge, and
cloud Al resources are all considered, as are the novel method-
ologies of federated and swarm learning for privacy-preserving
machine learning that have been proven suitable for healthcare
settings.

With the architecture of AIoMT established and thoroughly
explored, our review then continues to uncover novel research
conducted in key health domains. Wearable and non-contact
health monitoring solutions were explored, with many found
to show strong performance in monitoring general health.
AIoMT systems for diagnosing conditions were also thor-
oughly explored, spanning systems for diagnosing physical,
mental, and developmental conditions. Many systems in the
literature performed strongly in diagnosing the condition of
interest, however much room for improvement remains; par-
ticularly in distinguishing between conditions with overlapping
symptoms. Prognosis was also found to be an active field in the
literature, with a strong body of work seeking to identify short-
term and long-term patient outcomes in various conditions and
healthcare settings; a critical task for triaging resources and
determining treatment paths.

The novel area of explainable AI was also explored in
the context of AIoMT. Heat-mapping and feature importance
plotting approaches in the literature have both shown poten-
tial for improving clinician interpretation of decisions made
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by AIoMT systems, however further research is needed to
validate whether this genuinely improves clinician trust. The
second area where explainability shows significant potential
is in understanding the biomarkers associated with diseases,
conditions, and outcomes. Global-level feature importance
examination can aid in the development of improved medi-
cations, tailored treatment, and rapid diagnostics. The use of
these methods is relatively new in the literature, and thus
significant opportunity remains in applying these strategies
to improve understanding of novel and challenging health
conditions.

To illustrate the importance of AIoMT in practical settings,
several use cases are presented. We first identify pioneering
works seeking to develop AIoMT systems and compatible
tools for supporting persons with dementia and their carers,
both in independent and dependent living environments. We
then explore AIoMT techniques for the stroke care pipeline,
from diagnosis to rehabilitation. Next, we investigate works
that have sought to improve breast cancer diagnosis, treat-
ment and recovery using novel AIoMT approaches. Lastly,
COVID-19 management is considered, both for providing indi-
vidual care and for monitoring and minimising the spread on
a population-level scale.

Based on our thorough analysis of trailblazing studies in
the AIOMT literature, we then present a synthesis of lessons
learned and identify several key areas for future research.
Embedded computing and the implementation of advanced
Al algorithms were identified as critical for practical AloMT
systems in many domains. Additionally, improvement and
validation of explainability tools offers clear and significant
opportunity to future researchers. Overall, the domain of
AIoMT offers many exciting opportunities for researchers
seeking to make a significant impact as we move towards
Healthcare 5.0.
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