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Abstract— Vaccination has been the most promising hope to 

get back to normal ever since the COVID-19 outbreak started. 

But as promising as this sounds, vaccinating all of the population 
at the same time is practically infeasible because of the limited 

supply of vaccines from one side and the high demand from the 

other side. So, the process cannot happen overnight, and this is 

why governments kept thinking about how they can distribute 
vaccines in a way that helps their citizens get back to normal 

with the least possible damages (infections and deaths). In this 

study, we investigate how Reinforcement Learning (RL) can be 

used to distribute vaccines more efficiently among the citizens of 
a country, given their age and profession. For this reason, we 

created an RL agent that learns vaccine distribution strategies 
through its interaction with a Monte Carlo (MC) simulation 

environment that we built. This environment runs an Agent- 

Based Model (ABM) where we have agents interacting with each 

other and with the environment where they live and based on 

their behavior, the virus will spread. The goal of the RL agent 
was to find vaccine distribution strategies that would minimize 

the number of infections and deaths in the environment where 
our agents live. After training our RL agent for 100 episodes, we 
compared the best strategy that RL gave us with some of the 

well-known strategies that countries adopt, and we found that 

the RL strategy outperformed them. 

Keywords—Reinforcement Learning, Agent-Based 

Modeling, COVID-19, Vaccination, Monte Carlo Simulation 

I. INTRODUCTION 

Ever since the vaccines started rolling out, all governments 
have been trying to find the best way to distribute them to their 
citizens. Some countries like the United States and Berlin 
wanted to vaccinate elderly people (aged above 60 years old) 
before the younger ones, because old people, when infected, 
are more exposed to hospital care and death, while others like 

Indonesia decided to start vaccinating workers and adults 
(aged between 18 and 59 years old) because these categories 
are more exposed to catching the virus in the first place. Some 
countries like Germany and Spain altered their strategies after 
the “return to schools” announcement for the academic year 
2021-2022, and they wanted to start including children (aged 

between 12 and 17 years old) in the vaccination process to stay 
on the safe side and avoid a new outbreak. So, the strategies 
are varied, and all of them would work well because 
vaccination — regardless of the adopted strategy — is supposed 
to help reach herd immunity faster and accelerate the “return 

to normal” process. But how can we be sure that these adopted 
strategies are the best ones? What if there is another strategy 
that might lead to better outcomes and help us get back to 
normal with less human damages? Wouldn’t it be better to 
adopt it? Definitely yes, and this is our goal from this study. 
We need to show how RL can be applied to solve such 
decision-making problems while leading to better outcomes. 
Two Previous studies [1], [2] have used RL to optimize 
COVID-19 vaccine distribution, but their main focus was to 

find which country or region should receive more resources 
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depending on the pandemic situation in each of them. What 
we are proposing in our study is to find, using RL, how we can 
distribute the limited supply of vaccines across the citizens of 
a country depending on their age and profession in an optimal 

way that minimizes deaths and infections. But in order to do 
this, an RL agent has to interact with an environment. This is 

why we used the simulator that we built and validated in [3] 
as a simulation environment. This system consists of an ABM 
where we have agents (representing people) interacting with 

each other and with their environment (the country where they 

live). The agents can be infected with COVID-19 and based 
on their behavior, they might infect other agents as well, and 
infections might lead to death, just like what happens in real 
life. It is true that agents can get infected, but agents can also 
get vaccinated, and vaccination will reduce the virus spread in 
the country where the agents live. To vaccinate these agents, 
our simulator allows us to use defined strategies that we can 
choose, but it can also leverage the magic behind RL and train 

an RL agent to find better vaccination strategies. RL has been 
used before to solve many complex problems that involve 
decision-making like robotics and healthcare, and it shined in 
the world of gaming. For this reason, we framed the problem 
that we have as a game where the RL agent has to learn which 
group to vaccinate first. Just like any other game, the player 
seeks to get a higher score, and in our system, the lower the 
number of infections and deaths is, the higher the score the 
player would get. This is why the RL agent would learn to 
vaccinate agents in a way that keeps infections and deaths as 

low as possible to get the highest possible reward. After 
training our RL agent on this task, we compared the best 

strategy we obtained with two other defined strategies: The 
“younger first” strategy (where we start vaccinating younger 
ages and then move to older ones), and the “older first” 
strategy (where we start vaccinating older people and then 
move to the younger ones). We saw that the RL agent has 
found a strategy that outperformed these two. 

The rest of the paper will be organized as follows: In 
section 2, we will introduce Agent-Based Modeling which is 
the base of our simulator. Then, in section 3, we will talk about 
our simulation environment in detail to understand how it 

functions. Section 4 will introduce the concept behind 
Reinforcement Learning and its main algorithms. Sections 5 

and 6 will talk about how we used RL to solve our problem. 
Section 7 contains the results that we obtained, and finally, 
section 8 contains a conclusion and some future works. 

II. AGENT-BASED MODELING 

Agent-Based Modeling is an Artificial Intelligence 

technique that relies on Multi-Agent Systems. In this 

modeling technique, a system is represented by its micro- 

components (which are the agents), and based on the behavior 

and the interaction of these agents with each other and with 

their environment, a system will evolve. So, the higher 

system properties are just a result of the agents’ interactions.
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This technique is a go-to when we need to model complex 

systems that are hard to model using pure mathematical 

equations. Note that even the simplest ABM can exhibit 

complex behavior patterns and provide valuable information 

about the dynamics of the real-world system that it emulates. 

In our study, we used agent-based modeling to simulate the 

spread of COVID-19 in a virtual country where the local 

interactions between the agents will influence the pandemic 

spread. The parameters of an ABM are defined by the 

characteristics, dynamic states, and behaviors of the agents, 

but how can we determine them? In our study, we will be 

dealing with statistical distributions that help us determine the 

properties, actions, and evolving states of our agents. For this 

purpose, we use the MC algorithm to sample from those 

distributions. So, our ABM runs on top of the MC algorithm. 

III. SIMULATION ENVIRONMENT 

The goal of our simulator is to forecast the evolution of 
COVID-19 inside of a country with the presence of different 
control measures and different vaccine distribution strategies. 
The good thing about the simulator is that it can give an idea 
about how the pandemic situation can become after a decision 
is made. This way governments can benefit from it while 

seeing the effect of their actions before doing them, and then 
adapt the best measures and strategies to limit the virus spread, 
and save a lot of trouble for their citizens. The four key 

components in our simulator are the virus, the vaccine, the 
country, and the agents. We will discuss each of them and how 
they are connected in the following parts. 

A. The Virus 

The virus that we want to simulate in our study is the SARS- 

CoV-2, but other viruses can be simulated as well simply by 

changing the parameters. Those parameters are the latent 

period, the incubation period, the infectious period, and the 

different kinds of symptoms. Once an agent becomes 

infected, his states will evolve according to the kind of 

symptoms that he will develop [4], [5], [6], [7] (Fig. 1}. An 

agent will develop a particular symptom according to his age. 

To determine which kind of symptoms an agent will develop, 

we use the MC algorithm to sample from the distribution of 

symptoms vs age range that we derived from [8] and is 

illustrated in Table I. 

TABLE I SYMPTOMS DISTRIBUTION ACROSS AGE RANGES /8/ 

  

  

  

  

  
  

Age Group | Asymptomatic | Mild/Moderate | Severe Critical 

0-17 4B% 57% 0% 0% 

18 —39 14% 79% 5% 2% 

40-59 ™M 7% 10% 6% 

60 —79 3% 50% 33% 14% 

80 + 0% 33% 17% 50%               

Incubation Period 

B. The Vaccine 

In our simulator, we can supply different kinds of 

vaccines at different times for different clusters of the 

population. The characteristics of a vaccine can be 

summarized by the number of doses, the time between the 

doses, the transmission risk (how probably a vaccinated 

person transmits the virus), the infection risk (how probably 

a vaccinated person catches the virus) after each dose, and the 

time that each dose takes to become fully effective. In our 

study, we only used The Pfizer vaccine. This vaccine is 

characterized by 2 doses separated by 21 days, with 

respective infection risks of 48% and 5%. The time until the 

first dose becomes effective is 12 days, and the time until the 

second dose becomes effective is 7 days [9], [10]. In the 

Pfizer case, the risk of transmission after one dose is between 

45-50% according to England Public Health reports [11], and 

after 2 doses it is still not determined. In our study, we 

assumed the risk of transmission to be 50% after taking the 

first dose, and 20% after the second dose. These findings are 

represented in Fig.2. 

C. The Country 

A country is defined by different locations where an agent 

might go (houses, hospitals, markets, malls, restaurants, 

nightclubs, companies, praying locations, universities, and 

schools, and even an airport). In addition to that, a country is 

characterized by specific age distribution and a house 

population distribution. The country we will be simulating in 

our study will have a Lebanon-like structure, and this is why 

we chose to build it using real Lebanese distributions that are 

represented in tables II and III. Note that other countries can 

be simulated as well, simply by applying their corresponding 

distributions. 

TABLE II HOUSE POPULATION DISTRIBUTION 

  
Household Size 1 2 3 4 5 6 7 8 
Percentage (“%) 10 18 18 | 20 16 10 4 4 
  

                  

TABLE III AGE DISTRIBUTION 

  
Age Min oO | 5 {| 10 | 20 | 30 | 40 | 50 | 60 | 70 | 80 

Range | Max 4 | 9 | 19 | 29 | 39 | 49 | 59 | 69 | 79 | 89 

Percentage (%) | 8 | 8 | 16 | 17 |] 13] 11 | 11 | 8 5 3 

D. The Agent 

The agent is defined by several characteristics when created 

at the beginning of the simulation. These characteristics 

include an age, a personal house, a profession and some 

locations where he can possibly go. The profession’s 

  
                              

Symptoms Develop   

Latent Period Infectious Period 
  

Days 12a Ps are 

No Symptoms No Symptoms 

Mild Symptoms No Symptoms 

No Symptoms Mild Symptoms 
Severe Symptoms 

Mild 
‘No Symptoms Symptoms 

Critical Symptoms 

Mild Symptoms 

  

Immune (100%) 

Immune (100%) 

Immune (85%) 
Severe Symptoms (Hospitalization) Death (15%) 

Immune (50%) 

Death (50%) 

Fig. 1 COVID-19 Symptoms with their evolution through days /4/, /5/, [6/, [7]
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12 days 7 days : 

Took the First Dose Took the Second Dose 

First Dose became Effective Second Dose became Effective 

Infection Risk 100% 48% 5% 

Transmission Risk 100% 50% 20%             

Fig. 2 Pfizer Vaccine Characteristics [9], [10], [11] 

distribution is also based on Lebanese society and is 

represented in Table IV. Besides his work and study 

locations, an agent can go to random locations like 

restaurants, markets, companies, hospitals, etc. One thing to 

note is that the study location and the work location for an 

agent are fixed, which means he has to go there every day (or 

at least when they are open). But for the other locations, he 

can visit them during random times where he has nothing to 

do. For example, a Hospital worker does not have to go to the 

market every single day but he should go to the hospital each 

day during the week. 

TABLE IV PROFESSION DISTRIBUTION 

  
  
    
  
    

Age Min 0 5 | 10 | 20 | 30 | 40 | 50 | 60 | 70 

Range _ | Max 4 9 | 19 | 29 | 39 | 49 | 59 | 69 | 79 

School Students (%) 26|92}71} 2 {0 ]0]0]04 0 

University Students(%) | 0 | 0 | 9 | 15] 0 | 0 | O | 0 | 0 

Workers (%) 0 0 7 | 52 | 62 | 57 | 47 | 31 | 16                       

E. Building the Environment 

The process of building the environment happens 

according to a specific flow. First thing, the Locations are 

built. Among these locations, Houses are the origins of the 

population because this is where an agent is born. Inside each 

house, we use MC Algorithm to decide the number of people 

that should live inside of it according to the House Population 

Distribution. After knowing how many people live in the 

house, we need to know their ages. Based on the ages we 

determine other characteristics (profession, locations the 

agent visits, etc.). After we have set up our agents, let’s see 

how they behave during the simulation. 

F. Simulation process 

The simulation starts with some agents being infected, and 

the others are susceptible (can become infected). The infected 

agents will go into the world, interact with other agents, and 

eventually infect them. This is how the number of infections 

grows. Once the simulation starts, there is a specific number 

of agents that register for the vaccine, so that when it becomes 

available they can have it. At any time during the simulation, 

we can supply a specific quantity of vaccines for a specified 

group of the population (according to the age range or the 

profession). These vaccines will be given only to people who 

have registered at the beginning. The simulation process runs 

for several days. At the beginning of each day, an agent is 

assigned a list of locations where he will be during each hour 

of the day (like a schedule). This list is given based on the 

profession of the agent (it should include his fixed locations), 

and on the locations where he can go (e.g. markets, malls, 

etc). This is how agents meet at different locations. When an 

agent is present in a specific location, he is considered to be 

in a room inside of this location. This is why different 

locations are modeled as different rooms, each of them 

having specific characteristics, and based on that, each 

location has a defined infection rate. This rate indicates the 

chance that an infected agent infects another agent within the 

same location (or room). In our study, we used a COVID-19 

risk calculator developed by the Harvard School of Public 

Health that is based on the peer-reviewed paper of Azimi et 

al. [12]. This calculator helped us approximate the infection 

rate for different kinds of rooms where an agent might be. 

This risk percentage takes into consideration a lot of factors 

related to the room: its space, the activity done inside it, the 

quality of the HVAC system, the time spent in the room, the 

fact that people in the room are wearing masks or not, the 

amount of social distancing, etc. So, each of our locations was 

modeled as a room that has specific characteristics, and based 

on that we got the infection rate of each of them. But how do 

we decide if an agent should become infected once he is ina 

specific location with another infectious agent? 

When Agent A (who is infectious) and Agent B (who is 

susceptible) are present in the same room, we decide if A will 

infect B according to the following process. First, we use the 

MC Algorithm to see if Agent A should transmit the virus 

according to the transmission risk associated with the vaccine 

he has taken (if he has taken one). If A is supposed to 

transmit, we use the MC algorithm again to determine if 

according to the infection rate of the room, Agent B will 

become infected or not. If yes, we use the MC algorithm a 

third time to determine if Agent B will truly become infected 

according to the infection risk associated with the vaccine 

that he took (if he has taken one). This is how the vaccine can 

protect an agent by giving him a second chance if he was 

supposed to become infected. The process of applying the 

triple MC can be well understood from Fig. 3. 

In this study, we aim to use RL to distribute the vaccines 

in a way that minimizes cumulative infections and deaths. 

This way, RL is supposed to give us better strategies that lead 

to better outcomes. This is why, in the next section we will 

explain the foundations of RL and after it, we will see how 

we trained an RL agent to distribute a limited number of 

vaccine shots in a way that reduces the number of infections 

and deaths in the simulation environment.



Agent B Room’s Infection Rate: p% 

Vaccine Infection Risk: i% 

Vaccine Transmission Risk: r% 
Will be Infected Won't be Infected 
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Fig. 3 Triple MC for Vaccine Protection 

Agent A     

IV. REINFORCEMENT LEARNING 

RL is one of the oldest and most challenging kinds of 

Machine Learning where we have an agent learning to 

achieve a particular task by interacting with an environment. 

The RL agent starts by being in a particular state that the 

environment determines. The agent chooses an action to take 

based on the state he is in, and after that, the environment will 

respond with a reward (or a penalty) depending on whether 

the action was good or bad and provides the agent with a new 
state, and the process continues like this. The goal of the 

agent is to maximize the rewards it is getting from the 

environment through the set of interactions. So, to formulate 

an RL problem, we need an agent, an environment, states, 

actions, and rewards. The RL process is illustrated in Fig.4. 

InRL, we have the concept of what we call an “Episode”. 

An episode mainly characterizes tasks that can finish across 

time. In episodic tasks, the interaction between the agent and 

the environment does not go forever, there will be an end state 

at some point. In games, for example, an episode is between 

the time you start playing, and the time you finish (by 

winning or losing). The goal of an agent is to maximize the 

total reward he is receiving during his interaction with the 

environment. The total reward at a time step t (1) consists of 

an immediate reward (after performing an action) and a 

discount for future rewards (that correspond to future 

actions). The discount factor y indicates how much attention 

the agent is paying attention to future rewards. 

Gp =Re+yRear +7 Rega Fo = Re + Gear dd) 

This is why the agent should know beforehand what 

would be the expected return that results from doing a 

particular action “a” while being in a state “s” so that he 

chooses the right action accordingly. The Q-value (or action- 

value function) calculates the expected return given that the 

agent is in state “s” and performs action “a” (2). This is why, 

we can represent the Q values of a policy via a table where 

the rows represent states, the columns represent actions, and 

the intersection of a row and a column gives us the Q-value 

for a specific state-action pair. This is what we call a Q-table. 

   

  

  

Q(s,a) = E[Gt|st = 5, ar = a] Q) 

—~\ a 

Q) 2) 
RL Agent Action 

Ina particular State 
Environment 

rn 

@) 
tf Reward 

®) 
Next State 

Fig. 4 Reinforcement Learning illustration 
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A. The Bellman Equation 

The Bellman equation (3) gives us an approximation of 

the Q-value. When an agent is in state s;, and performs an 

action a,, the environment responds with a reward R,,,, and 

puts the agent in a new state s,,,. Since the agent does not 

know the rewards of future time steps when he is interacting 

with the environment (R,42, R43, etc), the Bellman equation 

approximates the Q-value by assuming that the agent will 

choose the action a’ at state s,,, that gives the highest return 

when following his policy. 

QSp at) = Resa + y Max Q(Sz41,0’) (3) 

B. Q-Learning 

Q-Learning which stands for Quality Learning is an RL 

algorithm that teaches an agent to take the suitable action 

given a state. The goal of Q-Learning is to learn a policy that 

maximizes the total reward. In other words, the Q-Learning 

algorithm learns the Q-values in a Q-table. Once the Q-table 

reaches a convergence, we say that we reached an optimal 

policy, where the agent knows the consequences of doing a 

specific action in a specific state. The agent starts with a Q- 

table initialized with zeros, and then through interaction with 

the environment he updates this table based on the Bellman 

Equation, and later (after convergence), this table becomes 

his reference to select the best possible action given a state. 

C. Deep-O-Learning 

Deep-Q-Learning is a version of Q-Learning where we 

have a Neural Network (NN) that learns the Q-value function 

for different states and actions instead of a table. We call this 

NN a Deep-Q-Network (DQN). This DQN receives a state as 

input and computes the corresponding Q-values for each 

action as output. The DQN algorithm can be explained simply 

as a regression problem, where the NN predicts the Q-values 

for all possible actions given a state. The difference with the 

classical supervised learning approach is that in supervised 

learning, we have the true target values, but in RL we do not. 

This is why we use the Bellman Equation to approximate the 

target Q-values (4) and train the network in a supervised 

online fashion. For detailed information about how this 

algorithm works refer to [13]. 

Qtarget (St, ay) = Rey, + y max Qpred (St41’) 

D. Double-Q-Learning 

Although DQN is one of the most powerful algorithms, its 

problem is that not only the predicted Q-values rely on the 

NN, but also the target Q-values that we estimate using the 

Bellman equation, and this is why, when updating the weights 

of the network to give us a prediction close to the target value, 

the target value will change also. This is why, the double 

DQN was introduced in [14] to break this correlation, where 

instead of one NN, we use 2 NNs. One of them (the learning 

network) gets updated at each timestep just like before, and 

the other one (the target network) is used to calculate the 

target values. This way, when updating the learning network, 

the target variables won’t change. Every once in a while, the 

target network gets updated with the weights of the learning 

network. For detailed information about how the algorithm 

functions refer to [14]. 

(4)



In our study, we will be working with a Double DQN, and 

in the next sections, we will discuss how we formulated the 

problem to be suitable for RL, and how we trained our RL 

agent to distribute vaccines efficiently. 

V. PROBLEM SETUP 

We need to solve the vaccine distribution problem using 

RL. This is why we framed it as a game that an RL agent 

should learn to play well and get high scores while playing it. 

The game rules and specifications can be summarized as 

follows: 

e We have 300 houses in the environment which gives us 

1120 agents. We chose this number just to be able to 

train the RL agent faster. In our previous studies, we 

used to take around 60000 agents in the simulation. 

e Out of the 1120 agents, 90% will register to take the 

vaccine. 

e Each day we have a limited amount of 20 vaccine shots 

that we can deliver. 

e These 20 shots can be delivered to one of the 5 possible 

groups: 
o G1: agents having an age between 12 and 17. 

o G2: agents having an age between 18 and 39. 

o G3: agents having an age between 40 and 60. 

o G4: agents having an age higher than 60. 

o G5: agents that are workers, regardless of their age. 

e An agent that has taken the first shot will automatically 

take the second shot when the time comes. 

e The episode starts with 1% of the population infected. 

e The episode ends when the number of active infections 

drops below 5, or when the RL agent loses (this idea 

will be explained later in the section). 

e During the episodes, we keep schools and universities 

closed. 

We start by simulating in our environment a random strategy 

for vaccine distribution where the vaccines are distributed to 

a random group each day. For the simulated random strategy, 

we obtain 2 curves: one that shows the cumulative infections 

over time, and one that shows the Deaths over time. We 

consider this strategy as a baseline that the RL agent should 

be bypassing during the learning process. For this reason, 

each day, the RL agent will receive a reward (5) that takes 

into account the difference between the random strategy and 

the strategy that the agent is following in terms of the 

resulting cumulative cases and deaths. 

Rli] = a [Z,-li] — 1. [é] * 1D, [i] — Ds [i] 

N, agents 

a- {t if Asli] < 1,li]) and (D,[i] < D,[i]) 
-1 Otherwise 

I,: Number of infections reached in the random strategy. 

I,: Number of infections reached using the learned strategy. 

D,.: Number of deaths reached in the random Strategy. 

D,: Number of deaths reached in the learned strategy. 

Nagents: Number of Agents. 

[i]: Index representing the day during an episode. 

From the reward formulation, we can see that the fewer 

infections and deaths our strategy achieves compared to the 

random strategy, the higher the reward will be. Another thing 

to consider, the reward is going to be positive if and only if 

the numbers of infections and deaths achieved by the RL 

(5) 
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strategy are lower than the ones achieved by the random 

strategy. This is the goal of weighing the reward by a. When 

the RL agent receives 5 consecutive negative rewards 

(meaning: the strategy he is following is not better than the 

random one) he loses and the episode ends. 

Inour study, we trained a Double DQN where the network 

has 2 inputs, 3 hidden layers (with ReLU activation function), 

and one output layer (with a linear activation function) of 5 

Q-values that correspond to the 5 possible actions. The 

architecture of the NN that we used is visualized in Fig.5. 

VI. TRAINING PROCESS 

We trained our Double DQN with the mentioned 

conditions for 100 episodes (equivalent to 5000 training 

steps) using an € greedy policy where at a particular time 

step, an agent selects the action that gives the highest 

expected return with a probability of 1—e but selects a 

random action with a probability of ¢. This helps the RL 

agent explore the environment. The actions that an agent 

takes have long-term consequences and this is why we used 

a discount factor y of 0.95 to pay attention to future rewards 

while approximating the Q-values. The training parameters 

are summarized in Table V. 

TABLE V TRAINING PARAMETERS OF THE DOUBLE DQN 

  
Learning Optimizer Loss Batch Discount e 

Rate Function Size Factor y 

0.001 Adam MSE 64 0.95 0.1 
  

                

We plot the rewards that an agent is getting throughout the 

100 training episodes (Fig. 6). We can see that the rewards 

are noisy, and it might seem that the agent is not progressing, 

however, if we look at the exponential trendline of these 

values, we can see that it is going up, which means that the 

agent is learning and tends to even have higher rewards in the 

future. 

VII. RESULTS 

We take the strategy that gave us the highest reward and 

we plot the corresponding curves for the cumulative cases 

and the deaths (Fig. 6 and Fig. 7), and we compare them with 

the random strategy, the “younger first” strategy, and the 

“older first” strategy. We can see that the learned strategy was 

able to outperform all of the other strategies in terms of 

cumulative cases and deaths at the same time. 

If we look at the strategy the RL agent derived, it was 

about starting with workers (G5), then moving to agents 
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Fig. 6 Cumulative Reward through the Episodes 

between 17 and 39 years old (G2), then moving to agents 

between 40 to 59 years old (G3), then move to agents older 

than 60 years old (G4), and finally vaccinating agents 

younger than 17 years old (G1). 

Maybe if we train for more episodes, we would be able 

to come up with a strategy that achieves even better outcomes 

than this one did, but the results we obtained help us prove 

the concept that the way we vaccinate agents has an impact 

on the human damages caused by the pandemic and such 

decision-making problems can be better solved using RL. 

VIII. CONCLUSION AND FUTURE WORKS 

The aim of this study was to prove the concept that 

Artificial Intelligence techniques and more specifically 

Reinforcement Learning can be very useful for complex 
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decision-making problems. Applying RL directly in real life 

especially in applications related to the medical field can be 

very challenging, and this is why, we need simulation 

systems where we test our ideas to make sure they are feasible 

and effective, and this study is the first step in that direction. 

The main limitation that we had in this study is the lack of 

computing resources that can maintain training for a large 

number of episodes with a big number of agents. If we bypass 

this limitation, we can increase the number of agents, and 

increase the training time, and therefore achieve better 

strategies. We can also perform further hyperparameter 

tuning to improve the learning process. Another thing we can 

do is to think about how we can apply such a system in real 

life by getting real data instead of operating on statistical 

distributions. 
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