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ABSTRACT
The Internet  of  Things  (IoT)  is  currently  in  a  stage  of  rapid  development.  Hundreds  of  millions  of  sensing  nodes  and  intelligent
terminals undertake the tasks of sensing and transmitting data. Data collection is the key to realizing data analysis and intelligent
application of IoT. The life cycle of IoT is limited by the energy of the IoT nodes in the network. A complex computing model will
bring serious or even unbearable burdens to IoT nodes. In this study, we use the data prediction method to explore time correlation
data and adjust the appropriate spatial sampling rate on the basis of the spatial correlation of sensory data to further reduce data.
Specifically,  the  improved  and  optimized  DNA-binding  protein  (DBP)  data  prediction  method  can  increase  the  time  interval  of
sensing data to further reduce energy consumption. Based on the spatial characteristics of the sensing data, substituting the data
of similar nodes can reduce the sampling rate. The probabilistic wake-up strategy is also adopted to adjust the spatial correlation of
the sensing data.  On the basis of  node priority,  an optimized greedy algorithm is proposed to select  the appropriate dominating
node for eliminating redundant nodes and improving network energy utilization. Experiments have proven that our scheme reduces
network energy consumption under the premise of ensuring data reliability.
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A t  present,  the  application  of  Internet  of  Things  (IoT)
technology has involved various industries and penetrated
into  all  aspects  of  human  life,  such  as  the  internet  of

cars[1,2],  smart  city[3],  and smart  home[4].  Data  collection is  the  first
step  toward  a  great  role  for  IoT  and  is  key  to  effective  data
analysis.  Data  collection  must  respond  to  the  different  task
requirements and is limited by the battery capacity of IoT nodes.
It  is  one  of  the  most  basic  challenging  tasks  in  IoT.  In  many
scenarios,  users  do  not  need  strictly  accurate  data,  and
approximate data suffice. For example, the temperature perceived
by  node  changes  in  adjacent  time  is  low  in  environmental
monitoring. In the case of no data mutation, the impact of small
differences on production and life can be ignored. Large amounts
of  accurate  and  repetitive  data  not  only  result  in  unnecessary
resource  usage  but  also  in  unnecessary  transmission  energy
consumption.  A  single  node  collects  data  continuously,  and  the
collected  data  constitute  a  time  series,  so  future  data  can  be
predicted  from  historical  data.  The  sensor  transmits  data  to  the
node only if the error between the predicted value and the actual
measured  value  is  greater  than  the  specified  threshold.  This
bilateral prediction method effectively reduces the number of data
transmissions and has been widely used in IoT and wireless sensor
networks (WSN)[5]. However, we find that these scenarios assume
that  the energy consumption of  data collection and processing is
significantly lower than that of communication. Many real-world
applications  require  specific  sensors  whose  sensing  power
consumption cannot be ignored. Therefore, reducing the number
of  IoT  node  activities  is  necessary  to  reduce  (i)  the  amount  of

node sensing data through time correlation to predict data and (ii)
the  number  of  data  transmissions.  According  to  the  first  law  of
geography,  geographical  objects  or properties  that  are distributed
in space are related. Spatial correlation shows that the trends and
values  of  the  perceived  data  of  different  nodes  are  similar  in  the
development  process.  Thus,  the  data  among  some  nodes  are
redundant,  and  when  IoT  devices  in  adjacent  locations  transmit
their sensing data without considering neighbor transmission,  an
unnecessary transmission may occur[6]. Many researchers use data
similarity  to  reduce  data  transmission  among  similar  data
nodes[7,8]. The similarity measurement among node data sequences
is important, and the classical methods include Euclidean distance
and Pearson coefficient[9].  The  similarity  measurement  method is
proposed  in  Ref.  [10].  However,  these  methods  have  some
drawbacks. On the one hand, they are sensitive to subtle changes
in serial data. On the other hand, the judgment of data similarity
requires  a  large  amount  of  data.  When  the  amount  of  data  is
small,  even  a  small  difference  will  cause  a  great  coefficient
difference. However, if the amount of data is large, then additional
data must be transmitted among nodes, which will further lead to
energy  consumption.  Therefore,  in  the  IoT  environment,
considering  a  method  that  can  effectively  judge  (i)  the  similarity
through  spatial  correlation  for  data  collection  and  (ii)  the
correlation among data sequences in the case of a small amount of
data is necessary.

To  address  the  aforementioned  issues,  we  thus  propose  an
effective  spatiotemporal  correlation-based  judgment  strategy  to
collect  remote  sensing  data.  Specifically,  we  use  the  linear 
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prediction  model  DNA-binding  protein  (DBP)  to  predict  the
perceived  data  of  IoT.  We also  adopt  a  jump sensing  strategy  to
reduce the amounts of sensed and transmitted data of IoT nodes.
To  further  reduce  the  redundancy  of  transmitted  data  and  the
energy consumption of nodes, we try to use the slope of the DBP
function  as  the  standard  to  evaluate  the  data  similarity  among
nodes.  In addition,  we select  the appropriate  dominant  nodes by
using  a  node  priority  method  to  improve  the  utilization  rate  of
network  energy.  We  also  propose  a  probabilistic  wake-up
mechanism  to  determine  whether  the  data  correlation  among
nodes has changed and whether it must be recalculated. The main
contributions of this paper are as follows:

• a leaping perception strategy,
• a new standard for evaluating the similarity of nodes, and
•  a  method  for  judging  whether  the  data  correlation  of

nodes changes.
The remainder  of  this  paper  is  organized as  follows:  Section 1

provides a review of related studies. Section 2 introduces the time
correlation  data  prediction.  Section  3  presents  the  spatial
correlation-based  data  collection.  Section  4  provides  the
experimental results. Section 5 concludes. 

1    Related Work
 

1.1    Network energy-saving data collection methods
In  the  IoT  network  with  limited  energy,  data  collection,
processing, and transmission in an energy-saving way are the key
to  extending  the  network  life  cycle.  Clustering  is  the  most
common  and  effective  method  to  prolong  the  network  life  cycle
and  improve  network  management  efficiency.  LEACH[11] is  the
earliest  widely  used  cluster-based  routing  protocol.  It  selects  the
cluster head randomly. However, because cluster heads undertake
many  tasks,  they  consume  additional  energy.  The  random
selection  of  cluster  heads  makes  it  possible  for  nodes  with  low
energy to serve as cluster heads, leading to the fast death of nodes
and shortening of network life. To solve the problem that the fixed
threshold cannot meet all conditions in the static research scheme,
a fuzzy adaptive method is proposed in Ref. [12] to formulate the
exponential membership function according to the energy level in
the  network  for  adjusting  cluster  head  selection.  However,  the
clustering  method  only  reduces  the  transmission  distance  and
does  not  deal  with  the  redundant  data  among  nodes.  To  reduce
data  redundancy  and  improve  network  life,  a  hybrid  wake-up
mechanism  ETASA  is  proposed  in  Ref.  [13]  to  achieve  the  load
balancing of traffic and energy efficiency in heterogeneous WSN.
In  this  method,  the  sensor  nodes  in  the  same  application  are
paired  together  with  a  short  distance  within  the  communication
range of the same cluster by using the pairing strategy. Then, the
sleep-wake mechanism is used to make the paired nodes perform
data  sensing  and  transmission.  However,  selecting  cluster  head
and awakening time is still the key issue. The selection strategy of
cluster  heads  is  related  to  whether  the  network  load  is  balanced
and  whether  the  energy  is  used  most  effectively.  The  choice  of
wake-up  time  is  related  to  whether  the  network  can  respond  to
environmental changes in time and reduce network delay.

The  energy-saving  method  based  on  mobile  nodes  plays  an
important  role  in  improving  energy  consumption  balance,  data
throughput,  and  network  flexibility.  An  energy-saving  dynamic
routing  algorithm based on relay  nodes  is  proposed in  Ref.  [14].
An optimal relay node is  selected as its  next hop for the node in
the routing request before data transmission, and the link reward
and  link  cost  are  balanced  with  the  adjustment  factor.  However,
the  method  based  on  mobile  nodes  has  high  cost  and  low

suitability for low-cost, large-scale networks. In Ref. [15], based on
the data prediction method, a set of dynamic probability models is
proposed  to  be  obtained  by  training  Markov  dynamic  models.
The data can be mapped through a random process described by
the  probability  density  function.  Then,  unknown  data  can  be
predicted  by  observed  data  and  probability  density  function.
When the model is valid, the base station can respond to the user
query only by obtaining a data expectation value according to the
probability model, without communication among nodes. In Ref.
[16], an intelligent terminal probability prediction algorithm based
on an improved convolutional neural network (CNN) is adopted
to reduce complexity and energy consumption and avoid the loss
of  important  information.  Data  compression  is  the  simplest  way
to  reduce  the  amount  of  data  for  reducing  storing  and
transmitting  data  costs.  Compression  technology  can  be  divided
into  lossless  and  lossy  compressions  according  to  whether  data
information  is  lost[14].  Common  methods  of  lossless  compression
include  Huffman  coding[17],  LZW  dictionary  compression[18],  and
RLE  travel  coding  compression[19].  Common  methods  of  lossy
compression  include  wavelet  transform[20],  principal  component
analysis[21],  and  compressive  sensing[22].  Reducing  the  amount  of
data  transferred  through  data  compression  is  one  method  to
reduce energy consumption. 

1.2    Data collection method based on time correlation
The method based on time correlation is a way of time sequence-
based data collection. If the data at a future time can be predicted,
then the sampling and communication frequency of such data can
be  changed.  In  Ref.  [23],  based  on  the  autoregressive  time  series
model, without a great deal of training data and prior knowledge
of the probability distribution of perceived data, historical data can
be  fit,  data  in  future  time  slot  can  be  predicted,  communication
cost can be greatly reduced, and loss rate can be improved. In Ref.
[24], the holt exponential double smoothing method is employed
to predict data on sensor nodes. The predicted values are obtained
by  the  weighted  sum  of  recent  sensory  data  and  historical
observation  data.  The  sampling  interval  is  adjusted  adaptively
according  to  prediction  accuracy.  However,  the  exponential
smoothing method can only specify one parameter as the weight
value of the most recent sensory data and cannot adjust according
to the change of  data.  In Ref.  [25],  the importance of  each video
frame is evaluated through the classification of CNN with a time
dimension.  Then,  keyframes  are  extracted,  and  unimportant
frames  are  discarded  by  using  a  decision  algorithm,  which
preserves video quality and reduces multimedia data redundancy
in  the  data  center.  Based  on  the  fact  that  there  should  be  no
information or correlation in residuals when the model is applied
to a given time series, a three-layer least-squares residual depth is
proposed to support quantitative time-series data prediction to the
machine[26].  If  the  number  of  training  data  transmissions  can  be
further reduced or the sampling interval can be further increased
to reduce the amount of sensory data, then it will be a good way to
collect data. 

1.3    Data collection method based on spatial correlation
A  high  degree  of  similarity  among  sensor  sensing  data  is  called
spatial  correlation.  Common  spatial  correlation  methods  include
clustering-based and sleep-wake-based methods.  In Ref.  [27],  the
absolute value of the difference in time series is proposed to judge
the data correlation among nodes, divide the sensor network into
different  clusters,  find  the  correlation  among  node  data  in  the
cluster at each cluster head node, upload the model parameters to
the  sink  node  by  the  cluster  head,  and  collect  the  global
approximate  data  at  the  sink  node.  A  fine-grained  spatial
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correlation model is put forward in Ref. [28], where the sensor can
be  divided  into  different  clusters  by  using  the  probabilistic
approximation method. One primary sensor is selected from each
cluster, and the other sensors serve as subordinate sensors so that
the primary sensor in the network sends all the sensing data to the
receiver,  whereas  the  subordinate  sensors  only  need  to  send
nonredundant  data.  In  Ref.  [29],  Pearson  coefficient,  Spearman
grade  coefficient,  and Kent  grade  coefficient  are  used  to  evaluate
the  correlation  among  data  sequences,  and  the  performance
analysis  is  carried  out.  The result  reveals  that  the  correlation can
be  affected  by  the  outliers  in  the  sensory  data.  Therefore,  the
positive  and  negative  values  of  the  correlation  coefficients  are
changed. The correlation among nodes is not invariable, so timely
perceiving  the  change  in  correlation,  making  corresponding
adjustments,  and  striking  a  balance  between  the  quality  of  data
collection  and  the  energy  consumption  required  for  data
collection are necessary. 

2    Time Correlation Data Prediction
Due  to  the  limited  memory  space,  computing  power,  and  node
energy  in  IoT,  data  must  be  collected in  an energy-efficient  way.
To  solve  this  problem,  the  needs  of  IoT  nodes  with  energy  and
computing  power  constraints  can  be  met  to  a  great  extent  by
predicting the sensing data at the next moment and adjusting the
prediction interval. 

2.1    Prediction model
We  adopt  the  linear  prediction  model  DBP  for  data  prediction.
When  a  short-term  linear  behavior  is  observed  in  the  data,  the
trend  acquisition  is  more  sustainable  than  the  difference
acquisition alone  to  predict  data.  Meanwhile,  DBP can carry  out
long-term  nonlinear  trend  prediction,  and  in  this  process,  the
model must be constantly updated.

W
W

Figure 1 provides a schematic of DBP. This model is based on a
sliding learning window containing  data points. The sets of the
first and last L  data are called edges, and the size of  is greater
than twice that of L.  L1  represents L  edge points at the beginning
of the learning window, and L2 represents L edge points at the end
of the learning window. The model parameter δ is the average of
L1 and  L2 .  This  calculation  is  similar  to  the  calculation  of
derivatives,  so  it  is  called  derivative-based  prediction,  which  is
formulated as follows:

δ =

∣∣∣∣∣ L1

∑
i=0

di−
L2

∑
j=1

dj

∣∣∣∣∣
L(W−L)

(1)

δIn general,  represents the average increment of inductive data
relative  to  the  previous  learning window.  Given the  sensory data
of  a  certain  IoT  node  in  the  learning  window  as  the  initial  data
point,  the  sensory  data  at  the  next  moment  can  be  predicted  by
the following formula:

dp[k+ 1] = d[k]+ δ (2)

dpwhere  represents the forecast data, which are related to the data
at  the  previous  moment.  If  the  forecast  data  at  the  previous
moment are valid, then the forecast data at the next moment will
be  calculated.  If  the  forecast  data  at  the  previous  moment  are
invalid,  then  the  sensory  data  will  be  used  for  calculation.  The
DBP  data  prediction  model  is  found  suitable  for  resource-
constrained IoT nodes. 

2.2    Data initialization model
In  the  beginning,  when  no  data  are  available  in  the  sensing  and
server nodes of IoT, the sensing nodes must upload the initial data
to  the  server.  In  the  previous  section,  we  have  introduced  the
details and advantages of the DBP model, but some shortcomings
remain  in  the  algorithmic  model.  Reducing  the  energy
consumption  of  network  initialization  is  our  first  step  for
algorithm  optimization.  In  this  study,  a  deformable  part  model
(DPM)-based  linear  prediction  algorithm  is  used  for  data
initialization.

d[0] d[1]

Δd

DPM  algorithm  only  needs  two  measurement  values  to
establish  the  prediction  model.  In  the  beginning,  the  IoT  node
collects  the  measured  values  and   of  the  first  two
moments.  Each  time  the  sink  receives  a  new  measurement,  it
stores  the  value  of  the  measurement  received  in  memory  and
uploads them to the server node. Then, the difference  between
the  two  measurements  is  calculated  for  the  IoT  node  and  the
server node at the same time, as shown in the following formula:

Δd= d[1]−d[0] (3)

k Δd
k− 1 k

To predict the data at time , IoT and server nodes add  to
the data at time  to obtain the predicted value at time .

dp[k] = d[k− 1]+Δd (4)

d[k]

TH

Δd

The  IoT  nodes  then  compare  predicted  value  with  the
actual  perceived  value.  If  the  difference  between  them  is  not
greater than the previously set error threshold , then the truly
sensed data will not be transmitted to the server node. Conversely,
if  the  predicted  value  is  not  within  the  error  threshold,  then  the
IoT nodes will  delete  it  and transmit  the real  sensing data  to  the
server  node.  They simultaneously  update  difference  and start
the new data prediction and transmission. 

2.3    Jump strategy
The  energy  consumption  of  IoT  nodes  mainly  comes  from  two
aspects:  data  transmission  and  data  sensing.  Regardless  of  the
bilateral  prediction of the DBP algorithm or the use of the DPM
algorithm for data initialization, the aim is to minimize the energy
consumption  in  data  transmission,  so  the  improvement  and
optimization  of  data  sensing  comprise  the  second  step  of  DBP
optimization.

Through the analysis, we can see that DBP has good prediction
performance in the case of  short- and medium-term predictions.
Therefore, IoT nodes do not need to transmit data to server nodes
in  continuous  multiple  timeslots.  The  excellent  prediction
performance  of  DBP  makes  it  possible  to  further  reduce  data
sensing and network energy consumption. We change the sensing
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Fig. 1    DBP model.
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time interval of IoT nodes to reduce the amount of sensory data,
that is, the “jump” strategy.

When predictive functions are good at predicting sensory data,
we  do  not  need  to  sense  real  data  all  the  time.  Therefore,  we
propose a method to further save energy. As shown in Fig. 2, at a
certain  moment  when  the  difference  between  predicted  and  real
data is within the scope of the set error threshold, the time interval
of sensory data can be increased. To avoid an unlimited increase,
the time interval can be set to a maximum value. If the predicted
data  value  cannot  meet  the  requirements  of  the  data  error
threshold  at  the  perceived  moment,  the  sensed  data  interval  is
restored to the initial value.

S

S
S

S
S

S

The  time  interval  is  defined  as  =  1,  representing  the  time
interval from the current perceived moment to the next perceived
moment.  If  the  predicted  data  are  accurate,  then  should  be
added by 1; otherwise,  will be restored to 1. At each time point,
the IoT nodes make a judgment through time interval .  If  time
interval  = 0, then the current moment is the perceived moment.
If  the  time  interval  is  greater  than  0,  then  the  sensing  data  are
saved as node data, and  is reduced by 1. The node data formula
is as follows:

d[k] =
{xp[k], S> 0&&|ds[k]−dp[k]|< TH;
xs[k], S= 0∥|ds[k]−dp[k]|⩾ TH

(5)

d[k]
k xp[k] k

xs[k] k
S
dp[k] ds[k]

TH
S

dp[k] ds[k]
TH

where  represents the data stored in IoT nodes and servers at
time ,  is the predicted data that will be saved at time , and

 represents the sensing data that will be saved at time . When
time  interval  is  greater  than  0  and  the  difference  between
predicted  data  and  sensing  data  is  less  than  error
threshold ,  the  predicted  data  will  be  saved.  When  time
interval  is  equal  to  0  or  the  difference  between  predicted  data

 and  sensing  data  is  greater  than  or  equal  to  error
threshold ,  the sensing data uploaded by sensor nodes will  be
saved.

W
δ

PRE s
s

SD

PRE

Algorithm 1 describes the final data forecast. Given the first two
sensing  data,  data  error  threshold  and  sliding  window  learning
parameters,  such  as  length  and  time  interval,  the  INIT_PRE
algorithm initializes  sensory data, and then the DBP algorithm
calculates the average slope of sliding learning window . Finally,
the prediction data in the next time point are calculated according
to  the  average  slope  (lines  1–3).  When  the  value  of  the  interval
indicator  variable  is  greater  than  0,  it  means  entering  the
nonperception  stage.  The  prediction  data  are  directly  stored  in

,  and  interval  indicator  variable  is  reduced  by  1.
Subsequently, the next prediction is made until the value of  is 0
(lines  4–9).  The next  stage  is  to  sense  data,  and the  sensory data
will  be  saved  to  (line  10).  Then,  whether  the  difference
between  the  current  sensory  data  and  the  predicted  model  data
exceeds the range of error threshold is  determined. If  it  does not
exceed,  then  the  forecast  data  will  be  saved  in ,  and  then PRE

O(Nu+L×Sn) Nu
PRE L

Sn

whether the current time interval can be increased is determined.
If the current time interval can be increased, then the time interval
will  be added 1 in the nonperception stage,  and the current time
interval is recorded with indicator variable (lines 11–17). If the gap
exceeds  the  error  threshold,  then  must  save  the  current
sensory data  and transmit  it  to  the  server  node.  Next,  the  model
goes  to  line  2  to  retrain  the  model  and  update  the  parameters
during  prediction  (lines  18–24).  The  time  complexity  of
Algorithm 1 is ,  where  stands for the amount
of  data  saved  in  the  data  sequence,  represents  the  size  of
the learning edge in the sliding learning window, and  refers to
the time of updating the prediction model during transmission. 

2.4    Data synchronization
The ultimate goal of data collection is to have data available on the
server nodes. On the basis of the data prediction model, the server
and  IoT  nodes  thus  run  the  same  prediction  model  at  the  same

 

Time

Sensing data
Predicted data

Matching predicted
data

Inconsistent predicted
data

Data transmition

Prediction model

Fig. 2    Jump strategy diagram.

 

Algorithm 1 DSM
THInput: : error threshold between the predicted value and the true

value
MAX_S　 : maximum time interval

d[0]　 : first sensory data

d[1]　 : second sensory data

S　 : time interval, and initialized to 1

W　 : length of learn window

L　 : learn window edge length

k　 : W+1, the next moment of the training window

PREOutput: : the data sequence

s←1:　INIT_PRE():   0

δ← DBP(PRE.splice(−W))2:　   

d[k]← PRE[k− 1] δ3:　    + 

s >4:　for all   0 do

5:　　PRE.push(d[k])

s← s6:　　    − 1

k← k7:　　    + 1

d[k]← PRE[k− 1] δ8:　　    + 

9:　end for

SD(k)← getSensor(k)10:　   

|d[k]−SD(k)|< TH11:　if    then

12:　　PRE.push(d[k])

S <MAX_S13:　　if    then

S← S14:　　　    + 1

s← S15:　　　   

16:　　end if

17:　end if

|d[k]−SD(k)|> TH18:　if    then

19:　　PRE.push(SD(k))

S←20:　　   1

s←21:　　   0

22:　　data are transmitted to the server node

23:　　goto 2

24:　end if
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time to ensure data synchronization on both sides.
The  data  synchronization  policy  applied  to  each  node

comprises  the  following  steps.  The  IoT  nodes  construct  a  data
prediction  model  on  the  basis  of  the  initial  and  observed  values.
Next,  the  initial  value  is  delivered  to  the  server  nodes,  which
construct  an  identical  data  prediction  model  at  the  same  time.
Meanwhile, the IoT nodes also use the model to predict their own
sensory  data  and  compare  the  predicted  value  with  the  actual
observed  value.  If  the  difference  between  them  is  within  the
allowable  margin  of  error,  then  no  further  action  is  required.
Otherwise, the IoT nodes will transmit the real sensory data of the
wrong time to the server nodes, and both sides will rebuild a new
model to collect data.

TH

To implement this strategy, applications running on server and
IoT nodes must allow a fault-tolerant mechanism for the accuracy
of  reported  data.  When  both  nodes  have  the  same  prediction
model at the same time, a point is sampled, and the sensory data
are  compared  with  the  value  predicted  by  DBP according  to  the
current  model.  If  the  absolute  value  of  the  difference  is  less  than
error threshold , then the value is an acceptable approximation
of  the  real  value.  Otherwise,  the  current  data  and  prediction
model  are  considered  not  reliable  enough,  and  the  real  data  are
sent to the server nodes to recalculate the data prediction model. 

3    Data Collection Based on Spatial Correlation
This  section  demonstrates  how  to  use  the  spatial  correlation  of
nodes  in  IoT to  select  appropriate  sampling nodes.  To minimize
network energy consumption and meet data reliability constraints
during  the  data  collection  process,  we  propose  a  data  collection
strategy on the basis of the spatial correlation among nodes. This
strategy is divided into two steps. First, a network correlation map
is  constructed  according  to  the  spatial  correlation  among  nodes,
and the dominant nodes are selected by using the greedy strategy
according  to  the  priority  of  nodes.  Second,  the  network
dominance node is adjusted according to the dynamic changes in
data after the dominance node has been selected. 

3.1    Minimum domination set selection

A = a1, a2, ..., aW} B = b1, b2, ..., bW}

Intuitively, the correlation among data reported by IoT nodes can
greatly reduce the spatial sampling rate of IoT nodes. If the data of
two IoT nodes A and B are similar in the past period, then we can
infer  that  the  sensing  data  of  A  and  B  are  similar  in  the  next
moment; that is, the sensing data of one IoT node can replace the
sensing  data  of  the  other  node.  Given  time  series

{  and  time  series { ,  they
are relevant if the following formula is satisfied:

|δa− δb|< θ (6)

δ

θ

δ

where  is  the  average  increment  of  node  prediction,  which
represents  the  variation  trend  of  time  series  data  to  a  certain
extent. If the current parameter is still valid, then the server node
can directly calculate the node similarity. If the current parameter
does not meet the requirements, then the IoT nodes only need to
transmit  one  data  to  the  server  node  to  meet  the  requirements,
thus  greatly  reducing  the  number  of  data  transmissions  among
nodes  and  the  energy  consumption  of  data  transmission.  is  a
similarity  parameter  set  for  different  application  scenarios.
Formula (6) shows that when the absolute value of the difference
in average increment  between two nodes is less than the preset
parameter, the two nodes meet the requirement of similarity and
have  a  similarity.  Otherwise,  we  consider  that  no  similarity  is
observed  between  the  two  nodes.  The  correlation  among  node

ADJdata sequences is stored in matrix  as follows:

ADJ =


1 0 ··· 1 0
0 1 ··· 0 0
...

...
. . .

...
...

1 0 ··· 1 0
0 0 ··· 0 1


ADJ N N ADJ[i][j]

i j

ADJ

i j
j i

where  has   rows  and  columns.   indicates
whether a correlation exists between the th and th nodes. Value
1  indicates  that  the  two  nodes  are  correlated,  whereas  value  0
suggests  the  opposite.  must  be  a  symmetric  matrix  because
there should be a correlation between nodes and themselves, and
the  correlation  between  nodes  and   is  equal  to  the  correlation
between nodes  and .

In the IoT scenario, the remaining energy of the selected node
must  also  be  considered,  including  the  energy  consumed  by  the
node  for  data  transmission.  Therefore,  we  propose  node  priority
Eq. (7) to describe the priority order in which a node is selected as
a node of the dominant set.

priority i =α× NSi.eng

∑
j∈Ck

NSj.eng
− β× dis(NSi,SE)

∑
j∈Ck

dis(NSj,SE)
+ γ× Di

∑
j∈Ck

Dj

(7)

priority i i

NSi.eng

i dis(NSi,SE)
i Di i

α β γ

Ck k i

where  represents  the  priority  of  node  whose  value  is
related to the remaining energy of the node, the distance from the
node  to  the  server  node,  and  the  node  degree.  is  the
remaining  energy  of  node .  is  the  distance  between
node  and server node.  is the degree of node , which refers to
the  number  of  edges  associated  with  it. , ,  and  are  priority
parameters, representing the weight of residual energy, the weight
of  distance  to  the  server  node,  and  the  weight  of  node  degree,
respectively.  represents  the -th  cluster,  where  node  resides.
The  priority  of  a  node  is  the  weighted  sum  of  its  remaining
energy,  the  distance  from  the  node  to  the  server  node,  and  the
node degree.

ADJ[i][j] ADJ[j][i]

PRI

O(N× N)

In  Algorithm  2,  the  correlation  between  the  two  nodes  is
determined  through  correlation  parameters.  If  the  correlation
exists,  then  the  degree  between  two  nodes  will  be  added  1.
Correlation  matrix  elements  and   are  set  as  1
(lines  1–8).  Then,  the  remaining energy,  the  sum of  the  distance
from the node to the server node, and the sum of node degree are
calculated  for  all  nodes  (lines  9–13).  Finally,  according  to  the
remaining  energy  of  each  node,  the  distance  and  degree  are
calculated using the node priority formula and stored into the 
set  (lines  14–17).  The  time  complexity  of  Algorithm  2  is

. 

3.2    Greedy algorithm
We transform the  selection of  nonredundant  IoT nodes  into  the
solution  of  the  minimum  domination  set  problem,  which  is  an
NP−hard problem, and propose an optimized greedy algorithm to
solve it. The optimizing greedy algorithm consists of selecting and
optimizing a minimum domination node set. 

3.2.1    Selecting the minimum domination node Set.

TMP

TMP_ALL

The nodes are selected in ascending order of priority. Other nodes
associated with the current node are saved in the  collection.
If undominated nodes are seen, then the nodes dominated by the
current node are not dominated by other nodes, so they should be
added to the minimum domination node set. If no undominated
node exists,  then this  node has no contribution to the minimum
dominated  node  set  and  is  thus  excluded.  The  set
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DM
TMP_ALL NS DM
includes all nodes dominated by the current .  If the nodes in

 are the same as the  node set, then the current 
is already a dominant set of the undirected network graph. 

3.2.2    Optimizing the minimum domination node Set

{10, 9, 8, 6}

8

Figure  3 shows  the  domination  set  of  an  undirected  graph.  The
blue nodes represent the dominant nodes of the network, and the
number above the nodes represents the priority of  the nodes.  As
displayed in Fig. 3, the blue and white nodes related to them cover
all  the nodes in the figure,  so the blue node set  is  a
network  dominance  set.  However,  all  the  dominant  nodes  with
priority 8 are included in the domination set of other nodes. The
node  with  priority  is  a  redundant  node  in  the  domination  set.
Therefore,  further optimization can be carried out to remove the
redundant nodes that may exist in the dominant set. Considering
the node priority,  we tend to remove the low priority  nodes and

preserve  the  high  priority  nodes.  If  the  remaining  nodes  can
dominate the whole network, then the nodes will be deleted from
the domination node set.

TMP_ALL

TMP_ALL

TMP_ALL
TMP

Algorithm  3  shows  the  greedy  algorithm  of  the  minimum
domination  node  set.  Given  the  nodes,  priority  set,  and
correlation matrix, each node is traversed, and a temporary set is
created  for  storing  other  nodes  related  to  this  node  for  each
traversed  node  (lines  1–5).  stores  the  nonrepeating
node set that has been dominated, and all the nodes controlled by
this node are determined whether they are already in .
If  nodes  that  are  not  dominated  by  other  nodes  exist,  then  the
addition  of  these  nodes  contributes  to  the  complete  coverage  of
the entire  network node.  Subsequently,  these  nodes  are  added to
the  domination  node  set,  and  the  set  is  updated.
Meanwhile, the current domination node set  is saved (lines
6–10). If the current domination node has covered all nodes in the
network,  then  the  node  traversal  cycle  ends  (lines  11–13).  Next,
the nodes of the domination set are arranged in descending order
of  priority,  and  each  node  is  traversed  from  low  to  high.  Each
traversed node is temporarily removed from the domination set to
form a new domination set (lines 15–17). The new domination set
should be traversed, and all nodes dominated by it must be saved
(lines 18–20). If the dominant nodes of the new dominant set can
cover the entire network, then the deleted nodes are redundant in
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Fig. 3    The domination set of an undirected graph.

 

Algorithm 2 CalculNodeCorPri

NSInput: : set of IoT node

δ　 : average incremental set of nodes

θ　 : correlation parameter

DOutput: : set of node degrees

ADJ　 : correlation matrix

PRI　 : set of node priorities

δi ∈ δ1:　for all    do

δj ∈ δ i ̸= j2:　　for all    &    do

| δi δj |< θ3:　　　if   -     then

Di ← Di4:　　　　   +1

Dj ← Dj5:　　　　   +1

ADJ[i][j]←6:　　　　   1

ADJ[j][i]←7:　　　　   1

8:　　　end if

9:　　end for

10:　end for

NSi ∈NS11:　for all    do

E_SUM ← E_SUM NSi12:　　   + .eng

DIS_SUM ← DIS_SUM NSi SE13:　　   + distance( , )

DSUM ← DSUM Di14:　　   +

15:　end for

NSi ∈NS16:　for all    do

pi← NSi17:　　   priority( )

PRI pi18:　　 .push( )

19:　end for

 

Algorithm 3 Greedy algorithm

NSInput: : set of IoT nodes

PRI　 : set of node priorities

ADJ　 : correlation matrix

DMOutput: : minimum domination node set

priorityi ∈ PRI1:　for all    do

TMP ← NSi2:　　   new Set( )

priorityj ∈ PRI ADJ[i][j]= 13:　　for all    &    do

TMP NSi4:　　　 .add( )

5:　　end for

TMP TMPALL ∩ TMP6:　　if  - (    is not empty then

DM← DM ∪NSi7:　　　     

TMPALL← TMPALL ∪ TMP8:　　　     

GS NSi← TMP9:　　　 .   

10:　　end if

TMPALL NS11:　　if  =  then

12:　　　break

13:　　end if

14:　end for

DM PRI15:　the  is arranged in reverse order of  size

NSi ∈DM16:　for all    do

TMP2← DM NSi17:　　    - 

NSj ∈ TMP218:　　for all    do

TMP3← TMP ∪GS NSj19:　　　     .

20:　　end for

TM3 =NS21:　　if    then

DM← TMP222:　　　   

23:　　end if

24:　end for
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O(N×N)
the  domination  set  and  can  be  formally  removed  from  it  (lines
21–24). The time complexity of Algorithm 3 is . 

3.3    Probabilistic wake-up strategy
In  practice,  the  correlation  among  nodes  may  change  over  time.
To judge such correlation, we must know the sensory data of each
node. Therefore, we propose a probability-based wake-up method,
which not only can keep the validity of spatial correlation but also
can detect the change in correlation among nodes.

p
p

pn
p = PN / pn PN pn

For  each  moment,  the  probability  of  the  controlled  IoT  node
entering the working state is set as , which is called the wake-up
probability.  The size of  is  related to the size of  the domination
node  set,  and  the  probability  changes  with  the  size  of  the
domination node set. A large domination node set should have a
small wake-up probability, and a small domination node set must
have a large wake-up probability to achieve a balance between the
validity of spatial correlation and the similarity of detection nodes.
Each  dominated  node  has  only  one  corresponding  dominant
node. If the number of nodes controlled by the dominant node is

,  then  the  wake-up  probability  of  nodes  under  the  dominant
node is ,  where  is a probability constant and 
is the number of nodes dominated by a node.

pn

p

The larger the , the larger the set of the dominant nodes, and
each  of  the  dominated  nodes  has  a  small  wake-up  probability.
Otherwise,  the  wake-up  probability  is  high.  Then,  the  system
generates  a  random  number  between  0  and  1.  If  the  random
number  is  less  than ,  then  the  dominated  node  is  awakened;
otherwise,  it  will  not  be  awakened.  If  the  dominated  node  is
awakened,  then  it  will  sense  the  data  and  judge  whether  any
correlation exists among the nodes dominating it currently.

PN
We can control the wake-up probability of nodes by controlling

the  probability  constant .  When  the  wake-up  probability  of
each node is 1, it is equivalent to uploading data directly without
judgment.  When the  wake-up probability  of  each node is  0,  it  is
equivalent  to  not  uploading  data,  and  the  validity  of  spatial
correlation cannot be maintained. When the wake-up probability
of nodes gradually increases between 0 and 1, the effectiveness of
spatial correlation becomes increasingly strong. At the same time,
the  consumption  in  uploading  data  becomes  increasingly  large,
but it is still less than that in uploading data directly. 

4    Implementation and Evaluation
We  use  python  for  the  simulation  experiments.  The  operating
system is 64-bit Windows 10, the processor is 1.7 GHz Intel i5-4 210
CPU,  and  the  memory  is  4  GB.  Our  simulations  use  the  real
dataset provided by Intel’s Berkeley Research Lab. In this dataset,
54  Mica2Dot  sensors  with  weather  panels  collect  humidity,
temperature,  illumination,  and  voltage  values  every  31  seconds.
On the  premise  of  losing  generality,  we  take  500 data  from each
node for experiments and carry out ten experiments to obtain the
average result. 

4.1    Experimental setup

×
Table  1 describes  the  settings  of  the  experimental  environment.
The simulated environment is a 100 m  100 m IoT network with
54 IoT nodes. The server node is located (50 m, 50 m) away from
the  center  point,  and  other  nodes  are  distributed  with  different
skewness.  Skewnessed sd  represents  the  degree  of  the  uneven
distribution  of  nodes  in  IoT,  and  the  calculation  formula  is  as
follows:

sd =
dn− sn

N
× 100% (8)

dn
(dn − sn)

N

where  and  sn  are  the  numbers  of  IoT  nodes  in  dense  and
sparse  subregions,  respectively.  indicates  that  the
number  of  IoT  nodes  in  dense  subareas  is  greater  than  that  in
sparse subareas, and  indicates the number of IoT nodes in the
IoT  network  area.  A  skewness  of  0%  means  that  IoT  nodes  are
evenly  and  randomly  distributed  in  the  IoT  network  area.  The
transmission radius of  IoT nodes is  set  as  100 m, two nodes can
communicate  with  each  other  within  this  radius,  and  each  IoT
node  has  the  same  perception  ability.  To  ensure  network
connectivity,  we  assume  that  any  two  nodes  in  the  network  are
within the communication range. 

4.2    Evaluation factors
 

4.2.1    Different probability constants

PN PN PN PN PN PN
pn

By  setting  different  probability  constants,  the  influence  of
probability  constants  on  the  experimental  effect  is  tested.  The
value can be  = 0,  = 1,  = 10,  = 20,  = 30 or  =

. 

4.2.2    Different data prediction models on nodes
We  use  DBP  to  refer  to  the  method  in  Ref.  [30],  which  is  the
bilateral  data  prediction  method  by  DBP  prediction  algorithm.
DSM refers to the previously mentioned method of adding “jump”
and  initialization  optimization  algorithms  to  DBP  algorithms.
EDSAS refers to the data prediction collection method employed
in  Ref.  [24],  which  adopts  the  quadratic  exponential  smoothing
method for data prediction. ADC is the method used in Ref. [10],
which adopts linear prediction function and spatial correlation for
data collection. DLM refers to the method employed in Ref. [23],
which  uses  the  autoregressive  model  to  fit  historical  data  and
predict  the  data  in  future  time  slots.  TSD  is  the  data  prediction
collection  method  combining  the  temporal  and  spatial
correlations  proposed  in  our  study.  By  comparing  DBP,  DSM,
and  TSD  methods,  we  determine  the  influence  of  the  time
correlation optimization method on the results. 

4.2.3    Various  error  thresholds  and  skewness  of  node
distribution

TH TH TH

Error threshold indicates that the deviation between the predicted
real  data  within a  certain range is  acceptable.  In our experiment,
three different thresholds are set:  = 0.1,  = 0.15, and  =
0.2. At the same time, the IoT node distribution will affect the data
transmission  distance  among  IoT  nodes;  thus,  the  total  energy

 

Table 1    Experimental parameters and their settings.

Parameters Value

Network region 100 m × 100 m

Number of IoT nodes 54

Skewness degree 0%, 10%, 20%, 40%,
60%, 80%

Server node location (50 m, 50 m)

Transmission radius 100 m

Propagation energy constant 50 nJ

εEnergy consumption constant 0.1 nJ

Power supply voltage V 2.7 V

Electricity required for induction activity I 25 mA

Duration of sensed node T 0.5 ms

Packet size 64 bit
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consumption  of  the  network  will  be  affected.  To  determine  the
influence  of  IoT  node  distribution  on  our  method,  we  set  the
skewness as 0%, 10%, 20%, 40%, 60%, and 80%. 

4.3    Experimental evaluation
 

4.3.1    Influence of probability constant
Figure  4 shows  the  different  network  energy  consumption  and
mean  absolute  errors  of  data  brought  by  different  probability
constants in the IoT, where the network skewness is 0%, and the
error  threshold  is  0.1.  The blue  bar  chart  represents  the  network
energy  consumption  (EC),  and  the  red  broken  line  chart
represents  the mean absolute  error (MAE) of  data.  A probability
constant of 0 means that our probabilistic wake-up strategy is not
adopted  in  this  network;  that  is,  the  dominated  node  is  not
awakened  during  the  entire  network  life  cycle;  thus,  the  energy
consumption  of  node  sensing  and  data  transmission  is  saved.
When the probability constant is 0, the energy consumption is the
lowest.  However,  the  data  error  is  far  beyond  the  data  error
threshold 0.1 set in the experiment. In addition, as the probability
constant increases from 1 to 30, the network energy consumption
increases  gradually.  As  the  probability  constant  increases,  the
awakening  of  the  dominated  node  increases,  and  the  number  of
sensing  and  data  transmissions  of  each  node  increases,  so  the
energy consumption also increases. 

4.3.2    Influence of different data collection methods
Figure  5 shows  that  for  three  different  data  error  thresholds,  the
TSD  method  has  the  lowest  network  energy  consumption,
followed  by  DSM  and  DBP.  TSD  makes  use  of  not  only  time
correlation data  but  also  spatial  correlation and jump perception
data. DSM uses and optimizes time correlation data, whereas DBP
only  uses  time  correlation  data.  Therefore,  by  comparison,  the
TSD  method  consumes  less  energy  and  is  better  than  the  two
other methods.

Figure 6 shows that for three different data error thresholds, the
network  mean  absolute  error  of  the  DSM  method  is  the  largest,
followed by TSD and DBP. DSM and TSD adopt the interval data
predictive collection method, which means that the IoT nodes do
not carry out data sensing at some time points but only perform
approximate data replacement at the last moment. Therefore, the
average absolute error of DSM and TSD is slightly larger than that
of  DBP.  However,  the error  value of  TSD is  smaller  than that  of
DSM, and the error in each case is within the error threshold, so
the data collected by TSD are considered valid. 

4.3.3    Influence of different error thresholds
Figure  7 displays  the  energy  consumption  of  TSD,  DLM,  ADC,
and  EDSAS  under  different  error  thresholds.  As  the  error
threshold  increases,  their  network  energy  consumption  shows  a
trend of gradual decline. The larger the error threshold, the more
opportunities the nodes have to use the predicted data. Therefore,
the sensing and transmission times gradually decrease, so does the
network  energy  consumption.  At  the  same  time,  the  network
energy  consumption  of  TSD  is  far  less  than  that  of  EDSAS  and
DLM under three different error thresholds. TSD adds a spatially
correlated  data  predictive  collection  method,  which  reduces  the
energy consumed in the network. Meanwhile, the network energy
consumption  of  TSD  is  far  less  than  that  of  ADC.  On  the  one
hand,  TSD  adopts  different  time  prediction  methods  and
adaptively adjusts the perceived node interval. On the other hand,
TSD  adopts  a  probabilistic  wake-up  strategy  instead  of  a  polling
wake-up  strategy,  which  greatly  reduces  network  energy
consumption.

Figure 8 shows the mean absolute errors of TSD, DLM, ADC,
and  EDSAS  under  different  error  thresholds.  As  the  error
threshold increases,  their  mean absolute  errors  exhibit  a  trend of
gradual  increase.  The  larger  the  error  threshold,  the  more  times
the nodes use the predicted data, which means there exists a large
gap  between  the  predicted  and  real  data.  Therefore,  the  mean
absolute  error  of  the  whole  network  will  gradually  rise.  At  the
same  time,  the  mean  absolute  error  of  TSD is  less  than  those  of
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EDSAS and DLM under three different error thresholds. TSD not
only applies the time correlation prediction method but also uses
the  spatial  correlation  data  prediction  collection  method  and
probability  wake-up  strategy.  During  the  process,  the  error
between  the  predicted  and  real  data  is  reduced.  Thus,  the  mean
absolute error of network nodes is reduced. Meanwhile, the mean
absolute  error  of  TSD  is  smaller  than  that  of  ADC  under  three
different  thresholds.  TSD  in  probability  wake-up  strategy  can
timely  adjust  the  distribution  of  the  dominating  node  set.
Therefore,  the  performance  of  spatial  correlation  based  on
temporal  correlation  is  better  than  that  of  temporal  correlation
only.  These  methods  are  within  the  error  threshold,  indicating
that they ensure the quality of the collected data.  The increase of
the mean absolute error of TSD is less than that of the three other
methods  with  the  growth  of  threshold,  suggesting  that  TSD  has
better stability than other methods. 

4.3.4    Influence of different skewness
Figure  9 illustrates  the  different  network  energy  consumption
levels  of  ADC  and  TSD  in  different  IoT  with  network  skewness
ranging from 10% to 80% when the error threshold is 0.1. As the
skewness  increases,  energy  consumption  increases,  although  its
value  may  be  quite  small.  Then,  the  energy  consumption
decreases  as  the  skewness  increases  and  then  increases  again.
During the process of  the network skewness changing from 10%
to 80%, the network energy consumption of TSD has been far less
than that  of  ADC, which suggests  that  the layout of  the network
node will have an impact on the network data collection method
but  is  small.  Under  the  condition of  different  network  skewness,
the  network  energy  performance  of  TSD  is  better  than  that  of
ADC.

Figure 10 shows the different mean absolute errors of ADC and
TSD in different IoT with network skewness ranging from 10% to
80% when the error threshold is 0.1. When the network skewness
changes from 10% to 80%, the mean absolute errors of TSD and
ADC have the same trend as the deviation degree increases, which
first  increases  and  then  decreases.  As  the  network  skewness
increases,  the  correlation  among  nodes  in  sparse  areas  becomes

increasingly  small,  which  leads  to  the  increasing  error  of
prediction  data.  When skewness  increases  to  a  certain  degree,  in
the  TSD  method,  the  number  of  nodes  in  sparse  areas  becomes
increasingly less, and the probability of node wake-up in this area
becomes increasingly large, which leads to the error of prediction
data  gradually  decreasing.  However,  in  the  ADC  method,  the
number  of  nodes  in  sparse  areas  and  that  of  nodes  with  large
errors  become  increasingly  less,  which  leads  to  the  gradual
reduction of the error of prediction data. 

5    Conclusion
Due  to  the  limitations  of  energy,  computation,  and  storage
capacity  of  nodes  in  IoT,  we  propose  a  spatiotemporal  data
correlation-based  data  collection  method  to  ensure  effective  data
and  reduce  network  energy  consumption.  First,  the  data
prediction  model  DBP  is  improved  and  optimized.  The  time
interval of sensing data can be increased during the data collection
to  further  reduce  energy  consumption.  Second,  we  define  the
correlation  and  priority  among  nodes  and  optimize  the  greedy
algorithm to reduce the number of redundant nodes and network
energy  consumption.  The  experimental  results  reveal  that  our
method  can  reduce  energy  consumption  in  the  network  and
achieve the purpose of saving energy while ensuring the validity of
data. 
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