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ABSTRACT
The  study  first  proposes  a  heterogeneous  fleet,  multi-compartment  electric  vehicle  routing  problem  for  perishable  products
(MCEVRP-PP). We capture a lot of practical demands and constraints of the MCEVRP-PP, such as multiple temperature zones,
the hard time window, charging more than once during delivery, various power consumption per unit of refrigeration, etc. We model
the  MCEVRP-PP  as  a  mixed  integer  program  and  aim  to  optimize  the  total  cost  including  vehicle  fixed  cost,  power  cost,  and
cooling cost. A hybrid ant colony optimization (HACO) is developed to solve the problem. In the transfer rule, the time window is
introduced to improve flexibility in route construction. According to the features of multi-compartment electric vehicles, the capacity
constraint  judgment  algorithm  is  developed  in  route  construction.  Six  local  search  strategies  are  designed  with  time  windows,
recharging stations, etc. Experiments based on various instances validate that HACO solves MCEVRP-PP more effectively than
the  ant  colony  optimization  (ACO).  Compared  with  fuel  vehicles  and  single-compartment  vehicles,  electric  vehicles  and  multi-
compartment electric vehicles can save the total cost and mileage, and increase utilization of vehicles.

KEYWORDS
multiple compartments; electric vehicle; cold chain logistics; heterogeneous fleet; vehicle routing problem; hybrid ant colony
optimization

  

P erishable products, such as flowers, meats, and breads, tend
to deteriorate in production and delivery. The distribution
center  (DC)  of  the  retailer  needs  to  deliver  various

perishable  product  segments  to  grocery  stores.  Each  product
segment  requires  a  specified  temperature  requirement.  Retailers
define multiple temperature zones for various perishable products
according to their temperature requirements. For example, fruits,
vegetables, and milk are suitable for storage at 2 to 10 ℃; Aquatic
products and  raw  meat  are  suitable  for  storage  at  −2  to  2  ℃;
Frozen  dumplings,  frozen  meat,  and  ice  cream  are  suitable  for
storage at  −20  to  −18  ℃.  To  keep  the  perishable  products  from
deteriorating,  temperature  conditions  are  necessary  to  be  met
during their  transport  and distribution.  In the past,  retailers  only
used  single-compartment  vehicles  (SCVs).  Since  products
requiring  different  temperature  zones  (e.g.,  frozen  and  chilled)
cannot  be  mixed,  an  SCV  can  only  satisfies  one  temperature
requirement. Therefore, if a grocery store orders multiple product
segments that each belongs to one special temperature zone, it has
to be visited several times and receiving one product segment at a
time[1, 2].  Nowadays  retailers  have  the  alternative  of  multi-
compartment  vehicles  (MCVs).  The  carriage  of  a  vehicle  is  split
into  separate  compartments.  Each  compartment  with  a  separate
refrigeration  system  can  be  set  to  a  different  temperature.
Therefore,  a  vehicle  can  transport  products  in  multiple
temperature  zones  at  once[3].  This  makes  vehicle  route  planning
and order allocation more flexible.

In the past, retailers mainly used fuel vehicles (FVs) to transport
perishable products. As we know, fuel vehicle is one of the major
contributors  to  greenhouse  gas  (GHG)  emissions.  Perishable
products  require  cold  facilities  (refrigeration)  to  maintain
freshness  and  usability  during  transportation.  Refrigeration

consumes  a  large  amount  of  energy.  Therefore,  the  FVs  have
more  significant  environmental  impacts[4, 5].  With  the  rapid
development of electric vehicles (EVs) technology in recent years,
retailers now can choose to use EVs. EVs are among the cleanest
means  of  transport  because  they  can  be  powered  by  sustainable
and renewable energy sources. They have no local GHG emissions
and  produce  only  minimal  noise.  The  latter  two  aspects  are
especially  important  in  urban  areas  with  frequent  traffic
congestion[6].  Moreover, EVs defined to be zero-emission are able
to meet the emission targets. Therefore, it is a general trend to use
EVs for urban distribution.

Although  the  power  battery  technology  of  EVs  has  developed
rapidly  in  recent  years,  due  to  the  battery  attenuation  caused  by
low  temperatures,  the  driving  range  will  be  further  reduced,
especially  in  winter.  Thus,  the  available  range  is  potentially  not
sufficient to perform the typical delivery tour of a logistics service
provider  in  one  run.  Because  reducing  the  number  of  deliveries
performed by one vehicle is not a profitable option, visits to public
recharging stations along the routes are required. It is necessary to
consider  the  recharging  in  route  planning  to  avoid  inefficient
vehicle  routes  with  long  detours,  especially  if  the  number  of
available recharging stations is scarce.

In  this  paper,  we  first  propose  a  heterogeneous  fleet,  multi-
compartment  electric  vehicle  routing  problem  for  perishable
products (MCEVRP-PP). There is no existing research on electric
vehicle routing problem (EVRP) with multiple compartments and
a  heterogeneous  fleet,  especially  for  perishable  products.  In  the
MCEVRP-PP,  the  energy  consumption  rate  of  EVs  has  a  linear
relationship  with  the  weight  of  EVs.  Each  store  has  a  hard  time
window, which means the service start  time at  each store cannot
be later than its time window. Since a cooling system is installed in 
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each compartment, the temperature of each compartment can be
adjusted. Each compartment can be dedicated to any temperature
zone.  The  EVs  can  visit  the  charging  station  as  many  times  as
needed  while  travelling.  A  mixed  integer  programming  model  is
developed for the MCEVRP-PP, which aims to minimize the total
distribution  cost,  including  vehicle  fixed  cost,  power  cost,  and
refrigeration  cost.  Considering  the  NP-hard  of  the  proposed
problem, a hybrid ant colony optimization (HACO) is developed
to solve the MCEVRP-PP.

The contributions of this study can be summarized as follows:
(1) We introduce electric vehicles with multiple compartments

to the vehicle routing problem (VRP) for perishable products. We
propose  the  MCEVRP-PP which considers  multiple  temperature
zones,  a  heterogeneous  fleet,  multi-compartment  EVs,  hard  time
windows,  charging  during  delivery,  energy  consumption  rate
linearly  related  to  the  load,  etc.  The  mathematical  programming
model of MCEVRP-PP is developed.

(2)  The  HACO  is  developed  to  solve  the  MCEVRP-PP.  We
introduce six local search strategies in algorithm proposed to solve
the more complex problem structure of VRPs.

(3) We validate the performance of the HACO using two newly
designed  MCEVRP-PP  instance  sets.  In  further  experiments,  we
show  that  EVs  with  multi-compartment  are  always  better  than
FVs  with  multi-compartments  or  EVs  with  single-compartment
with respect to the total cost.

The remainder  of  this  paper  is  organized as  follows:  Section 1
presents an overview of the existing work related to this research.
Section 2 presents a formal definition and a mathematical model
for the MCEVRP-PP. The algorithm design process is introduced
in  Section  3.  The  algorithm  is  tested  using  extensive  numerical
experiments.  The  experimental  design  and  the  corresponding
results  are  presented  in  Section  4.  Finally,  the  main  findings  are
summarized in Section 5.

 1    Related Work

 1.1    VRP for perishable products
When using vehicles without refrigeration equipment to distribute
groceries  such  as  perishable  products,  there  is  a  phenomenon  of
decay  and  deterioration,  so  stores  have  higher  requirements  on
the  timeliness  of  perishable  products  distribution  and  often  set
strict  time  windows.  Osvald  and  Stirn[1],  Amorim  et  al.[7],  and
Govindan  et  al.[2] established  the  vehicle  routing  problem  with
time  window  (VRPTW)  model  for  perishable  products,  which
considers  the  loss  caused  by  product  decay.  Wang  et  al.[8]

considered a VRPTW model with multiple objectives to consider
the  cost-freshness  trade-off.  The  loss  of  freshness  is  calculated
using a nonlinear freshness factor. Some literature considered the
relationship  between  road  conditions,  vibration,  and  mechanical
damage  in  perishable  food.  Li  et  al.[9] considered  road  conditions
and  their  influence  on  the  deterioration  and  bruising  in  the
distribution  of  fresh  fruits  and  vegetables.  Al  Theeb  et  al.[10]

presented a comprehensive mixed integer optimization model for
the  cold  supply  chain  that  combined  the  inventory  allocation
problem with the vehicle routing problem. To solve the model, Al
Theeb  et  al.[10] designed  a  multi-phase  approach.  Babagolzadeh
et  al.[5] studied  the  inventory-route  problem  for  the  cold  supply
chain  under  a  carbon  tax  supervision  mechanism  based  on
uncertain demand. The goal is to minimize total costs comprising
storage  cost,  transportation  cost,  lost  sale  cost,  and  carbon
emissions  costs.  However,  although  the  article  claims  to  use
refrigerated  vehicles,  it  does  not  consider  the  fuel  consumption

cost  and  carbon  emission  caused  by  vehicle  refrigeration  during
transportation.

 1.2    VRP for multiple compartments vehicles
All  the  above  studies  used  SCVs.  Due to  technological  advances,
MCVs  can  be  used  to  deliver  perishable  products.  The  use  of
MCVs  allows  retailers  to  transport  products  with  multiple
temperature zones in one vehicle, which would otherwise need to
be  transported  in  multiple  shipments.  This  will  reduce  the
number of visits to a store and enable more flexible route planning
and  order  allocation.  Besides  perishable  products,  multi-
compartment  vehicle  routing  problem  (MCVRP)  is  widely
applied  in  fuel  delivery,  classified  collection  of  waste,  etc.[11−15] In
these  applications,  MCVs  are  capable  of  transporting  goods  that
cannot  be  mixed  at  one  time.  There  have  been  many  scholars
discussing MCVRP in different scenarios. Fallahi et al.[16] discussed
a  basic  MCVRP  in  which  the  type  of  product  in  each
compartment is fixed, and the demand of a store for a product is
not  allowed  to  be  split.  Mendoza  et  al.[17] solved  MCVRP  with
random  demand  by  constructive  heuristics.  Alinaghian  and
Shokouhi[18] discussed  a  multi-depot  MCVRP  and  developed  a
hybrid  adaptive  large  neighborhood  search.  Eshtehadi  et  al.[19]

proposed an MCVRP based on realistic urban logistics. The study
considered  hard  time  windows  and  divided  stores  into  three
groups based on order arrival time and delivery service preference.
Chen  and  Shi[20] presented  a  hybrid  particle  swarm  optimization
with simulated annealing to solve the MCVRP.

Gas  stations  sell  a  variety  of  fuel  products,  which  need  to  be
delivered  by  oil  tankers  with  multi-compartment.  Coelho  and
Laporte[11] defined  and  discussed  the  differences  in  four  multi-
compartment  distribution  problems  for  fuel  delivery.  Some
accurate  algorithms  are  designed  for  the  above  four  multi-
compartment  delivery  problems[14].  Avella  et  al.[21] discussed  the
fuel delivery network of one depot and a heterogeneous fleet with
compartments.  They  proposed  a  set  partition  formula,  and
employed  the  branch  pricing  method  to  solve  the  problem  of  6
trucks  and  25  stores.  Cornillier  et  al.[22−24] conducted  a  series  of
studies on the MCVRP for fuel delivery. First,  they developed an
accurate  algorithm  for  MCVRP  with  a  single  depot  and
heterogeneous fleet[22], then further considered MCVRP[23] with the
limited number of vehicles, and then discussed MCVRP with time
window,  and  proposed  two  heuristic  algorithms[24].  In  2012,
Cornillier et al.[25] further studied a more practical MCVRP for fuel
delivery  in  which  they  consider  multiple  depots,  heterogeneous
fleet,  the  limited  number  of  vehicles,  hard  time  window,  multi-
trips, unsplit compartments, unsplit tanks, and the gas station that
can  only  be  visited  once  by  a  vehicle.  Wang  et  al.[12] described  a
model for the fuel replenishment problem (FRP), which considers
multi-compartments  trucks,  a  heterogeneous  fleet,  multiple  trips
of  each  truck,  and  hard  time  window.  The  goal  of  FRP  is  to
compute  schedules  of  minimum  duration.  Efthymiadis  et  al.[26]

developed  an  optimization  model  to  solve  a  heterogeneous  fleet
MCVRP for a medium size gasoline delivery company.

Chen  et  al.[27] considered  multi-compartment  vehicles  with  a
single fleet for cold chain logistics based on the practical situation,
and proposed a large neighborhood search (LNS) algorithm. The
experimental results showed that LNS solved MCVRP effectively.
Ostermeier  and  Hübner[3] discussed  the  vehicle  routing  and
selection  problem of  single-  and  multi-compartment  vehicles  for
grocery  distribution.  The  LNS  was  presented  to  solve  the
corresponding problem. Experiments showed that a mixed fleet is
always  better  than  an  exclusive  fleet  of  single-compartment
vehicles  or  multi-compartment  vehicles,  which  can  reduce  costs
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by  up  to  30%.  Martins  et  al.[28] proposed  the  adaptive  large
neighborhood  search  (ALNS)  algorithm  for  MCVRP  with
product-oriented  time  windows  assignment  and  validated  the
effectiveness with basic instances. In addition, the experiments by
simulating  data  from  retail  practices  showed  that  a  consistent
MCV  distribution  leads  to  a  better  overall  solution  comparison
with  daily  planned  ex-post  time  window  assignment  and
facilitated more on-time deliveries.

 1.3    VRP for electric vehicles
EVRP is  a  variant  of  VRP.  Making a  viable  distribution plan for
electric  vehicles  requires  considering  the  electric  vehicle  features,
such  as,  endurance,  recharging,  and  so  on.  Bruglieri  et  al.[29]

modeled  the  EVRP  with  the  objectives  of  shortest  mileage,
shortest charging time as well as the fewest vehicles. A branching
variable neighborhood search algorithm was designed to solve the
problem.  One of  the  main features  of  electric  vehicles  is  that  the
power source is electrical energy. The charging strategy affects the
EVRP  solutions.  In  the  study  of  Keskin  and  Çatay[30],  the
recharging station determines the charging amount based on the
charging strategy. Erdem and Koç[31] also considered the charging
state. Erdelić et al.[32] proposed the strategies that mixed the single
charging  strategy  and  multiple  charging  strategies  for  the
EVRPTW problem.  As far  as  charging speed is  concerned,  three
charging strategies are available: fast, normal, and slow charging[33].
In terms of charging degree, there are two strategies: full charging
and partial charging[30]. Linear function and nonlinear function are
two  relationships  of  charging  quantity  and  charging  time[34–36].
From the aspect of allowable charging times, it can be divided into
single charging and multiple charging[32]. In this study, the EVs are
allowed to charge on the way for one time, and it is assumed that
each charge will be filled at a constant rate under the fast strategy.
Furthermore,  Verma[37] considered  both  recharging  and  battery
swapping in the EVRPTW and assumed that the available stations
are  both  recharging  stations  and  battery  swapping  stations.  The
driving  range  of  EVs  is  shorter  than  that  of  fuel  vehicles.
Therefore, energy consumption is a current research hot topic in
EVRP. Most studies assumed a linear correlation between energy
consumption of EVs and mileage. However, other factors such as
acceleration,  load,  and  speed  are  also  relevant  to  energy
consumption[38].  In  Goeke  and  Schneider’s[39] research  on  the
EVRP,  the  effect  of  loads  on  energy  consumption  has  received
attention,  while  Zhang  et  al.[40] considered  the  stochastic  and
unoptimized  speed,  slope,  and  other  factors.  Xiao  et  al.[41]

introduced  energy  consumption  rate  (ECR)  into  the  EVRPTW,
and ECR was considered as a joint nonlinear function of the speed
and load.

 1.4    Summary
There  is  no  literature  on  the  application  of  multi-compartment
electric  vehicles  with a heterogeneous fleet  to VRP for perishable
products so far. In this study, heterogeneous electric vehicles with
multiple  compartments  are  applied  to  perishable  products
distribution  for  the  first  time.  The  fuel  VRP  for  perishable
products frequently considers decay losses and carbon emissions.
While in our MCEVRP-PP, it is not necessary to consider product
deterioration  and  carbon  emissions,  but  to  consider  such
requirements as refrigeration energy consumption and charging at
public recharging stations during distribution. These requirements
significantly increase the complexity of problem-solving.

 2    Problem Description and Formulation
The  DC  is  responsible  for  delivering  various  perishable  product

C= {1,2, . . . ,n} n+ 1 n+ 1

F= {1,2, ..., l} V= C∪F∪{0}∪{n+ 1}
G= (V,E)

E= {(i, j) |i, j ∈ V, i ̸= j}
dij tij

segments  to  grocery  stores.  We  defined  the  set  of  grocery  stores
.  0  and  are  the  DC.  0  and  represent

that  an  EV  departs  from  the  DC  and  an  EV  returns  to  the  DC,
respectively.  In  practice,  an  EV  may  visit  the  same  charging
station several times during a trip. In the mathematical model, we
introduce  virtual  charging  stations,  which  are  the  copies  of  real
charging stations. It is ensured that the charging station is visited
at most once during a trip. We defined the set of real and virtual
recharging stations . . The
problem is defined on a complete directed graph  with
the set of arcs . Each arc is associated with
a non-negative distance , and a travel time .

K= {1,2, . . . ,N}
C

d k
pkd Gk

v
k fk

h

i [ei, li] si
i

Oim

m i qim Oim

Oim

qim ⩽ pkd k ∈ K,d ∈ D

qim = 0
i m

M denotes  the  set  of  product  segments.  Perishable  products
requiring  the  same  temperature  can  be  transported  in  the  same
compartment  and  they  constitute  a  product  segment.  The  set

 denotes  a  heterogeneous  fleet  of  EVs,  which
transport perishable products for stores in . Each EV consists of
multiple  compartments,  and  the  number  of  compartments  of
different  vehicles  is  the  same. D is  the  set  of  compartments  of  a
vehicle.  Each  compartment  is  dedicated  to  only  one  product
segment. Since a cooling system is installed in each compartment,
the  compartment  can  be  dedicated  to  any  product  segment.  It
means that different compartments in a vehicle can carry the same
product  segment.  The capacity  of  compartment  of  vehicle  is

 (kg).  The  battery  capacity  of  each  EV  is  (kW∙h).  An  EV
departs  from  the  DC  with  fully-charged  batteries  and  returns  to
the DC. When the vehicle is low on power during transport, it can
be  recharged  several  times  at  the  recharging  station  and  fully
charge the battery each time.  We assumed the charging rate  is 
(kW)  and  it  is  constant.  The  fixed  cost  of  using  a  vehicle  is 
(RMB). The unit power consumption cost is  (RMB/(kW∙h)). All
stores need to be visited by a vehicle with some orders.  For each
store ,  the  hard time window is  denoted by .  (h)  denotes
the service time in the store . The orders of each store for various
product  segments  are  known.  Let  denotes  the  order  for
product segment  of store , and  denotes the quantity of .
The  order  can  be  met  by  any  compartment  of  any  vehicle.

 for any . Each order cannot be split, and can
only  be  delivered  by  one  compartment.  Moreover,  the  store  can
order part of product segments.  When ,  it  means that the
store  has no order for the product segment .

hk

hk = akQ+bk, ak bk

Q k

ckdm

ckdm

Every  travelled  arc  consumes  battery  charge.  Firstly,  trams are
powered by electricity. Assuming that the vehicle speed is constant
and ignoring the factors such as slope and road surface, the power
consumption  per  unit  mileage  of  the  vehicle  has  a  linear
relationship  with  the  vehicle  weight.  Therefore,  the  power
consumption  per  kilometer  of  EV  can  be  expressed  by  the
following formula  where  and  are parameters,

 denotes  the  load  on  the  vehicle .  As  the  vehicle  load  will  be
gradually  reduced  due  to  order  delivery  in  the  distribution
process, the unit power consumption of vehicles in each arc of the
route  will  also  be  gradually  reduced.  Secondly,  electric  energy
refrigeration  is  needed  to  keep  the  product  segment  at  its
corresponding  temperature.  Assuming  that  the  external  ambient
temperature is fixed, the electric energy consumed by refrigeration
per unit time in a compartment is related to the temperature zone
and  space  size  of  the  compartment.  The  lower  the  temperature
zone  and  the  larger  the  space,  the  higher  the  electric  energy
consumed by  refrigeration  per  unit  time.  Let  denote  electric
energy consumption per hour in compartment d of  vehicle k for
the product segment m.  Since the size of a compartment is fixed,

 is constant and known. The cost of refrigeration is related to
the  time  of  refrigeration,  which  is  incurred  during  transport,
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unloading,  charging,  and  waiting.  It  should  be  noted  that,
whenever the compartment is empty during the distribution, it is
unnecessary  to  refrigerate.  The  sets,  parameters,  and  variables  of
MCEVRP-PP are shown in Tables 1 and 2.

We  model  the  MCEVRP-PP  as  a  mathematical  program  as
follows:

(1) Objective function
The  objective  is  to  minimize  the  total  cost  which  consists  of

three terms. The first term is the fixed cost related to each vehicle
used; the second term is the vehicle power cost; and the third term
is  the  refrigeration  cost.  Equations  (1)–(4)  are  the  objective
functions.

minZ= ∑
i=1

Zi (1)

Z1 = ∑
i∈C∪F

∑
k∈K

x0ikfk (2)

Z2 = h ∑
i∈V\N+1

∑
j∈V\0,i ̸=j

∑
k∈K

xijkdij(ak ∑
d∈D

∑
m∈M

gikdm +bk) (3)

Z3 = h∑
k∈K

∑
d∈D

Tkd ∑
m∈M

zkdmckdm (4)

(2) Vehicle route constraint
Constraint (5) ensures that each store can only be visited once.

Constraint (6) ensures the continuity of the route.  Constraint (7)
guarantees that each vehicle leaves DC and returns to DC. There
is one trip per vehicle at most. Constraint (8) guarantees that not
all recharging visit vertices must be used.

∑
i∈V\N+1,i ̸=j

∑
k∈K

xijk = 1,∀j ∈ C (5)

∑
i∈V\N+1,i ̸=j

xijk− ∑
i∈V\0,i ̸=j

xjik = 0,∀j ∈ C∪F,∀k ∈ K (6)

∑
i∈C∪F

x0ik = ∑
j∈C∪F

xj,N+1,k ⩽ 1,∀k ∈ K (7)

∑
i∈F,j∈V\0

xijk ⩽ 1,∀k ∈ K (8)

(3) Vehicle loading constraint
Constraints (9) and (10) ensure that the sum of products in the

compartment  does  not  exceed  the  compartment  capacity.
Constraints (11) and (12) keep track of the remaining load in the
compartment and guarantee that demand of all stores is satisfied.

∑
i∈C

∑
m∈M

yikdmqim ⩽ pkd,∀k ∈ K,d ∈ D (9)

∑
m∈M

gikdm ⩽ pkd,∀i ∈ V\N+ 1,k ∈ K,d ∈ D (10)

gjkdm+ yjkdmqjmxijk−pkd (1−xijk)⩽ gikdm,
∀i ∈ V\{N+ 1} , j ∈ C, i ̸= j,k ∈ K,d ∈ D,m ∈M

(11)

gjkdm−pkd (1−xijk)⩽ gikdm,∀i ∈ V\{N+ 1} ,
j ∈ F, i ̸= j,k ∈ K,d ∈ D,m ∈M

(12)

 

Table 1    Set/parameter and description of MCEVRP-PP.

Set/parameter Description

C C= {1,2, . . . ,n}Set of store points, 

K K= {1,2, . . . ,N}Set of EVs, 

F F= {1,2, ..., l}Set of recharging station, 

0, n+ 1 Distribution center

V V= C∪F∪{0}∪{n+ 1}
Set of stores, recharging stations, and DC,

M Set of product segments

D Set of EV compartments

fk k ∈ KFixed cost of EV, , (RMB)

h Unit power consumption cost, (RMB/(kW∙h))

dij i j arc(i, j) ∈ EDistance between nodes  and , , (km)
tij i j arc(i, j) ∈ ETravel time between nodes  and , , (h)

L A large number

v Charging rate, (kW)

[ei, li] i ∈ VTime window of node 

pkd d ∈ D k ∈ KCapacity of the compartment  of EV, , (kg)

Oim m ∈M i ∈ COrder for product segment  of store 
qim m ∈M i ∈ CDemand of product segment  in store , (kg)

Gk k ∈ KBattery capacity of EV, , (kW∙h)

si i ∈ CLoading time in store , (h)

ak,bk k ∈ K
Parameters of electric energy consumption per kilometer of
vehicle 

ckdm d ∈ D k ∈ K
m ∈M

Refrigeration electric energy consumption per hour in the
compartment  of vehicle  for the product
segment , (kW)

 

Table 2    Decision variable.

Notation Description

xijk  xijk = 1 arc(i, j) ∈ E k ∈ K, if  is traversed by EV ; 0, otherwise
yikdm  yikdm = 1 Oim m ∈M k ∈ K, if order  is delivered by compartment  of EV ; 0, otherwise

zkdm  zkdm = 1 d ∈ D k ∈ K m ∈M, if compartment  of EV  is dedicated to product segment ; 0, otherwise

wikd  wikd = 1 d ∈ D k ∈ K i ∈ C, if compartment  of EV  is not empty when leaving store ; 0, otherwise
uik k ∈ K i ∈ C u0k = GkRemaining energy of EV  when arriving at store , 

tik i ∈ C k ∈ KArrival time at store  for EV 

t+ik i ∈ C k ∈ KDepart time at store  for EV 
gikdm m ∈M d ∈ D k ∈ K i ∈ CRemaining quantity of product segment  in compartment  of EV  when leaving store , (kg)

Tikd i ∈ C d ∈ D i ∈ C Tikd = 0 i ∈ F {0}Equals departure time from store , if compartment  of EV is emptied for the store ; 0, otherwise. , when  or 
Tkd d ∈ D k ∈ KTime when compartment  of EV is emptied
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(4) Time constraint

d k
i j arc(i, j) i

i
k

i li

Formulas (13) and (14) determine the time when compartment
 of  vehicle  is  emptied.  Constraint  (15)  denotes  the  time

relationship between nodes  and  on  when  is store, DC,
recharging  station  respectively.  Simultaneously,  Constraint  (16)
denotes  the  time  relationship  when  is  the  recharging  stations.
Equation  (17)  determines  the  departure  time  of  vehicle  from
store . Constraint (18) ensures the arrival time is earlier than  of
time window.

Tikd =

{
t+ik, if ∑

m∈M

gikdm = 0 and ∑
m∈M

Yikdm = 1;

0, else;
∀i ∈ V\{N+ 1} ,k ∈ K,d ∈ D,m ∈M

(13)

Tkd =max{Tikd} ,∀i ∈ V\{N+ 1} (14)

max{ei, tik}+(si + tij)xijk−L(1−xijk)⩽ tjk,
∀i ∈ C∪0,∀j ∈ V\{0} , i ̸= j,∀k ∈ K

(15)

tik +(tij +(Gk−uik)/vi)xijk−L(1−xijk)⩽ tjk,
∀i ∈ F,∀j ∈ V\{0} , i ̸= j,∀k ∈ K

(16)

t+ik =max{ei, tik}+ si,∀i ∈ C,∀k ∈ K (17)

0⩽ tik ⩽ li,∀i ∈ V,∀k ∈ K (18)

(5) Vehicle power constraint

arc(i, j) i
Constraints (19)−(21) ensure that the vehicle power remaining

is  never  negative  in  when  is  store,  DC,  recharging
station, respectively.

ujk ⩽ uik−

[
dij

(
ak ∑

d∈D
∑
m∈M

gikdm+bk

)
+(tij+ si+

max{ei− tik,0})∑
d∈D

(
wikd ∑

m∈M

ckdmzkdm

)]
xijk+

Gk(1−xijk),∀i ∈ C,∀j ∈ V\0,∀k ∈ K, i ̸= j

(19)

ujk ⩽ Gk−

[
dij

(
ak∑

d∈D
∑
m∈M

gikdm+bk

)
+ tij

∑
d∈D

(
wikd ∑

m∈M

ckdmzkdm

)]
xijk +Gk(1−xijk),

∀i ∈ F∪0,∀j ∈ V\0,∀k ∈ K, i ̸= j

(20)

0⩽ uik ⩽ Gk,∀i ∈ V,∀k ∈ K (21)

(6) Decision variable
Constraint (22) ensures that each order is delivered only by one

compartment. Constraints (23) and (24) represent the relationship
between  variables.  Constraint  (25)  guarantees  that  each
compartment  is  loaded  with  at  most  one  product  segment.  The
compartment  is  allowed to  be  empty.  Equation (26)  is  the  range
constraint on the decision variable.

∑
k∈K

∑
d∈D

yikdm ⩽ 1,∀i ∈ C,m ∈M (22)

wikd =

{
1, if ∑

m∈M

gikdm > 0;

0, else;
∀i ∈ V\{N+ 1} ,k ∈ K,d ∈ D,m ∈M

(23)

zkdm =

{
1, if ∑

i∈C

yikdm ⩾ 1;

0, else;
∀k ∈ K,d ∈ D,m ∈M

(24)

∑
m∈M

zkdm ⩽ 1, ∀k ∈ K,d ∈ D (25)

xijk ∈ {0, 1} ,yikdm ∈ {0, 1} ,∀i ∈ V\N+ 1,
j ∈ V\0, i ̸= j,k ∈ K,d ∈ D,m ∈M

(26)

 3    Hybrid  Ant  Colony  Optimization  for
MCEVRP-PP
MCEVRP-PP is NP-hard. An exact algorithm can be used to find
the exact solution for small-scale MCEVRP-PP. As the increase in
the  number  of  stores  and  recharging  stations,  the  solution  space
increases  exponentially  and  cannot  be  solved  by  an  exact
algorithm. Therefore, heuristic methods or metaheuristic methods
are generally used to solve the problem. Ant colony optimization
(ACO), Tabu search, variable neighborhood search, and ALNS are
effective for solving VRPs.

Liter

i-th antimax

In the study, an HACO that combines local optimization with
ACO  is  developed  for  solving  the  MCEVRP-PP.  Based  on
traditional ACO, we introduce time window factor in the transfer
rules.  The  max-min  strategy  is  proposed  for  the  pheromone
update. The pseudo-code of HACO is shown in Algorithm 1. “it”
represents the number of current iterations.  is the maximum
number  of  iterations. “anti” is  the  ant.  denotes  the
total number of ants.

 3.1    Route construction
tabuk

tabuk = φ
At the initial state,  denotes the set of nodes that have been
visited.  All  the  ants  locate  in  the  DC  when .  An  ant
denoting  an  EV  departs  from  the  DC.  It  needs  to  visit  as  many
stores  as  possible  until  there  is  no  more  to  visit,  subject  to
constraints  of  the  power,  time  window,  and  capacity  of  each
compartment. After visiting the last store, the ant then returns to
DC.  Then the  ant  denoting  another  EV departs  from the  DC to
visit as many remaining stores as possible until there is no store to
visit. When all stores have been visited, the multiple routes formed
by  the  current  ant  form  a  solution.  During  route  construction
process,  the  current  ant  may  be  in  one  of  three  states:  (1)  at  the
 

Algorithm 1　Pseudo-code of HACO

it← 1,anti← 11 　Initialize: 

2 　Repeat

k3 　　For each ant  do

4 　　　Repeat

S5 　　　　Construct a feasible solution 

6 　　　　Local search procedure

anti← anti+ 17 　　　　

anti> antimax8 　　　Until 

9 　　End for

10   　Pheromone update procedure

it← it+ 111   　

it> Liter12 　Until 

S∗13 　Output the best solution 
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i j

allowedk

DC;  (2)  at  the  store;  (3)  at  the  recharging  station.  For  different
types  of  nodes ,  the  nodes  that  can  be  selected  to  visit  to  are
different. Therefore, the route construction process for the ants in
these  three  states  is  shown  in Algorithm  2.  The  set  of  accessible
stores  is  denoted  by ,  and  the  accessible  stores  need  to
satisfy the following three constraints:

j

(1) Capacity  constraint. The  capacity  constraint  judgement
algorithm that shown in Section 3.2 is used to determine whether
the demand of the transferred node  can be loaded in the vehicle.
Any store satisfies this constraint when the ant locates in the DC.

[e0, l0] j lj
(2) Time  window  constraint. The  ant  departs  from  the  DC

during , and reaches the store  before .

j

(3) Electricity  constraint. It  should  be  ensured  that  there  is
enough power to return to the DC or the nearest charging station
when it has visited node .

During  the  route  construction  process,  the  ant  tries  multiple
types  of  vehicles  and  keeps  the  model  that  results  in  the  lowest
cost.

k

k

In the route construction process,  the ant  selects  the nearest
public  recharging  stations.  When  the  route  is  constructed,  there
may be public recharging stations that make the total cost smaller.
To  avoid  routes  with  long  detours,  we  propose  the  local
recharging station insertion operator. Firstly, we delete the original
public  recharging  stations  for  the  tour  containing  public
recharging  stations.  Insert  the  remaining  public  recharging
stations in turn and calculate the distance travelled by ant . Insert

the public recharging station with the shortest distance.

 3.2    Capacity constraint judgement algorithm

i M

i

We assume that the number of all product segments is M, which
is equal to the number of compartments. The number of product
segments  that  store  demands  is  up  to .  The  correspondence
between  compartments  and  product  segments  is  not  fixed.  Each
compartment  can  be  set  to  any  temperature  zone.  When  the
vehicle  visits  store ,  the  compartments  can  form  a  clear
correspondence  with  each  product  segment.  When  determining
the  set  of  candidate  nodes  for  the  next  visit,  the  correspondence
can  be  adjusted  to  enable  all  product  segments.  The  process  of
capacity constraint judgement algorithm is as follows:

k i j
k

j
W (W⩽M)

{E1, ...,Ew, ...,EW}

(1)  If  the  vehicle  is  in  node ,  and  visits  store  next.  The
vehicle  needs  to  carry  the  products  of  all  stores  on  the  route
from  the  DC  to  store .  The  number  of  product  segments  is

.  Sort  products  by  the  amount  of  each  product
segment in descending order .

W<M(2) If ,  the compartments can be combined so that the
product  segments  and  the  number  of  compartments  are  equal.
List all combinations of compartments for the number of product
segments.

{pk1, ...,pkw, ...,pkW}
(3)  Sort  compartments  by  capacity  in  descending  order,

.
pkw ⩾ Ew,

w= 1,2, ...,W j
k j

(4)  For  one  combination  of  compartments,  if 
,  store  meets  the  capacity  constraint.  Otherwise,

vehicle  cannot visit store  next.

 3.3    Transfer rule
The  heuristic  information  includes  pheromone  concentrations
and distance in ACO. We introduce the distance saving and time
window to the transition probability.

j i ηij

j i τij

i j μij

i j TMij

i j α β γ δ

Attraction value of node  to node  is calculated by Eq. (27). 
is defined as the inverse of the distance from node  to node . 
denotes  the  amount  of  pheromone  on  the  route  between  the
current node  and possible node .  denotes the distance saving
of  node  to  node .  is  the  match of  time window between
node  and  node .  The  notations  of , , ,  and  denote  the
relative  influence  of  the  distance  values,  the  pheromone  trails,
distance saving, and time window, respectively.

ξij =
[
ηij

]α
[τij]

β
[
μij

]γ
[TMij]

δ (27)

Ei Li

Ei = max{e0+ t0,ei} Li = min{l0− t0i− si, li} Ti

L̃ij

The  match  of  time  window  is  defined  as  Eq.  (28).  and 
denote the actual earliest and latest arrival time to node i for ant k,
respectively. , .  is
the service time in node i for ant k and is a constant.  represents
the overlapping duration of time windows between nodes i and j.

TMij =


L̃ij

Li−Ei
+ tm0, if [Ei+Ti + tij,Li+Ti+ tij]∩ [ej, lj] ̸=∅;

tm0, if Li+Ti+tij < ej
(28)

L̃ij =


min{Li+Ti+ tij, lj}−max{Ei+Ti+ tij,ej} ,

if [Ei +Ti + tij,Li+Ti+ tij]∩ [ej, lj] ̸=∅;
0, if Li+Ti + tij < ej

(29)

[Ei+Ti+ tij,Li +Ti + tij] [ej, lj] i
j k

Equation  (29)  indicates  that  the  larger  the  overlap  between
 and ,  the  more  flexible  from  node 

to node  for ant . It is beneficial to visit more stores.
k i j

Pij

i j k k j allowedk

The transfer rule that ant  transfers from node  to node  is
given by Eq. (30).  denotes the transition probability from node
 to node  for ant . Ant  selects a node  from  to visit

 

Algorithm 2　Pseudo-code of the route construction process of HACO

tabuk← α,u0k← G,pkd← 01　 Initialize：

2 　Repeat

k3 　Ant  simulates a new EV k

k4 　If  in DC

k j j ∈ allowedk5 　　Move  to node  by transition probability, 

k C6 　Else if //  in 

allowedk =∅7 　　If 
f∗8 　　　If the nearest station  meets power constraint && a store point

　　　  meet capacity and time window constraints or not enough power
　　　   to return to the DC

k f∗9 　　　　Move  to 

10 　　　Else

k11 　　　　Move  to DC

12 　　　End if

allowedk ̸=∅13　　 Else // 

k j j ∈ allowedk14 　　　　Move  to point  by transition probability, 

15　　 End if

k F16 　Else //  in 

allowedk =∅17 　　If 

k18 　　　Move  to DC

19 　　Else

k j j ∈ allowedk20 　　　Move  to point  by transition probability, 

21 　　End if

22 　End if

23　 Until all store points are visited

routek24 　Return 

25　 End procedure
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according to transition probability.

Pij =
ξij

∑
e∈allowedk

ξie
, j ∈ allowedk (30)

 3.4    Local search phrase
Local  search  optimization  can  effectively  improve  the  search
capability  of  ACO.  We  design  the  following  six  local  search
strategies.  These  strategies  are  adapted  from  Eshtehad  et  al.[19] to
reflect  the  features  of  MCEVRP-PP[22].  The  new  solution  must
satisfy the constraints and be with a lower total cost. The pseudo-
code of the local search is shown in Algorithm 3.

(1) Relocate. Randomly select two nodes to swap in the current
solution.

(2) Reverse. Select  any  circuit  in  current  solution.  Then
randomly select  the nodes segment and reverse the visit  order of
all nodes in this segment.

(3) Exchange. Randomly select two circuits in current solution,
and  then  randomly  select  a  node  in  each  circuit.  Exchange  the
positions of the two nodes.

[ei, li]
(4) TimeGreedy. Remove  customers  with  maximum  time

window period  and then insert  the removed nodes into the
route by using the greedy algorithm.

(5) Worst-Customer. Remove  the  node  with  the  largest
increase  in  power  consumption  cost.  Then  the  removed  node  is
inserted into the location that minimizes the total cost increase.

(6) 2-opt. Select  a  circuit  with  charging  stations  in  current
solution and remove the  charging stations  in  the  circuit  selected.
Then randomly select  two nodes.  And then the order of  visits  to
all customer points between these two customer points is reversed.

When using the last 3 strategies, it is necessary to judge whether
the route to insert the removed nodes needs recharging stations or
not.  If  it  does,  the  recharging  station  is  inserted  by  the  local
optimization  algorithm  for  recharging  stations  that  proposed  in
Section 3.1.

 3.5    Pheromone update
When all solutions have been improved by local search, we should
update the global pheromone of the optimal solution. The global
pheromone update strategy adapted from Reed et al.[13] is given in
Eq. (31).

τnew
ij = (1− ρ)τold

ij + ρΔτbs
ij , ∀i, j ∈ Tbs (31)

τnew
ij τold

ij arc(i, j)where  and  are the pheromone concentration  after

ρ
Δτbs

ij arc(i, j)
Tbs

Lbs Tbs

and before the updating, respectively.  is the rate of pheromone
evaporation.  is  the  increased  pheromone  on  of  the
current  best  solution,  and  is  calculated  by  Eq.  (32).  is  the
current best route.  is the total cost of .

Δτbs
ij =

1
Lbs

(32)

The  difference  in  pheromone  concentration  between  arcs  can
be  limited  to  avoid  falling  into  local  optima  and  improve  the
global search ability of the algorithm. In this study, the maximum
and  minimum  values  of  pheromone  concentration  are  set  to
ensure  that  the  difference  in  pheromone  concentration  is
reasonable.

 4    Experimental Result
The  instance  sets  in  the  experiment  are  adapted  from  the
benchmark  instances  of  Solomon  for  MCEVRP-PP.  Three
experiments  are  conducted  to  verify  the  effectiveness  of  HACO.
Each  small-scale  instance  includes  5,  10,  and  15  stores,
respectively. There are 12 instances for each store scale. There are
56 large-scale instances, and each instance includes 100 stores. The
instances  are  divided  into  3  types  based  on  the  characteristics  of
store  distribution:  Clustered  (C),  Random  (R),  and
Random&&Clustered (RC) distribution.

Three experiments are conducted to verify the performance of
HACO. In the first experiment, we respectively select 6 small-sale
instances  for  3  types,  and  35  large-scale  instances  to  verify  the
efficiency  and  correctness  of  HACO.  And  we  compare  the
performance of each local search strategy for large-scale instances.
In the second and third experiments, we compare FVs with EVs,
and  compare  single-compartment  vehicles  with  multi-
compartment vehicles.

HACO is coded in Python 3.7, and is performed on a computer
with Core i4-4210U, 4 GB RAM.

 4.1    Parameter setting

ak = 0.055 kW ·h/(t ·km) bk = 0.5
h= 1 RMB/(kW ·h)

vk = 60 km/h v= 50 kW ·h
pkd = 0.07t,∀d= 1,2,3 fk = 200 RMB Gk = 60 kW ·h

pkd = 0.2t ∀d= 1,2,3 fk = 300 RMB
Gk = 76 kW ·h
ckdm =

ckdm =

In  the  experiments,  the  product  segments  are  set  as  three  kinds:
ambient,  chilled,  and  frozen.  The  number  of  vehicle
compartments  is  the  same  as  the  number  of  product  segments.
The  parameters  of  vehicle  capacity  and  battery  capacity  are
adapted from the experimental data of Solomon. The fleet consists
of two models. For each model, the capacity of each compartment
is  the  same,  the  parameters  of  electric  energy  consumption:

, .  The  unit  power
consumption  cost ,  the  travel  speed

, and the charging rate . For Model 1,
, ,  and .  For

Model  2, , , ,  and
. Based on the actual scenario, for Model 1, we set

0.5 kW, 1 kW, and 1.5 kW for ambient, chilled, and frozen,
respectively. For Model 2, we set 2 kW, 2.5 kW, and 3 kW,
respectively. The related parameters of ACO are set based on the
current research and are detailed in Table 3.

 4.2    Study on small-scale instances

∆

We solve MCEVRP-PP on 18 small-scale instances with ACO and
HACO.  ACO  and  HACO  perform  10  runs  for  each  instance
respectively. The results are shown in Table 4. Column ACO and
HACO  are  the  total  cost  for  the  best  solutions  with  the  two
algorithms,  respectively.  The  cost  reduction  percentage  of  the
HACO  compared  to  ACO  is  shown  in  column .  Results  show
that  HACO  efficiently  solve  all  MCEVRP-PP  instances.  For  the
instances  of  5  and  10  stores,  the  ACO  and  HACO  can  find  the

 

Algorithm 3　Pseudo-code of the local search

S1 　For each solution 

r2 　　For each local search strategies 

3 　　　Repeat

it← 14 　　　　Current iterations 

S S′5　　　　　 Optimize , generate 

z(S′)< z(S)6 　　　　　If the total cost , Then

S← S′7 　　　　　　

8 　　　　　End if

it← it+ 19　　　　 　

it> Liter10 　　　Until 
11 　　End for

12 　End for

S13 　Output : all solutions 
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same optimal solutions. However, the increased stores cause high
computational  complexity.  For  the  instances  of  15  stores,  the
ACO is poor to search for better solutions and tends to stagnate.
Local optimization can improve the solutions.

 4.3    Study on large-scale instances
To verify the effectiveness of  each local  optimization strategy,  we
first  randomly  select  six  instances  from  the  large-scale  instances
and  solve  with  the  ACO  combining  a  local  search  strategy.  We
donate  the  algorithms  with  a  different  strategy  by  Relocate,
Reverse, Exchange, TimeGreedy, Worst-Customer, and 2-opt. For
each  instance,  each  algorithm  performs  10  runs. Figure  1 shows
the  results  with  the  highest  cost  reduction.  The  column  denotes
the  cost  reduction  percentage  comparing  with  the  ACO.  The
results  show  that  Relocate,  Reverse,  Worst-Customer,  and  2-opt
solve  the  problem  effectively  for  large-scale  instances.  2-opt
performs  the  best,  as  charging  is  important  in  delivery  and  the
strategy  related  to  public  recharging  stations  can  improve  the

solutions  effectively.  Exchange  and  TimeGreedy  are  poor  to
improve the solutions. Therefore, we note the algorithm that ACO
combining four strategies that perform better, as HACO-I.

To  analyze  the  performance  of  HACO-Ⅰ,  ACO,  Relocate,
Reverse,  Worst-Customer,  2-opt,  and  HACO-Ⅰ are  performed
for 10 runs on the remaining 29 large-scale instances. The average
cost  reduction percentage of  each type of  instances are shown in
Fig. 2.  And the  detailed  experimental  results  of  ACO,  2-opt,  and
HACO-Ⅰ are shown in Table 5.

From  the  results,  we  find  that  five  algorithms  can  improve
the  solutions  for  all  types  of  instances.  2-opt  and  HACO-I
improve  all  instances  and  are  superior  to  Relocate,  Reverse,
and Worst-Customer. The average cost reduction percentage of 2-
opt  and  HACO-I  are  20.71%  and  21.16%,  respectively.  The
improvement  of  Relocate  and  Reverse  is  less  effective.  Worst-
Customer  performs  the  worst.  We  notice  that  2-opt  performs
better  than HACO-I  for  half  of  the  instances.  This  indicates  that
the  ACO  that  combined  four  local  search  strategies  performed
worse  than  the  one  combining  the  strategy  of  2-opt  in  some
instances.  Possible  causes  of  this  situation  may  be  as  follows:
(1) other strategies, especially Worst-Customer, interfere with the
HACO-I;  (2)  the  iteration  times  are  not  enough,  and  the
advantages of the HACO-I are not fully reflected.

 4.4    Comparison of EVs and FVs
In the experiment, we compare two fleets: EVs and FVs. There are
two types of vehicles for EVs and FVs. For FVs, the number and
capacity of a compartment are the same as EVs. For Model 1, the
capacity  of  the  fuel  tank  is  100  L,  the  capacity  of  the  battery  is
100  kW∙h,  and  the  fixed  cost  is  200  RMB.  For  Model  2,  the
capacity  of  the  fuel  tank  is  120  L,  the  capacity  of  the  battery  is
120 kW∙h, and the fixed cost is 300 RMB. Unit fuel consumption
cost is 5.5 RMB/L.

We assume that the power fuel consumption is linearly related
to  the  load.  The  refrigeration  fuel  consumption  is  related  to  the

 

Table 3    Related parameters of ant colony optimization.

Parameter Description Value

nant Number of ants 50

Liter Maximum iterations 100

ρ Rate of pheromone concentration 0.2

Tmax Maximum pheromone concentration 6

Tmin Minimum pheromone concentration 0.001

β Influence of pheromone 1

α Influence of distance 2

γ Influence of distance saving 1

δ Influence of time window 2
 

Table 4    Experimental results of small-scale instances.

Instance
Cost (RMB) ∆ (%)

ACO HACO

C101c5 490.25 490.25 0.00

C103c5 306.76 306.76 0.00

R104c5 305.67 305.67 0.00

R202c5 424.17 424.17 0.00

RC105c5 445.42 445.42 0.00

RC105c5 493.80 493.80 0.00

C101c10 818.06 818.06 0.00

C202c10 581.23 571.37 1.70

R103c10 513.37 513.37 0.00

R203c10 579.54 579.54 0.00

RC102c10 741.89 741.89 0.00

RC205c10 712.60 740.85 −3.96

C103c15 849.85 847.66 0.26

C202c15 979.10 979.10 0.00

R105c15 998.82 998.82 0.00

R205c15 858.34 827.45 3.60

RC103c15 1029.11 979.24 4.85

RC204c15 747.07 747.07 0.00

Average — — 0.36
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temperature of the compartment. The fuel consumption per mile
is calculated with Eqs. (33) and (34).

F1 = 0.03Qij +0.09 (33)

F2 = 0.03Qij+0.12 (34)

F1

Qij i j
where  is the power fuel consumption per unit mile for Model 1.

 is the quality of the product for vehicle from node  to .
The  refrigeration  fuel  consumption  per  hour  is  given  in  Eq.

(35).

Lm =


1.24, m= 1;
1.86, m= 2;
2.48, m= 3

(35)

Lm (L/h)
m

where  is the refrigeration fuel consumption per hour for
the product segment .

We  use  HACO  to  solve  9  instances  for  the  MCEVRP-PP,
which  are  randomly  selected  from  the  large-scale  instance  set.
HACO runs 10 times for each instance. The results are shown in
Table  6.  For  FVs,  the  average  mileage  is  1798.31  km,  and  the
average total cost is 4499.31 RMB. For EVs, the average mileage is
2120.12  km,  and  the  average  total  cost  is  4135.78  RMB.  The
mileage  of  EVs  is  longer  than  FVs,  as  the  continuity  limit  and
demand  for  recharging  increase  the  mileage.  Nevertheless,  the
total  cost  of  EVs  is  lower  than  FVs  with  a  cost  reduction
percentage  of  about  8%.  Using  EVs  for  cold  chain  logistics  can
reduce the total cost.

 4.5    Comparison of SCVs and MCVs

ΔC
ΔM

This  experiment  is  conducted  to  verify  the  advantages  of  MCVs
for the perishable products delivery. We assume that each vehicle
is responsible for only one product segment in the mode of using
SCVs.  If  a  customer  has  orders  for  multiple  product  segments,
multiple  visits  to  the  customer  are  required.  Three  large-scale
instances  of  R,  C,  and  RC  are  randomly  selected.  Other
parameters  remain  unchanged.  The  experimental  results  are
shown  in Table  7.  The  column  is  the  cost  reduction
percentage of the MCVs compared to SCVs. The column  is
the mileage reduction percentage.

Table  7 shows that  MCV is  superior  to  SCV in  total  cost  and
mileage  for  all  instance.  For  total  cost,  the  average  total  cost  of
SCVs is  12 311.59 RMB, while the average total  cost of  MCVs is
only 4360.78 RMB, improved by 61.90%. For mileage, the average
mileage  of  SCVs  is  4148.93  km,  while  the  average  mileage  of
MCVs  is  1345.96  km,  improved  by  67.74%.  Therefore,  in  cold
chain  logistics,  the  use  of  MCVs can  improve  vehicle  utilization,
and reduce the distance traveled and the total cost compared with
SCVs.

 5    Conclusion
In  this  study,  we  propose  a  heterogeneous  fleet,  multi-
compartment  electric  vehicle  routing  problem  for  perishable
products,  based  on  the  practical  needs  of  cold  chain  logistics,

 

Table 5    Experimental results of large-scale instances.

Instance
ACO 2-opt HACO-I

Cost (RMB) Cost (RMB) ∆ (%) Cost (RMB) ∆ (%)

C101 4916.61 3744.39 23.84 3838.62 21.93

C102 6129.75 4124.78 32.71 4124.78 32.71

C105 4792.39 3984.09 16.87 4033.12 15.84

C107 5243.21 4255.25 18.84 4229.69 19.33

C108 4629.16 3968.78 14.27 3867.85 16.45

C109 4944.94 3718.01 24.81 3657.07 26.04

C201 5717.39 4427.54 22.56 4403.98 22.97

C202 4526.73 4209.97 7.00 3907.39 13.68

C203 4945.78 4286.84 13.32 4345.96 12.13

C205 4696.16 3592.82 23.49 3620.93 22.90

C206 5130.58 3941.50 23.18 4104.98 19.99

C207 4002.15 3961.47 1.02 3794.41 5.19

R101 8890.79 5573.59 37.31 5270.05 40.72

R102 8451.74 4924.28 41.74 5117.49 39.45

R106 6745.04 4488.90 33.45 4347.17 35.55

R107 6037.42 3946.74 34.63 4103.14 32.04

R109 5805.33 4298.46 25.96 4393.10 24.33

R110 5115.44 4018.97 21.43 3824.76 25.23

R201 5050.08 4249.33 15.86 4207.73 16.68

R205 4498.43 3993.05 11.23 3826.92 14.93

R206 4209.05 3901.47 7.31 3893.89 7.49

R207 4627.15 3946.88 14.70 3810.38 17.65

R209 4376.61 3972.52 9.23 3892.74 11.06

R210 4416.02 3875.60 12.24 3746.84 15.15

RC101 8267.34 5027.89 39.18 5050.60 38.91

RC102 6385.36 5034.82 21.15 4954.12 22.41

RC106 5357.34 4493.38 16.13 4303.21 19.68

RC107 5738.20 4023.49 29.88 4027.15 29.82

RC201 5665.15 5056.99 10.74 4870.61 14.03

RC202 5587.97 4873.51 12.79 4919.09 11.97

RC203 5596.85 4525.44 19.14 4573.16 18.29

RC205 5670.61 4529.44 20.12 4636.78 18.23

RC206 5637.22 4366.12 22.55 4375.22 22.39

RC207 5358.10 4109.35 23.31 4397.45 17.93

RC208 5366.16 4147.91 22.70 4431.95 17.41

Average — — 20.71 — 21.16

 

Table 6    Comparison of travel distance and total cost between FVs and EVs.

Instance
Mileage (km) Total cost (RMB)

FVs EVs FVs EVs

C101 2607.25 2980.47 6598.21 5921.64

C107 1916.42 2566.94 5384.00 4940.85

C205 1574.53 1974.60 4001.22 3921.54

R109 1287.71 1406.07 4200.60 3972.71

R205 1580.23 1834.84 4079.33 3817.90

R207 1608.94 2186.30 4080.51 3640.89

RC101 1721.99 1664.52 3461.91 3142.91

RC107 1551.16 1480.84 3656.45 3384.48

RC201 2336.52 2986.48 5031.57 4479.10

Average 1798.31 2120.12 4499.31 4135.78
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referred  to  as  the  MCEVRP-PP.  We  construct  a  mixed  integer
programming  model  to  minimize  the  total  cost.  Each  EV  is
allowed to be charged multiple times during delivery. The unfixed
compartment  temperature  can  be  adjusted  to  meet  any  product
segment. The power consumption per kilometer is linearly related
to the load. The compartment is not refrigerated when it is empty.
The  above  considerations  make  the  research  more  realistic.
HACO  is  designed  to  solve  the  problem.  To  improve  the
performance  of  the  algorithm,  we  introduce  a  time  window
matching factor in the transfer rule, design a capacity-constrained
algorithm based on the features of MCEVRP-PP, and propose six
local  search  strategies  in  terms  of  time  windows  and  charging
stations.  The  algorithm  is  validated  via  various  experiments,
including  small-scale  instances  and  large-scale  instances.  To  test
the  performance  of  each  local  search  strategy,  we  compare  the
HACO  with  ACO,  and  ACO  combined  with  a  single  strategy,
respectively.  The  experimental  results  show  that  the  HACO  is
superior  to  ACO,  especially  for  large-scale  instances.  Finally,  we
compare  EVs  with  FVs  and  compare  MCVs  with  SCVs.  The
results  show  that  EVs  and  MCVs  can  effectively  lower  the  total
cost, while the mileage of EVs is increasing.

We assume that each customer has the same time window for
different  product  segments  and  that  each  customer  can  only  be
visited at most once in the research. But in fact, the customer may
have  different  time  window preferences  for  products  in  different
temperature  zones.  For  example,  a  supermarket  may  want  to
receive frozen food in the morning and other types of goods can
be  delivered  later.  Future  research  will  consider  customers’
preferences  for  time  window,  and  it  belongs  to  a  multiple  time
window  problem.  In  addition,  we  assume  that  the  number  of
compartments  is  the  same  as  the  number  of  product  segments,
and  all  vehicles  are  multi-compartment  vehicles.  Future  research
could consider a combination of single-compartment vehicles and
multi-compartment vehicles for distribution.
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