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ABSTRACT
With  the  development  of  modern  science  and  economy,  congestions  and  accidents  are  brought  by  increasing  traffics.  And  to
improve  efficiency,  traffic  signal  based  control  is  usually  used  as  an  effective  model  to  alleviate  congestions  and  to  reduce
accidents.  However,  the fixed mode of  existing phase and cycle time restrains the ability  to  satisfy  ever  complex environments,
which lead to a low level  of  efficiency.  To further improve traffic  efficiency,  this  paper proposes a crowd-based control  model  to
adapt complex traffic environments. In this model, subjects are deemed as digital selves who can perform actions in complex traffic
environments, such as vehicles and traffic lights. These digital selves have their own control processing mechanisms, properties,
and behaviors. And each digital self is continuously optimizing its behaviors according to its learning ability, road conditions, and
information  interactions  from connections  with  the  others.  Without  a  fixed  structure,  the  connections  are  diverse  and random to
form a more complex traffic environment, which may be connected or disappeared at any time with continues movements. Finally,
feasibility and effectiveness of the crowd-based traffic control model is demonstrated by comparison with fixed traffic signal control
model, indicating that the model can alleviate traffic congestion effectively.
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W ith  the  development  of  living  standards,  vehicles  are
increasing  rapidly.  Although  vehicles  have
undoubtedly  brought  convenience  to  our  lives,  they

have  also  introduced  traffic  congestions  and  frequent  accidents.
The environment of traffic control is more complex than ever.

Existing  traffic  control  methods  usually  use  traffic  lights  at
intersections.  And  each  intersection  is  equipped  with  a  fixed
duration  of  traffic  lights  at  alternating  cycles.  Although  this
approach can be simply implemented, it may lead to wasted time
and  increased  traffic  congestions.  At  the  same  time,  heuristic
traffic  signal  control  enabled  by  wireless  communication  and
sensing  technology  can  effectively  address  these  issues  in  local
scope or  separated intersections.  However,  the  problem of  traffic
control  is  a  global  problem  which  needs  cooperations  among
several  related  intersections  in  a  relative  large  area.  In  this  sense,
the  adaptive  signal  control  emerges  as  an  alternative  solution,
which has stronger adaptability and can alleviate traffic congestion
through real-time dynamic coordination of traffic signal duration
and cycle times at each intersection. This paper proposes a novel
adaptive signal control model, crowd-based traffic control model,
to further improve traffic control efficiency.

In  this  model,  subjects  are  deemed  as  digital  selves  who  can
perform actions in complex traffic environments, such as vehicles
and  traffic  lights.  These  digital  selves  have  their  own  control
processing  mechanisms,  properties,  and  behaviors.  And  each
digital self is continuously optimizing its behaviors according to its
learning  ability,  road  conditions,  and  information  interactions
from connections  with  the  others.  Without  a  fixed  structure,  the
connections  are  diverse  and  random  to  form  a  more  complex
traffic  environment,  which  may  be  connected  or  disappeared  at
any time with continues movements.

This  paper  is  organized  as  follows.  First,  this  paper  constructs
individual  components  in  traffic  lights  and  vehicles  as  affecter,

decider,  executor,  monitor,  connector,  and  their  respective
operating  mechanisms.  The  relationships  among  various
members  are  described,  mechanisms  of  mutual  influence  are
introduced,  and  a  simulation  advance  algorithm  is  designed.
Then, the overall design of the crowd-based traffic control model
is  presented,  including  the  meta-model  of  various  members  and
the  description  of  the  crowd-based  network.  Finally,  the
simulation  results  demonstrate  the  efficiency  of  the  proposed
model.

 1    Related Work
Generally  speaking,  adaptive signal  control  models  usually  adjust
signal  timing  according  to  vehicle  detections.  Some  researchers
study  traffic  signal  control  by  allowing  traffic  lights  to  extend  or
shorten  the  current  phase  based  on  the  accurate  position
information  of  arriving  vehicles,  or  to  use  additional  phases  to
improve  signal  timing[1, 2].  Beak  et  al.[3] proposed  a  two-stage
optimizing control method towards arterial signals, in which with
considering  coordination  constraints,  a  dynamic  programming
approach  assigns  optimal  green  times  to  each  signal  phase  of
individual  intersections.  Zhou  et  al.[4] proposed  a  hybrid
intersection  cooperative  control  framework  to  achieve
unsignalized  intersection  cooperative  control  based  on  virtual
queuing  and  traffic  flow  regulation.  However,  the  information
obtained  by  these  methods  are  not  always  accurate  for  the
dynamic essence of traffic flows.

An  improvement  of  adaptive  signal  control  is  the  Internet  of
Vehicles,  which  makes  full  use  of  information  from  networked
vehicles.  The  concept  of  the  Internet  of  Vehicles  appears  at  the
first  Association for Computing Machinery (ACM) International
Workshop  on  Vehicle  Ad  Hoc  Networks[5].  Rakha  and
Kamalanathsharma[6] proposed  an  economical  driving  strategy
based on signal control in the context of the Internet of Vehicles, 
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which  uses  an  emission  model  to  describe  fuel  consumption
during  driving.  The  model  takes  vehicle  speed  as  a  decision
variable  to  minimize  the  fuel  consumption.  Ala  et  al.[7] and  Wan
et  al.[8] established  an  intersection  vehicle  speed  control  model  to
optimize  vehicle  trajectories  in  the  Internet  of  Vehicles
environments,  which  ensures  economical  fuel  consumption  for
networked  vehicles.  Cao[9] proposed  a  segmented  numerical
intelligent optimization algorithm of traffic green wave, which can
control  continuous  intersections  with  a  stable  traffic  flow  but  a
changing  one.  Song et  al.[10] built  a  signal  collaborative
optimization  model  to  improve  the  utilization  of  space-time
resources at intersections. Xu et al.[11] and Touhbi et al.[12] collected
road  data,  and  quantified  complex  traffic  scenes  into  states  by
dividing intersections into grids. Feng et al.[13] proposed a real-time
adaptive  signal  phase  allocation  method  and  established  a  two-
layer  optimization  model  with  minimal  delay  time  and  queue
length  on  the  Internet  of  Vehicles  environment.  This  two-layer
model  optimizes  phase  sequence  of  one  intersection,  but  cannot
be applied to multi-intersections. Zhou[14] built a simulation based
on  TransModeler,  and  proposed  a  single  intersection  adaptive
control algorithm. Simulation results show that this algorithm can
effectively reduce the delay time and queue length of vehicle. In a
word,  existing  adaptive  traffic  control  models  in  the  Internet  of
Vehicles  environment  pay  more  attention  to  homogeneous
collaborations  among  vehicles  than  heterogeneous  collaborations
among vehicles and traffic lights.

The crowd-based traffic  control  model  proposed in  this  paper
combines  adaptive  traffic  control  methods  with  data-driven
approaches. In this model, heterogeneous subjects are all deemed
as  digital  selves  who  can  perform  actions  in  complex  traffic
environments,  such  as  vehicles  and  traffic  lights.  These  digital
selves have their own control processing mechanisms, properties,
and behaviors. And each digital self is continuously optimizing its
behaviors  according  to  its  learning  ability,  road  conditions,  and
information interactions from connections with the others.

 2    Implementation

 2.1    Traffic light model
(1) Pattern

As shown in Fig. 1, the traffic light model follows a single-step
binomial pattern, which represents the behavior choices of traffic
lights.  Nodes represent  the state  of  traffic  lights,  including red or
green  light  states.  When  a  traffic  light  is  red,  no  vehicles  can  go
straight  or  turn  left.  When  a  traffic  light  is  green,  vehicles  can
choose  to  go  straight,  turn  right,  or  turn  left  according  to  their
decisions. Arcs represent the behavior of a traffic light changing its
state.

(2) Affecter
In  this  traffic  light  model,  traffic  light  members  record  the

location  information  of  vehicles  in  adjacent  sections  in  real-time

and count the number of vehicles in those sections.
If  there  is  a  traffic  accident  on  the  current  road,  traffic  police

can intervene directly on the affecter and temporarily take control
of  the  traffic  command  system.  The  direction  of  traffic  flow  is
determined subjectively by the traffic police based on current road
conditions. The adviser’s suggestion information obtained by the
affecter is the command information of the traffic police, which is
executed by the affecter on the executor.

(3) Decider
As  shown  in Fig. 2,  a  signal  node  represents  a  set  of  traffic

lights,  specifically  four  traffic  lights  in  four  directions.  For
example, at a four-way intersection, the traffic light system at each
intersection has four different roads: W, E, S, and N. In this paper,
these  four  sections  represent  only  entrance  lanes,  while  the  exit
lanes are represented by entrance lanes at the next intersection.

The  decision  of  the  decider  aims  at  maximizing  the  traffic
capacity  of  the  intersection.  The  calculation  formula  for  traffic
capacity is as follows:

Qi =
Mi

∑
j=1

[
1
Ti

(
Wj,i

Ni

∑
k=1

ψk,j,i£k,i

)]
(1)

Qi i Mi

Ni i ψk,j,i

N
i ψk,j,i = 1 ψk,j,i = 0 £k,i
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i

where  is  the  capacity  of  intersection ;  is  the  number  of
lanes;  is the signal phase of intersection ;  is the coefficient,
when  the  number  of  lanes  has  the  right  of  way  at  phase  in
intersection , , otherwise, ;  is the effective time
of phase  in intersection ;  is the saturation flow rate of lane
group M in  intersection ;  and  is  the  cycle
time of intersection , where Yf is the duration of the yellow light
and Rf  is the duration of the red light.

(4) Executor
The  executor  executes  commands  from  the  decider,  such  as

determining  the  duration  of  traffic  lights  for  each  phase  and
setting  the  length  of  yellow light  steps.  In  the  traffic  light  model,
the  executor  does  not  exhibit  self-degradation  or  mutation
behavior.

(5) Monitor
Since  the  executor  does  not  exhibit  self-degradation,  the

monitor of traffic light members does not work.
(6) Connector
As  shown  in Fig. 3,  each  member  of  the  traffic  light  model  is

connected not only to its adjacent members but also to other non-
adjacent members. By interacting with other members, this model
can  obtain  information  about  road  conditions  of  other  traffic
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Fig. 1    Traffic light pattern diagram.
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Fig. 2    Traffic light pattern diagram.
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lights and integrate this information to allocate the phase duration
of traffic  lights  at  the current location.  The information obtained
by the connector is fed back to the decision of the next round of
traffic lights as an important reference. The final decision is made
by the  decider  based on the  self-inclination,  ability,  and resource
condition.

 2.2    Vehicle model
(1) Pattern

In  this  paper,  road  traffic  information  is  represented  as  a  grid
pattern.  This  pattern is  a  directed  graph arranged based on road
information, which represents all possible behaviors when vehicles
make decisions. As shown in Fig. 4, each node represents the state
of  the  member  (the  current  location  of  the  vehicle),  and  arcs
among  nodes  indicate  the  behavior  of  members  (the  direction
chosen by the vehicle).

(2) Affecter
As  shown  in Fig. 5,  vehicle  members  in  the  network  are

connected to each other and share real-time location information
within  their  immediate  area.  Additionally,  the  adviser  members
(navigation  systems)  provide  guidance  for  vehicle  members.
Vehicle  members  also  have  the  ability  to  subjectively  choose
which adviser to use.

(3) Decider
The  decider  makes  decisions  based  on  their  own  reasons  and

resource  situation.  The  higher  the  self-confidence  level  of  the
decider,  the  more  inclined  to  their  own  decision  behavior.

Specifically,  the  decider  makes  decisions  based  on  the  current
traffic light indications and the status of the road ahead. First, the
decision  result  follows  the  decider’s  own  opinion,  the  larger  the
self-inclination  value,  the  more  inclined  to  their  own  decision
behavior.  Second,  the  decider  tends  to  choose  a  decision  that
avoids  congested  roads  ahead.  The  self-inclination  value  is
determined as follows:

Inclination =
ficos αzcos |αe−αf|

ei
(2)

αz

αe

αf

where fi represents the information vector strength,  represents
the  correlation  between  the  information  vector  and  the  vector
area,  represents  the  preference  range  of  simulation  members,
and  represents the preference range of information.

ficos αz

ficos αzcos |αe−αf|
e ei

As shown in Fig. 6,  is used to calculate the projection of
the  information  vector  onto  the  current  decision  domain.

 calculates  the  projection  of  the  above
projection perpendicular  to  the  inclination vector .  represents
inclination  intensity.  If  the  inclination  is  greater  than  zero,  it
means  that  the  self-inclination  value  is  large  and  follows  the
member’s own decision behavior.

When  the  decider  makes  a  decision,  it  is  influenced  by  the
advice  from  the  adviser  and  the  historical  optimal  decisions  of
other  members,  which  are  obtained  through  the  connector.  The
decider  compares  self-inclination,  influence  coefficient,  learning
ability,  and  self-confidence  level  to  determine  which  option  to
choose.

(4) Executor
The  executor  executes  the  decision  result  of  the  decider  and

chooses a behavior route based on the decision. The executor has
the  self-degradation  phenomenon,  which  always  tends  to  the
route  with  the  lowest  cost.  At  the  same  time,  there  is  also  a
mutation phenomenon during the execution of the executor, and
the direction of the mutation is uncertain.

(5) Monitor
The  monitor  monitors  the  execution  results  of  the  executor,

which is a self-correcting process. For the execution behavior that
deviates  from  the  decider,  the  monitor  will  try  to  pull  back  the

 

Fig. 3    Schematic diagram of traffic light connector.
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decision of the decider.
(6) Connector
As  shown  in Fig. 7,  the  shaded  area  represents  connections

among members within a region. The central node represents the
current  vehicle  member  model,  which  is  connected  to  other
vehicles  and  obtains  position  information  from  each  other.  This
position information is used to determine the basic conditions of
the  current  roadway  and  to  learn  about  the  historical  optimal
decisions  of  other  members,  which  provide  a  reference  for  the
decider.

 2.3    Simulation advancement model

 2.3.1    Simulation advancement
During  the  entire  simulation  process,  members  such  as  traffic
lights  and  vehicles  continuously  make  judgments  and  decisions
based on their own behavioral algorithms. Traffic lights adjust the
cycle  of  signal  steps  and  step  length  according  to  current  road
congestion. At the same time, they also optimize their signal steps
cycle by referring to the status and change period of traffic lights at

adjacent  intersections.  Vehicles  have  a  self-confidence  level  and
can  learn  from  the  decisions  of  other  vehicle  members  to
determine whether to choose the fastest route through the current
intersection  or  the  shortest  route  to  their  destination.  The
simulation process is described as follows:

First, w vehicle  member  models  and n traffic  light  member
models  should  be  generated.  Second,  during  the  simulation
advancement,  when  vehicle  models  reach  an  intersection,  they
determine whether to go straight, turn left, or turn right based on
their  self-confidence  level,  affect  intensity,  and  learning  ability.
Vehicle models must update their location information every time
they take a step, and their decisions to go straight, turn left, or turn
right  at  the  next  intersection  should  be  modified  based  on  their
current  position  information.  The  initial  state  location
information  and  initial  state  destination  information  of  vehicles
entering the road network are both randomly distributed.

(1) Based  on  self-confidence  level: First,  determine  whether
the maximum throughput has been reached in the intersection at
this time. If it  has not been reached, vehicles can pass; otherwise,
they must wait.

Second,  if  the  self-inclination  value  is  greater  than  zero,  the
decision  of  inclination  will  be  implemented  directly.  Otherwise,
vehicles will tend towards smoother road.

Third, according to the road direction select in the second step,
comprehensively judge the state of traffic lights and the deviations
of the destination, and make the final choice.

(2)  Based  on  the  suggestion  of  the  adviser: Select  a  route
according to the adviser’s instructions. If the vehicle deviates from
the indicated route, the adviser will replan the route based on the
vehicle’s current location.

(3) Based on the optimal decision learned by the connector:
Each  vehicle  has  location  information,  establishes  contact  with
other  vehicles  within the  same or  adjacent  road,  and learns  their
decisions.

(4) Arrive at destination and update data: The complex traffic
light  system  is  connected  through  the  network  to  adjust  overall
traffic  lights  from  a  macro  perspective,  which  can  improve  road
traffic efficiency more scientifically and efficiently.

 2.3.2    Advance algorithm
Using  the  previously  designed  member  meta-model,  this  section
presents  algorithms  for  the  advancement  model,  as  shown  in
Algorithms 1−8.

 3    Crowd-Based Traffic Control Model

 3.1    General digital selves

 3.1.1    Digital selves
In  this  paper,  subjects  are  considered  as  digital  selves  that  can
perform actions in complex traffic environments, such as vehicles
and traffic lights. All of the members’ behavior and decisions may
be  described  as  the  pattern.  As  shown  in Fig. 8,  the  member
model  consists  of  the  affecter,  decider,  executor,  monitor,  and
connector.

The  affecter  collects  suggestions  from  multiple  advisers  to
influence  the  decision  process.  The  affecter  of  each  member  can
realize  wireless  communication  to  exchange  information  and
decisions.

The decider takes into current resource conditions, capabilities,
and tendencies to make decisions.

The executor performs actions based on decisions made by the
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decider and the advice provided by the affecter.
The  monitor  corrects  deviations  according  to  specific  goals,

which  have  a  self-discipline  level  to  represent  the  self-correction
ability of crowd members.

The  connector  connects  with  other  related  members,  learns
from  their  behavior,  and  provides  reference  opinions  for  the
decider.  The  connector  takes  the  current  decision  as  a  feedback
result and acts on the next decision.

 3.1.2    Crowd network model
As shown in Fig. 9, the crowd network relationship of simulation
members is represented as upper and lower layers.

The  lower  layer  represents  connections  among  vehicle  model
members.  In Fig. 9,  vehicle  members  within  the  shaded  area  are
connected  to  each  other.  Shaded  overlapping  areas  in Fig. 9
indicate  that  these  members  are  connected  to  both  other  vehicle
members  in  this  area  and  to  other  vehicle  members  in  another
area.  In  addition,  some  advisers  influence  members’ decisions,
and members subjectively choose which advisers to connect with.

The  upper  layer  represents  connections  among  traffic  light
models. Traffic lights within the area are connected to each other
through  a  complex  network,  which  can  collect  road  condition
information  of  adjacent  or  other  roads,  and  provide  feedback  to
the  decider  to  make  more  reasonable  traffic  light  instructions.
Traffic  light  and  vehicle  models  have  a  many-to-many
relationship.

 

Algorithm 1　Pattern

Input: number of vehicle members numc

number of traffic light members numt

start node

end node

output: pattern, {CL}

1: Begin

2: 　foreach (NUM, begin node, end node)
3: 　Start at starting node and end at termination of the node, numc, and
numt nodes are generated
4: 　Set the ID for each node

5:　 Assign weights to each node, weight_edge
6:　 Records the edges between adjacent nodes and assign weights to the
edges, weight_edge
7:　 Generates a list of node adjacencies, {CL}

8: 　End foreach

9: End

 

Algorithm 2　Vehicle-affecter

Input: simulation members ID

the adviser list {SL}

Output: suggestion

1: Begin

2: 　select SL in {SL}

3: 　select mode in SL

4: 　mode = shortest_time/shortest_distance/shortest_spend

5: 　suggestion ← mode

6: return suggestion

7: End

 

Algorithm 3　Vehicle-decider

Input: self-confidence level

inclination

traffic lights ID

influence

learn ability

pattern

Output: decision order of the decider OD

1: Begin
2: 　Judge the current intersection situation (traffic
jams/congestion/unblocked)
3: 　if condition == unblocked then

4: 　　order = go;

5: 　else if condition == congestion then

6: 　　order = go;

7: 　else if condition == unblocked then

8: 　　order = no;

9: 　end if;

10: 　if remote then

11: 　　order = other road;

12: 　end if

13: 　OD ← max (self-confidence level, influence, learn ability)

14: 　if inclination > 0

15: 　　OD = inclination;

16: return OD

17: End

 

Algorithm 4　Vehicle-executor

Input: decision commands generated by decider algorithms OD

mutation probability m

monitoring intensity Em

self-degradation level s

Output: none

1: Begin

2: 　execute ← OD

3: 　execute = m×s×Em

4: 　Update vehicle.direction and trafficLight.condition

5: End

 

Algorithm 5　Vehicle-monitor

Input: monitor collection list {ML}

Output: monitoring intensity Em

1: Begin

2: 　foreach ML in {ML} then

3: 　Em += ML ()

4: 　end foreach

5: 　return Em := random({Em });

6: End
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 3.1.3    Adviser model
In this crowd-based traffic control model, traffic light members do
not  receive  advice  from  advisers  because  the  connector  can
directly obtain the status information of other adjacent members.
This  information  provides  a  basis  for  making  reasonable
decisions.  For  vehicle  members,  the  adviser  is  the  vehicle
navigation system.

Vehicle  members  choose  different  navigation  schemes
according to  their  needs (the shortest  distance,  the shortest  time,
and  the  lowest  charge).  Specifically,  after  the  adviser  accepts  the
member’s self-inclination and starting or current location, it uses
these  conditions  to  provide  the  most  optimal  path  planning  for
members.

As  shown  in Fig. 10,  vehicle  members  choose  different
solutions,  and  the  adviser  will  provide  different  suggestions
accordingly.  In Fig. 10,  the  red  path  represents  the  globally
optimal  route,  the  yellow  path  represents  the  nearest  route,  the
green  path  represents  the  shortest  time  route,  and  the  blue  path
represents the route with the lowest charging cost.

 4    Case Study

 4.1    Simulation process
Based on the above simulation design, a simulation example is run
to verify the efficiency of the crowd-based traffic control model.

As  shown in Fig. 11,  the  simulation begins  by inputting initial
data such as the total number of simulation steps, the number of
vehicle members, and the number of traffic lights. Next, generate
the  initial  values  of  various  members  and  their  attributes,
construct  the  road  network,  and  establish  connections  among
members.  During  the  simulation,  all  traffic  lights  dynamically
update  road  conditions  and  communicate  with  adjacent  traffic
lights  to  monitor  the  layout  of  nearby vehicles.  According to  the
maximum  number  of  vehicles,  judge  whether  allow  vehicles  to
pass.  When  a  vehicle  updates  its  location  information  in  the
simulation, which means that it has passed a road section, and the
traffic  light  passing  count  on  that  section  is  increased  by  one.
When  all  vehicle  members  arrive  their  destination,  simulation
data and experimental results are recorded, and the simulation is
ended.

 4.2    Simulation result
In  the  following  section,  we  use  three  indicators  to  compare  the
performance  of  the  crowd-based  traffic  control  model  with  an
existing  traffic  control  model:  average  number  of  queues  at
intersections,  average  throughput  at  intersections,  and  average
delay  time  of  vehicles.  In  order  to  show  the  comparison  results
clearly,  this  paper  set  up  a  simulation  comparison  chart  with  60
time slices as a simulation step. The orange curves in Figs. 12−14
represent  the  control  algorithm  of  the  existing  traffic  control
model,  which  has  a  fixed  cycle  time  of  100  s.  The  green  light
duration for the first to fourth phases is 35 s, 15 s, 35 s, and 15 s,
respectively, and the yellow light duration for each phase is set to
2 s. The blue curve represents the control algorithm of the crowd-
based  traffic  control  model.  The  maximum phase  cut-off  time  is
60 s, and the minimum phase maintenance time is 10 s.

(1) Average number of queues at intersections
As  shown  in Fig. 12,  the  orange  curve  represents  the

performance of the existing traffic control model, which uses fixed
traffic signal cycles and fixed green signal ratios. The experimental
results  show that,  with  the  simulation  progresses,  the  number  of
vehicle members queues increases rapidly,  which aggravates road
congestion. When congestion reaches its limit, vehicles are unable
to continue passing without the intervention of traffic police. As a
result, the average number of queues remains at a very high level
and fluctuates slowly, unable to self-clear.

In  contrast,  the  blue  curve  represents  the  crowd-based  traffic
control  model,  which  the  number  of  vehicle  members  queue
grows slowly. Over time, through the self-adjustment of the traffic

 

Algorithm 6　Vehicle-connector

Input: list of members within the local area {CL}

Output: learnDecision

1: Begin
2: 　foreach CL in {CL} then optimal decision of selecting member in the
local area;
3: 　learnDecision ← optimal decision

4: 　end foreach

5: return learnDecision

6: End

 

Algorithm 7　Decider for traffic light

Input: traffic lights ID

adjacent member list {CL}

pattern

Output: decider’s decision order OD

1: Begin
2: 　foreach road in (trafficLight.e, trafficLight.s, trafficLight.w,
trafficLight.n) then
3: 　　if sum_vehicle > maxThroughput then

4: 　　　road.condition = trafficJams;
5: 　　else if 0.8 × maxThroughput < sum_vehicle < maxThroughput
then
6:　　　 road.condition = congestion;

7: 　　else if sum_vehicle < 0.8 × maxThroughput then

8: 　　　road.condition = unblocked;

9: 　　end if

10:　　 setLightTime({CL}, sum_vehicle, road.condition)

11: 　　redLight.time = newRedTime;

12: 　　greenlight.time = newGreenTime;

13: 　end foreach

14: return OD

15: End

 

Algorithm 8　Connector for traffic light
Input: list of members within the local area {CL}

Output: adjacent member information set {IL}

1: Begin

2: 　foreach CL in {CL} then

3: 　　IL.ID ← traffic Light.ID

4: 　　IL.condition ← trafficLight.road.condition

5: 　end foreach
6: return {IL}
7: End
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light  member  model  and  the  optimal  selection  of  the  vehicle
model, traffic conditions are finally improved.

(2) Average throughput at intersections
As shown in Fig. 13, the average throughput at intersections for

both  modes  increase  rapidly  and  soon  reaches  a  peak,  which  is
accompanied  by  traffic  congestion.  As  congestion  increases,  the
throughput  at  intersections  begins  to  decline  rapidly.  The  key
difference  is  that  members  of  the  crowd-based  traffic  control
model  coordinate  and  self-adjust  with  each  other.  Traffic  light
members  share  information  with  adjacent  traffic  lights  through
connectors,  monitor  road  conditions  in  real-time,  adjust  their
phase  length,  and guide  vehicles  to  avoid  congestion as  much as
possible. As a result, traffic flow in the crowd-based traffic control
model  remains  stable  at  a  high  level,  while  traffic  flow  in  the

existing fixed-cycle model is significantly lower.
(3) Average delay time of vehicles
As  shown  in Fig. 14,  with  the  experiment  progresses,  the

existing  fixed  phase  and  periodic  traffic  control  model  cause  the
average vehicle delay time increases rapidly at the beginning, and
soon  reaches  a  high  state.  In  contrast,  although  there  is  a  rapid
growth trend in the crowd-based traffic control model, the average
delay  time  of  vehicles  is  reduced  under  its  adjustment,  which
demonstrates that traffic congestion has been effectively improved.

 5    Conclusion
Although  vehicles  have  brought  convenience  to  our  lives,  they
have  also  introduced  traffic  congestions  and  frequent  accidents.
The  environment  of  traffic  control  is  more  complex  than  ever.
This  paper  proposes  a  crowd-based  traffic  control  model  to
alleviate  traffic  congestion  and  improve  traffic  efficiency.
Compared  with  existing  adaptive  traffic  control  models  in  the
Internet of Vehicles environment, the crowd-based traffic control
model  pays  more  attention  to  heterogeneous  collaborations
among  vehicle  and  traffic  light  members.  In  this  model,
heterogeneous  subjects  are  all  deemed  as  digital  selves  who  can
perform actions in complex traffic environments, such as vehicles
and  traffic  lights.  These  digital  selves  have  their  own  control
processing  mechanisms,  properties,  and  behaviors.  And  each
digital self is continuously optimizing its behaviors according to its
learning  ability,  road  conditions,  and  information  interactions
from  connections  with  the  others.  Finally,  the  simulation  results
demonstrate the efficiency of the proposed model.
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The  research  in  this  paper  only  considers  the  relationship
among vehicles and traffic lights,  without considering the impact
of  pedestrians  and  non-motorized  vehicles  on  traffic.  The  next
step is to consider adding pedestrians and non-motorized vehicles
to this model and simulation.
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