

Dynamic Task Offloading and Service Migration Optimization in
Edge Networks

Yibo Han1 ✉, Xiaocui Li2, and Zhangbing Zhou2,3

ABSTRACT
In recent years, edge computing has emerged as a promising paradigm for providing flexible and reliable services for Internet of
things (IoT) applications. User requests can be offloaded and processed in real time at the edge of a network. However,
considering the limited storage and computing resources of IoT devices, certain services requested by users may not be
configured on current edge servers. In this setting, user requests should be offloaded to adjacent edge servers or requested edge
servers should be configured by migrating certain services from the former, further reducing the service access delay of user
requests and the energy consumption of IoT devices in such networks. To address this issue, in this study, we model this dynamic
task offloading and service migration optimization problem as the multiple dimensional Markov decision process and propose a
deep q-learning network (DQN) algorithm to achieve fast decision-making, an approximate optimal task offloading, and service
migration solution. Experimental results show that our algorithm performs better than existing baseline approaches in terms of
reducing the service access delay of user requests and the energy consumption of IoT devices in edge networks.

KEYWORDS
task offloading; service migration; deep reinforcement learning; edge networks

R ecently, the popularity of Internet of things (IoT) devices
has spawned massive novel IoT applications, such as smart
homes, smart cities, real-time manufacturing, and patient

monitoring. These IoT applications typically show strict quality of
service (QoS) requirements, such as low latency and energy
consumption, which bring great challenges to the limited
resources and computing power of IoT devices[1, 2]. Edge
computing (EC) has become the preferred platform to alleviate
the conflict between low-latency requirements and the limited
resources of IoT devices in emerging IoT applications[3, 4]. EC
supports the configuration of services on edge servers close to
users and allows the offloading of complex computing tasks from
user requests to nearby edge servers, thus realizing low delay and
real-time processing of computing tasks[1]. In this setting, it is a key
challenge to configure services to edge servers to further meet QoS
constraints of user requests in edge networks. Considering the
limited computation resources of IoT devices, certain edge servers
may not properly configure services requested by users. In this
setting, we consider the promising strategy of (1) offloading tasks
to adjacent edge servers or (2) migrating some services from
adjacent edge servers to the current edge server. This dynamic
task offloading and service migration optimization mechanism
can further reduce the service access delay of user requests and the
energy consumption of IoT devices in edge networks.

The geo-distribution and limited resources of IoT devices in
edge networks raise new challenges for the management of
dynamic task offloading and service migration optimization.
Effective algorithms have been proposed in the literature to
optimize resources used by user requests to satisfy the service
quality and maintain QoS constraints. Task allocation decisions

play a key role in the service configuration. Here, Chen et al.[5]

designed an energy-optimal dynamic computing offloading
scheme through the joint optimization of various parameters. In
Ref. [6], Adhikari et al. designed a priority-aware task offloading
strategy based on delay dependence and assigned priority to each
task according to the deadline to minimize the task offloading
time. Other studies[7–10] mainly focused on partial offloading
strategies or collaborative optimization of offloading decisions and
resource allocation. However, most related studies only focused
on task offloading to solve the delay and energy consumption
limitation while ignoring the fact that users’ service requests are
highly dynamic in actual situations. As the edge node may not
have the services required by the configuration task, this limits the
task offloading policy.

Considering the conflict between the diversity of service
requests and the limited number of services at edge nodes, one
study proposed migrating services from the cloud to the edge of
the network[11]. However, the time and energy costs of maintaining
communication between a cloud server and edge nodes are very
high. Therefore, frequent service migration from the cloud to the
edge nodes will lead to delays and increased energy consumption.
In Ref. [12], Puliafito et al. proposed that services should be
migrated between edge nodes to make available services closer to
user equipment and reduce the extra cost of service migration. In
Ref. [13], Xu et al. solved the challenge of when and where to
migrate services to achieve the best trade-off between QoS and
migration cost. Meanwhile, other studies[14–16] focused on realizing
low-latency service migration and seamless computing in a
dynamic network environment. Task offloading and service
migration problems can be modeled as a Markov decision process

1 Nanyang Institute of Big Data Research, Nanyang Institute of Technology, Nanyang 473004, China
2 School of Information Engineering, China University of Geosciences (Beijing), Beijing 100083, China
3 Computer Science Department, TELECOM SudParis, Evry 91000, France
Address correspondence to Yibo Han, hanyibo@nyist.edu.cn
© The author(s) 2023. The articles published in this open access journal are distributed under the terms of the Creative Commons Attribution
4.0 International License (http://creativecommons.org/licenses/by/4.0/).

https://doi.org/10.26599/IJCS.2022.9100031 International Journal of Crowd Science

16 International Journal of Crowd Science | VOL. 7 NO.1 | 2023 | 16–23

(MDP), and a reinforcement learning algorithm is used to obtain
the optimal strategy of MDP.

In general, the works discussed above mainly focus on task
offloading or service migration. In this paper, we propose an
efficient computation task offloading algorithm that dynamically
combines task offloading with a service migration strategy to
minimize task-processing costs. The main contributions of this
paper are as follows.

(1) Based on the realistic task request mode and task
cooperative processing mode, this paper analyzes the
characteristics of several task request modes, sums up various
request situations, and formulates corresponding migration and
unloading strategies.

(2) A novel edge collaboration strategy is proposed, which
considers joint task unloading and service migration, thus
reducing the delay of data transmission and minimizing the
overall energy consumption of IoT devices.

(3) Dynamic task offloading and service migration optimization
in edge networks are modeled as a multi-dimensional MDP and
then solved using the deep q-learning network (DQN) algorithm.

(4) Experimental results show that our algorithm performs
better than existing baseline approaches in terms of reducing the
service access delay of user requests and the energy consumption
of IoT devices in edge networks.

The remainder of this paper is organized as follows. Section 1
reviews and compares the relevant techniques proposed in the
literature. Section 2 analyzes and proposes the dynamic task
offloading and service migration problem in edge networks and
formulates it as an MDP model under given constraints. Section 3
presents a DQN-based dynamic task offloading and service
migration algorithm for user requests at a one time slice to obtain
an optimized service configuration scheme for maximizing the
system’s utility. Section 4 implements and evaluates our
mechanism. Finally, Section 5 summarizes our work.

 1 Related Work

 1.1 Task offloading in edge computing
Task offloading plays a key role in EC. In Ref. [5], Chen et al.
presented an energy-optimal dynamic computation offloading
scheme by jointly optimizing various parameters. In Ref. [7], a fair
task-unloading scheme is proposed while considering the energy
efficiency and priority of IoT devices. In Ref. [8], Wang et al.
introduced a new dynamic EC model and designed an online
primal-dual algorithm to offload the arrival tasks. To improve the
generalization ability of the task-offloading algorithm, Wang
et al.[9] proposed a task-unloading method based on meta-
reinforcement learning. Considering the limited resources of IoT
devices, one study proposed a resource-aware adaptive task
offloading framework and flexibly selected the optimal unloading
strategy[10]. Generally, these algorithms greatly inspire us to develop
the dynamic task offloading and service migration mechanism.
However, these works did not consider the possibility that services
demanded by user requests may not be configured on the
requested node. In this paper, a dynamic task offloading and
service migration is introduced, which takes the intermediate
nodes with abundant computation resources as the execution
nodes of tasks. If the requested node is not configured with the
corresponding service, the service migration is carried out.

 1.2 Service migration in edge computing
Limited resources of IoT devices and delay-sensitive constraints of

user requests bring more challenges to task offloading and service
migration in EC. Introducing service migration between IoT
devices to achieve low delay and seamless computing has attracted
much attention. In Ref. [14], services were deployed on edge
nodes in advance according to the user activity hotspot map,
enabling Zhang et al.[14] to introduce a service migration strategy
based on user activity hotspots. In Ref. [15], Liang et al. developed
an optimal iterative solution method based on relaxation and
rounding to minimize the migration cost. In Ref. [16], Kim et al.
modeled the cost minimization of service migration as an integer
linear programming problem, which is difficult to solve due to
resource constraints at the servers and unknown user mobility
patterns, and proposed alternative heuristic solution algorithms
that performed well in both theory and practice. At the same time,
reinforcement learning is becoming a promising method to
achieve rapid convergence. In Ref. [17], Miao et al. proposed that
the decision-making process of service migration should be
modeled as a one-dimensional Markov decision and that
reinforcement learning can be used to optimize the service
migration decision-making. To sum up, these techniques have
inspired us to develop the method used in the current paper.
However, they can hardly be used directly in our context.
Therefore, we propose an efficient computation task offloading
and service migration algorithm, wherein deep reinforcement
learning is used to achieve rapid decision-making.

 2 System Model
This section introduces the system model, including the network
model, energy consumption model, and delay model.

 2.1 Network model

F= {F1,F2,F3, . . . ,Fi, . . . ,FN} Fi Fi = (id,
Loc,HostLst,PT,Fre) idFi

Fi LocFi = (Lx,Ly) Fi

Lx Ly

Fi HostLstFi
Fi PTFi

Fi FreFi

Fi

S= {S1,S2,S3, . . . ,Si, . . . ,SM}
Si = (id,Byt,RCT), idSi

Si BytSi Si RCTSi

Si t
C= {C1,C2,C3, . . . ,

Ci, . . . ,CK} Ci = (id,Loc,Sj,Byt,Cr) idCi

Ci LocCi = (Lx,Ly)
Ci Lx Ly

Ci SjCi

Ci BytCi
Ci CrCi

Ci

Edge networks can be modeled as a set of N edge nodes expressed
as , where is described as

. Here, is the unique identifier of the i-th
edge node , is the geographical location of ,
and and are the longitude and latitude of the geographical
position of , respectively. In addition, is the list of
services currently hosted by , is the list of tasks currently
being processed by the edge node , and is the processor
frequency of . Meanwhile, M services are deployed in edge
networks, which can be denoted as ,
where is the unique identifier of the i-th
service , is the workload size of , and is the service
configuration time of . In this paper, at one time slice , K user
requests are issued and denoted as

, where . In addition, is the
unique identifier of the i-th user request ; is the
geographical location of , and and are the longitude and
latitude of the geographical position of , respectively; denotes
the service used to execute ; is the data size of ; and
is the number of required central processing unit (CPU) cycles of

.

 2.2 Energy model
CiFor each task request , the total energy consumption is denoted

as follows:

Etotal = Ecomp +Eti+Etij (1)

Ecomp

Ci Eti Ci

Fi Etij Sj
Fj Fi Eti Etij

where is the computing and processing energy consumption
of , is the energy consumption of offloading to edge node

, and is the energy consumption of migrating one service
from to . Actually, and are the communication energy

Dynamic Task Offloading and Service Migration Optimization in Edge Networks

International Journal of Crowd Science | VOL. 7 NO.1 | 2023 | 16–23 17

Fi Fj d

consumption generated by sending data packets from one edge
node to another. According to the first-order radio model, the
communication energy consumption of sending k-bit data from

 to with distance can be expressed as

Ecmm,ij (k,d) = ETx (k,d)+ERx (k) (2)

where

ETx (k,d) = Eelec×k+ εamp×k×dn (3)

ERx (k) = Eelec×k (4)

ETx (k,d)
Fi Fj ERx (k)

Fj

Eelec εamp

in which is the transmission energy by forwarding k-bit
data from to with distance d, and represents the
energy of receiving k-bit data by . The value of the attenuation
index n is greatly influenced by the environment. If edge nodes in
the network are barrier-free when forwarding data packets, the
value of n can be set to 2; otherwise, it is set to 3, 4, or 5. In
addition, and represent the unit energy consumption
constant and the unit energy consumption constant of the
transmitting amplifier, respectively. The related parameters of the
communication energy consumption model are listed in Table 1.

 2.3 Delay model
CiFor each task request , the total delay is denoted as follows:

Dtotal = Dcomp +Max(Dti,ArgMin{Dfji}+Dr)+Dw (5)

Dti Ci Fi Dfji

Sj Fj Fi Dr

Sj Dw Ci Dti Dfji

Dcomp

Ci

where is of offloading to edge node , is the time to
migrate one service from to , is the configuration time of

, and is the waiting time of . The above and are the
communication time caused by sending data packets from one
edge node to another. is the computing and processing time
of , which is defined as

Dcomp =
CrC
FreF

(6)

In this paper, the communication delay is defined as follows:

delay = knetlog10dij+bnet (7)

dij Fi Fj knet

bnet

where is the distance between and . In addition, and
 are represented, respectively, as follows:

knet = 44.9−6.55log10hb (8)

bnet = 46.3+ 33.9log10f− 13.82log10hb− ahm + cm (9)

hb Fi

ahm

where f is the signal frequency, is the antenna height of , and
 is defined as follows:

ahm = 3.20(log10(11.75hr))
2−4.97 (10)

 2.4 Problem formulation
In this paper, we intend to shorten the execution time of user

requests, as shown in Eq. (5) and save the energy consumption of
each edge node, as presented in Eq. (1). The formalized problem is
defined as follows:

min C (11)

where

C=

(
ω1

k

∑
i=1

Dtotal
i +ω2

k

∑
i=1

Etotal
i

)
(12)

Dtotal
i Etotal

i

ω1

ω2

ω1+ω2 = 1

where is the total time for executing all user requests; is
the total energy consumption for completing all user requests;
and are the weight parameters of execution time and energy
consumption, respectively; and .

 3 Dynamic Task Offloading and Service
Migration Mechanism

 3.1 Task offloading status space
The system status space is based on delay, energy consumption,
service type (ST), running status of edge node, and all user
requests at one time slice t. The total delay and energy
consumption can be expressed as follows:

X(t) =


x1,1 (t) x1,2 (t) · · · x1,N (t)
x2,1 (t) x2,2 (t) · · · x2,N (t)
...

...
. . .

...
xK,1 (t) xK,2 (t) · · · xK,N (t)

 (13)

xk,n (t)
t

where is the total delay of the k-th user request executed
upon the n-th edge node at one time slice .

Y(t) =


y1,1 (t) y1,2 (t) · · · y1,N (t)
y2,1 (t) y2,2 (t) · · · y2,N (t)
...

...
. . .

...
yK,1 (t) yK,2 (t) · · · yK,N (t)

 (14)

yk,n (t)
t

where is the total energy consumption of the k-th user
request executed upon the n-th edge node at .

tGenerally, the system state at one time slice can be expressed
as

St = {X(t) ,Y(t) ,HostLstF,PTF,LocC,SC} ∈ S (15)

 3.2 Service migration action space

t
Ti

The system action space is defined as the candidate set of edge
nodes to execute user requests at one time slice . The system
action at can be expressed as a one-dimensional vector as
follows:

At = {aFn ,aCL} ∈ A (16)

aFn = {aF1 ,aF2 , . . . ,aFN}
Ck aFn Ck

Fn Fn CL

where represents whether the k-th user
request is executed or not. When is 1, is executed on edge
node . Here, is the edge node, and is the cloud node.

 3.3 Reward function
TiThe reward function at of the system is formulated by

Rt =M1−C (17)

M1where is a constant.

 3.4 Task offloading and service migration algorithm
Algorithm 1 describes the DQN algorithm. For each episode, the

Table 1 Parameters used in the first-order radio model.

Parameter Description

Eelec Unit energy consumption constant

εamp Energy consumption constant of unit transmitting amplifier

n Propagation attenuation index

k Data size (bit)

d Data transmission distance

International Journal of Crowd Science

18 International Journal of Crowd Science | VOL. 7 NO.1 | 2023 | 16–23

S1
Aκ Sκ+1

Rκ

Aκ

initial state is obtained. Algorithm 1 performs iteratively to
select using a predefined strategy, obtain the next state and

 by Eq. (17), as presented in Algorithm 2, and update Q
network (Lines 1–9), as presented in Algorithm 3. Finally, is
returned (Line 10).

Algorithm 2 describes the specific action selection procedure
and mainly includes two parts: explorer and developer. A random
value Φ is generated during each selection. When Φ is greater
than ε, the action is selected by the developer; otherwise, the action
is selected by the explorer (Lines 1–7).

Sκ,Aκ,Rκ,Sκ+1

RPκ

Algorithm 3 describes the Q network update process. For each
time, () are stored in the experience replay pool RP,
and a sample is randomly extracted from RP to update the Q
network (Lines 1–13).

 4 Performance Evaluation
In this paper, our experimental environment is constructed using
a 64-bit Windows10 operating system, 16 GB memory, Intel (R)

Core (TM) i7-3770 CPU @ 3.40 GHz, and NVIDIA GeForce
GTX 1070 Ti, which is realized by Python program. To ensure the
scientific nature of the experiment, all the experiments were
conducted in the same operating environment.

 4.1 Experimental setup
In this paper, the experimental data are generated by simulating a
500 m × 500 m network, where 50 edge servers are randomly
deployed, and their communication radius is set by 150 m. Two
kinds of services are configured upon the edge servers. The other
parameters are described in Table 2.

 4.2 Experimental results and evaluation analysis
By observing the long-term average delay and energy
consumption of the system, this experiment explores the influence
of different system parameters, such as the sparsity of user
requests and the number of STs.

 4.2.1 Sparsity of user requests
When the sparsity of user requests is higher, more user requests
will be generated at each time on average, and the average
response delay and energy consumption of the system will be
higher. To study the influence of user request sparsity on average
delay and energy consumption, the user request sparsity (prob) is
set as 0.2, 0.4, and 0.8 in the experiments. Figure 1 shows the trend
of system average response delay with different prob. The average
response delay of the system is directly proportional to the
number of user requests at each moment. When prob = 0.4 and
prob = 0.2, the average response delay of the system is not
doubled. The reason is that when prob = 0.2, the computation
load of the network is not saturated, and thus user requests can be

Algorithm 1　DQN-based task offloading and service migration

Require:

θ: Weight of Q network

RP: Experience replay pool of Q network

Ensure:

At
t

: A strategy set of the dynamic task offloading and service migration
for user requests at one time slice

1: for episode=1, 2, …, P do

S12: 　initialize and RP

3: 　for κ=1, 2, …, t do

Aκ Sκ ,Qm4:　　 ← actionSelection ()

Sκ+15:　　 Observe

Rκ6: 　　 ← calculated by Eq. (17)

Sκ ,Aκ ,Sκ+1,Rκ ,RP7:　　 θ ← Q-NetworkUpdate ()

8:　 end for

9: end for

At10: return

Algorithm 2　Action selection

Require:

Sκ: Current state

Qm : Best state-action table

Ensure:

Aκ : A selecting action set

1: generate Φ randomly

Sκ ̸= Sκ ∈ Qmi2: if Φ > ε and null, then

Aκ argmax(Sκ ,Aκ ;θ)3: 　 ←

4: else

Aκ Fi5: 　 ← Randomly select from the list of available computing
resources L
6: end if

Aκ7: return

Algorithm 3　Q network update

Require:

Sκ: Current state

Aκ : Current action

Rκ: Current reward

Sκ+1: Next time slice state

Replay pool (RP): Experience replay pool of Q network

Ensure:

θ: Weight of Q network

Sκ ,Aκ ,Rκ ,Sκ+11: Store () in RP

RPκ2: Sample from RP

Sjκ−1,A
j
κ−1,R

j
κ−1,S

j
κ3: for () do

Q(Sjκ ,A
j
κ ;θ′)4: 　 Calculate

yd (κ)5: 　 Calculate by Eq. (14)

v v ∈ Qmi v ∈ Qmi6: 　 if = null, or y(κ) > then

v ∈ Qmi ,Sκ yd (κ)7: 　　 ←

a ∈ Qmi Aj
κ8: 　　 ←

9: 　 end if

10: end for

← argminθL(θ)11: θ

θ′← θ12: from time to time reset

θ13: Return

Dynamic Task Offloading and Service Migration Optimization in Edge Networks

International Journal of Crowd Science | VOL. 7 NO.1 | 2023 | 16–23 19

executed. However, when prob = 0.4, the computation load of the
network is close to saturation. User requests cannot be processed
immediately at certain suitable edge nodes. When prob = 0.8, the
computation load of the network is supersaturated, and the
average delay is doubled compared with other prob settings.

Figure 2 shows the trend of system average energy
consumption with different prob values. Intuitively, the average
energy consumption of the system is directly proportional to the
number of user requests. When the computation load of the
system is close to saturation, the task offloading and service
migration are more frequent, and thus the cooperative processing
of these nodes will inevitably lead to an increase in transmission
energy consumption. Therefore, the average energy consumption
of the system increases linearly with the sparsity of user requests.

 4.2.2 Number of service types
Figure 3 shows the average delay of the system with the number of

STs, where the prob is set as 0.4. As can be seen, when ST is set as
20, all STs can find multiple edge nodes configured with this ST in
the edge network. Thus, there are more candidate edge nodes for
task offloading and service migration, and it is easier to find task-
processing locations adjacent to the data generation locations.
Therefore, when the computation load of the network is not
completely saturated, the average response delay of the system is
smaller as ST decreases. Notably, when ST is set as 100, the
volatility of the average delay of the system increases significantly.
This means that the type of user request may not find edge nodes
configured with corresponding services, the edge nodes
configured with corresponding services may have insufficient
computing resources, or their physical distance is not close
enough. In this case, edge nodes must offload tasks to the cloud or
migrate ST in the cloud to the edge layer to ensure the effective
processing of tasks. Such long-distance migration or offloading
will lead to a sharp delay increase. Thus, when the number of STs
is far more than the number of services that can be configured at
edge nodes, our DQN-based dynamic task offloading and service
migration algorithm can properly address the pre-configure
services and ensure the richness of the services at the edge layer.

Figure 4 shows the influence of the number of different STs on
the average energy consumption of the system. As can be seen,
compared with the average delay of the system, when the number
of ST is set as 100, the system average energy consumption
volatility of the edge network is larger than when the number of
ST is set as 20 and 50 due to the reason presented in Fig. 3.

 4.3 Comparable evaluation with TO-DQN, TO-GD, CS-NO,
and CR-GD
To demonstrate the superiority of the proposed DQN-based
dynamic task offloading and service migration algorithm in terms

500 prob=0.2
prob=0.4
prob=0.8400

300

200

A
ve

ra
ge

 d
el

ay
 (m

s)

100

0 20 40 60
Time slice (s)

80 100

Fig. 1 Average delay with different rates of user request sparsity.

200

2.5

5.0

7.5

10.0

12.5

En
er

gy
 c

on
su

m
pt

io
n

(J
)

15.0

17.5

20.0

40 60
Time slice (s)

80 100

prob=0.2 prob=0.4 prob=0.8

Fig. 2 Average energy consumption with different rates of user request
sparsity.

200

100

200

300

A
ve

ra
ge

 d
el

ay
 (m

s)

400

500

40 60
Time slice (s)

80 100

Snum=20
Snum=50
Snum=100

Fig. 3 Average delay with different numbers of service types.

Table 2 Experimental parameters.

Experimental parameter Value

Network area size 500 × 500 m2

Number of edge nodes N 50
Maximum number of services configured on one

edge node 2

Communication radius of one edge node 150 m

Edge CPU frequency FreF 2 GHz
Maximum number of user requests K at one time

slice 30

Requested sparsity prob 0.4

Number of network service types (Snum) 50

Service data size BytS [0.2 MB, 5 MB]

Number of CPU cycles required for the task CrC [50, 200]

Amount of data for the task BytC [0.5 MB, 5 MB]

Transmission bandwidth wi of wireless signals 500 MHz

Signal frequency f 2.5 MHz

Antenna height hb 35 m

User height hr 1 m

Energy consumption constant Eelec 50 nJ/bit
Energy consumption constant εamp of the

transmission amplifier 0.1 nJ/(bit·m2)
Calculation of energy consumption of CPU in a

single cycle 6 × 10–9 W∙h

αLearning rate 0.1

γDiscount rate 0.9

International Journal of Crowd Science

20 International Journal of Crowd Science | VOL. 7 NO.1 | 2023 | 16–23

of the service access delay of user requests and energy
consumption of IoT devices, we compare it with four baseline
algorithms as follows.
● TO-DQN: This algorithm adopts DQN to optimize

configuration strategies and aims to offload tasks to edge servers
without considering the migration of some services to the
requested edge server.
● TO-GD: This algorithm adopts the Greedy to optimize

configuration strategies and aims to offload tasks to edge servers
without considering the migration of some services to the
requested edge server.
● CS-NO: This algorithm merely offloads tasks to the cloud.
● CR-GD: This algorithm randomly offloads tasks to both edge

servers and the cloud.
This comparative experiment observed the total response delay

and total energy loss of the system under different energy weights
of the above algorithms with fewer than 100 time slices. The
comparison results are respectively shown in Figs. 5 and 6.

 4.3.1 Average delay evaluation
(1) By comparing CR-DQN and TO-DQN with the CR-GD and
TO-GD groups, respectively, we can see that the total time delay
of the system can be effectively reduced by using the DQN
algorithm when making location selection decisions. The result is
achieved regardless of the collaborative processing mode centered
on computing resources proposed in this paper or the traditional
task-unloading mode. As analyzed in Section 2, greedy decision-
making for current task requests can obtain the optimal solution.
However, in the long-term continuous decision-making process,
this optimal liberation is likely to become a local optimal or even a
poor solution because this algorithm does not fully consider the

changes in the network environment and the randomness of user
requests in the future time slice. The DQN algorithm can learn
from the past unloading experience to a certain extent to adapt to
the complex and changeable network environment. Therefore, in
the long-term decision-making process, the DQN algorithm can
achieve a better solution compared with the other alternatives.

Notably, we can see in Fig. 5 that, after adopting the DQN
algorithm, the total system delay of CR-GD is reduced more
significantly than that of TO-GD. The reason for this
phenomenon is that the CR strategy has more selectable fog nodes
than the TO strategy, and in extreme cases, the selectable fog
nodes list of the latter degenerates into local fog nodes or
neighboring fog nodes (in this case, the DQN algorithm).
However, the selectable fog nodes of the CR strategy are always
globally available. When the computational load is not
supersaturated, the selected space scale is guaranteed, so the DQN
algorithm can more fully mine the globally optimal solution.

(2) By comparing CR-DQN and CR-GD with the TO-DQN
and TO-GD groups, respectively, we can see that when the same
selection decision algorithm is adopted, the collaborative
processing strategy centered on computing resources can
effectively reduce the total response delay of the system compared
with the traditional task-unloading method. Similar to analysis (1)
in Section 4.3.1, it can also be observed from Fig. 5 that the CR
strategy can significantly reduce the total response delay of the
system when the DQN algorithm is adopted. Given that the CR
strategy does not directly pay attention to the configuration of
services and task requests, it only pays attention to the currently
available computing resources. Thus, it provides a richer list of
selectable fog nodes, which also means that the scale of its
problems is larger. To ensure a fast search for feasible solutions,
the GD algorithm may sacrifice the global optimality of decision-
making, while the DQN algorithm memorizes the past efficient
solutions with the help of a deep neural network, thus allowing the
rapid searching of high-quality solutions in a large-scale solution
space. It can be seen that both the CR strategy and the DQN
algorithm can achieve good results in the task cooperation
processing problem in fog computing. Furthermore, the large-
scale solution space problem caused by the CR strategy can also be
solved by DQN. Thus, the combination of these two algorithms
can achieve more remarkable results in solving this problem.

(3) Observing the experimental group CS-NO, we find that the
total delay of the system under this cooperative processing mode
is significantly higher than that of the other groups. The reason for
this phenomenon is that when this cooperative processing mode
is used alone, the cloud vertically migrates the service to the local

20.0

17.5

15.0

12.5

10.0

En
er

gy
 c

on
su

m
pt

io
n

(J
)

7.5

5.0

2.5

0 20 40 60
Time slice (s)

80 100

Snum=20
Snum=50
Snum=100

Fig. 4 Average energy consumption with different numbers of ST.

35 000

CR-DQN
CR-GD

TO-DQN
CS-NO

TO-GD

30 000

25 000

20 000

15 000

A
ve

ra
ge

 d
el

ay
 (m

s)

10 000

5000

0 0.2 0.4 0.6
ω2

0.8

Fig. 5 Total system time delay of task processing with multiple cooperative
processing strategies under 100 time slices with different energy weights.

0.20

250

500

750

1000

1250

En
er

gy
 c

on
su

m
pt

io
n

(J
)

1500

1750

2000

2250

0.4 0.6
ω2

0.8

CR-DQN
CR-GD

TO-DQN
CS-NO

TO-GD

Fig. 6 Total energy consumption of the system with various cooperative
processing strategies under 100 time slices with different energy weights.

Dynamic Task Offloading and Service Migration Optimization in Edge Networks

International Journal of Crowd Science | VOL. 7 NO.1 | 2023 | 16–23 21

fog node for service reconfiguration once there is no ST
corresponding to the configuration request locally. Obviously, the
cost of communication with the cloud is high, which also means
that the response delay of task processing will inevitably increase.

 4.3.2 Energy consumption evaluation
(1) By comparing CR-DQN and TO-DQN with the CR-GD and
TO-GD groups, respectively, we can see that using the DQN
algorithm can effectively reduce the total energy consumption of
the system for the same reason as analysis (1) in Section 4.3.1.

(2) By comparing CR-DQN and CR-GD with the TO-DQN
and TO-GD groups, respectively, it can be found that the CR
strategy cannot significantly reduce the total energy consumption
of the system. As can be seen in Eq. (1), when this strategy is
implemented, the main energy loss depends on the distance of
data packet transmission. In this task-processing strategy
involving computing resources, the available computing resources
are selected as relay points for task processing, and service
migration and task unloading are carried out simultaneously. In
the experimental setup of this paper, the data size range of services
is close to that of tasks. To simplify the analysis, this paper
assumes that the packet size of the service and task is the same, so
the main energy loss only depends on the transmission distance,
and the sum of the distances between the moving service to the
relay point and the unloading task to relay point is similar. Thus,
this strategy is obviously unable to reduce the total energy
consumption of task processing in most cases. However, in the
actual process of task request processing, the size of the service
packet is different from that of the task packet. Therefore, when
making a decision, we can weigh the size of the service packet and
task packet to determine whether the relay point of task execution
is biased toward the service-providing side or the task request side
to reduce energy consumption.

(3) By observing the experimental group CS-NO in Figs. 5 and
6, it can be found that the cost increase caused by the CS-NO
cooperation mode is more significant in the total energy
consumption of the system. The reason for this phenomenon is
that there are large STs in the experimental setup of this paper.
Thus, for this type, if services are always migrated, it means a great
deal of communication energy loss, and CS strategy is a potential
cooperative processing mode. It has, however, shown good
performance in lightweight service migration. Therefore, when
using this strategy, it is necessary to fully consider the data size
and reconfiguration time of the service itself to carry out
reasonable service migration.

 5 Conclusion
In this paper, we propose a DQN-based dynamic task offloading
and service migration strategy that leverages the collaboration of
edge nodes with limited resources, such as computation, storage,
and bandwidth, to reduce the delay and energy consumption in
the process of user requests. According to the proposed strategy,
the state space, action space, and reward function of the deep
reinforcement learning algorithm are set, and the decision of task-
processing place is made by using deep reinforcement learning. In
doing so, we can solve the problem of not being able to use
traditional heuristic algorithms in time-delay-sensitive scenes due
to their high complexity.

To verify the feasibility and efficiency of the strategy proposed
in this paper, the influences of two different network parameters
on the strategy are explored, and two traditional cooperative task-
processing methods are compared. The experimental results

reveal that the strategy proposed in this paper can effectively
reduce the system task-processing delay and reduce the system
energy consumption to a certain extent. Experimental results
further show that our algorithm performs better than baseline
approaches in terms of reducing the service access delay of user
requests and the energy consumption of IoT devices in edge
networks.

Dates
Received: 11 January 2022; Revised: 8 September 2022; Accepted:
11 September 2022

References

 M. Goudarzi, H. Wu, M. Palaniswami, and R. Buyya, An application
placement technique for concurrent IoT applications in edge and fog
computing environments, IEEE Transactions on Mobile Computing,
vol. 20, no. 4, pp. 1298–1311, 2021.

[1]

 E. Yigitoglu, M. Mohamed, L. Liu, and H. Ludwig, Foggy: A
framework for continuous automated IoT application deployment in
fog computing, in Proc. 2017 IEEE International Conference on AI
Mobile Services, Honolulu, HI, USA, 2017, pp. 38–45.

[2]

 Y. Liu, M. Peng, G. Shou, Y. Chen, and S. Chen, Towards edge
intelligence: Multi-access edge computing for 5G and internet of
things, IEEE Internet of Things Journal, vol. 7, no. 8, pp.
6722–6747, 2020.

[3]

 C. S. Yang, R. Pedarsani, and A. S. Avestimehr, Edge computing in
the dark: Leveraging contextual-combinatorial bandit and coded
computing, IEEE/ACM Transactions on Networking, vol. 29, no. 3,
pp. 1022–1031, 2021.

[4]

 S. Chen, Y. Zheng, W. Lu, V. Varadarajan, and K. Wang, Energy-
optimal dynamic computation offloading for industrial IoT in fog
computing, IEEE Transactions on Green Communications and
Networking, vol. 4, no. 2, pp. 566–576, 2020.

[5]

 M. Adhikari, M. Mukherjee, and S. N. Srirama, DPTO: A deadline
and priority-aware task offloading in fog computing framework
leveraging multilevel feedback queueing, IEEE Internet of Things
Journal, vol. 7, no. 7, pp. 5773–5782, 2020.

[6]

 G. Zhang, F. Shen, Y. Yang, H. Qian, and W. Yao, Fair task
offloading among fog nodes in fog computing networks, in Proc.
2018 IEEE International Conference on Communications, Kansas
City, MO, USA, 2018, pp. 1–6.

[7]

 H. Wang, H. Xu, H. Huang, M. Chen, and S. Chen, Robust task
offloading in dynamic edge computing, IEEE Transactions on
Mobile Computing, vol. 22, no. 1, pp. 500–514, 2021.

[8]

 J. Wang, J. Hu, G. Min, A. Y. Zomaya, and N. Georgalas, Fast
adaptive task offloading in edge computing based on meta
reinforcement learning, IEEE Transactions on Parallel and
Distributed Systems, vol. 32, no. 1, pp. 242–253, 2021.

[9]

 H. Tran-Dang and D. -S. Kim, FRATO: Fog resource based adaptive
task offloading for delay-minimizing IoT service provisioning, IEEE
Transactions on Parallel and Distributed Systems, vol. 32, no. 10,
pp. 2491–2508, 2021.

[10]

 C. Lin and H. Khazaei, Modeling and optimization of performance
and cost of serverless applications, IEEE Transactions on Parallel
and Distributed Systems, vol. 32, no. 3, pp. 615–632, 2020.

[11]

 C. Puliafito, E. Mingozzi, and G. Anastasi, Fog computing for the
internet of mobile things: Issues and challenges, in Proc. 2017 IEEE
International Conference on Smart Computing, Hong Kong, China,
2017, pp. 1–6.

[12]

 J. Xu, X. Ma, A. Zhou, Q. Duan, and S. Wang, Path selection for
seamless service migration in vehicular edge computing, IEEE
Internet of Things Journal, vol. 7, no. 9, pp. 9040–9049, 2020.

[13]

 R. Zhang, L. Wen, S. Naboulsi, T. Eason, V. K. Vasudevan, and D.
Qian, Accelerated multiscale space—Time finite element simulation
and application to high cycle fatigue life prediction, Computational

[14]

International Journal of Crowd Science

22 International Journal of Crowd Science | VOL. 7 NO.1 | 2023 | 16–23

Mechanics, vol. 58, no. 2, pp. 329–349, 2016.
 Z. Liang, Y. Liu, T. -M. Lok, and K. Huang, Multi-cell mobile edge
computing: Joint service migration and resource allocation, IEEE
Transactions on Wireless Communications, doi: 10.1109/TWC.
2021.3070974.

[15]

 T. Kim, S. D. Sathyanarayana, S. Chen, Y. Im, X. Zhang, S. Ha, and
C. Joe-Wong, MoDEMS: Optimizing edge computing migrations for

[16]

user mobility, in Proc. 2022 IEEE International Conference on
Computer Communications, London, UK, 2022, pp. 1159–1168.
 Y. Miao, F. Lyu, F. Wu, H. Wu, J. Ren, Y. Zhang, and X. S. Shen,
Mobility-aware service migration for seamless provision: A
reinforcement learning approach, in Proc. 2022 IEEE International
Conference on Communications, Seoul, Republic of Korea, 2022,
pp. 5064–5069.

[17]

Dynamic Task Offloading and Service Migration Optimization in Edge Networks

International Journal of Crowd Science | VOL. 7 NO.1 | 2023 | 16–23 23

