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ABSTRACT
In recent years, edge computing has emerged as a promising paradigm for providing flexible and reliable services for Internet of
things  (IoT)  applications.  User  requests  can  be  offloaded  and  processed  in  real  time  at  the  edge  of  a  network.  However,
considering  the  limited  storage  and  computing  resources  of  IoT  devices,  certain  services  requested  by  users  may  not  be
configured on current edge servers. In this setting, user requests should be offloaded to adjacent edge servers or requested edge
servers  should  be  configured  by  migrating  certain  services  from  the  former,  further  reducing  the  service  access  delay  of  user
requests and the energy consumption of IoT devices in such networks. To address this issue, in this study, we model this dynamic
task offloading and service  migration optimization problem as the multiple  dimensional  Markov decision process and propose a
deep  q-learning  network  (DQN)  algorithm to  achieve  fast  decision-making,  an  approximate  optimal  task  offloading,  and  service
migration  solution.  Experimental  results  show  that  our  algorithm  performs  better  than  existing  baseline  approaches  in  terms  of
reducing the service access delay of user requests and the energy consumption of IoT devices in edge networks.
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R ecently,  the  popularity  of  Internet  of  things  (IoT)  devices
has spawned massive novel IoT applications, such as smart
homes,  smart  cities,  real-time manufacturing,  and patient

monitoring. These IoT applications typically show strict quality of
service  (QoS)  requirements,  such  as  low  latency  and  energy
consumption,  which  bring  great  challenges  to  the  limited
resources  and  computing  power  of  IoT  devices[1, 2].  Edge
computing  (EC)  has  become  the  preferred  platform  to  alleviate
the  conflict  between  low-latency  requirements  and  the  limited
resources  of  IoT  devices  in  emerging  IoT  applications[3, 4].  EC
supports  the  configuration  of  services  on  edge  servers  close  to
users and allows the offloading of complex computing tasks from
user requests to nearby edge servers, thus realizing low delay and
real-time processing of computing tasks[1]. In this setting, it is a key
challenge to configure services to edge servers to further meet QoS
constraints  of  user  requests  in  edge  networks.  Considering  the
limited computation resources of IoT devices, certain edge servers
may  not  properly  configure  services  requested  by  users.  In  this
setting, we consider the promising strategy of (1) offloading tasks
to  adjacent  edge  servers  or  (2)  migrating  some  services  from
adjacent  edge  servers  to  the  current  edge  server.  This  dynamic
task  offloading  and  service  migration  optimization  mechanism
can further reduce the service access delay of user requests and the
energy consumption of IoT devices in edge networks.

The  geo-distribution  and  limited  resources  of  IoT  devices  in
edge  networks  raise  new  challenges  for  the  management  of
dynamic  task  offloading  and  service  migration  optimization.
Effective  algorithms  have  been  proposed  in  the  literature  to
optimize  resources  used  by  user  requests  to  satisfy  the  service
quality  and  maintain  QoS  constraints.  Task  allocation  decisions

play  a  key  role  in  the  service  configuration.  Here,  Chen  et  al.[5]

designed  an  energy-optimal  dynamic  computing  offloading
scheme through the  joint  optimization  of  various  parameters.  In
Ref.  [6],  Adhikari  et  al.  designed a  priority-aware  task  offloading
strategy based on delay dependence and assigned priority to each
task  according  to  the  deadline  to  minimize  the  task  offloading
time.  Other  studies[7–10] mainly  focused  on  partial  offloading
strategies or collaborative optimization of offloading decisions and
resource  allocation.  However,  most  related  studies  only  focused
on  task  offloading  to  solve  the  delay  and  energy  consumption
limitation  while  ignoring  the  fact  that  users’ service  requests  are
highly  dynamic  in  actual  situations.  As  the  edge  node  may  not
have the services required by the configuration task, this limits the
task offloading policy.

Considering  the  conflict  between  the  diversity  of  service
requests  and  the  limited  number  of  services  at  edge  nodes,  one
study proposed migrating  services  from the  cloud to  the  edge  of
the network[11]. However, the time and energy costs of maintaining
communication between a  cloud server  and edge  nodes  are  very
high. Therefore, frequent service migration from the cloud to the
edge nodes will lead to delays and increased energy consumption.
In  Ref.  [12],  Puliafito  et  al.  proposed  that  services  should  be
migrated between edge nodes to make available services closer to
user equipment and reduce the extra cost of service migration. In
Ref.  [13],  Xu  et  al.  solved  the  challenge  of  when  and  where  to
migrate  services  to  achieve  the  best  trade-off  between  QoS  and
migration cost.  Meanwhile,  other studies[14–16] focused on realizing
low-latency  service  migration  and  seamless  computing  in  a
dynamic  network  environment.  Task  offloading  and  service
migration problems can be modeled as a Markov decision process 
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(MDP), and a reinforcement learning algorithm is used to obtain
the optimal strategy of MDP.

In  general,  the  works  discussed  above  mainly  focus  on  task
offloading  or  service  migration.  In  this  paper,  we  propose  an
efficient  computation  task  offloading  algorithm  that  dynamically
combines  task  offloading  with  a  service  migration  strategy  to
minimize  task-processing  costs.  The  main  contributions  of  this
paper are as follows.

(1)  Based  on  the  realistic  task  request  mode  and  task
cooperative  processing  mode,  this  paper  analyzes  the
characteristics  of  several  task  request  modes,  sums  up  various
request  situations,  and  formulates  corresponding  migration  and
unloading strategies.

(2)  A  novel  edge  collaboration  strategy  is  proposed,  which
considers  joint  task  unloading  and  service  migration,  thus
reducing  the  delay  of  data  transmission  and  minimizing  the
overall energy consumption of IoT devices.

(3) Dynamic task offloading and service migration optimization
in edge networks  are  modeled as  a  multi-dimensional  MDP and
then solved using the deep q-learning network (DQN) algorithm.

(4)  Experimental  results  show  that  our  algorithm  performs
better than existing baseline approaches in terms of  reducing the
service access delay of user requests and the energy consumption
of IoT devices in edge networks.

The remainder  of  this  paper  is  organized as  follows.  Section 1
reviews  and  compares  the  relevant  techniques  proposed  in  the
literature.  Section  2  analyzes  and  proposes  the  dynamic  task
offloading  and  service  migration  problem  in  edge  networks  and
formulates it as an MDP model under given constraints. Section 3
presents  a  DQN-based  dynamic  task  offloading  and  service
migration algorithm for user requests at a one time slice to obtain
an  optimized  service  configuration  scheme  for  maximizing  the
system’s  utility.  Section  4  implements  and  evaluates  our
mechanism. Finally, Section 5 summarizes our work.

 1    Related Work

 1.1    Task offloading in edge computing
Task  offloading  plays  a  key  role  in  EC.  In  Ref.  [5],  Chen  et  al.
presented  an  energy-optimal  dynamic  computation  offloading
scheme by jointly optimizing various parameters. In Ref. [7], a fair
task-unloading  scheme is  proposed  while  considering  the  energy
efficiency  and  priority  of  IoT  devices.  In  Ref.  [8],  Wang  et  al.
introduced  a  new  dynamic  EC  model  and  designed  an  online
primal-dual algorithm to offload the arrival tasks. To improve the
generalization  ability  of  the  task-offloading  algorithm,  Wang
et  al.[9] proposed  a  task-unloading  method  based  on  meta-
reinforcement learning.  Considering the limited resources  of  IoT
devices,  one  study  proposed  a  resource-aware  adaptive  task
offloading framework and flexibly selected the optimal unloading
strategy[10]. Generally, these algorithms greatly inspire us to develop
the  dynamic  task  offloading  and  service  migration  mechanism.
However, these works did not consider the possibility that services
demanded  by  user  requests  may  not  be  configured  on  the
requested  node.  In  this  paper,  a  dynamic  task  offloading  and
service  migration  is  introduced,  which  takes  the  intermediate
nodes  with  abundant  computation  resources  as  the  execution
nodes  of  tasks.  If  the  requested  node  is  not  configured  with  the
corresponding service, the service migration is carried out.

 1.2    Service migration in edge computing
Limited resources of IoT devices and delay-sensitive constraints of

user requests bring more challenges to task offloading and service
migration  in  EC.  Introducing  service  migration  between  IoT
devices to achieve low delay and seamless computing has attracted
much  attention.  In  Ref.  [14],  services  were  deployed  on  edge
nodes  in  advance  according  to  the  user  activity  hotspot  map,
enabling  Zhang  et  al.[14] to  introduce  a  service  migration  strategy
based on user activity hotspots. In Ref. [15], Liang et al. developed
an  optimal  iterative  solution  method  based  on  relaxation  and
rounding to minimize the migration cost. In Ref. [16], Kim et al.
modeled the cost minimization of service migration as an integer
linear  programming  problem,  which  is  difficult  to  solve  due  to
resource  constraints  at  the  servers  and  unknown  user  mobility
patterns,  and  proposed  alternative  heuristic  solution  algorithms
that performed well in both theory and practice. At the same time,
reinforcement  learning  is  becoming  a  promising  method  to
achieve rapid convergence. In Ref. [17], Miao et al. proposed that
the  decision-making  process  of  service  migration  should  be
modeled  as  a  one-dimensional  Markov  decision  and  that
reinforcement  learning  can  be  used  to  optimize  the  service
migration  decision-making.  To  sum  up,  these  techniques  have
inspired  us  to  develop  the  method  used  in  the  current  paper.
However,  they  can  hardly  be  used  directly  in  our  context.
Therefore,  we  propose  an  efficient  computation  task  offloading
and  service  migration  algorithm,  wherein  deep  reinforcement
learning is used to achieve rapid decision-making.

 2    System Model
This section introduces the system model,  including the network
model, energy consumption model, and delay model.

 2.1    Network model

F= {F1,F2,F3, . . . ,Fi, . . . ,FN} Fi Fi = (id,
Loc,HostLst,PT,Fre) idFi

Fi LocFi = (Lx,Ly) Fi

Lx Ly

Fi HostLstFi
Fi PTFi

Fi FreFi

Fi

S= {S1,S2,S3, . . . ,Si, . . . ,SM}
Si = (id,Byt,RCT), idSi

Si BytSi Si RCTSi

Si t
C= {C1,C2,C3, . . . ,

Ci, . . . ,CK} Ci = (id,Loc,Sj,Byt,Cr) idCi

Ci LocCi = (Lx,Ly)
Ci Lx Ly

Ci SjCi

Ci BytCi
Ci CrCi

Ci

Edge networks can be modeled as a set of N edge nodes expressed
as , where  is described as 

. Here,  is the unique identifier of the i-th
edge  node ,  is  the  geographical  location  of ,
and  and  are  the  longitude  and  latitude  of  the  geographical
position  of ,  respectively.  In  addition,  is  the  list  of
services  currently  hosted  by ,  is  the  list  of  tasks  currently
being  processed  by  the  edge  node ,  and  is  the  processor
frequency  of .  Meanwhile, M services  are  deployed  in  edge
networks,  which  can  be  denoted  as ,
where   is  the  unique  identifier  of  the i-th
service ,  is the workload size of , and  is the service
configuration time of .  In this paper, at one time slice , K user
requests  are  issued  and  denoted  as 

, where . In addition,  is the
unique identifier of the i-th user request ;  is the
geographical  location  of ,  and  and  are  the  longitude  and
latitude of the geographical position of , respectively;  denotes
the service used to execute ;  is the data size of ; and 
is the number of required central processing unit (CPU) cycles of

.

 2.2    Energy model
CiFor each task request , the total energy consumption is denoted

as follows:

Etotal = Ecomp +Eti+Etij (1)

Ecomp

Ci Eti Ci

Fi Etij Sj
Fj Fi Eti Etij

where  is the computing and processing energy consumption
of ,  is the energy consumption of offloading  to edge node

, and  is the energy consumption of migrating one service 
from  to . Actually,  and  are the communication energy
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Fi Fj d

consumption  generated  by  sending  data  packets  from  one  edge
node  to  another.  According  to  the  first-order  radio  model,  the
communication  energy  consumption  of  sending k-bit  data  from

 to  with distance  can be expressed as

Ecmm,ij (k,d) = ETx (k,d)+ERx (k) (2)

where

ETx (k,d) = Eelec×k+ εamp×k×dn (3)

ERx (k) = Eelec×k (4)

ETx (k,d)
Fi Fj ERx (k)

Fj

Eelec εamp

in which  is the transmission energy by forwarding k-bit
data  from  to  with  distance d,  and  represents  the
energy of  receiving k-bit  data by .  The value of  the attenuation
index n is greatly influenced by the environment. If edge nodes in
the  network  are  barrier-free  when  forwarding  data  packets,  the
value  of n can  be  set  to  2;  otherwise,  it  is  set  to  3,  4,  or  5.  In
addition,  and  represent  the  unit  energy  consumption
constant  and  the  unit  energy  consumption  constant  of  the
transmitting amplifier, respectively. The related parameters of the
communication energy consumption model are listed in Table 1.

 2.3    Delay model
CiFor each task request , the total delay is denoted as follows:

Dtotal = Dcomp +Max(Dti,ArgMin{Dfji}+Dr)+Dw (5)

Dti Ci Fi Dfji

Sj Fj Fi Dr

Sj Dw Ci Dti Dfji

Dcomp

Ci

where  is  of  offloading  to  edge  node ,  is  the  time  to
migrate one service  from  to ,  is the configuration time of

, and  is the waiting time of . The above  and  are the
communication  time  caused  by  sending  data  packets  from  one
edge node to another.  is the computing and processing time
of , which is defined as

Dcomp =
CrC
FreF

(6)

In this paper, the communication delay is defined as follows:

delay = knetlog10dij+bnet (7)

dij Fi Fj knet

bnet

where  is  the  distance  between  and .  In  addition,  and
 are represented, respectively, as follows:

knet = 44.9−6.55log10hb (8)

bnet = 46.3+ 33.9log10f− 13.82log10hb− ahm + cm (9)

hb Fi

ahm

where f is the signal frequency,  is the antenna height of , and
 is defined as follows:

ahm = 3.20(log10( 11.75hr ))
2−4.97 (10)

 2.4    Problem formulation
In  this  paper,  we  intend  to  shorten  the  execution  time  of  user

requests, as shown in Eq. (5) and save the energy consumption of
each edge node, as presented in Eq. (1). The formalized problem is
defined as follows:

min C (11)

where

C=

(
ω1

k

∑
i=1

Dtotal
i +ω2

k

∑
i=1

Etotal
i

)
(12)

Dtotal
i Etotal

i

ω1

ω2

ω1+ω2 = 1

where  is the total time for executing all user requests;  is
the total energy consumption for completing all  user requests; 
and  are  the  weight  parameters  of  execution  time  and  energy
consumption, respectively; and .

 3    Dynamic  Task  Offloading  and  Service
Migration Mechanism

 3.1    Task offloading status space
The  system  status  space  is  based  on  delay,  energy  consumption,
service  type  (ST),  running  status  of  edge  node,  and  all  user
requests  at  one  time  slice t.  The  total  delay  and  energy
consumption can be expressed as follows:

X(t) =


x1,1 (t) x1,2 (t) · · · x1,N (t)
x2,1 (t) x2,2 (t) · · · x2,N (t)
...

...
. . .

...
xK,1 (t) xK,2 (t) · · · xK,N (t)

 (13)

xk,n (t)
t

where  is  the  total  delay  of  the k-th  user  request  executed
upon the n-th edge node at one time slice .

Y(t) =


y1,1 (t) y1,2 (t) · · · y1,N (t)
y2,1 (t) y2,2 (t) · · · y2,N (t)
...

...
. . .

...
yK,1 (t) yK,2 (t) · · · yK,N (t)

 (14)

yk,n (t)
t

where  is  the  total  energy  consumption  of  the k-th  user
request executed upon the n-th edge node at .

tGenerally, the system state at one time slice  can be expressed
as

St = {X(t) ,Y(t) ,HostLstF,PTF,LocC,SC} ∈ S (15)

 3.2    Service migration action space

t
Ti

The  system  action  space  is  defined  as  the  candidate  set  of  edge
nodes  to  execute  user  requests  at  one  time  slice .  The  system
action  at  can  be  expressed  as  a  one-dimensional  vector  as
follows:

At = {aFn ,aCL} ∈ A (16)

aFn = {aF1 ,aF2 , . . . ,aFN}
Ck aFn Ck

Fn Fn CL

where  represents  whether  the k-th  user
request  is executed or not. When  is 1,  is executed on edge
node . Here,  is the edge node, and  is the cloud node.

 3.3    Reward function
TiThe reward function at  of the system is formulated by

Rt =M1−C (17)

M1where  is a constant.

 3.4    Task offloading and service migration algorithm
Algorithm 1 describes the DQN algorithm. For each episode, the

 

Table 1    Parameters used in the first-order radio model.

Parameter Description

Eelec Unit energy consumption constant

εamp Energy consumption constant of unit transmitting amplifier

n Propagation attenuation index

k Data size (bit)

d Data transmission distance
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S1
Aκ Sκ+1

Rκ

Aκ

initial  state  is  obtained.  Algorithm  1  performs  iteratively  to
select  using a predefined strategy, obtain the next state  and

 by  Eq.  (17),  as  presented  in  Algorithm  2,  and  update  Q
network  (Lines  1–9),  as  presented  in  Algorithm  3.  Finally,  is
returned (Line 10).

Algorithm  2  describes  the  specific  action  selection  procedure
and mainly includes two parts: explorer and developer. A random
value Φ is  generated  during  each  selection.  When Φ is  greater
than ε, the action is selected by the developer; otherwise, the action
is selected by the explorer (Lines 1–7).

Sκ,Aκ,Rκ,Sκ+1

RPκ

Algorithm 3 describes the Q network update process. For each
time, ( ) are stored in the experience replay pool RP,
and a sample  is randomly extracted from RP to update the Q
network (Lines 1–13).

 4    Performance Evaluation
In this paper, our experimental environment is constructed using
a 64-bit  Windows10 operating system,  16 GB memory,  Intel  (R)

Core  (TM)  i7-3770  CPU  @  3.40  GHz,  and  NVIDIA  GeForce
GTX 1070 Ti, which is realized by Python program. To ensure the
scientific  nature  of  the  experiment,  all  the  experiments  were
conducted in the same operating environment.

 4.1    Experimental setup
In this paper, the experimental data are generated by simulating a
500  m  ×  500  m  network,  where  50  edge  servers  are  randomly
deployed,  and their  communication radius  is  set  by  150 m.  Two
kinds of services are configured upon the edge servers. The other
parameters are described in Table 2.

 4.2    Experimental results and evaluation analysis
By  observing  the  long-term  average  delay  and  energy
consumption of the system, this experiment explores the influence
of  different  system  parameters,  such  as  the  sparsity  of  user
requests and the number of STs.

 4.2.1    Sparsity of user requests
When the  sparsity  of  user  requests  is  higher,  more  user  requests
will  be  generated  at  each  time  on  average,  and  the  average
response  delay  and  energy  consumption  of  the  system  will  be
higher. To study the influence of user request sparsity on average
delay and energy consumption, the user request sparsity (prob) is
set as 0.2, 0.4, and 0.8 in the experiments. Figure 1 shows the trend
of system average response delay with different prob. The average
response  delay  of  the  system  is  directly  proportional  to  the
number of  user requests  at  each moment.  When prob = 0.4 and
prob  =  0.2,  the  average  response  delay  of  the  system  is  not
doubled.  The  reason  is  that  when  prob  =  0.2,  the  computation
load of the network is not saturated, and thus user requests can be

 

Algorithm 1　DQN-based task offloading and service migration

Require:

θ: Weight of Q network

RP: Experience replay pool of Q network

Ensure:

At
t

: A strategy set of the dynamic task offloading and service migration
for user requests at one time slice 

1: for episode=1, 2, …, P do

S12: 　initialize  and RP

3: 　for κ=1, 2, …, t do

Aκ Sκ ,Qm4:　　  ← actionSelection ( )

Sκ+15:　　 Observe 

Rκ6: 　　  ← calculated by Eq. (17)

Sκ ,Aκ ,Sκ+1,Rκ ,RP7:　　 θ ← Q-NetworkUpdate ( )

8:　 end for

9: end for

At10: return 

 

Algorithm 2　Action selection

Require:

Sκ: Current state

Qm : Best state-action table

Ensure:

Aκ : A selecting action set

1: generate Φ randomly

Sκ ̸= Sκ ∈ Qmi2: if Φ > ε and  null,  then

Aκ argmax(Sκ ,Aκ ;θ)3: 　  ← 

4: else

Aκ Fi5: 　  ← Randomly select  from the list of available computing
resources L
6: end if

Aκ7: return 

 

Algorithm 3　Q network update

Require:

Sκ: Current state

Aκ : Current action

Rκ: Current reward

Sκ+1: Next time slice state

Replay pool (RP): Experience replay pool of Q network

Ensure:

θ: Weight of Q network

Sκ ,Aκ ,Rκ ,Sκ+11: Store ( ) in RP

RPκ2: Sample  from RP

Sjκ−1,A
j
κ−1,R

j
κ−1,S

j
κ3: for ( ) do

Q(Sjκ ,A
j
κ ;θ′)4: 　 Calculate 

yd (κ)5: 　 Calculate  by Eq. (14)

v v ∈ Qmi v ∈ Qmi6: 　 if  = null,  or y(κ) >  then

v ∈ Qmi ,Sκ yd (κ)7: 　　  ← 

a ∈ Qmi Aj
κ8: 　　  ← 

9: 　 end if

10: end for

← argminθL(θ)11: θ  

θ′← θ12: from time to time reset 

θ13: Return 
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executed. However, when prob = 0.4, the computation load of the
network is close to saturation. User requests cannot be processed
immediately at certain suitable edge nodes. When prob = 0.8, the
computation  load  of  the  network  is  supersaturated,  and  the
average delay is doubled compared with other prob settings.

Figure  2 shows  the  trend  of  system  average  energy
consumption  with  different  prob  values.  Intuitively,  the  average
energy consumption of  the system is  directly  proportional  to the
number  of  user  requests.  When  the  computation  load  of  the
system  is  close  to  saturation,  the  task  offloading  and  service
migration are more frequent, and thus the cooperative processing
of  these  nodes  will  inevitably  lead  to  an  increase  in  transmission
energy consumption. Therefore, the average energy consumption
of the system increases linearly with the sparsity of user requests.

 4.2.2    Number of service types
Figure 3 shows the average delay of the system with the number of

STs, where the prob is set as 0.4. As can be seen, when ST is set as
20, all STs can find multiple edge nodes configured with this ST in
the edge network. Thus, there are more candidate edge nodes for
task offloading and service migration, and it is easier to find task-
processing  locations  adjacent  to  the  data  generation  locations.
Therefore,  when  the  computation  load  of  the  network  is  not
completely  saturated,  the  average  response  delay  of  the  system is
smaller  as  ST  decreases.  Notably,  when  ST  is  set  as  100,  the
volatility of the average delay of the system increases significantly.
This means that the type of user request may not find edge nodes
configured  with  corresponding  services,  the  edge  nodes
configured  with  corresponding  services  may  have  insufficient
computing  resources,  or  their  physical  distance  is  not  close
enough. In this case, edge nodes must offload tasks to the cloud or
migrate  ST  in  the  cloud  to  the  edge  layer  to  ensure  the  effective
processing  of  tasks.  Such  long-distance  migration  or  offloading
will lead to a sharp delay increase. Thus, when the number of STs
is far more than the number of services that can be configured at
edge nodes, our DQN-based dynamic task offloading and service
migration  algorithm  can  properly  address  the  pre-configure
services and ensure the richness of the services at the edge layer.

Figure 4 shows the influence of the number of different STs on
the  average  energy  consumption  of  the  system.  As  can  be  seen,
compared with the average delay of the system, when the number
of  ST  is  set  as  100,  the  system  average  energy  consumption
volatility  of  the edge network is  larger  than when the number of
ST is set as 20 and 50 due to the reason presented in Fig. 3.

 4.3    Comparable  evaluation  with  TO-DQN,  TO-GD,  CS-NO,
and CR-GD
To  demonstrate  the  superiority  of  the  proposed  DQN-based
dynamic task offloading and service migration algorithm in terms
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Fig. 1    Average delay with different rates of user request sparsity.
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Fig. 2    Average  energy  consumption  with  different  rates  of  user  request
sparsity.
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Fig. 3    Average delay with different numbers of service types.

 

Table 2    Experimental parameters.

Experimental parameter Value

Network area size 500 × 500 m2

Number of edge nodes N 50
Maximum number of services configured on one

edge node 2

Communication radius of one edge node 150 m

Edge CPU frequency FreF 2 GHz
Maximum number of user requests K at one time

slice 30

Requested sparsity prob 0.4

Number of network service types (Snum) 50

Service data size BytS [0.2 MB, 5 MB]

Number of CPU cycles required for the task CrC [50, 200]

Amount of data for the task BytC [0.5 MB, 5 MB]

Transmission bandwidth wi of wireless signals 500 MHz

Signal frequency f 2.5 MHz

Antenna height hb 35 m

User height hr 1 m

Energy consumption constant Eelec 50 nJ/bit
Energy consumption constant εamp of the

transmission amplifier 0.1 nJ/(bit·m2)
Calculation of energy consumption of CPU in a

single cycle 6 × 10–9 W∙h

αLearning rate 0.1

γDiscount rate 0.9
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of  the  service  access  delay  of  user  requests  and  energy
consumption  of  IoT  devices,  we  compare  it  with  four  baseline
algorithms as follows.
● TO-DQN: This  algorithm  adopts  DQN  to  optimize

configuration strategies  and aims to  offload tasks  to  edge  servers
without  considering  the  migration  of  some  services  to  the
requested edge server.
● TO-GD: This  algorithm  adopts  the  Greedy  to  optimize

configuration strategies  and aims to  offload tasks  to  edge  servers
without  considering  the  migration  of  some  services  to  the
requested edge server.
● CS-NO: This algorithm merely offloads tasks to the cloud.
● CR-GD: This algorithm randomly offloads tasks to both edge

servers and the cloud.
This comparative experiment observed the total response delay

and total energy loss of the system under different energy weights
of  the  above  algorithms  with  fewer  than  100  time  slices.  The
comparison results are respectively shown in Figs. 5 and 6.

 4.3.1    Average delay evaluation
(1) By comparing CR-DQN and TO-DQN with the CR-GD and
TO-GD groups,  respectively,  we can see that  the total  time delay
of  the  system  can  be  effectively  reduced  by  using  the  DQN
algorithm when making location selection decisions. The result is
achieved regardless of the collaborative processing mode centered
on computing resources proposed in this paper or the traditional
task-unloading  mode.  As  analyzed in  Section 2,  greedy  decision-
making for current task requests can obtain the optimal solution.
However,  in  the  long-term  continuous  decision-making  process,
this optimal liberation is likely to become a local optimal or even a
poor  solution  because  this  algorithm  does  not  fully  consider  the

changes in the network environment and the randomness of user
requests  in  the  future  time  slice.  The  DQN  algorithm  can  learn
from the past unloading experience to a certain extent to adapt to
the complex and changeable network environment. Therefore, in
the  long-term  decision-making  process,  the  DQN  algorithm  can
achieve a better solution compared with the other alternatives.

Notably,  we  can  see  in Fig. 5 that,  after  adopting  the  DQN
algorithm,  the  total  system  delay  of  CR-GD  is  reduced  more
significantly  than  that  of  TO-GD.  The  reason  for  this
phenomenon is that the CR strategy has more selectable fog nodes
than  the  TO  strategy,  and  in  extreme  cases,  the  selectable  fog
nodes  list  of  the  latter  degenerates  into  local  fog  nodes  or
neighboring  fog  nodes  (in  this  case,  the  DQN  algorithm).
However,  the  selectable  fog  nodes  of  the  CR  strategy  are  always
globally  available.  When  the  computational  load  is  not
supersaturated, the selected space scale is guaranteed, so the DQN
algorithm can more fully mine the globally optimal solution.

(2)  By  comparing  CR-DQN  and  CR-GD  with  the  TO-DQN
and TO-GD groups, respectively, we can see that when the same
selection  decision  algorithm  is  adopted,  the  collaborative
processing  strategy  centered  on  computing  resources  can
effectively reduce the total response delay of the system compared
with the traditional task-unloading method. Similar to analysis (1)
in  Section  4.3.1,  it  can  also  be  observed  from Fig. 5 that  the  CR
strategy  can  significantly  reduce  the  total  response  delay  of  the
system when the  DQN algorithm is  adopted.  Given  that  the  CR
strategy  does  not  directly  pay  attention  to  the  configuration  of
services  and  task  requests,  it  only  pays  attention  to  the  currently
available  computing  resources.  Thus,  it  provides  a  richer  list  of
selectable  fog  nodes,  which  also  means  that  the  scale  of  its
problems  is  larger.  To  ensure  a  fast  search  for  feasible  solutions,
the GD algorithm may sacrifice the global optimality of decision-
making,  while  the  DQN  algorithm  memorizes  the  past  efficient
solutions with the help of a deep neural network, thus allowing the
rapid searching of  high-quality  solutions  in  a  large-scale  solution
space.  It  can  be  seen  that  both  the  CR  strategy  and  the  DQN
algorithm  can  achieve  good  results  in  the  task  cooperation
processing  problem  in  fog  computing.  Furthermore,  the  large-
scale solution space problem caused by the CR strategy can also be
solved  by  DQN.  Thus,  the  combination  of  these  two  algorithms
can achieve more remarkable results in solving this problem.

(3) Observing the experimental group CS-NO, we find that the
total  delay of the system under this cooperative processing mode
is significantly higher than that of the other groups. The reason for
this  phenomenon is  that  when this  cooperative  processing mode
is used alone, the cloud vertically migrates the service to the local
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fog  node  for  service  reconfiguration  once  there  is  no  ST
corresponding to the configuration request locally. Obviously, the
cost of communication with the cloud is  high, which also means
that the response delay of task processing will inevitably increase.

 4.3.2    Energy consumption evaluation
(1) By comparing CR-DQN and TO-DQN with the CR-GD and
TO-GD  groups,  respectively,  we  can  see  that  using  the  DQN
algorithm can effectively  reduce the  total  energy consumption of
the system for the same reason as analysis (1) in Section 4.3.1.

(2)  By  comparing  CR-DQN  and  CR-GD  with  the  TO-DQN
and  TO-GD  groups,  respectively,  it  can  be  found  that  the  CR
strategy cannot significantly reduce the total energy consumption
of  the  system.  As  can  be  seen  in  Eq.  (1),  when  this  strategy  is
implemented,  the  main  energy  loss  depends  on  the  distance  of
data  packet  transmission.  In  this  task-processing  strategy
involving computing resources, the available computing resources
are  selected  as  relay  points  for  task  processing,  and  service
migration  and  task  unloading  are  carried  out  simultaneously.  In
the experimental setup of this paper, the data size range of services
is  close  to  that  of  tasks.  To  simplify  the  analysis,  this  paper
assumes that the packet size of the service and task is the same, so
the main energy loss  only  depends on the transmission distance,
and  the  sum  of  the  distances  between  the  moving  service  to  the
relay point and the unloading task to relay point is similar. Thus,
this  strategy  is  obviously  unable  to  reduce  the  total  energy
consumption  of  task  processing  in  most  cases.  However,  in  the
actual  process  of  task  request  processing,  the  size  of  the  service
packet  is  different  from  that  of  the  task  packet.  Therefore,  when
making a decision, we can weigh the size of the service packet and
task packet to determine whether the relay point of task execution
is biased toward the service-providing side or the task request side
to reduce energy consumption.

(3) By observing the experimental group CS-NO in Figs. 5 and
6,  it  can  be  found  that  the  cost  increase  caused  by  the  CS-NO
cooperation  mode  is  more  significant  in  the  total  energy
consumption  of  the  system.  The  reason  for  this  phenomenon  is
that  there  are  large  STs  in  the  experimental  setup  of  this  paper.
Thus, for this type, if services are always migrated, it means a great
deal of communication energy loss, and CS strategy is a potential
cooperative  processing  mode.  It  has,  however,  shown  good
performance  in  lightweight  service  migration.  Therefore,  when
using  this  strategy,  it  is  necessary  to  fully  consider  the  data  size
and  reconfiguration  time  of  the  service  itself  to  carry  out
reasonable service migration.

 5    Conclusion
In this paper,  we propose a DQN-based dynamic task offloading
and service  migration  strategy  that  leverages  the  collaboration  of
edge nodes with limited resources,  such as  computation,  storage,
and  bandwidth,  to  reduce  the  delay  and  energy  consumption  in
the process  of  user  requests.  According to  the  proposed strategy,
the  state  space,  action  space,  and  reward  function  of  the  deep
reinforcement learning algorithm are set, and the decision of task-
processing place is made by using deep reinforcement learning. In
doing  so,  we  can  solve  the  problem  of  not  being  able  to  use
traditional heuristic algorithms in time-delay-sensitive scenes due
to their high complexity.

To verify the feasibility and efficiency of the strategy proposed
in this  paper,  the  influences  of  two different  network parameters
on the strategy are explored, and two traditional cooperative task-
processing  methods  are  compared.  The  experimental  results

reveal  that  the  strategy  proposed  in  this  paper  can  effectively
reduce  the  system  task-processing  delay  and  reduce  the  system
energy  consumption  to  a  certain  extent.  Experimental  results
further  show  that  our  algorithm  performs  better  than  baseline
approaches  in  terms  of  reducing  the  service  access  delay  of  user
requests  and  the  energy  consumption  of  IoT  devices  in  edge
networks.
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