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ABSTRACT
Lithium-ion batteries are becoming critical flexibility assets in future electric power systems. Batteries can arbitrage price differences
in wholesale electricity markets to make a profit while at the same time reducing total system operating costs and improving renewable
energy integration.  However,  lithium-ion batteries  have a limited lifetime due to  capacity  degradation,  and one battery  pack can
only  make  a  limited  profit  before  reaching  its  end-of-life.  In  this  paper,  we  screen  the  profit  potential  of  Lithium iron  phosphate
(LFP), nickel manganese cobalt (NMC), and lithium nickel cobalt aluminum oxides (NCA) batteries in all nine wholesale electricity
markets in North America. We apply a systematic dynamic valuation framework that finds the highest revenue potential for the con-
sidered lithium-ion battery project subjecting to its degradation mechanism, while the degradation model used in the valuation is
derived based on real lab test data over varying cycle conditions. The study found that battery valuation depends largely on battery
technology  and  storage  duration  and  varies  across  operational  locations.  Moreover,  the  study  revealed  that  calendar  life  has  a
greater impact on battery valuation than cycle life for an 8-years calendar life scenario while cycle life shows greater impact for a
15-year  calendar  life  scenario  for  all  battery  technologies.  This  impact  is  more  pronounced in  LFP than in  NMC and NCA.  The
study recommends battery operators consider strategies that would maximize a longer cycle life or calendar life usage of a battery
as this would accumulate higher profits over its lifetime.
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U ntil  a  significant  breakthrough  is  achieved  in  the  cost  of
battery energy storage systems (BESS), efficient strategies
that  guarantee  its  economical  operation  in  grid  services

remain the most viable option. In most regions of the world that
have deregulated power systems, the participation of BESS in elec-
tricity  markets  is  a  must  to  accommodate  heavy  penetrations  of
intermittent  renewable  power  generation  and  is  more  dominant
than transmission investments[1]. Understanding the value of vari-
ous BESS technologies through market participation is critical for
investments and market planning.

In  deregulated  power  systems,  private  entities  deploy  BESS  to
earn  profits  by  strategically  operating  the  battery  in  electricity
markets[2,3]. Naturally, the cost of battery cells is the most compelling
factor  for  planning  a  BESS  project[4].  Yet,  the  cell  cost  becomes
sunken  after  the  BESS  investment  decision  and  should  not  be
considered in the BESS operation[5]. Due to the absence of fuel cost,
a  BESS  market  operation  strategy  should  consider  the  internal
technology  characteristics,  including  efficiencies  and  degradation
rates,  and the external  market environment.  Moreover,  as it  is  in
most  deregulated states,  investments  risks  on generation facilities
are shifted to the suppliers rather than to the customers as in reg-
ulated  systems  because  the  regional  transmission  organizations
(RTO)  or  the  independent  system  operators  (ISOs)  use  markets
conditions to determine which generation plant is a better option
at  that  point  in  time.  Therefore,  a  storage  participant  who  is  an
important supplier in such markets should understand the market-
price  determining  condition  and  factors  in  the  storage  planning
and operation.

While  battery  energy  storage  finds  various  applications  in

power  systems,  price  arbitrage  is  becoming  the  predominant
application,  especially  for  future storage deployments.  Other grid
services,  such as  frequency regulation or  operating reserves,  have
limited market capacity[6] and are not designed to balance renewable
energy  or  reduce  the  cost  of  electricity.  Hence  based  on  market
sizes  and  market  objectives,  future  storage  must  participate  in
energy  markets  and  provide  price  arbitrage  in  a  decarbonizing
power  system.  In  the  USA,  arbitrage  is  becoming  the  primary
application  for  storage.  A  recent  report,  EIA  report[7],  concluded
that  storage  applications  for  price  arbitrage  had  witnessed
unprecedented  growth.  The  report  noted  that  out  of  the  Unites
States’ 4600 MW capacity utility-scale battery in 2021, about 59%
went into price arbitrage which was a 17% increase from the value
in 2019 (Figure 1), and CAISO[8] mentioned that 80% of its battery
capacity  in  2021  alone  went  on  arbitrage.  This  provides  a  good
motivation for more research in arbitrage application for batteries
especially  as  this  is  likely  the  main  application  for  future  battery
deployments.

This paper conducts a forward-looking study on the valuation
of three commercial lithium-ion battery technologies in conducting
price  arbitrage  in  nine  wholesale  electricity  markets  in  North
America.  While  there  are  ubiquitous  models  in  the  literature
where the applications of BESS are specifically focused on energy
markets[9–14],  few  have  systematically  investigated  how  technology
characteristics and market environments would jointly impact the
economic value of a BESS project, especially considering capacity
degradation mechanisms in different BESS technologies. BESS has
negligible immediate operating cost while the impact from capacity
degradation  is  not  apparent  to  observe  but  has  a  long-lasting 
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impact  over  storage  lifetime  and  future  profit  potentials.  In  this
context,  this  paper  employs  a  systematic  valuation  framework
based  on  dynamic  programming  and  compares  three  types  of
commercial lithium-ion battery technologies using real degradation
test data and market price data.  The results reveal the locational-
specific economic value of various battery technologies which not
only guide future BESS deployments but also provide insights into
the development of potential long-duration storage technologies.

The remainder  of  this  paper  is  organized as  follows:  Section 1
presents  the  previous  related  work  from  the  literature,  Section  2
describes the implemented battery valuation framework, Section 3
discusses  the  price  data  and  battery  data  and  their  performance
metrics.  The  simulation  results  are  discussed  in  Section  4,  and
Section 5 concludes the paper.

1    Literature review
This section presents the characteristics of battery storage. We first
discuss the different types of lithium-ion battery technologies and
then  review  the  types  of  models  adopted  for  their  valuation  in
electricity markets.

1.1    Battery storage technology
The  major  component  of  BESS  is  made  of  electrochemical  cells,
which work on converting chemical potential (when charging) to
electrochemical  potential  (when  discharging).  There  are  many
battery technologies with varying design and operating character-
istics[15],  and  their  usage  depends  largely  on  the  application  for
which  the  battery  will  be  used.  Factors  to  be  considered  when
selecting a battery technology for a particular purpose include cost,
power density, energy density, longevity (calendar life), cell voltage,
temperature  tolerance,  etc.  Among  the  several  available  battery
technologies,  the  lithium-ion  (Li-ion)  battery  becomes  the  most
popular  battery technology for grid deployments in recent times.
It  has  many  advantages  such  as  lightweight,  high  density,  long
cycle life, low self-discharge rate, and stable voltage curve compared
to  lead  acid  or  nickel-based  batteries[16].  Also,  phosphate-based
lithium batteries are considered the safest and offer a higher maxi-
mum discharge rate than nickel-based and lead-acid batteries[17].

Lithium iron phosphate (LFP), lithium nickel cobalt aluminum
oxides  (NCA),  and  nickel  manganese  cobalt  (NMC)  have
emerged as  the most  commonly used[18] lithium-ion battery tech-
nologies.  While  these  batteries  have  fully  capable  of  providing  a
wide  range  of  grid  services,  there  is  a  serious  concern  about  the
limited  lifetime  of  Li-ion  batteries  because  of  capacity
degradation[19],  which  consequently  limits  the  life-cycle  value  and
revenue  potentiality  of  a  battery  pack  before  its  end-of-life.  The
end-of-life  of  lithium-ion  batteries  is  usually  defined  as  when  a
battery  is  degraded  to  60%  to  70%  of  its  rated  capacity.  At  this
point, the battery will no longer be safe or economical to operate

due  to  accelerated  capacity  loss  and  impedance  increase[20].
Research is ongoing on how to develop new battery technologies,
to  improve  the  performance  of  existing  ones  and  make  them
cheaper  than they are  now.  Yet,  in  this  paper,  we focus  on these
three  commercial  Li-ion  battery  technologies:  LFP,  NMC,  and
NCA,  with  the  scope  to  screen  their  economic  value  in  North
American wholesale electricity markets.

1.2    Lithium-ion battery models in electricity market studies
Battery valuation in power systems for energy arbitrage and ancil-
lary  services  has  been  studied  in  the  literature[21–24].  One  such
study[23] shows  that  the  operational  value  of  battery  storage
increases with an increase in renewable penetration in the energy
market.  Also,  a  similar  study[21] determines  the  value  of  energy
storage  arbitrage  across  European  markets  and  found  that  the
value of  energy storage becomes reduced as  the  market  becomes
more efficient with storage integration. Studies have also revealed
that the economic value of battery storage could further be incen-
tivized by analyzing and incorporating the historical prices of the
energy  market  in  the  valuation  process[25].  This  means  that  there
are  yet  many  untapped  values  in  the  storage  participating  in  the
electricity  markets  and  further  research  is  needed  to  explore  all
possible  options  to  earn  higher  economic  values  for  the  storage.
Besides,  studies  are  confirming  that  trade-offs  between  revenue
and  energy  storage  lifetime  could  be  achieved  by  changing  the
operational  pattern  of  the  storage[11, 26, 27].  Specifically,  increasing
cycle life and calendar life of a battery has been found to critically
affect the total revenue potential in the present worth[11].  Also, for
bulk distribution storage deployed in the UK grid, times duration
of 6 hours and 24 hours have proven to have a strong impact on
both the system value and market value, respectively [28].

Researchers  have  employed  models  of  various  complexities
to  study  the  economic  value  of  Li-ion  batteries  in  grid
applications[29, 30]. To maximize the operational revenues or to eco-
nomically  optimize  the  sizing  and  placement  decisions  of  Li-ion
batteries  in  grid  applications,  optimization models  include short-
term  and  long-term  operation  of  the  batteries  as  well  as  certain
constraints associated with market opportunities[31–36]. The simplest
model for evaluating battery economic performance is the energy
throughput[37], but has the limitation of not being able to accurately
model  capacity  degradation  caused  by  different  cycle  ranges  or
state-of-charge  levels[38, 39].  Prior  studies  that  compare  various
degradation models  have concluded that more accurate degrada-
tion models provide higher life-time revenue but also require sig-
nificantly more computing power[38–41].

More  importantly,  the  degradation  effect  also  affects  battery
valuation, it limits the battery’s value over its lifetime due to cycle
and  calendar  degradation[20, 39, 42].  Strategic  models  as  approximate
models can significantly reduce the losses through co-optimization
of degradation with storage arbitrage and ancillary services leading
up  to  36%  profit  improvement[42].  In  contrast,  studies[33, 43, 44] that
consider more accurate operation scenarios and battery parameters
often  overlook  the  particular  technology  of  lithium  battery
adopted  and  the  associated  complex  degradation  mechanisms.
Clearly, there are limited works in the literature that have critically
evaluated the values of lithium-ion batteries in the energy market,
most especially considering battery technology parameters, market
arbitrage price, and market locations. This study identifies and fills
those gaps.

1.3    Contribution highlights
While many studies considered grid revenue services and revenue
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streams  of  storage  in  battery  storage  valuations,  they  ignore  the
revenue potential  of  storage  in  different  wholesale  markets,  con-
sidering  sizes  of  generation  mix  that  significantly  impact  the
operational  modes  of  the  storage.  Moreover,  the  literature  lacks
studies that directly compare the valuation potential of the popular
lithium battery technologies in wholesale markets while considering
cycle  degradation  and  calendar  degradation.  To  this  effect,  the
contribution in this study are highlighted as follows:
●      The  study  implements  a  dynamic  valuation  framework  that

finds  the  highest  revenue  potential  of  battery  energy  storage
in arbitrage applications considering storage duration.

●      The proposed valuation framework is applied to three lithium
battery  technologies,  LFP,  NMC  and  NCA,  and  rigorously
compares their relative performance.

●      The framework is tested in all nine wholesale electricity mar-
kets in North America so that the performance of each battery
technology is  screened  across  all  the  locations  using  the  his-
torical real-time locational marginal price or zonal price.

●      The framework considered cycle and calendar degradation of
each battery technology to ensure the accuracy of the battery
valuation results.

●      The study quantitatively  measures  and compares  the impact
of a small increase in cycle life and calendar life separately in
the  marginal  value  of  lifetime  improvements  in  terms  of
increase in battery valuation for each technology.

2    Battery technology valuation framework

2.1    Dynamic valuation formulation
The  study  adopts  a  systematic  dynamic  valuation  framework[45]

(see Figure  2)that  finds  the  maximum  revenue  potential  of  the
lithium battery project when subjected to its  degradation mecha-
nism.  The  valuation  framework  adopts  dynamic  programming
and records the opportunity value function of the battery state-of-
health  (SoH),  which  represents  the  expected  revenue  the  battery
could  collect  throughout  the  rest  of  its  lifetime,  after  which  the
battery  can  no  longer  perform  price  arbitrage,  given  the  current

SoH. The strategy ensures that the battery is optimized according
to the daily revenue income and cost of degradation. This valuation
framework is recursively defined as follows

Vn(En) := max
pn∈P(En+1)

On(pn)+ γVn+1(En+1) (1)

En+1 = En−Dcyc(pn)−Dcal (2)

Vn

n On

pn n γ
En+1

n n+ 1
pn ∈ P(En+1)

En+1

En+1

n+ 1 En n
Dcyc(pn)

Dcal

in which  represents  the economic opportunity value of  the
remaining battery capacity over day ,  represents the daily rev-
enue,  is  the  battery  operation profile  over  day ,  and  is  the
daily discount ratio.  is the remaining battery capacity (SoH) at
the  end  of  day  (also  the  start  of  day ).  Constraint

 represents that the storage operation depends on the
battery  energy  capacity  which  we  treat  as  a  variable  in  this
framework to model the impact of degradation. Eq. (2) models the
degradation  model,  the  energy  capacity  at  the  beginning  of
day  equals  to  the  capacity  from  day  minus  the  cycle
degradation  which  depends  on  the  storage  operation
profile, and the calendar degradation . Appendix Al shows the
complete  formulation  of  the  valuation  framework  used  in  this
study.

2.2    Synthesis of battery economic value

Dcyc

P(En+1)

On

We  synthesize  the  economic  value  of  batteries  using  historical
electricity  price  data.  We  use  in  Eq.  (2)  to  model  the  cycle
degradation  mechanism  of  different  battery  technologies. 
models battery operation parameters such as efficiency and power
ratings, and the electricity price data goes into . We perform the
valuation for each calendar year to capture the annual variation of
battery value. Because batteries have a calendar life of around eight
years and that one year of price data is not enough to capture the
value of the full battery lifetime, we use a resampling approach in
which we repeat the annual price profile to the same length of the
battery  calendar  life.  In  this  way,  we  calculate  the  full  economic
value of the battery lifetime, assuming electricity prices follow the
same pattern in  the  target  year.  Therefore,  we calculate  a  unique
battery economic  value  for  each  combination of  battery  technol-
ogy,  energy  duration,  location,  and  calendar  year.  Appendix  A3
describes the detailed battery value synthesis procedure, including
a  piece-wise  linear  approximation  method  to  solve  the  dynamic
programming storage valuation problem.

3    Data description

3.1    Electricity market data description
The major data used for the simulation in this study are the ISO
energy price  data  collected across  some of  the locations or  zones
of  all  nine ISO/RTOs in North America,  shown in Figure 3.  We
select zonal or locational price data based on the availability of the
price data in different markets. Details about the data prices from
each location are itemized below.
●      CAISO: The  California  Independent  System  Operator

(CAISO)  has  three  locations.  The  locations  include  Walnut,
Westlands,  and  Whitmore.  All  three  locations  have  been
selected  for  this  study,  and  the  duration  of  the  price  data  is
between 2016 and 2021.

●      AESO: The Alberta Electric System Operator (AESO) provides
a single  system-wide price.  The AESO price  data  duration is
between 2010 and 2021.

●      IESO: The  Independent  Electricity  System  Operator  (IESO)
maintains  system-wise  pricing  like  AESO.  The  data  used  is
between 2011 and 2021.
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Fig. 2    The  dynamic  battery  valuation  framework.  This  framework  works
backward and keeps updating a value function to battery SoH. This function
represents the value of the remaining battery SoH from the end of the current
operating  day  till  the  project  deadline,  at  which  the  battery  has  no  more
arbitrage value. On each operating day, the battery is optimized according to
daily  revenue  income  and  the  change  in  the  battery  SoH,  based  on  a  cycle
degradation  model.  The  result  of  this  optimization  is  assembled  into  the
new  battery  future  value  function,  and  this  framework  works  recursively
backward to evaluate the battery lifetime across the entire project duration.
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●      ERCOT: The Electric Reliability Council  of  Texas (ERCOT)
provides  East  and  West  zonal  price  data.  Both  zones  have
been  considered  for  this  study  with  price  data  set  ranges
between 2013 to 2021.

●      NYISO: Four  price  zones  are  chosen  from  the  New  York
Independent System Operator (NYISO):  LONGIL, NORTH,
WEST, and NYC. All  four zones have their  price data range
between 2010 to 2021.

●      SPP: The South West Power Pool (SPP) provides North and
South  zonal  prices.  The  range  of  the  data  used  is  between
2011 and 2021.

●      ISONE: Only  one zonal  price  node (Boston)  is  used for  the
Independent  System  Operator  New  England  (ISO-NE)
because of low congestion within the system. The considered
data range from the year 2014 to 2021.

●      MISO: The  Mid-continent  Independent  System  Operator
(MISO)  operates  across  15  U.S.  states  and  the  Canadian
province  of  Manitoba.  Four  price  zones  are  included  in  this
study: Illinois,  Louisiana, Michigan and Minnesota.  The data
from MISO range from 2014 to 2021.

●      PJM: The  PJM  stands  for  Pennsylvania,  New  Jersey,  and
Maryland. Price nodes in PJM are collected from PENELEC,
JCPL, AECO, RTM and PEPCO from the year 2014 to 2021.

Furthermore, we present the percentage system energy genera-
tion by type for all nine ISOs in 2020 in Table 1. The table highlights
the energy share by percentage of some selected generation types.
There  are  other  energy  type  such  as  geothermal,  biomas/biogas,
GAS-CC,  etc  which  are  not  reported  here  because  they  are  not
peculiar to all nine ISOs. However, the report shows total generation
reported at the end of year 2020, thus an increase/decrease within
the previous or year after is not reflected.

3.2    Battery model and data description

3.2.1    Cycle life

Table  2 shows the  equivalent  full  cycle  (EFC) of  LFP,  NMC and
NCA upon reaching 80% capacity under different cycling condi-

tions from lab cell tests[46]. One EFC means the battery cumulatively
charged and discharged energy equal to its rated energy capacity.
The table shows that the cycle life of all three battery technologies
decreases  with  wider  cycle  ranges.  At  all  cycling  conditions,  LFP
has significantly higher EFC than NMC or NCA.

3.2.2    Power degradation

Our study does not model the impact of storage power over battery
degradation or the impact of degradation over the storage power
rating. Our study solely focuses on grid-scale storage with a C-rate
ranging from 0.25 (4-hour duration) to 1 (1-hour duration), while
recent  real-world  deployment  data  shows most  grid-scale  battery
storage  projects  are  with  4-hour  durations[8].  On  the  one  hand,
data  from  battery  degradation  experiments[46, 47] have  shown  that
power variation under low C-rates has negligible impacts on battery
degradation  rate.  On  the  other  hand,  the  low  C-rate  power  will
also not be impacted by power degradation.

3.2.3    Round trip efficiency

The  round-trip  efficiency  (RTE)  is  the  ratio  of  the  discharge
energy to the charge energy of the storage, which also reduces as
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Fig. 3    Location of the nine ISO/RTOs in the United States.

 

Table 1    Percentage system energy generation by fuel type in 2020

ISO
Energy type/percentage share

Wind Solar Hydro Nuclear NG/oil Coal

CAISO 8 15 10 9 48 0

AESO 13 4 6 0 46 16

SPP 29 0 4 2 39 24

ERCOT 23 4 0 11 43 18

MISO 3 0 3 9 45 36

IESO 9 2 24 57 6 0

PJM 3 1 2 34 38 38

NYISO 5 1 23 29 43 0

ISONE 3 3 7 27 46 1
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the battery degrades [48,49]. The RTE of the three considered battery
technologies  when  new  and  at  the  80%  SoH  are  included  in
Table 2. The LFP presents a higher RTE than NMC and NCA at
all  cycling  conditions.  Also,  the  LFP  technology  has  its  RTE
unchanged  when  its  capacity  decreases  from  the  initial  value  to
80%. The modeling of  the change in the efficiency of  the battery
with respect to this study is described in Appendix A2.

3.2.4    Calendar life

The calendar life of a battery describes its  degradation over time,
while the cycle life describes the degradation of the battery due to
charge/discharge  action.  The  calendar  life  likely  determines  the
lifetime  of  a  battery  cycled  less  frequently[11, 50].  While  our  data
source for cycle life and efficiency did not provide explicit data on
the calendar life, we assume the battery technologies have a calendar
life between eight years to fifteen years to reach 70% of remaining
capacity at 25 Celsius, estimated based on relevant literature[51,52].

3.2.5    Storage duration

Another  important  battery  metric  is  its  storage  duration.  The
storage duration is  the time storage takes  to  fully  discharge at  its
rated power capacity. For example, a 1 MW battery power capacity
can  provide  1  MW  discharge  power  for  2  hours  if  its  energy
capacity  is  2  MWh.  It  is  necessary  to  consider  the  right  storage
duration for specific applications given high cost of battery cells[53].
In this study, we select one-, two-, and four- hour storage duration
for each battery technology to study the impact of duration across
all ISO locations or zones.

4    Results
This section presents the simulation results and compares battery
economic values across location, duration, and technology.

4.1    Synthetic battery value results
We compare battery technology valuation results  across  the nine
system operators. Figure 4 shows the valuation result for 4-hour, 2-
hour and 1-hour batteries assuming eight or fifteen years of calendar
life. Each bar represents the average battery value over all sampled
years  and locations  from the  same ISO/RTO,  whiskers  represent
the  minimum  and  maximum  values  across  sampled  years  and
locations from each ISO/RTO.

Figure 4 shows that the battery value varies significantly for dif-
ferent  technologies  in  the  same  market  and  also  for  the  same
technology  in  different  markets.  For  all  battery  technologies,
AESO,  ERCOT,  CAISO,  NYISO,  and  SPP  recorded  the  top  five

valuations.  These five ISO/RTOs also have higher shares of wind
and  solar  generation  compared  to  others.  LFP  yields  the  highest
valuation  due  to  having  a  significantly  higher  cycle  life,  while
NMC produced higher values than the NCA. Given that the costs
of all three battery technologies are similar[54], the results recommend
LFP as the best technology for building grid-scale energy storage.

Conversely,  NMC  and  NCA  still  achieved  considerable  value,
around  50%  compared  to  LFP,  although  their  cycle  life  is  only
around  20%  of  LFP.  This  result  suggests  a  saturation  effect  in
storage  cycle  life  that  the  value  added  from  higher  cycle  life
diminishes. The duration of  energy storage shows a similar satu-
ration effect. While a longer duration provides more storage value
per kW  of  power  capacity,  the  increments  in  value  are  not  pro-
portional to the duration increase.

We further  compare Figures  4(a) and 4(b) to  see  the  effect  of
range in battery calendar life on its valuation assuming 70% of the
battery  capacity  remains  between the  calendar  life  of  8–15  years.
By extending the calendar life of the batteries from eight years to
fifteen years, there is about a 45% increase in storage value in LFP
and about 30% each in NMC and NCA. Similar trend is observed
for the 2-hour duration batteries (Figures 4(c) and 4(e)) as well as
the  1-hour  duration  batteries  (Figures  4(d) and 4(f)).  However,
this may not be the case if the battery is cycled more frequently in
the fifteen years case than in the eight years case. Thus, we recom-
mend  that  storage  operators  design  their  battery  operational
strategies in such a way that would guarantee longer life usage of
the  battery  as  this  would  accumulate  higher  profits  over  its
lifetime.

Furthermore, Figure  4 shows  that  a  trade-off  option  exists
between calendar life and storage duration. For example, the valu-
ation recorded in the 2-hour duration/15-year calendar life storage
in Figure 4(e) is  almost at  par with the values recorded in the 4-
hour duration/8-year calendar life storage in Figure 4(a). Also, the
2-hour/8-year calendar life case (Figure 4(c)) is almost at par with
the 1-hour/15-year calendar life  case (Figure 4(f)).  Moreover,  the
valuations in the 2-hour/15-year calendar (Figure 4(e))  are about
twice the valuation results in the 1-hour/8-year calendar life case,
Figure  4(d).  This  shows  that  both  storage  duration  and  calendar
life significantly contribute to battery valuation and it is possible to
trade off one for the other for higher storage valuation. Finally, the
value  comparisons  across  markets  are  different  across  battery
technologies and duration due to battery technologies having dis-
tinct  cycle  degradation  mechanisms:  the  LFP  battery  has  stable
cycle life across all cycle depth ranges. In contrast, NMC and NCA
batteries have significantly higher degradation rates at deep cycles,
as shown in Table 2. These results suggest the importance of con-
sidering  the  unique  combination  of  market  price  behaviors  and
storage degradation mechanisms in the storage valuation process.

4.2    Comparative analysis of battery duration
In Figure 5, we show the ratios of battery valuation between hour
duration for  all  three  battery  technologies.  We compare  the  per-
formance  of  the  batteries  across  all  locations  with  respect  to  the
duration  of  their  operations.  The  trends  in  the  figure  depict
valuations in the 1-hour duration exceed 55% of the valuations in
the  4-hour  duration  for  all  three  battery  technologies  and  across
zones except for LFP and AESO where it is about 42%. Similarly,
valuations  recorded  in  the  2-hour  duration  are  in  the  average  of
80% of  the  values  recorded in  the  4-hours  duration for  all  zones
except  for  AESO,  which  has  about  72%.  A  cross-comparison
between the 1-hour and 2-hour duration valuation to the 4-hour
duration shows that there is a 25% gain in profits by increasing the
time of participation of any of the batteries from 1-hour to 2-hour.
We  further  analyze  that,  irrespective  of  the  zones  of  operation,

 

Table 2    EFC  and  RTE  of  three  lithium  battery  technologies  at  different
cycling conditions [46]

Cycle range EFC to 80% SoH RTE (100% SoH) RTE (80% SoH)

40%−60% 7795

LFP 20%−80% 7192 97 97

0−100% 6369

40%−60% 2056

NMC 20%−80% 1554 95 95

0−100% 390

40%−60% 1428

NCA 20%−80% 605 91 87

0−100% 143
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there are no significant valuation benefits based on time duration
differences if an operator switches from one battery technology to
another.

4.3    Marginal value of lifetime improvements
We study the impact of an increase in the battery lifetime on the
battery value. In the simulation, we increase the battery lifetime in
two ways:
●      Increase  the  cycle  life,  the  number  of  cycles  the  battery  can

perform over its entire life.
●      Increase  the  calendar  life,  the  period  after  which  the  battery

has reached its end-of-life.
We increase the cycle life and the calendar life of the battery by

1%  of  its  nominal  characteristics  and  re-calculate  the  value  for
each technology. We then calculate the percentage increase of the
battery valuation due to the change in the cycle life and calendar
life. This is performed for the four areas belonging to the NYISO
operator (NYC., LONGIL, WEST, NORTH) and all battery tech-
nologies; see Appendix A5.

The average increase across the four locations of the NYISO for
the three battery technologies is depicted in Figures 6(a) and 6(b)

for 8  years  of  calendar  life  and  15  years  of  calendar  life,  respec-
tively. Figure  6(a) shows  that,  for  an  8  years  calendar  life,  an
increase  in  calendar  life  has  a  greater  effect  on  battery  valuation
than cycle life with the same percentage increase in both. Indeed, a
1% increase in calendar life resulted in nearly 0.45% for NCA and
above 0.50% for LFP. Besides, due to a 1% increase in cycle life, an
approximate  0.40%  is  observed  for  NMC  and  NCA,  and  only
about 0.38% increase is observed in LFP. The performance of LFP
is  observed  to  surpass  other  technologies  here  with  a  greater
impact  due  to  calendar  life  than  cycle  life  compared  with  NCA
and  NMC. Figure  6(b) revealed  that  the  impact  of  cycle  life
becomes more significant for a battery of longer calendar life. The
impact  of  cycle  life  is  more  than 50% greater  than the  impact  of
calendar life on battery value for the 15 years calendar life case in
LFP and NMC, and it is about 20% in NCA. Without loss of gen-
erality, we could imagine what would be the difference in battery
valuation if the increased margin were to be around 10%, 50%, or
100%.  According  to Table  2,  each  battery  technology  has  a  full
cycle capacity limit based on cycling conditions. This means that,
for optimal operation of the batteries, there is a limitation to what
extent the cycle life could be ranged[46].  Based on this observation,
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Fig. 4    Synthesis of battery value estimation per kW battery storage capacity assuming: (a) 4-hour duration/8-year calendar life, (b) 4-hour duration/15-year calendar
life, and (c) 2-hour duration/8-year calendar life, (d) 1-hour duration/8-year calendar life, (e) 2-hour duration/15-year calendar life, (f) 1-hour duration/15-year calendar
life.
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we  conclude  that  increasing  the  calendar  life  of  the  battery  has
more  impact  on  the  battery  value  than  increasing  the  cycle  life
within  a  certain  calendar  life.  Beyond  this  value  of  calendar  life,

the  cycle  degradation  becomes  more  significant  than  calendar
degradation,  provided  the  increase  is  by  the  same  percent.  In
addition, an improvement of the battery value also depends on the
technology:  increasing the  calendar  life  has  more  impact  on LFP
value than it is on NCA and NMC at lower calendar life, and an
increase in cycle life has more impact than an increase in calendar
life on both LFP and NMC than in NCA.

5    Conclusions
In  this  study,  we  investigated  the  economic  value  of  three
commercial  lithium battery technologies  (LFP,  NCA, and NMC)
across all nine wholesale electricity markets in North America. We
adopted a systematic dynamic valuation framework that finds the
highest revenue potential of each battery technology subjecting to
its  unique  degradation  mechanisms  for  different  storage  energy
duration. We further examined the impact of increased cycle and
calendar life on battery valuation and then quantitatively measured
the  differences  across  the  three  battery  technologies.  We  found
that valuation results highly depend on battery technology, opera-
tional  location,  and  storage  capacity.  We  also  observed  clear
diminishing effects  in  battery  cycle  life  and  calendar  life  incre-
ments, in which the marginal benefit of increasing storage lifetime
reduces.

The  study  confirms  that  LFP  produces  the  highest  economic
value and surpasses the other two technologies by significant mar-
gins.  When  assuming  15  years  of  calendar  life,  the  average  LFP
valuation results at AESO and ERCOT surpassed ＄400/kW, fol-
lowed by CAISO, which falls slightly below ＄400/kW. Given that
the current system cost for building 4-hour LFP utility-scale battery
storage is around ＄400/kW[54], our result suggests that LFP battery
projects  provide  positive  investment  return  only  through  energy
markets in these three markets, and the profit potential will likely
to increase in the future as renewable penetration deepens. While
we may not generalize the findings from this study,  we believe it
can  help  battery  operators  and  investors  participating  in  North
American electricity markets make future economic decisions on
which  battery  technology  is  most  appropriate  for  a  particular
market,  given  the  storage  capacity  and  project  lifetime.  Another
important recommendation from this work is that, because storage
can potentially maximize profit from the price arbitrage market, it
is expected that more storage would participate in the future mar-
ket. Flexible policies should be on the way to ease the participation
of  storage  in  price  arbitrage  and  increase  the  grants  on  research
for  storage-related  studies  to  better  improve  the  performance  of
the current technology”.

Appendix

A1    Valuation formulation
The battery valuation formulation follows a dynamic programming
approach which is recursively defined. The dynamic programming
formulation uses a piece-wise linear value function approximation
approach to model the value function of storage SoH. The valuation
problem has the following indexes:

n ∈ {1, . . . ,N}
N= 3650

●        is the index of the valuation days. For example,
a 10-year valuation duration equals to  days.
t ∈ {1 . . . ,T}

T= 24

●        is  the  index  of  the  operation  intervals  same  as
the  energy  market  clearing  frequency,  which  is  one  hour  in
this study ( ).
i ∈ {1, . . . , I}●        is the index of the piece-wise linear degradation
value  function  approximation  segments.  In  this  paper,  we
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Fig. 5    Ratio  of  average  battery  valuations  between  hour  duration  for  each
technology for all zones (a) LFP, (b) NCA, and (c) NMC.
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I= 31

assume  the  battery  reaches  end-of-life  at  70%  remaining
capacity  and  samples  the  value  function  every  1%,  hence

.
j ∈ {1 . . . , J}

J= 3

●        is  the index of  the piece-wise linear degradation
model  approximation  segments.  All  degradation  models  in
this paper have three segments ( ).

Parameters in the valuation problem include
λn,t t n●        is the electricity price over time period  on day , unit in
＄/MWh.
γ●        is the daily discount ratio.
vs
i,n n

i
●        is the opportunity value of the battery at the end of day 

and SoH segment , unit in ＄.
Es

i i●        is the storage capacity in MWh of the SoH segment .
P

MWh

●        is  the  storage  power  rating,  defined  as  the  maximum
energy  that  can  be  charged  or  discharged  over  one  time
period, unit in .
σd
j j●        is the normalized cycle depth range over segment .

δd
j

j
●        is  the  degradation  rate  in  unit  MWh/MWh  (MWh  of

capacity loss per MWh of discharge power) over segment .
η(Es

i )

Es
i

●        is  the  charge  and  discharge  efficiency.  We  model  the
efficiency  as  a  parameter  dependent  on  the  storage  state  of
health .
Dcal●        is  the capacity loss due to calendar degradation per day,
unit in MWh.

Variables in the valuation problem include
pn,t t n●        is the storage discharge power over time period  on day ,
unit in MWh.
qn,t t n●        is the storage charge power over time period  on day ,
unit in MWh.
un,t un,t = 1

t n
●        is a binary variable,  means storage is in discharge

mode over time period  on day .
pd
n,t,j j●        is the segment discharge power for cycle depth segment ,

unit in MWh.
qd
n,t,j j●        is  the  segment  charge  power  for  cycle  depth  segment ,

unit in MWh.
ed
n,t,j j●        is  the  energy  stored  in  cycle  depth  segment ,  unit  in

MWh.
E●        is  the  storage  energy  capacity  at  the  end  of  the  operating
day, unit in MWh. It is a variable because the energy capacity
is updated based on the degradation model.
v●        is the opportunity value of the remaining storage capacity,
unit in ＄ .  It is a variable used in the piece-wise linear value
function approximation model.

s

d

Note the superscript  represents symbols are auxiliary param-
eters or variables for the piece-wise linear dynamic programming
value function approximation model; the superscript  represents
symbols  are  auxiliary  parameters  or  variables  for  the  piece-wise
linear cycle degradation model.

The valuation  framework  follows  a  recursive  dynamic  pro-
gramming formulation with the following objective function

vs
i,n−1 := max

T

∑
t=1

λn,t(pn,t−qn,t)+ γv (A1)

v
n+ 1

vs
i,n−1

i ∈ {1, . . . , I}, n ∈ {1, . . . ,N}

The objective function maximizes the daily value of the storage,
including  arbitrage  revenue  (first  term  of  the  objective  function)
and  the  opportunity  value  of  the  remaining  battery  capacity 
throughout  day  to  the  end  of  the  project.  The  maximized
objective value represents the opportunity value of the storage and
is stored in . Note that because we sample the storage oppor-
tunity value for all SoH segments and days, the objective function
is defined for all .

iWe discretize the storage SoH into segments indexed by  and

Es
i

vs
i,n

sample  the  storage  capacity  opportunity  value  for  each  segment.
The following constraint defines the piece-wise linear value function
approximation based on pairwise SoH samples  and the corre-
sponding storage opportunity value 

v⩽ vs
i,n+(vs

i,n− vs
i+1,n)

E−Es
i

Es
i −Es

i+1
(A2)

P un,t

The  storage  charge  and  discharge  power  are  limited  by  the
storage  power  rating ,  enforces  the  storage  cannot  charge
and discharge at the same time

0⩽ pn,t ⩽ Pun,t (A3)

0⩽ qn,t ⩽ P(1−un,t) (A4)

The following constraint models the cycle-based battery degra-
dation model and its impact on the capacity fade.

E= Es
i −

T

∑
t=1

J

∑
j=1

δd
j pd

n,t,j−Dcal (A5)

ed
n,t,j = ed

n,t−1,j+qd
n,t,jηt(Es

i )−pd
n,t,j/ηt(Es

i ) (A6)

0⩽ ed
n,t,j ⩽ σ jE (A7)

pn,t =
J

∑
j=1

pd
n,t,j, pd

n,t,j ⩾ 0 (A8)

qn,t =
J

∑
j=1

qd
n,t,j, qd

n,t,j ⩾ 0 (A9)

E
Es

i

η(Es
i )

Es
i

E

We employ a  piece-wise linear degradation model  to approxi-
mate the nonlinear cycle degradation rate[55].  Eq. (A5) models the
daily storage capacity degradation, in which the storage capacity at
the  end  of  the  day  is  calculated  based  on  the  sampled  storage
capacity  at  the  start  of  the  day  minus  the  cycle  degradation
component,  which  is  the  sum  of  the  degradation  rate  from  all
cycle depth segments and all period; and the calendar degradation
component, which is a constant. Eq. (A6) models the energy evo-
lution in each cycle depth segment. The storage efficiency  is
dependent on the storage state of health , which we model as a
look-up  table  at  the  beginning  of  each  operating  day.  Eq.  (A7)
models  the  lower  and  upper  cycle  depth  segment  energy  limit,
note  that  the  upper  limit  is  defined  based  on  the  storage  final
capacity . Eq. (A8) and Eq. (A9) model that the storage charge or
discharge power is the sum of all segments.

A2    Efficiency variation
ηR

ηR
0 ηR

100

ηR
t Dst

ηR
0 ηR

100 Ds0 Ds100
ηR
t Dst

ηR
t ηt

Since the RTE,  changes during the cycling operation of the bat-
tery, the RTE of the current cycle condition differs from the previous
value. To model the current RTE, we interpolate between the RTE
at 0% and 100% efficiencies (  and ). So that the current RTE
( )  is  calculated  at  the  current  cycle  depth,  as  in  Eq.  (A10).
Since , ,  and  are known, we can interpolate to cal-
culate  corresponding to .  So after every complete cycle,  we
calculate the new , we then calculate the single trip efficiency, 
using  Eq.  (A11).  This  would  now  be  the  efficiency  input  in  Eq.
(A6).
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ηR
t = η100−

(ηR
100−ηR

80)(Dst−Ds0)
(Ds100−Ds0)

(A10)

ηt =
( ηR

t

100

) 1
2 (A11)

A3    Battery value synthesis
We derive the battery value using location-specific price data and
technology-specific  battery degradation models.  Since we assume
an eight or fifteen-year calendar life of the batteries, we need suffi-
ciently  long  price  profiles  to  fully  capture  the  total  opportunity
value of the battery capacity. To capture the annual variations and
provide a range of historical battery values, we employ a price re-
sample approach in which we repeat a single-year price data eight/
fifteen  times  to  generate  an  eight/fifteen-year  price  profile  that
meets the battery calendar life. Then we use this profile to perform
battery  valuation  to  obtain  the  battery  value  resulting  from  the
considered year. We repeat the valuation for all considered storage
technologies, arbitrage locations, and duration settings.  The valu-
ation framework has the following procedure.

δd
j

1. Update degradation model. Pick a battery technology (LFP,
NMC, or NCA), update  using the following equation[55]:

δd
j =


1
ησ j

(0.3
Mj
− 0.3

Mj−1

)
if j > 1

1
ησ j

(0.3
Mj

)
otherwise

(A12)

σ1 = 0.2 σ2 = 0.4 σ3 = 0.4

Mj

0.3
Mj

Based  on  the  degradation  cycle  test  data,  we  use  three  cycle
depth  segment  with , , ,  representing
cycle ranges 0 to 20%, 20% to 60%, and 60% to 100%, respectively.

 represents the number of equivalent full cycles the battery can
perform before reaching end-of-life. We place 0.3 in the numerator
representing the capacity loss to the end-of-life SoH of 0.7. Hence

 represents the capacity loss per equivalent full cycle.
2. Update price data. Pick one year of price data over a location

and year, repeat the yearly price profile eight/fifteen times to gen-
erate an eight/fifteen-year profile that outlives the storage calendar
life.

P
3. Update  storage  duration. Pick  a  storage  duration  and

update  accordingly.

n← N Es
i = 0.69+(0.01)i

vs
i,n = 0

i ∈ {1, . . . , I}

4. We start from the final day of the valuation horizon, initialize
,  (since  this  is  a  price-taker  valuation,

we  normalize  storage  capacity  to  1  MWh),  and  for  all
.

n5. Sample the storage opportunity value over day 
i← 1(a) Set ;

vs
i,n−1

i← i+ 1
(b)  Solve  the  optimization  problem  (3)  to  (11),  record ,

update ;
i I(c) If  equals , exit; otherwise go to Step (a).

n← n− 16. Update ;
n 07.  If  equals ,  go  to  Step  1  and repeat  with  new input  data;

otherwise, go to Step 2.
Es

i vs
i,n

n Es
i

vs
31,1

In the result, the pairs  and  therefore represent the storage
opportunity  value  over  day  with  a  remaining  capacity  of .
Moreover,  represents the value of a new battery at the start of
the valuation period, which is used in the battery value synthesis.
We repeat each year's price to perform the valuation based on the
valuation  function  in  (1)  and  the  associated  constraints.  For  the
valuation  results  in  each  zone,  we  obtained  the  bar  graphs  with

Vτ∗ ,β
z

Vτ∗ ,β
z ζτ,βz,H

ζτ,βz,L

Vτ∗ ,β
z ζτ,βz,L ζτ,βz,H

whiskers  shown  in Figures  4(a) and 4(b).  The  whiskers  tell  how
spread  the  valuations  are  from  the  average  values.  The  whiskers
are  calculated  from  the  mean  valuation, ,  maximum  and
minimum values of  to obtain what we call the error-high ( )
and  error-low  ( )  for  each  zone  as  given  in  (15)  and  (16)
respectively.  The  quantities ,  and  are  then  used  to
obtain the error bars presented in Section 4.1.

ζτ,βz,H = Vτ∗ ,β
z −min.(Vτ∗ ,β

z ) (A13)

ζτ,βz,L =max.(Vτ∗ ,β
z )−Vτ∗ ,β

z (A14)

A4    Comparative analysis
In  this  section,  we  describe  the  method  adopted  to  compare  the
performance  of  the  battery  technologies  across  all  nine  zones  as
presented in Section 4.2. To broaden our comparative analysis, we
adopt a ratio strategy to compare battery valuations between tech-
nologies and their respective storage capacities in all zones. In this
strategy, we expressed the ratios between storage duration, 1-hour
to 4-hour duration, and also, the 2-hour duration to 4-hour dura-
tion. These steps are performed across all nine zones.

z τ β
Vτ∗ ,β

n,z Z z ∈ Z
n

β ⊃

τ = [1,2,4]
V1∗ ,β

n,z

V4∗ ,β
n,z

V2∗ ,β
n,z

V4∗ ,β
n,z

τ∗

V4∗ ,β
n,z > V1∗ ,β

n,z V2∗ ,β
n,z ∀β ∀z ∈ Z

<

With reference to Eq.(1), the valuation function is repeated for
each  zone, ,  duration, ,  and  battery  technology  so  that  the
value,  is obtained for all zones,  (where ) for the oper-
ating  days  from  their  common  terminal  end  to  the  beginning
period of each project for the respective zones. Where  {LFP,

NCA,  NMC}  and .  We  compute  the  ratios  and

 as  percentage,  where  represents  time duration condition.

The quantity  is  always  (  or ); ,   so,  each
ratio is  100% as noted in Figurere 5(a)–5(c).

A5    Marginal value improvement analysis

l
l ∈ LNY

Vn,l

Vβ
n,l

Vb,β
n,l Va,β

n,l

Vm,β
n,l l

The marginal value analysis of the batteries is done to investigate
the impact of increasing cycle life and calendar life on the battery
valuation. Here,  we  discussed  how  we  arrived  at  the  results  pre-
sented  in  Section  4.3.  The  battery  valuation  function  in  (1)  is
computed  for  each  of  the  four  locations ,  belonging  to  NYISO
( ). The four operators in NYISO include NYC., LONGIL,
WEST and NORTH. Each battery valuation  is computed after
increasing the cycle life or calendar life of each battery technology
by 1%. Assuming each valuation  for  each battery technology
before and after the increment are  and , then the marginal
value,  for  location is defined in (17).

Vm,β
n,l = Va,β

n,l −Vb,β
n,l ;∀β (A15)

Vm,β
LNY =

1
LNY

L

∑
l=1

Vm,β
n,l

Vb,β
n,l

∗ 100%;∀β (A16)

Va,β
n,l

Ncyc

Ycal

LNY LNY = 4
Vm,β

LNY

Where  results  from  running  the  simulation  of  the  objective
function (1)  after  increasing by  1%,  the  parameter  (for  cycle
life  increase)  and  (for  calendar  life  increase).  The  percentage
marginal  valuation  for  the  zone  is  then  expressed  as  the  average
marginal  values  across  all  as  in  (18),  where .  The
quantity  is computed separately for cycle life and for calendar
life increased conditions.
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