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ABSTRACT
Electric  power  systems provide  the  backbone of  modern  industrial  societies.  Enabling  scalable  grid  analytics  is  the  keystone to
successfully  operating  large  transmission  and  distribution  systems.  However,  today’ s  power  systems  are  suffering  from  ever-
increasing computational burdens in sustaining the expanding communities and deep integration of renewable energy resources,
as well as managing huge volumes of data accordingly. These unprecedented challenges call for transformative analytics to support
the resilient operations of power systems. Recently, the explosive growth of quantum computing techniques has ignited new hopes
of  revolutionizing  power  system  computations.  Quantum  computing  harnesses  quantum  mechanisms  to  solve  traditionally
intractable  computational  problems,  which  may  lead  to  ultra-scalable  and  efficient  power  grid  analytics.  This  paper  reviews  the
newly emerging application of quantum computing techniques in power systems. We present a comprehensive overview of existing
quantum-engineered power analytics from different operation perspectives, including static analysis, transient analysis, stochastic
analysis, optimization, stability, and control. We thoroughly discuss the related quantum algorithms, their benefits and limitations,
hardware  implementations,  and  recommended  practices.  We  also  review  the  quantum networking  techniques  to  ensure  secure
communication of power systems in the quantum era. Finally, we discuss challenges and future research directions. This paper will
hopefully stimulate increasing attention to the development of quantum-engineered smart grids.
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G overnments across the world are reaching a consensus to
increase  the  use  of  renewable  resources  so  as  to  fulfill
their  countries’ ever-increasing  energy  demands.  For

instance, the U.S. federal government has recently been committed
to reducing greenhouse gas emissions 50−52 percent below 2005
levels in 2030, reaching a 100% carbon pollution-free power sector
by 2035, and achieving a net-zero economy by no later than 2050[1].
As an example of climate laws at the state level, New York State’s
Climate  Leadership  and  Community  Protection  Act  (Climate
Act)[2] has  set  a  series  of  nation-leading climate  targets,  including
the grid integration of 9 gigawatts of offshore wind power carbon
neutral economy by 2035, 6 gigawatts of distributed solar by 2025,
and 3 gigawatts of energy storage by 2030. Despite the tremendous
benefits of  decarbonization  and  emission  reduction,  intercon-
necting hundreds of gigawatts of renewables causes severe impacts
on the power grids, such as congested transmission and distribution
corridors,  and  weakened  power  grids  due  to  reducing  system
inertia,  widespread  intermittency  and  uncertainty,  compromised
situational  awareness,  and  destabilized  electricity  markets.  Two
major  challenges  have  contributed  to  this  worsening  situation:
(1) The state-of-the-practice computing capabilities of power grids
are unable to handle the gigantic volumes of data generated from,
and  commands  needed  by  the  real-time  operation  of  the  large
interconnected  grids[3, 4];  and  (2)  The  unprecedentedly  ultra-scale
computational  requirements  make  existing  analysis  algorithms,
from probabilistic  power  flow  to  electromagnetic  transients  pro-

gram  (EMTP),  unscalable  and  unable  to  offer  real-time,  high-
fidelity  results  needed  for  managing  massive  distributed  energy
resources (DERs) and ensuring resilient operations[5, 6]. Those chal-
lenges are further escalating as today’s  power grids are subject to
more  frequent  weather  events  and  targeted  by  malicious,  well-
equipped and motivated adversaries.

Recently,  the  successes  in  exploiting  the  potential  of  quantum
supremacy[7, 8] shed light on a ‘quantum leap’ of the computational
capabilities,  which  could  empower  an  unprecedentedly  resilient
power  system.  In  general,  the  representation  of  complex  power
systems' states on a classical computer scale exponentially with the
size  of  the  problem,  while  on  a  quantum  computer  they  scale
polynomially  in  theory.  Furthermore,  highly  entangled  states,
which are prohibitively difficult  for classical  computers to model,
can  be  readily  represented  on  a  quantum  computer[9, 10].  This
implies  that  those  intractable  power  system  problems,  which
remain formidable problems even solved on powerful and expen-
sive real-time  simulators  or  high-performance  computers,  if  for-
mulated  properly,  can  be  executed  much  more  efficiently  on
quantum computers. Quantum computing, however, is a double-
edged  sword.  An  immediate  concern,  for  instance,  is  that  the
advent  of  quantum  computers  will  invalidate  computational-
hardness  assumptions  that  underpin  the  data  security  schemes
being used in today’s power systems[11].

Inspired  by  the  aforementioned  challenges  and  opportunities,
since 2018,  the  Power  Systems  Laboratory  at  Stony  Brook  Uni- 
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versity has pioneered the research in Quantum-Engineered Smart
Grids (Quantum Grids, or QGrids, see Figure 1; the term Quan-
tum Grids originally came from our proposal to the National
Science  Foundation —P.  Zhang,  et  al.,  ASCENT:  Quantum
grid:  Empowering  a  resilient  and  secure  power  grid  through
quantum  engineering,  Proposal#  2023915,  February  2020).
The  quantum  grids  group  at  Stony  Brook,  including  power
engineers,  computer  scientists,  and  quantum  physicists,  has
been integrating quantum computing and quantum network-
ing  into  a  quantum-engineered  grid  infrastructure  to  form
scalable,  self-protecting,  autonomic  and  sustainable  power
grids capable of coordinating gigantic distributed energy sys-
tems  and  fostering  future  resilient  communities  and  smart
cities.
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Fig. 1    A schematic of quantum computing for power systems.
 

The main purpose of this paper is to review Stony Brook’s new
contributions  to  Quantum-Engineered  Smart  Grids[12−29],  partially
supported by the U.S. Department of Energy’s Office of Electricity
(P.  Zhang,  Practical  Quantum  Analytics  for  Ultra-Efficient  and
Resilient  Bulk  Power  Systems  Operations.  U.S.  DOE  Office  of
Electricity Agreement No. 37533. Proposal submitted in June 2020)
and Stony Brook University’s Quantum Information Science and
Technology  seed  grant.  We  will  introduce  a  series  of  quantum
analytics  for  power  systems  that  are  feasible  to  pursue  on  noisy-
intermediate-scale  quantum  (NISQ)  computers.  Meanwhile,  we
will also describe a few quantum grid analytics designed for noise-
free quantum computers that may emerge in the next decade. We
further  discuss  quantum  networking,  which  provides  a  level  of
security  for  key distribution that  is  unattainable  through classical
cyber systems.

1    A brief introduction of quantum computing

1.1    Quantum computing: From bits to qubits

NOT : 0↔ 1

This subsection introduces the basic knowledge of quantum com-
puting.  We refer readers to the textbook by Nielsen and Chuang
for  a  pedagogical  introduction[9].  To  understand  what  quantum
computing is and how quantum computing can be implemented,
we  first  discuss  classical  computing  in  terms  of  gates.  The  basic
classical  information  carrier  is  a  collection  of  bits,  each  of  which
can be in two binary states: 0 or 1. A ‘0’ can be implemented by a
voltage of  0  volt  and a ‘1’  can be implemented by a  voltage of  5
volts  in  electronics.  To  flip  a  bit  one  has  a  NOT  gate,  i.e.

.  There  are  other  gates  that  act  on  two  bits  at  once,

0AND 1= 1AND 0= 1 0AND 0= 0 1AND 1= 0
0OR 1= 1OR0= 1OR 1= 1 0OR0= 0

such  as  the  AND  gate,  which  is  the  binary  addition,  e.g.,
, ,  and .  The  OR

gate has the actions: ,  but .
Any logical expression can be constructed by a circuit using these
three gates,  and hence, they form a set of universal gates.  In fact,
only  one  kind  of  gate  is  needed,  i.e.  the  so-called  NAND  gate,
which takes two inputs as AND and OR gates and acts as an AND
gate followed by a NOT gate on the output of the AND gate.

Quantum computing,  in  some sense,  is  a  generalization of  (1)
classical bits to quantum bits (qubits), and (2) classical logical gates
to reversible and general unitary gates.

|0⟩ |1⟩
|ψ⟩= α|0⟩+ β|1⟩

α β
|α|2 + |β|2 = 1
∥|ψ⟩∥2 = ⟨ψ|ψ⟩= 1

α = cos(θ/2) β = sin(θ/2)eiφ
|ψ⟩⟨ψ|

(I+ rxX+ ryY+ rzZ)/2 I

rx = sin θ cos φ ry = sin θ sin φ rz = cos θ

Additionally, states can be ‘added’ or ‘superposed’. For example,
a quantum bit has two basis states corresponding to the logical 0
and 1, but written inside brackets:  and . Unlike classical bits,
a  quantum  bit  can  be  in  any  superposition: ,
where  and   are  two  generally  complex  coefficients  such  that

,  which is  the normalization of a quantum state,  i.e.
.  Here,  one  can  regard  a  qubit  as  a  two-com-

ponent  normalized  complex  vector.  Given  that  the  overall  phase
factor of a qubit does not have a physical meaning, we can choose
to  parameterize  (i.e.  real)  and ,  then
the so-called density matrix  (or the outer product of a column
and  a  row  vector  of  the  complex  vector ψ )  is  written  as

,  where  is  the 2 × 2 identity matrix X,  Y,
and Z  are  the  so-called  Pauli  matrices,  and  moreover

, ,  and  give  the  spherical
coordinate  of  a  unit  sphere.  This  is  the  so-called  Bloch  sphere,
where  any  qubit  can  point  to  any  direction  on  or  inside  the
sphere.

X : |0⟩↔ |1⟩
X|ψ⟩= α|1⟩+ β|0⟩

exp(−iθ⃗σ · n̂/2)
σ⃗ = (X,Y,Z )

n̂
θ

n̂

A  quantum  gate,  as  explained,  generalizes  classical  gates  and
acts on one or possibly multiple qubits. We have seen the classical
NOT gate, and its quantum version is the Pauli X matrix/operator,
which  flips  between  the  basis  states, .  By  using  this
rule, it is easy to see that . The quantum version
of the NOT gate can act  on any superposition of  logical  0  and 1
states. Other one-qubit gates can be regarded as the rotation of the
Bloch  vector  and  are  generally  written  as ,  where

 is  a  vector  whose  three  components  are  simply  the
Pauli matrices and  is a unit vector representing a direction. The
meaning of this gate is to rotate a Bloch vector by an angle  with
respect to the axis defined by .

|0⟩⊗ |0⟩= |00⟩ |01⟩ |10⟩ |11⟩ ⊗

Beyond one qubit and one-qubit gates, for two qubits, there are
four  basis  states,  which  are  simply  a  juxtaposition  of  two  single-
qubit basis states: , , , and , where  is the
so-called tensor product notation but is usually ignored if there is
no ambiguity.  One can easily  generalize  to n  qubits,  where  there
are 2n such basis states, and thus there are 2n complex coefficients
for a general n-qubit state. A general n-qubit gate is a 2n × 2n unitary
matrix that takes an n-qubit state to another n-qubit state, which
is in general quite complicated. However, according to the matrix
theorem that any such n-qubit unitary can always be decomposed
into a sequence of one-qubit gates and two-qubit gates acting on
appropriate  qubits.  In  such a  decomposition,  one-qubit  gates  are
the general Bloch vector rotations, and we only need one kind of
two-qubit gates, such as the Controlled-NOT gate (CNOT or CX).

|00⟩→ |00⟩ |01⟩→ |01⟩ |10⟩→ |11⟩ |11⟩→ |10⟩

(|0⟩+ |1⟩)/
√
2⊗|0⟩→ (|00⟩+ |11⟩)/

√
2

Given the CNOT gate acts on two qubits, it can be defined by
the  action  on  the  four  basis  states;  specifically,  under  CNOT:

, , ,  and ,  where  we
assume the first qubit is the controlled bit and the second qubit is
the target bit. The CNOT gate can generate the so-called quantum
entanglement  from  a  product  state,  for  example,

,  which  is  an  entangled
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state  that  enables  quantum  teleportation,  a  scheme  to  transfer
quantum states without physically sending them. For a review of
quantum circuits and implementations of recent quantum devices,
please see the review paper ref. [30].

|0⟩
A quantum computer usually begins with the initialization that

all qubits are in the  state. Then a sequence of single- and two-
qubit gates act on these qubits to achieve a certain n-qubit unitary
operation. A famous such action is the quantum Fourier transform
(QFT),  which  is  used  in  Shor’s  factoring  quantum  algorithm.
Another example which is quite popular for NISQ devices[31] is the
variational  quantum  circuit  (VQC).  In  the  VQC,  one  has  some
pre-determined circuit  structure,  e.g.,  composed of  fixed CNOTs
and  some  single-qubit  rotation  gates,  whose  rotation  angles  are
variational  parameters.  The  VQCs  are  used  in  the  variational
quantum  eigensolver  (VQE)  algorithm,  in  which  the  goal  is  to
optimize some cost function or the expectation of a certain energy
operator by using VQCs and measurement to yield some classical
values, which in turn are used to infer how to change the variational
parameters. This hybrid quantum-classical process is iterated until
the cost is converged. For a recent review of the VQE algorithms
and their applications, we refer the readers to a recent article pub-
lished  in Nature  Reviews  Physics[32].  Variational  quantum  circuits
are also used in many quantum machine learning designs; for the
latter, see a recent review[33].

|0/1⟩

|ψ⟩= α|0⟩+ β|1⟩ |0⟩ |1⟩

|α|2 |0⟩
|β|2 |1⟩

|ψ⟩
|α|2 + |β|2 = 1

So  the  one  final  piece  that  we  have  not  explicitly  explained  is
the measurement. Given the final readout of a quantum computer
is to measure all or some of the qubits in the  basis, we explain
the  effect  of  such  measurement  applied  to  a  single  qubit:

.  Given  and   are  eigenstates  of  the  Pauli  Z
operator (with eigenvalues +1 and −1, respectively), the measure-
ment is also called Z measurement. The outcome is probabilistic,
i.e.  with  a  probability  one  obtains  outcome,  and  with  a
probability  one obtains  outcome. This also explains why we
have  chosen  to  normalize  the  coefficients  of  such  that

.  This  completes  the  circle  of  the  brief  introduction
to quantum computation[9].

So what  are  quantum  computers  good  for?  It  is  worth  men-
tioning  that  a  quantum  speedup  occurs  if  the  corresponding
quantum task  requires  the  depth  of  the  quantum circuit  to  scale
much less  than the  number  of  steps  in  any  classical  approach.  If
quantum  computers  can  perform  tasks  that  classical  computers
cannot efficiently simulate, then this is called quantum supremacy
or  quantum  advantage[34, 35].  One  of  the  earliest  suggestions  made
by  Feynman  is  to  use  them  to  simulate  other  quantum  systems,
which would be  more  efficient  than classical  computers[36].  Given
the  need  for  an  exponential  number  of  parameters  on  classical
computers  to  describe  a  quantum system,  simulating  a  quantum
system  is  generally  hard  for  classical  computers.  Lloyd  showed
that Feynman’s conjecture that ‘quantum computers can be pro-
grammed  to  simulate  any  local  quantum  systems’ is  correct[37].
Hence, quantum computers may assist to solve fundamental science
problems, such as the mass gap problem in the Yang−Mills theory
(one  of  the  Clay  Mathematics  Institution  Millennium  problems)
and  high-temperature  superconductivity  problem.  Perhaps  the
most well-known application of quantum computers is to factor a
large integer number by a quantum algorithm invented by Shor[38],
which  is  superpolynomially  faster  than  the  current  best  classical
approach. Other potential superpolynomial speedups by quantum
computers include computing topological invariants of a topolog-
ical field theory, such as the Jones polynomial[39],  solving a system
of linear equations with a large matrix[40], and computing the per-
manent of a matrix using boson sampling[41]. Recent experimental

progress  towards quantum advantage includes  random quantum
circuits[7] and the Boson sampling problems[42].

1.2    Current status of quantum computers
Working on real quantum computers is not far from real life. As
reported  by  IBM,  one  of  the  world’s  pioneering  companies  in
providing  quantum  computing  services,  they  already  have  over
400, 000 userbases running 1 trillion circuits so far[43].

Two  mainstream  paths  for  developing  quantum  computer
hardware are gate-based and annealing-based approaches. Table 1
lists some of the major industry players in providing real quantum
computers and cloud-based services:
●      IBM is the first company to provide cloud access to quantum

computers  in  2016,  i.e.  through  the  IBM  Q  graphical  user
interface  (GUI)[44] and  Qiskit  software  development  kit
(SDK)[45].  So  far,  IBM  offers  commercial  access  to  quantum
devices up to 127 qubits and public access to quantum devices
up  to  32  qubits.  Their  roadmap  is  to  launch  the 1121-qubit
Condor processor by 2023, which is capable of solving a range
of complex scientific problems[46], and to achieve hundreds of
thousands of qubits from 2026 and forward[43].

●      Google  is  another  major  quantum  computing  company,
especially in the quantum artificial  intelligence (AI) area[47].  It
provides several open-source packages, such as Cirq[48], Open-
Fermion[49],  and  TensorFlow  Quantum[50],  for  customers  to
develop near-term applications  compatible  with  noisy  quan-
tum  machines.  An  impressive  milestone  is  that  Google
claimed in 2019 that they had achieved quantum supremacy[7],
which was a world-first experiment to demonstrate the quan-
tum speedup. On a 54-qubit quantum processor “Sycamore”,
Google  showed  that  the  quantum  computation  for  their
benchmark testing could be accomplished in 200 s, while the
world’s fastest supercomputer may take 10,000 years to obtain
a comparable result[7]. However, since then new classical algo-
rithms were developed that improved the classical simulations
for sampling random circuit outcomes[51−53].

●      Xanadu is  a Canadian company offering the first  photonics-
based  quantum  computing  platform[54].  Rather  than  using
superconductors  like  IBM  or  Google,  Xanadu’s  system  is
based  on  light  and  can  be  operated  at  normal  temperature,
with a non-negligible advantage. Xanadu also provides cloud-
based service through Xanadu Quantum Cloud and applica-
tion libraries such as Strawberry Fields[55] and Pennylane[56].

●      While  most  quantum  devices  are  gate-based  (e.g.,  IBM,
Google, Xanadu),  D-Wave  pursues  another  path  using  spe-
cialized  quantum  annealing  techniques[57].  A  quantum
annealer  does  not  rely  on  quantum  circuits  for  computing.
Instead, it reformulates the problem into ground state searching
problems,  an  excellent  match  to  various  optimizing  issues.
Annealing-based  quantum  computers  appear  to  be  more
scalable  than  gate-based  ones  in  terms  of  the  number  of
qubits  manufactured in a  single  processor.  While  most  gate-
based quantum computers possess no more than 200 qubits,
D-Wave  already  achieves  the  level  of  thousands  of  qubits.
With more than 5, 000 qubits and over 15 couplers per qubit,
D-wave  systems  are  capable  of  calculating  problems  with
more than 10, 000 variables[58].

●      Quantum computing  in  China  is  also  under  swift  develop-
ment.  In  2017,  Alibaba  and  Chinese  Academy  of  Sciences
jointly debuted an 11-qubit quantum computer[59], which was
the  first  public-accessible  quantum  computing  service  in
China.  Origin  Quantum,  another  superconducting-based
quantum computing startup in China, has raised an ambitious
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roadmap  to  achieve  144  qubits  by  2022  and 1024  by  2025.
Besides,  University  of  Science  and  Technology  of  China  has
developed  Jiuzhang,  which  is  the  first  photonic  quantum
computer to have announced quantum supremacy[60].

Today we are  still  in  the  NISQ era,  meaning that  state-of-the-
art  quantum computers are sensitive to noisy environments,  and
there  are  not  enough qubits  and  the  gate  error  rates  are  still  too
high  for  error  correction.  Fault-tolerant  quantum  computers
towards  millions  of  qubits  may  still  be  decades  away.  Therefore,
the  executable  scale  of  quantum  circuits  on  today’s  quantum
computers  is  significantly  restricted  by  the  quantum  gate  errors,
insufficient  number  of  qubits,  low  connectivity  between  qubits,
etc[32].

2    Quantum  computing  for  fundamental  power
analytics
Massive  integration  of  renewable  energies  has  significantly
reshaped modern power systems by introducing highly uncertain
and  low-inertia  inverters.  Under  such  circumstances,  developing
ultra-efficient analytics for accurate static and transient simulation
of  power  systems  becomes  prohibitively  critical,  especially  in
uncertain scenarios. The power of quantum computing is derived
from the possibility of preparing and maintaining complex super-
positions  of  quantum  states  across  many  quantum  degrees  of
freedom as  well  as  providing entanglement  between the  states  of
the  system.  Thus,  most  theoretical  quantum  computing  models
achieve  exponential  speedups  over  classical  models.  This  section
reviews  quantum  algorithms  for  fundamental  power  analytics,
including both static and transient analyses, as well as their proba-
bilistic  versions,  such  as  Monte  Carlo-based  power  system  tools.
Such  fundamental  quantum-power  analytics  opens  the  door  to
opportunities  to  solve  many  traditionally  complex  problems  for
power systems.

2.1    Quantum-enabled static analysis
Power system static analysis, represented by power flow and state
estimation,  is  the  keystone  of  various  power  system  analytics.
Under the unprecedented integration of renewables, a tremendous
amount  of  repetitive  static  analysis  is  required  to  analyze  the

impact  of  uncertainties.  However,  if  solved  by  the  conventional
iterative  algorithms,  the  computation complexities  of  power  flow
and  state  estimation  scale  polynomially  with  the  problem  scale.
Such  circumstances  significantly  restrict  their  applications  for
tractable  real-time  operation  demands.  This  subsection  reviews
the  quantum-inspired  power  flow  and  state  estimation  methods,
which  offer  a  potential  path  toward  more  scalable  power  grid
static analytics.

2.1.1    Quantum power flow

Power  flow  analysis  aims  at  solving  the  nodal  power  balance
equations  formulated  by  power  generation,  load,  and  grid
topology[62−64].  Prominent  AC  power  flow  algorithms  include  the
Newton−Raphson algorithm[65], the Gauss−Seidel algorithm[66] and
fast-decoupled  methods[67]. An  indispensable  step  of  the  afore-
mentioned algorithms (i.e. the iterative nonlinear algorithms) is to
solve a set of linear algebraic equations. Therefore, the critical bot-
tleneck of power flow analysis lies in the inefficiency of the linear
solvers.

A
H= [0,A;A †,0]

In the quantum computing area, the Harrow−Hassidim−Lloyd
(HHL)  algorithm  is  a  significant  landmark  for  solving  linear
equations in the quantum space[40]. The HHL employs a quantum
circuit to realize a unitary transformation for the quantum super-
position of the linear solution. A salient advantage of the HHL (or
any of its variants) is that it  enables an exponential speedup over
classical  methods  for  analyzing  sparse  systems,  which  exactly
matches the characteristics of power systems. One requirement of
the HHL algorithm is that the input matrix should be Hermitian
(otherwise,  the  matrix  should  be  reformulated  as

 so it becomes Hermitian). In ref. [12], a quantum
power flow (QPF) method is proposed (see Figure 2), which is the
first quantum-inspired algorithm to underpin the AC power flow
issue.  QPF innovatively  integrates  the  fast-decoupled  power  flow
philosophy with the HHL algorithm, which makes full use of the
Hermitian and sparse jacobian matrix of power grids to enable a
realizable implementation of the HHL. As shown in Figure 2, the
quantum circuit of the HHL-based fast-decoupled QPF consists of
four  components,  i.e.  a  quantum  phase  estimation  (QPE)  for
determining  the  eigenvalues  of  Jacobian  matrices,  a  controlled
rotation for generating the reciprocal of the eigenvalues, an inverse

 

Table 1    Major providers for commercially accessible quantum computers and platforms

Provider Type Realization Maximum qubits Country/region

IBM Gate-based Superconducting 127 US

Google Gate-based Superconducting 72 US

Rigetti Gate-based Superconducting 32 US

Honeywell Gate-based Trapped ion 10 US

IonQ Gate-based Trapped ion 32 US

QuEra Gate-based Neutral atoms 256 US

Xanadu Gate-based Photonic 24 Canada

D-Wave Analog-based Annealing 5000+ Canada

Alibaba Gate-based Superconducting 11 China

Origin Quantum Gate-based Superconducting 64 China

OpenSuperQ Gate-based Superconducting 20 Europe

QuTech Gate-based Spin qubit 29 Europe

AQT Gate-based Trapped ion 20 Europe

Other large companies include Microsoft, Intel, Amazon, Hitachi, Hewlett-Packard (HP), etc. There is an online article describing quantum hardware
outlook in ref. [61].
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QPE for disentangling the qubits, and a measurement for the final
states. The proof-of-concept of QPF on a small test system is pro-
vided in ref. [12].

2.1.2    Quantum state estimation

Power  system  state  estimation  (SE)  produces  the  best  possible
estimation of the true system states based on the data from super-
visory control and data acquisition (SCADA) systems and phasor
measurement  units  (PMUs),  which  are  extremely  valuable  for
online system operations[68, 69]. The most widely-used algorithm for
SE is the weighted least square (WLS) algorithm, which minimizes
the  sum  of  weighted  squared  errors  between  measurements  and
estimations.

O(log(N)η2κ2)

N η
κ

The major computation burden of WLS lies in an iterative cal-
culation of a series of linear equation systems characterized by the
SE gain matrix. To tackle the challenge, ref. [13] establishes HHL-
enabled quantum  state  estimation  (QSE)  algorithms.  The  com-
plexity  of  HHL,  i.e. [70],  is  closely  related  to  three
factors, i.e. the system dimension , the matrix sparsity  and the
condition  number .  While  the  sparsity  of  the  SE  problem  can
always  be  guaranteed  because  of  the  naturally  sparse  feature  of
power  grids,  the  condition  number  may  vary  from  case  to  case.
For the  well-conditioned  scenario,  the  HHL  can  be  straightfor-
wardly  implemented.  However,  for  the  ill-conditioned  scenario,
the  HHL may lose  the  quantum speedup or  even fail  to  provide
reasonable results. Therefore, ref. [13] proposes a preconditioned-
HHL  for  the  QSE  implementation.  The  overall  idea  is  to  use  a
preconditioned iterative optimization to obtain the power system
states instead of directly calculating them through the HHL algo-
rithm. The performance of QSE under both well-conditioned and
ill-conditioned scenarios  has  been  validated  on  a  microgrid  sys-
tem.

In  sum,  the  HHL-based  quantum  linear  solver  provides  a
promising tool  for  power system static  analysis,  which allows for
exponential  improvement  of  the  computational  complexity  for
linear equation solving. However, the HHL suffers from an exces-
sively  large  depth  of  quantum  circuits  that  are  sensitive  to  the
noises and short coherence time, and its implementation requires
fault-tolerant quantum computers. Therefore, a noteworthy future
direction  could  be  exploiting  variational  quantum  linear  solvers
(VQLSs)[71] to accelerate power system static analysis in the NISQ
era.

2.2    Quantum-enabled transient analysis
Transient analysis  is  another  cornerstone  for  power  system  ana-

lytics.  Today’s  power  systems  are  facing  a  risk  of  diminishing
inertia due to the deep integration of inverter-based resources and
the  retirement  of  synchronous  generators  powered  by  fissile  fuel
or nuclear reactors[72−75]. To capture the wide-band electromagnetic
transients of power electronic devices, EMTP becomes indispens-
able[76, 77]. Although EMTP is  capable  of  precisely  tracing  the  elec-
tromagnetic  waveforms,  its  daunting  computational  complexity,
which scales polynomially with the system size, formidably hinders
its  application  in  very  large  power  systems.  This  subsection
reviews  quantum-enabled  EMTP  (QEMTP)  algorithms,  which
tackle the EMT computation problem through quantum comput-
ing.  Such  analytics  lays  the  foundations  for  power  grid  transient
analysis on both current NISQ computers and noise-free quantum
computers of a distant future.

2.2.1    Quantum-encoded EMTP formulation

Classically,  EMTP  applies  the  trapezoidal  discretization  at  each
time step to transform the dynamic equations of a power network
into  numerical  equations  of  an  equivalent  resistance  network,
which can be formulated as

G0v(t) = i(t), (1)

v i
G0

N
N

G0

where  and  ,  respectively,  denote  the  vectors  of  nodal  voltages
and equivalent nodal current injections;  is the equivalent con-
ductance  matrix.  The  mathematical  essence  of  Eq.  (1)  is  a  linear
system  problem  (LSP).  Therefore,  for  a  power  system  with 
dimension,  classical  EMTP  performs  the  computation  in  an -
dimensional Euclidean space. The inverse operation of the matrix

 is at the computational complexity of O (N).

v(t)
i(t) |v⟩= ∑

k

vk√
∑k v2k

|k⟩ |i⟩= ∑
k

ik√
∑k i2k

|k⟩

⌈log2N⌉

Quantum  computing  holds  the  promise  for  a  logarithmically-
growing  computational  complexity  for  LSP[78],  which  sheds  light
on unprecedentedly scalable EMTP tools for power systems. The
very  first  step  towards  developing  a  QEMTP  algorithm  is  to
encode the EMTP formulation in Eq. (1) into a quantized version.
To this end, quantum EMTP models have been developed in refs.
[14, 15].  Denote  the  normalised  quantum representations  of 

and  as  and . An attractive

fact  is  that  such  a  quantum  formulation  only  requires 
qubits,  which  can  be  ultra-scalable  compared  with  the  classical
EMT formulation.

Correspondingly,  Eq.  (1)  can  be  embedded  into  the  Hilbert
space as

G |v⟩= |i⟩ , (2)

G G0where  is the padded and normalized counterpart of . Eq. (2)
therefore  establishes  the  quantum  counterpart  of  the  classical
EMTP.  A  salient  feature  of  the  QEMTP  formulation  is  that  any
operators  on Eq.  (2)  will  be  performed in  the  Hilbert  space  with
exponential scalability.

Mathematically,  Eq.  (2)  is  a  quantum  linear  system  problem
(QLSP).  There  exist  two  main  types  of  approaches  to  solving
QLSP:  while  noise-free  methods  usually  rely  on  ideal  quantum
machines  which  may  not  be  available  in  the  near  future,  noisy
intermediate-scale methods provide a practical solution for quan-
tum computing on near-term quantum computers. In the follow-
ing, we explain how QEMTP can be achieved by both a noise-free
approach and a noisy intermediate-scale approach.

2.2.2    HHl-enabled QEMTP: A noise-free approach

Ref. [14] is the first attempt to resolve the QEMTP issue through
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Fig. 2    Quantum  circuit  architecture  for  quantum-inspired  power  grid
static analytics[12, 13].
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the  noise-free  HHL  algorithm.  As  introduced  in  Section  2.1,  the
HHL  algorithm  is  well-known  for  its  capability  to  estimate  the
solution of an LSP with a computational complexity of O(log(N)),
which realizes an exponential speedup compared with its classical
counterpart.

G

The  mathematical  basis  of  the  HHL-enabled  QEMTP  is  to
decompose  Eq.  (2)  into  the  eigenbasis  of  the  power  system’s
equivalent conductance matrix :

|v⟩=G−1 |i⟩= ∑
j
λ−1
j bj |uj⟩ , (3)

(λj,uj) jth G bj

|i⟩
where  are the  eigenpair of  and  is the corresponding
decomposition coefficient of .

io
w

a

G

v io

To  achieve  the  eigendecomposition  logic,  the  HHL  QEMTP
adopts  three  quantum  registers  for  calculation.  As  illustrated  in
Figure 3, register  stores the input (e.g., nodal current injections)
and output (e.g.,  nodal voltages) of QEMTP; register  performs
the  computation  of  QEMTP;  and  register  stores  ancilla  qubits
for the HHL algorithm. Consequently, at each timestep, the HHL-
enabled  QEMTP updates  the  equivalent  current  injections  based
on the quantities at the previous timestep and performs the QPE
calculation of  as well as other necessary quantum computations
(e.g., controlled rotation, inverse QPE). Finally, the nodal voltages

 are  output  on  the  register.  More  details  are  explained  in
ref. [14].

Although  the  HHL  algorithm  theoretically  provides  an  ultra-
scalable  path  towards  QEMTP,  its  practicability  is  still  hindered.
The  major  challenge  is  that  the  HHL  usually  adopts  extremely
complicated  quantum  circuits[40].  For  example,  ref.  [14] demon-
strates that even for a simple RLC circuit, the HHL quantum circuit
reaches  102-depth  and  involves  54  CNOT  gates.  Such  quantum
circuits,  unfortunately,  may  to  be  executed  correctly  by  today’s
NISQ  computers  because  of  the  non-negligible  quantum  errors,
insufficient  qubits  for  EMT  correction,  limited  connectivity
between qubits, etc[71].

2.2.3    VQLS-enabled  QEMTP:  A  noisy  intermediate-scale
approach

Motivated by the aforementioned challenges of the HHL-enabled
QEMTP,  ref.  [15]  further  develops  a  VQLS-enabled  QEMTP
algorithm  to  unlock  a  practical  and  noise-resilient  approach  for
EMTP analysis on today’s NISQ devices.

The  VQLS-enabled  QEMTP  employs  a  hybrid  quantum-clas-
sical framework. A VQC is constructed for solving Eq. (2), which
does  not  involve  the  complicated  eigendecomposition  quantum
circuits required by QPE:

|v⟩= UEMTP (p) |0⟩ . (4)

UEMTP

UEMTP (p)

|i⟩
|φ⟩=G |v⟩

Here,  denotes  a  VQC whose  parameters p  are undeter-
mined. The key concept of VQLS is to optimize p so that the output
of  conforms with the desired solution of Eq. (2). To this
end,  a  cost  function can be  constructed to  indicate  the  similarity
between  the  current  injection  state  and  the  quantum  state

.  Here,  the  word “variational”  or  “hybrid”  means  that
the quantum circuit is executed on quantum devices to obtain the
output  quantum  state,  and  the  circuit  optimization  procedure  is
performed on classical computers (see Figure 3). The two routines
interact until Eq. (2) is achieved, which provides a qualified VQC
for EMTP analysis. Various algorithms can be employed for opti-
mizing a VQC, such as quantum gradient descent[79, 80] and its vari-
ants.

Besides  the  parameters  to  be  optimized,  another  configurable

UEMTP (p)setting of the VQC  is its structure, which can significantly
impact the performance of the algorithm. Ref. [15] designs a layered
quantum  circuit  with  the  RZ-SX-RZ  sequence,  which  has  been
demonstrated as an effective structure for the QEMTP calculation.
However, because of the limitations of the state-of-the-art quantum
devices, it is non-trivial to design a quantum circuit that not only
realizes  the  EMTP  functionality  but  also  is  executable  on  the
NISQ devices. In Section 3.2, we will provide more discussions on
the design of VQCs.

Although  VQLS is  much  more  NISQ-friendly  compared  with
HHL, it  still  faces  several  challenges  for  real-world  implementa-
tion, such as quantum circuit depth, quantum state measurement,
and small discretization steps. To this end, ref. [15] has also estab-
lished practical variants of the VQLS-enabled QEMTP by making
full  use  of  the  characteristics  of  both  power  grids  and  quantum
computing,  such as analyzing the diagonally dominant feature of
power grid  conductance  matrix  to  decompose  the  QEMTP  for-
mulation to enable measurable quantum states, and exploring the
superposition of quantum computing to simultaneously solve dif-
ferent  basis  nodal  voltages  of  EMTP.  In  addition,  we  have  also
employed  the  philosophy  of  shifted  frequency  analysis  (SFA)[81−83]

in  QEMTP  to  develop  a  quantum  shifted  frequency  analysis
(QSFA) to enable QEMTP computation with larger timestep.

The  most  attractive  superiority  of  the  VQLS-enabled  QEMTP
is that, it not only achieves exponential scalability of EMTP com-
putation,  but  can  also  be  executed  on  today’s  noisy  quantum
machines.  Ref.  [15]  has  demonstrated the  implementation of  the
VQLS-enabled  QEMTP  on  real  IBM  quantum  computers  (i.e.  a
27-qubit  quantum  computer  ibmq_sydney).  The  real-hardware
experiments  show  that  the  VQLS-enabled  QEMTP  can  achieve
satisfactory  precision  under  noisy  quantum  environments  with
shallow quantum circuits. Meanwhile, even for the large-scale 906-
bus feeder, QEMTP only requires 10 qubits, which is promisingly
scalable.  More  importantly,  the  noise  impact  analysis  shows  that
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QEMTP remains high performance under the general noise level
of today’s quantum computers, which ensures the universal prac-
ticality of QEMTP on arbitrary near-term hardware.

However, it should be noted that quantum linear solvers (either
noise-free  or  noisy  approaches)  can  only  approximately  estimate
the  solution  of  LSP,  which  is  different  from  the  classical  solvers
which  can  return  the  full  solution.  Therefore,  error  correction  is
still indispensable for the QEMTP algorithms[14, 15].

2.3    Quantum-enabled stochastic analysis
With the increasing deployment of renewables, static, dynamic, or
transient analysis under a single scenario becomes insufficient for
ensuring the  high  reliability  of  power  system  operations.  There-
fore, it is critical to verify the system performance under numerous
stochastic  scenarios  initiated  by  heterogeneous  uncertainties  and
unforeseen faults.

In  large-scale  power  systems  integrating  transmission  grids,
distribution  grids,  and  even  microgrids,  the  number  of  system
states grows swiftly, which potentially leads to complex computa-
tional problems and NP-hardness in stochastic analysis[84, 85]. Monte
Carlo  simulation  (MCS)  is  a  representative  simulation-based
stochastic method. The sampling size of MCS is a deciding factor
in generating the desired probability distribution function,  which
results in heavy computational burdens and slow convergence[86].

S O( 1√
S )

O( 1
S )

The  quantum  estimation  algorithm  aims  at  mitigating  the
number  of  usages  of  a  randomized  algorithm  in  classical  MCS
technique[87]. A correct design of a quantum algorithm containing
various  gates  and  unitary  operators  can  achieve  an  acceptable
approximation  of  the  distribution  function  with  quantum
speedup.  It  is  proven  that  the  convergence  rate  of  the  classical
MCS method with  sampling size is [88]. On the other hand,
quantum computing  can  achieve  a  quadratic  speedup  with  con-
vergence [89−91].  The  Quantum  amplitude  estimation  (QAE)
algorithm[90],  which  takes  advantages  of  the  Grover’s search  algo-
rithm[92],  has  already  demonstrated  the  quadratic  speedup  and
convergence  over  the  classical  MCS  technique  in  estimating  an
uncertain variable.

X= {X1,X2, ··· ,XR}

{x1,x2, ··· ,xS} x
f(x)

Ref.  [16]  tackle  the  power  system  reliability  assessment  using
the QAE algorithm. With a small number of qubits and sampling
size, ref. [16] realize the quantum speed-up and better convergence
over  the  classical  MCS-based  power  system  reliability  analysis.
Classical  MCS  mainly  includes  three  steps:  first,  the  uncertain
parameters  should  be  modeled  as  random  variables

, where R is the total number of random vari-
ables.  Second, S  samples  should  be  generated  for  each  random
variable using the probability distribution function of each variable
as ,  where  is  a  random  sample  of  a  variable.
Finally,  the expected value of  a  real-valued function  for each
random variable is calculated as follows:

E[f(Xj)] =
S

∑
i=1

1
S
f(Xi,j ), ∀j ∈ {1,2, ··· ,R}. (5)

To  solve  such  a  problem  using  the  quantum-amenable  MCS
method, the aforementioned steps of the classical method should
be  translated  into  the  quantum  blocks.  In Figure  4,  a  schematic
circuit of the quantum estimation method is depicted on running
the MCS steps.

n x p(x)
In the quantum circuit of QAE, the first quantum block P aims

at  generating  the -bit  string  result  with  probability .  This
quantum block outputs:

P |0⟩n =
2n−1

∑
i=0

√
p(xi) · |xi⟩n , (6)

nwhere,  is the number of input qubits.

n+ 1
In the second block of the quantum circuit, the unitary operator

H is  applied  to  ( )  qubits.  In  this  step,  a  rotation  is  executed
onto an ancilla qubit. The operator H outputs:

H |x⟩n |0⟩= |x⟩n
(√

f(x) · |1⟩+
√

1− f(x) · |0⟩
)
, (7)

f(x) f(x) : {0, 1}n → R
n

where,  is  a  function  which  is  mapped  to
real numbers from -bit strings.

ψ
P⊗ I |0⟩n |0⟩

The  output  state  is  resulted  after  applying  quantum  blocks
( ) and H to the states :

|ψ⟩=H(P⊗ I) · |0⟩n |0⟩

=
2n−1

∑
i=0

[√
p(xi) · |xi⟩n

(√
f(xi) · |1⟩+

√
1− f(xi) · |0⟩

)]
, (8)

Iwhere,  is the identity operator.

S= 2s

|1⟩

|1⟩

According  to Figure  4,  there  exists  a  block L  with  s  sampling
qubits and  application of operator L. To achieve an efficient
estimation of a function, operator L  is employed. The purpose of
QAE is  to estimate the probability of  measurement  in Eq.  (8).
At the end of the quantum circuit, the measuring units are used to
measure the amplitude of .

3    Quantum computing for power system opera-
tions
As one of  the  earth’s  most  extensive  and complicated dynamical
systems, the  power  system  requires  efficacious  modeling,  moni-
toring,  planning,  and  controlling  methodologies  to  support  its
efficient, reliable, and resilient operations. In addition to promoting
fundamental  power  system  analytics,  quantum  computing  can
also benefit various aspects of power system operations. This section
reviews  the  recent  progress  in  leveraging  cutting-edge  quantum
computing techniques, including quantum optimization, quantum
machine learning and quantum control, to tackle vital power system
operation issues.

3.1    Power system operation via quantum optimization
Optimization  plays  an  essential  role  in  power  system operations.
Various  power  system tasks,  such  as  unit  commitment[93],  energy
management[94], energy trading[95], and emergence control[96], can be
formulated  as  optimization  problems,  among  which  large-scale
combinatorial optimization  is  one  of  the  most  intractable  opti-
mization problems.  While  the  traditional  combinatorial  opti-
mization is an NP-hard problem, quantum optimization leveraging
quantum mechanisms is  expected  to  achieve  a  super-polynomial
advantage for complicated combinatorial optimization problems.
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Quantum  approximation  optimization  algorithm  (QAOA)  is
one  of  the  most  prominent  quantum  optimization  algorithms[97].
As established in ref. [98], the solution to a quadratic unconstrained
binary optimization (QUBO) problem is equivalent to the ground
state of a corresponding Ising Hamiltonian. Several methods have
been developed to establish the Hamiltonian of the Ising model[99].
QAOA aims to find feasible solutions to the QUBO problems by
minimizing the expected value of the Hamiltonian. The expectation
is  taken  with  respect  to  quantum  states,  which,  in  turn,  are
obtained  by  rotating  the  initial  state  that  entangles  all  possible
states  with  equal  probabilities.  The  minimum  expected  value  of
the  Hamiltonian  can  therefore  be  obtained  by  obtaining  feasible
rotation angles  by  using  a  classical  optimizer.  Due to  the  limited
number of  qubits,  the scalability  of  quantum optimization in the
centralized  mode  might  be  restricted.  To  resolve  this  issue,  the
quantum distributed optimization idea is proposed, where QAOA
can  serve  as  an  essential  sub-routine  for  calculating  sub-
problems[97].

s

Refs. [17, 18] explore the efficacy of quantum optimization and
its  distributed  variants  in  power  system  unit  commitment  (UC).
Originally,  the  UC  problem  consists  of  continuous  variables  for
the active power output of generators and binary variables for the
commitment  status  of  generators.  To  fit  the  requirement  of
QAOA,  refs.  [17, 18]  translate  the  UC model  into  sub-problems,
where  the  binary  variables  are  formulated  by  QUBO  sub-prob-
lems. Then, a multi-block decomposition of the alternating direc-
tion method of multipliers (ADMM) is used for coordinating dif-
ferent  sub-problems.  The  overall  procedure  of  the  quantum
ADMM (Q-ADMM)-enabled UC is as follows. First, initialize the
iteration  index ,  decision  variables,  penalty  factor,  and  stopping
criteria.  Second,  solve  the  QUBO  sub-problem  to  update  the
binary decision variables. Then, solve the continuous sub-problem
to  update  the  continuous  decision  variables.  Followingly,  update
the  dual  variables  of  Q-ADMM  based  on  the  obtained  decision
variables.  The  above  sub-routines  interact  until  convergence,
which  returns  the  optimized  solution. Figure  5 depicts  the
schematic diagram of the quantum distributed UC for power sys-
tems. More details are presented in refs. [17, 18].
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Ref.  [19] proposes  another  path  towards  the  quantum  opti-
mization-enabled  UC.  It  incorporates  the  QAOA  approach  into
the  surrogate  Lagrangian relaxation (SLR)  method[19].  Specifically,
the UC problem is decomposed into the time-unit-split binary sub-
problems  and  continuous  sub-problems,  which  are  respectively
solved through quantum and classical computing. Meanwhile, sub-
problems  are  effectively  coordinated  by  updating  the  Lagrangian
multipliers. Because of the adoption of the SLR philosophy, QSLR

achieves improved convergence performance with the integration
of the contraction-mapping stepsize[19].

3.2    Power  system  stability  assessment  via  quantum  machine
learning
Transient  stability  assessment  (TSA)  is  a  long-standing  obstacle
for power system operations. It evaluates whether a power system
can reach a steady-state operating point after large disturbances[100].
In  modern  power  systems,  the  high  penetration  of  renewable
energies and  electronic  devices  may  potentially  induce  unprece-
dented stability risks, bringing ever-strict requirements for scalable
and efficient TSA. Classical TSA methods mainly rely on numerical
integration to perform time-domain simulations of power systems,
which  can  be  extremely  time-consuming  for  complicated  power
systems.  Data-driven  methods  provide  an  alternative  path.  By
employing  offline-trained  neural  networks  to  establish  stability
rules, data-driven TSA can be potentially scalable to realize online
stability verification. A plethora of classical data-driven algorithms
have been applied to power systems stability analysis, such as kernel
machines[101],  deep  neural  networks[102],  and  reinforcement
learning[103].

Quantum machine learning (QML) is a confluence of quantum
computing  and  machine  learning[104−106].  In  recent  years,  there  has
been an explosive growth of QML algorithms in supervised learn-
ing, unsupervised learning and even reinforcement learning. Tar-
geting  different  learning  purposes,  quantum  versions  of  various
machine  learning  techniques  have  been  proposed,  such  as
quantum  principal  component  analysis[107, 108],  quantum  kernel
estimation[109, 110],  quantum  classifier[111],  quantum  clustering[112],
quantum generative adversarial network[113, 114], quantum Boltzmann
machine[115],  quantum  Q-learning[116],  etc.  Classically,  machine
learning involves significant computational burden for inner pro-
duction  and  its  performance  heavily  depends  on  the  choice  of
learning models. Since quantum states can be efficiently operated
in  the  Hilbert  space  and  are  capable  of  representing  entangled
correlations,  QML  is  promisingly  powerful  for  data  processing
and  model  training  in  ultra-high  dimensional  space  that  are
intractable for classical algorithms[107, 110, 117, 118].

F(Ż,Z) = 0

Tackling the power system stability issues, ref. [20] establishes a
QML-enabled  TSA  approach.  For  an  arbitrary  power  system,  its
transients model can be functionally formulated as a set of nonlinear
differential  algebraic  equations  (DAE) ,  where Z
denotes the system states including both the differential  variables
and  algebraic  variables.  For  most  DAE  systems,  the  orbit  is
uniquely determined by the initial point. According to the stability
region  theory,  if  the  post-disturbance  state  is  within  the  stability
region of a stable equilibrium point (SEP),  the system will  finally
reach a steady-state, i.e. the SEP. Therefore, it inspires various data-
driven TSA methods[119, 120] to establish  a  classification-based map-
ping between  the  post-disturbance  states  and  the  stability  judg-
ment.  QTSA  inherits  such  a  learning-based  idea  and  novelly
exploits  the  expressibility  and  scalability  of  QML  techniques  for
power system TSA.

The  following  briefly  introduces  the  basic  idea  of  QTSA[20].  A
unique  feature  of  QTSA  is  that  it  embeds  the  transient  stability
features  (i.e.  the  post-disturbance  states  such  as  frequency,  active
and reactive power, voltages) into quantum states through a VQC
(see Figure 6):

|φ⟩= UTSA (p,Z) |0⟩ . (9)

UTSAHere,  denotes  the  VQC; p  denotes  the  parameters  to  be
optimized; Z  denotes  the  power  system  stability  features,  which
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are inputs of the QML algorithm. Therefore, the transient stability
assessment  is  performed  based  on  the  measurements  in  the
Hilbert space. Consequently, a cost function is constructed as the
conformance between the true stability judgment and the predic-
tion from QTSA:

minC(p) =
n

∑
i=1
c(yi(p,Zi)). (10)

Zi yi
i

Here,  and   respectively  denote  the  stability  features  and
quantum  stability  judgment  of  the -th  sample.  As  a  variational
quantum algorithm, QTSA also employs a hybrid quantum-clas-
sical framework for the quantum circuit training[20].

While the parameters of QTSA-VQC can be optimized by Eq.
(10), the structure of the VQC should be pre-determined. Designing
an  effective  yet  noise-resilient  VQC  is  crucial  for  the  success  of
QTSA.  On  the  one  hand,  QTSA  requires  high-expressibility
quantum circuits because of the strong nonlinearity of power sys-
tem stability issues. On the other hand, only low-depth quantum
circuits  can  be  executed  considering  the  restrictions  of  current
NISQ  devices.  However,  even  in  the  quantum  area,  it  is  still  an
open problem to design an expressive VQC that can well represent
the solution space of  a  specific  problem. Regarding VQC design,
ref.  [121]  quantitatively  analyzes  the  expressibility  of  different
types of ansatzs by assessing their capability to explore the Hilbert
space.  Ref.  [122]  demonstrates  that  certain  single-qubit  rotations
can be reduced without significantly deteriorating the performance
of  quantum  circuits.  Ref.  [123]  shows  that  while  increasing  the
circuit depth may enhance the expressibility, it unavoidably hurts
the  noise-resilience  of  the  algorithm.  Specifically  for  the  QTSA
issue,  ref.  [20]  designs  a  high  expressibility,  low-depth  circuit
(HELD) by integrating both the quantum operators and the classical
activation functions (see Figure 6).  The authors also demonstrate
that  generic  expressibility  indices,  such  as  the  Kullback−Leibler
(KL) divergence-based ones, may not provide a reasonable assess-
ment  of  quantum  circuits  under  specific  objectives  because  they
mainly  focus  on  the  uniform  exploration  of  the  solution  space
without considering the probability distribution.

Real-hardware  testing  is  an  indispensable  step  in  ensuring  the
efficacy  of  quantum  computing  techniques  in  noisy  quantum
environments. To this end, ref. [20] has established a systematical
scheme  for  evaluating  QTSA’s  performance  on  real  quantum
machines.  Four  different  angles  are  recommended,  including
accuracy, expressibility,  fidelity,  and  noise-resilience,  to  compre-
hensively  study  whether  the  quantum  circuit  can  accurately  and
effectively  express  the  transient  stability  region  and  whether  the
QTSA  judgments  are  trustworthy,  especially  in  noisy  quantum
environments.  Such  indices  can  also  be  expanded  to  evaluate
other  quantum-inspired  power  system  analytics.  Experiments
show  that  QTSA  achieves  an  accuracy  over  98%  even  for  large-
scale systems such as a 300-bus power grid and remains satisfactory
noise-resilience, which indicates  its  potential  for  the  NISQ appli-

cations.  Some  research  has  also  demonstrated  that  QML  can  be
potentially more expressible for complicated data relationships, e.
g.,  achieving  a  comparable  accuracy  against  classical  machine
learning while saving more parameters for the neural network[124].

3.3    Resilient control  for  power  systems  via  quantum  dis-
tributed control

G= (V,E) V n

The increasing integration of DERs is challenging the control and
synchronization of modern power systems[125, 126],  not only because
they are highly uncertain and inverter-interfaced, but also because
of their  distributed  natures  and  the  privacy  requirements.  Dis-
tributed  control  has  become  the  most  promising  solution  for
resilient  operations  of  power  systems  with  high  penetration  of
DERs  as  it  offers  flexible  plug-and-play  architecture[127−129]. Dis-
tributed control of power systems can be functionally described as
a network of differential equations over a simple, connected graph

, where the node-set  represents  DERs, and the edge-
set E depicts the allowed communication among DERs.

Although  distributed  control  strategies  can  significantly
improve power  system  resilience,  the  vulnerability  of  communi-
cation  networks  to  cyberattacks  induces  potential  risks  for  third-
party agents to drive the system toward inconsistent performance
and instability. Addressing cybersecurity challenges in distributed
control  is  an  active  area[130].  However,  the  existing  solutions  may
become obsolete due to the development of supercomputers and
the emergence of quantum computers[131].

Inspired by quantum mechanisms, the next generation of com-
munication technologies is aiming to leverage the quantum nature
of  light,  which  gives  rise  to  novel  capabilities  unattainable  with
classical transmission media[132−141]. In these schemes, information is
encoded in the particle’s quantum state, which cannot be copied,
and any attempt  to  do so  can be  detected.  Therefore,  the  critical
aspect  is  unconditional  information  security  which  is  impossible
with classical information processing[142]. The most exciting benefit
of  using  quantum-secured  information  is  that  the  lifetime  of  the
security  is “infinite” ,  i.e.  it  will  be  secure  against  any  future
advance in computation capability[142].

Refs. [22, 23] are a confluence of power system distributed con-
trol  and  quantum  communication.  Leveraging  the  potential  to
establish  synchronization  throughout  a  network  of  quantum
nodes via exchanging qubits, a novel quantum distributed controller
(QDC)  has  been  proposed.  The  overarching  goal  of  QDC  is  to
construct a network of differential equations to control a network
of  DERs.  In  contrast  to  classical  synchronization,  QDC  encodes
the information into quantum states and exchanges them among
the nodes over quantum channels (see Figure 7). In this way, the
control  process,  such  as  power/current  sharing  and  frequency/
voltage regulation, is provably guaranteed and secured.

In  the  QDC  design,  each  DER  is  equipped  with  a  quantum
computing  device,  which  prepares  a  quantum  state  and  seeks  a
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ρ

|ψ⟩= |q1q2 · · ·qn⟩
ρ = |ψ⟩⟨ψ|

consensus among all the quantum devices in a distributed manner.
The following briefly introduces the mathematical formulation of
QDC.  The  state  of  each  quantum  device  can  be  described  by  a
positive  Hermitian  density  matrix .  Since  synchronization
requires interaction among all quantum devices, it is assumed that
each  device  has  access  to  its  neighbors’ (quantum)  information.
Let  be  the  state  of  the  whole  quantum network
and .  The  following  quantum  master  equation  has
been introduced to construct the network of differential equations:

ρ̇(t) =
n

∑
i=1

(
CiρC†

i −
1
2
{C†

iCi, ρ}
)

+ ∑
{i,j}∈E

(
Ci,j ρC†

i,j −
1
2
{C†

i,jCi,j , ρ}
)
,

(11)

Ci Ci,j

Rz(φ) Rz(φ)
φ

where  and  are unitary jump operators described by rotation-
Z, , and swapping operators, respectively.  is the single-
qubit rotation-Z operator by an angle  radians around the Z-axis.
The swapping operator specifies  the external  interaction between
quantum computing devices i  and , j  forming a  connected com-
munication graph.

φ

φ

In an abstract sense, the goal is to encode the classical information
into the  angle of the qubits, teleport information throughout the
network,  evolve  the  state  of  each  node’s  qubit  for  one  time  step
utilizing its  received  information  (i.e.  according  to  the  synchro-
nization protocol Eq. (11)), and finally retrieve the classical infor-
mation from the  angle  of  the  qubit.  Such classical  information
will be used as the control signal later.

φ

i
i φt,i

i
δt

Since the dynamic of the  angle is the dynamic of interest,  at
each  time  step,  qubits  are  (re)-initialized  on  the  equator  of  the
Bloch  sphere.  Hence,  as  the  first  step,  qubits  are  initialized  as
points on the first quarter of the equator of the Bloch sphere. Next,
quantum information is transmitted throughout the network such
that each quantum node receives the quantum information from
its adjacent nodes. After each node  receives the quantum infor-
mation  of  the  adjacent  nodes,  the  target  state  for  node  ( )  is
integrated into the synchronization protocol Eq. (11) through the
rotation-Z operator such that it acts as a pinning term for the syn-
chronization  protocol.  Then,  the  quantum  state  of  node  is
evolved  according  to  the  master  Eq.  (11)  for  one  time  step 
using the swapping and rotation-Z operators.

After the master equation evolution, the processed information

φ

i

tr(ρσ x) = cos φi tr(ρσ y) = sin φi

needs  to  be  retrieved  from  the  qubit  by  measuring  the  angle.
Generally,  the  master  equation  results  in  states  becoming  more
mixed;  however,  the  system  is  allowed  to  evolve  in  a  short  time
and  is  re-initialized  in  a  product  of  pure  qubit  states.  Thus,  the
projection  of  the  state  vector  (qubit )  on  X  and  Y  axes  of  the
Bloch  sphere,  given  by  the  expectations  of  Pauli-X  and  Pauli-Y,
can  be  obtained  as  and  , respec-
tively.

φi

dt→ 0
d
dt
⟨A⟩= d

dt
tr(ρA) = tr(ρ̇A) tr(ρσ x) tr(ρσ y)

φi

If the procedure of the master equation evolution is repeated in
a short duration, the approximated equations for ’s in the limit

 can  be  obtained.  Note  that  for  an  observable A,
.  Hence,  utilizing ,  and

Eq.  (11),  the  dynamic  of  the  phase  angles  can  be  obtained  as
follows:

φ̇i = sin (φt,i −φi)+
n

∑
j=1

ai,j sin (φj−φi), (12)

ai,j n×n G
ai,j = 1 Cij ̸= 0 ai,j = 0

sin (φt,i −φi) φi

φt,i ∑n
j=1 ai,j sin (φj −φi)

where  are the entries of the  adjacency matrix of graph ,
denoted as A.   if  and  otherwise. In Eq. (12),
the pinning term, , forces the phase  to stick at the
value  and  the  coupling  mechanism, , syn-
chronizes the entire system.

Eq. (12) offers a universal form for quantum distributed control
of  dynamical  systems.  It  can be  applied to  various  power  system
control problems. Ref. [22] shows how Eq. (12) can be utilized as a
secondary control for distributed frequency control of AC micro-
grids, which allows microgrids to be profited from quantum com-
munication advantages. Classically, the distributed frequency con-
trol  in  AC  microgrids  regulates  the  system  frequency  to  a  rated
value  and  guarantees  active  power  sharing  among  the  DERs,
whose dynamics can be described by:

ωi = ω∗−niPi+Φi,
Φ̇i = f(Φi, Pi, Φ j, j ∈ Ni), (13)

ωi Pi

i ω∗ ni

Φi

Pi Φj

Φi

Φj Φi

where  and   respectively  represent  the  frequency  and  active
power injection of DER ;  is a nominal frequency; and  is the
droop gain.  is the secondary control variable, whose dynamics
is a function of its current value, , and its neighbors’ . There-
fore,  will eventually evolve toward an (weighted) average of its
neighbours’  such that  all  control  variables  converge  to  the
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Fig. 7    Coupling of power grids to the network of quantum controllers (left), and schematic depiction of the QDC algorithm (right)[22].
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Φi = Φj = niPi

niPi

common value . As can be seen,  Eq.  (12) is  a  syn-
chronization rule  consisting  pinning  terms  and coupling  mecha-
nism. Therefore, in order to apply the QDC, we need to define the
target  which  is  done  through  scaling .  Hence,  the  developed
QDC for AC microgrids is formulated as follows :

ωi = ω∗−niPi+
φi

k
,

φ̇i = sin (kniPi −φi)+
n

∑
j=1
ai,j sin (φj −φi),

(14)

φi/kwhere  is the secondary control variable. Ref. [23] further dis-
cusses more applications of QDC. It demonstrates the cyber-secu-
rity for QDC, where the distributed control of AC and DC micro-
grids can be provably secured by encoding the control signals into
quantum qubits and exchanging information via quantum channels
among participating DERs.

θ

In  summary,  due  to  the  superposition  feature  of  qubits,  QDC
provides  a  foundation  for  allowing  more  enhanced  quantum-
secure distributed control for power systems through randomizing
the  angle  of  qubits  in  the  initialization  step.  Such  a  control
scheme is unprecedentedly secured such that even if a third-party
agent can  measure  the  exchanged  qubits,  the  measurement  out-
comes would be some random values that do not reveal information
to the eavesdropper.

3.4    Power system scenario generation via quantum generative
learning
With  the  increasingly  high  penetration  of  renewable  energy  in
power grids nowadays, renewable scenario generation that captures
renewable  uncertainties  has  been  indispensable  in  power  system
planning,  scheduling,  and  operations[143, 144].  Traditional  methods
are model-based.  That  is,  a  specific  statistical  model  is  utilized to
find  the  probabilistic  distribution  of  renewable  scenarios,  and
samples are  extracted  from the  distribution  to  generate  new sce-
narios. Model-based methods are easy to comprehend and oper-
ate.  However,  they  are  difficult  to  adapt  to  the  time-varying
weather  and  are  inflexible  in  scaling  due  to  the  complexity  and
non-linearity of renewable scenarios[145, 146].

Machine  learning  methods  provide  a  model-free  path[147, 148].
They use historical data to generate new scenarios without speci-
fying  a  model  or  a  distribution.  An  example  is  the  generative
adversarial network (GAN)[149].  Two neural networks are involved
in a GAN, i.e. a generator and a discriminator. The generator gen-
erates fake scenarios to fool the discriminator, and the discriminator
tries to distinguish between actual samples and fake ones. The two
neural  networks  contest  with  each  other  in  a  game  until  a  Nash
equilibrium  is  reached.  However,  while  GAN  provides  a  flexible
and scalable solution, training GAN models may require an unex-
pectedly long time, especially when a large dataset is used.

A quantum version of GAN is the quantum generative adver-
sarial network (QGAN). It uses two quantum components to rep-
resent the generator and the discriminator, respectively.  Through
the  quantum-mechanical  phenomenon,  it  promises  to  reduce
computational  complexity.  However,  many  existing  works  on
QGAN only focus on simple cases where limited input data points
are  involved.  They use  amplitude or  angle  encoding to  represent
classical  data  in  a  quantum  circuit[150].  Amplitude  encoding
encodes  data  into  amplitudes  of  a  quantum  state.  Therefore, n
qubits can store 2n data points. However, the disadvantage is that
the circuit depth will be significant with a giant n,  and the circuit
will  be  challenging  to  construct.  Angle  encoding  encodes  each
data point into a rotation angle. However, when n is large, the circuit

also becomes complicated. Using a single QGAN to cover all  the
input  features  for  renewable  scenario  generation  with  a  large
dataset is difficult and impractical.

To  bridge  the  gaps,  ref.  [21] presents  a  Multi-QGAN  frame-
work.  Instead  of  relying  on  a  single  QGAN,  it  uses  multiple
QGANs to generate scenarios, thus avoiding using a complicated
QGAN. Specifically, n QGANs are constructed for n classical data
points in the dataset. The value of each classical data point is first
normalized and is then represented by a rotation angle. In Multi-
QGAN, QGANs are trained one by one following the sequence of
the  data  point.  Compared  with  the  single  QGAN,  Multi-QGAN
has a  simpler  circuit  topology  for  each  QGAN,  is  easier  to  con-
struct, and is more scalable and flexible.

ith

ith ith
ith

While Multi-QGAN provides a promising way to generate sce-
narios, it neglects the correlation between neighboring data points,
which is considerable in many cases, e.g., in a time-series dataset.
To address this issue, ref. [21] further presents a correlation-based
Multi-QGAN  (CMulti-QGAN)  method.  Unlike  Multi-QGAN,
which associates each QGAN with one input data point, CMulti-
QGAN  generates  each  scenario  using  the  corresponding  true
value  and  its  neighbors.  Specifically,  when  the  quantum dis-
criminator  is  trained,  its  cost  function is  not  only  determined by
the  real  quantum  data  source’s  output  and  the  quantum
generator’s output, but also is associated with the outputs of the 
generator’s neighbors. Data from real photovoltaic systems in the
State of Connecticut are collected for studies. Results demonstrate
the  effectiveness  and  robustness  of  Multi-QGAN  and  CMulti-
QGAN and validate the superiority of CMulti-QGAN over Multi-
QGAN.

It  is  worth  noting  that  ref.  [21]  only  presents  a  preliminary
study of using QGAN for renewable scenario generation. While it
provides a  quantum  way  to  generate  renewable  scenarios  effec-
tively,  it  is  still  under  investigation  that  the  computational  speed
can be improved. More research needs to be conducted to further
enhance  the  performances  of  Multi-QGAN  and  CMulti-QGAN,
especially with a larger dataset.

4    Quantum  communication  for  provably-
secured power systems
While  quantum  computing  promises  to  address  power  system
problems, it  poses  security  threats  to  power  system communica-
tions. The security of public-key cryptographic systems such as the
Diffie−Hellman key exchange (DH)[151] and Rivest−Shamir−Adle-
man (RSA)[152] heavily relies on the computational difficulty of spe-
cific mathematical  problems  such  as  discrete  logarithm  and  fac-
toring  problems[38].  These  problems  are  at  high  risk  of  being
addressed  by  quantum  computers.  For  instance,  it  has  been
shown  that  Shor’s  quantum  factoring  algorithm  can  effectively
break  RSA  cryptosystems  with  the  help  of  enough  qubits[153].
Developing  provably-secured  power  systems  in  the  quantum era
has become essential and urgent. We refer the readers to the book
by  Nielsen  and  Chuang[9] for  a  pedagogical  introduction  to  this
subject.

A  powerful  solution  to  securely  transfer  information  between
two remote  parties  in  the  quantum era  is  quantum communica-
tion. It uses the fundamental laws of quantum physics, which pro-
vide a more solid foundation in the quantum era than mathematical
assumptions.  According  to  the  quantum-mechanical  property,
measuring  an  unknown  quantum  state  will,  in  general,  change
that state. Therefore, the two parties can detect when an adversary
is  trying to  gain knowledge of  the  qubits.  After  proper  post-pro-
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cessing procedures, including error correction and privacy ampli-
fication,  the final  information shared between two parties  will  be
information-theoretically secure[154].  This section reviews quantum
communication-related  research  in  power  systems,  including
quantum key distribution (QKD) and quantum networks.

4.1    Quantum key distribution
QKD  is  a  key-growing  approach  that  generates  and  distributes
keys  for  two  communicating  parties[155].  A  QKD  system  typically
consists of a quantum channel and a classical  one.  The quantum
channel transmits qubits between two communicating parties for
generating raw keys. The classical channel is used to conduct post-
processing procedures for distilling final secret keys. The final keys
are  utilized  to  encrypt  and  decrypt  data  messages  transmitted
through the classical channel. Note that QKD only generates private
keys; encryption methods are still classical, and the encrypted data
messages are sent  over the classical  channel.  In reality,  QKD can
be  combined  with  symmetric-key  encryption  methods  like  the
One-Time Pad[156] or the Advanced Encryption Standard[157]. A few
research  efforts  have  recently  been  conducted  to  integrate  QKD
systems into power grids.

Ref.  [24] is  the first  work that  develops a QKD-enabled quan-
tum-secured microgrid. It devises a QKD simulator in Python to
simulate  QKD  protocols  with  great  flexibility  to  update  QKD
parameters. The formulations of the decoy-state BB84 QKD pro-
tocol, i.e. a practical, mature, and widely used scheme to implement
QKD, are presented in detail. This simulator simulates the proba-
bilities  of  various  events  occurring  and  outputs  the  number  of
final keys generated in real-time. Then, the simulator is integrated
with the real-time digital simulator (RTDS), i.e. a real-time power
system simulator. Specifically, a medium-voltage microgrid system
is used as the test system. It comprises a 5.5 MVA diesel generator,
a  1.74 MW PV system,  a  2  MW doubly-fed induction generator
wind  turbine  system,  a  lithium-ion  battery  storage,  seven  loads,
and a control center. The control center receives load information
from  loads  and  sends  control  signals  (i.e.  the  real  and  reactive
power references of the P-Q control) to the local controller of the
battery storage, which employs the P-Q control to regulate its out-
put  power.  The  QKD  simulator  is  implemented  in  the  control
center running on a remote server.  It  continuously generates key
bits and stores them in a key pool. When a control signal needs to
be sent out, a specific number of key bits (e.g., 64 bits) are consumed
from the key pool to simulate the encryption process. In this way,
the quantum key generation and key consumption are integrated
successfully.  The  QKD  simulator  determines  the  key  generation
speed,  and  the  key  consumption  speed  is  affected  by  the  actual
data transmission between the control center and the battery stor-
age.

The  QKD-enabled  quantum-secured  microgrid  is  extended  to
quantum-secured  networked  microgrids  in  ref.  [25].  Three
microgrids  are  established.  Each  microgrid  has  a  control  center,
which communicates with one of the local controllers in the same
microgrid,  and  communicates  with  the  neighboring  two  control
centers. The user datagram protocol is utilized for data transmis-
sion. The three control centers run on the same server with a specific
IP address. Three port numbers are assigned to each control cen-
ter. One is used to receive data (i.e. the load information) from the
RTDS  hardware,  and  the  other  two  are  used  to  obtain  data  (i.e.
control  signals)  from  the  neighboring  control  centers.  Six  QKD
systems are  installed,  three of  which are  for  the communications
between control  centers  and their  local  controllers,  and three  are
for  the  communications  between  neighboring  microgrids.  This
design successfully  combines multiple  QKD systems,  making the

system more complicated. Therefore, more research work can be
conducted with this system. For instance, researchers can investi-
gate the impact of attacks on multiple QKD systems and the cor-
responding defending strategies.

While  QKD  offers  a  promising  solution  to  securely  distribute
keys  between  two  distant  parties,  itself  is  vulnerable  to  denial  of
service (DoS) attacks.  To address this issue in QKD-enabled net-
worked  microgrids,  ref.  [26]  presents  a  programmable  quantum
networked microgrids  architecture,  where  software-defined  net-
working (SDN) is utilized to manage the communication network.
SDN is a practical and promising technique to achieve a fast and
flexible  communication  environment[158−160].  The  decoupling  of
control and data planes and the centralization of the control logic
in the SDN controller make each SDN switch a simple forwarding
device. The SDN controller obtains a global knowledge of network
states, and  enables  a  rapid  development  of  sophisticated  applica-
tions.  In  ref.  [26],  a  software-defined  adaptive  post  processing
approach,  a  two-level  key  pool  sharing  stategy,  and  an  SDN-
enabled event-triggered communication scheme are developed to
mitigate  the  impact  of  DoS  attacks  through  programmable  post
processing and secure key sharing among QKD systems.

A brief review of the research work on QKD-enabled microgrids
is presented in ref. [27]. The current status of developing quantum-
secured  microgrids  and  some  future  perspectives  are  discussed.
The  work  of  developing  quantum-secured  power  grids  has  just
started.  More  work  needs  to  be  conducted  from  both  quantum
cryptography  and  power  grid  sides.  For  instance,  it  is  crucial  to
enhance  QKD’s  resilience  against  disturbances  and  attacks,  e.g.,
side-channel and DoS attacks. The experimental demonstration of
QKD in power grids is essential but has not yet been carried out.
Proper  strategies  are  desired  to  make  QKD  more  practical  in
power grids. The field is still in its infancy with substantial growth
potential.

4.2    Quantum networks
There are two significant technical challenges impeding the broad
adoption  of  QKD  in  power  grids.  One  is  the  distance  limitation
issue,  meaning  that  the  QKD’s  key  generation  rate  is  reduced
largely when  the  communication  distance  increases.  This  is  par-
ticularly unacceptable in a power grid with a considerable distance
between two communicating parties and a high data transmission
rate. The other critical issue is that a QKD system is typically point-
to-point. Therefore, using QKD systems becomes impractical in a
power grid with intensive communicating devices.

A promising way to overcome these limitations is establishing a
quantum network. When a number of quantum devices are inter-
connected, the  quantum  network  greatly  extends  the  communi-
cation distance, and maximally utilizes quantum resources to offer
a  more  flexible  environment  for  plug-and-play  communicating
devices.  The  realization  of  quantum  networks  requires  quantum
communication equipped with quantum cryptographic protocols,
where two techniques stand out above all others: QKD and quan-
tum direct communication[135].

A  QKD-based  quantum  network  architecture  designed  for
power grids is presented in ref. [28]. It is also shown in Figure 8.
Quantum repeaters  are  used to  extend the  distance  between two
communicating  parties.  A  quantum  repeater  comprises  two
quantum  sources  and  a  Bell  state  measurement  (BSM)  device.
Each  quantum  source  independently  generates  two  entangled
qubits;  one  qubit  is  sent  to  one  communicating  party,  and  the
other  is  sent  to  the  BSM  device.  The  BSM  device  publicly
announces  the  measurement  result  of  the  two received  qubits.  If
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the  measurement  succeeds,  the  two  qubits  sent  from  the  two
quantum sources to the BSM device will be entangled. As a result,
the  two  qubits  forwarded  to  the  two  communicating  parties  will
also  be  entangled.  If  multiple  repeaters  are  connected,  forming  a
chain  of  repeaters,  the  communication  distance  will  be  further
extended.

After  the two communicating parties  share  a  series  of  pairs  of
entangled  qubits,  they  can  use  a  specific  QKD  protocol  (such  as
the E91 QKD protocol[161]) to generate secret keys. With this quan-
tum network architecture,  ref.  [28]  develops  a  quantum network
simulator,  namely,  QNSim,  to  simulate  the  performance  of  the
network.  Unlike  other  quantum  network  simulators,  QNSim  is
easy to implement, allows for real-time simulation, and is flexible
in altering network parameters and topologies. A routing strategy
is  also  integrated  into  QNSim  to  simulate  the  quantum  routing
process.  A  quantum  network-based  power  grid  (QNetGrid)
testbed  is  further  designed  to  contain  quantum  communication,
quantum  routing,  real  SDN  switches,  and  real-time  networked
microgrids operations.

In addition to QKD, quantum direct communication is another
form of quantum communication. Unlike QKD, which generates
secret  keys  and  uses  keys  to  encrypt  data  messages,  quantum
direct communication directly transmits confidential information
over the quantum channel. Ref. [29] is the first work that develops
a  quantum  direct  communication-based  quantum  network  for
electric grids. The devised architecture has four layers: a quantum
direct  communication  network  layer  for  conducting  quantum
communication,  a  physical  layer  of  the  electric  power  system,  a
classical  network  layer  operating  in  parallel  with  the  quantum
direct  communication  network  for  exchanging  information,  and
an application layer for various power grid and quantum applica-
tions.  The  designed  network,  which  supports  teleportation  and
superdense coding  protocols,  comprises  the  following  compo-
nents: (a) quantum nodes to conduct communication, (b) entan-
glement generators to create EPR pairs, (c) quantum memories to
store  qubits,  (d)  quantum  channels  to  distribute  EPR  pairs,  and
(e) quantum measurement devices to measure entangled states.

A quantum direct  communication-enabled power grid testbed
is  established  in  ref.  [29].  The  network  simulator  is  developed
based on SQUANCH[162] and runs on a server, which functions as
the grid control center. The control center receives data from and
sends control signals to electric grids. The network simulator sim-
ulates the quantum data transmission process between the physical

grid and the control center. A typical microgrid system is developed
in MATLAB/Simulink running on a virtual machine. The micro-
grid system communicates with the control center using the User
Datagram  Protocol.  With  this  testbed,  the  network  performance
under different power grid scenarios can be evaluated.

5    Conclusions and outlook
Quantum computing has been recognized by the National Science
Foundation as part of the ten strategic research areas in the U.S.[163].
The pioneering work in quantum computing in the past decades,
especially our breakthroughs in quantum-engineered smart grids,
has  helped  ignite  strong  interests  from  the  electricity  sector  and
federal  agencies  such  as  the  U.S.  Department  of  Energy.  This
paper  summarizes  the  existing  research  in  developing  quantum
computing  algorithms  which  will  open  the  door  for  developing
various power  system solutions.  By  exploiting  the  inherent  char-
acteristics in power grid problems such as power flow, eigenanal-
ysis,  and  real-time  electromagnetic  transient  analysis,  new  and
customized linear and non-linear quantum circuits and quantum
solvers  can  be  devised  for  both  NISQ  and  fault-free  quantum
computer  environments.  Regarding  the  stringent  cybersecurity
and  stability  requirements  from  micro-  and  macro-  grids  and
their controls,  novel  hybrid quantum and classical  cyber-physical
architectures  will  be  established,  and  the  quantum  networking
testbed,  which  has  been  successfully  synchronized  with  the  real-
time  digital  power  system  simulators,  can  be  used  to  optimize
quantum device performances against various cyber attacks.  Fur-
ther,  through  the  deep  understanding  of  the  grid  operation  and
control mechanisms, novel quantum protocols requiring minimum
quantum  hardware  (leading  to  low  capital  expenditure)  will  be
developed,  which  are  expected  to  be  robust  and  self-adaptive  to
the  frequency  changes  and  reconfigurations  in  today’s  cyber-
physical power grids. Enabled by quantum networking and quan-
tum memory-assisted quantum nodes,  various quantum controls
will be devised to tackle the long-standing challenges in distributed
algorithms  such  as  cyber-vulnerability  and  slow  convergence,
leading to quantum (and hybrid) information fusion schemes and
fast distributed approaches resilient against unstable communica-
tion, asynchronous clocks, and adversary attacks.

On  the  other  hand,  despite  the  experimental  breakthroughs
toward quantum technologies[7, 42], the jury is still deciding whether
quantum supremacy has been achieved in real-world applications.
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To  demonstrate  quantum  supremacy,  progress  has  been  made
continuously  from  different  aspects.  For  instance,  for  NISQ
devices,  hybrid  quantum-classical  variational  approaches  provide
promising solutions in specific applications[32], including engineer-
ing and optimization problems. The quality of qubits and quantum
gates  has  been  continuously  improved.  In  addition,  quantum
error correction, a promising technique that leads to fault-tolerant
quantum computing, will likely bring fundamental breakthroughs
to demonstrate quantum supremacy. Further, our previous expe-
rience  has  shown that  leveraging  power  system characteristics  in
quantum algorithm design  can,  in  turn,  enhance  the  algorithm’s
performance[15].

The  recent  progress  in  quantum computing  has  also  attracted
forward-thinking  power  utilities[164] to  explore  potential  quantum
applications in situational awareness, secured quantum networks,
emergency  preparedness,  volatile  renewable  forecast,  security-
constrained unit commitment, service restoration, etc. Meanwhile,
there exist several challenges in demonstrating practical quantum
computing use cases in the field: (1) there is a lack of talents that
have  cross-domain  knowledge  needed  for  connecting  quantum
computing to  power  systems;  (2)  no standardized quantum pro-
gramming environment has been established, which increases the
opportunity  cost  for  implementing  a  viable  quantum computing
application; (3) power and energy industry still needs demonstra-
tions  of  quantum  supremacy  with  a  few  practical  applications.
Therefore,  the  collaborations  between  universities,  national  labs,
vendors  and  utilities  are  key  to  finding  practical  use  cases  for
quantum computing algorithms and to address the aforementioned
challenges.  The  ecosystem  of  quantum-engineered  smart  grids
initiated  by  Stony  Brook  University  is  swiftly  growing,  and  this
will strongly support the multi-sector efforts in increasing partici-
pation of K-12 and university students as well as the general public
in quantum computing workforce training.

In general, creating practical and replicable quantum algorithms
to  resolve  the  traditionally  intractable  computational  problems
and to support fast and resilient power system operations will  be
the  central  theme  for  quantum  computing  in  power  systems.
Quantum grids analytics toolboxes allowing the power industry to
exploit quantum supremacy in large power systems operations are
in demand. With the swift growth of quantum computer capabil-
ities,  we are  confident  that  the theoretical  potentials  of  the NISQ
algorithms will  be  unlocked in  this  decade,  which will  be  able  to
ensure ultra-fast real-time decisions of large power systems, mini-
mize  customer  outages  and  drastically  increase  the  flexibility,
responsiveness,  and  resilience  of  critical  power  infrastructures
under small and large disturbances, as well as extreme events.
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