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ABSTRACT
Power system simulations that extend over a time period of minutes, hours, or even longer are called extended-term simulations.
As power systems evolve into complex systems with increasing interdependencies and richer dynamic behaviors across a wide
range of timescales, extended-term simulation is needed for many power system analysis tasks (e.g., resilience analysis, renew-
able energy  integration,  cascading  failures),  and  there  is  an  urgent  need  for  efficient  and  robust  extended-term  simulation  ap-
proaches. The conventional approaches are insufficient for dealing with the extended-term simulation of multi-timescale processes.
This paper proposes an extended-term simulation approach based on the semi-analytical simulation (SAS) methodology. Its accur-
acy and computational efficiency are backed by SAS's high accuracy in event-driven simulation, larger and adaptive time steps,
and flexible switching between full-dynamic and quasi-steady-state (QSS) models. We used this proposed extended-term simula-
tion  approach  to  evaluate  bulk  power  system restoration  plans,  and  it  demonstrates  satisfactory  accuracy  and  efficiency  in  this
complex simulation task.
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P ower systems  have  various  kinds  of  networked  compon-
ents as  well  as  complex  behaviors.  The  power  system  dy-
namics  have  multiple  distinct  time  scales[1, 2].  For  example,

the timescales of the fast transients can be less than 0.01 s, and the
actions of system-wide control (e.g., automatic generation control
or  AGC)[3] and  some  mechanical  and  thermal-driven  processes[4]

are  usually  in  the  timescales  of  seconds  to  several  minutes.
Changes  in  load  levels  and  the  economic  dispatch  actions  take
minutes  to  hours,  and  due  to  the  interdependencies  among  the
system  components  and  various  external  impacts  (e.g.,  weather,
vegetation,  natural  disasters),  complex  event  chains  may  occur.
These  complexities  call  for  panoramic  simulations  of  complex
event  processes  involving  various  disturbances,  system  responses
and  control  measures,  and  traditional  security  analysis  methods
and tools are insufficient for such computation tasks. For example,
the transient stability analysis only assumes a single fault, and the
duration  is  usually  within  1  minute,  which  ignores  the  longer-
timescale  dynamics[5] such  as  AGC  and  dispatch.  On  the  other
hand,  steady-state  security  analysis  based  on  power  flow  models
for  longer-timescale  analysis  cannot  capture  system  dynamics[6].
Because  many  security  concerns  in  the  power  systems  involve
complex  and  extended-term  processes[7],  it  is  imperative  to  find
new methods for robust and efficient extended-term simulation.

Traditional numerical computation methods have major limit-
ations for extended-term simulations.  Those methods for solving
differential  equations  are  lower-order  methods[8], and  their  effi-
ciency is limited by tiny time steps. Such methods cannot flexibly
adapt  to  the  variations  of  dominant  timescales.  Moreover,  the
Newton−Raphson approach is commonly used to solve nonlinear

equations, but its convergence highly depends on the initial solu-
tion and frequently  faces  non-convergence  issues.  The semi-ana-
lytical  simulation  (SAS)  is  an  emerging  family  of  computational
approaches  for  power  system  steady-state  and  dynamic  analysis,
and holomorphic  embedding (HE)[8−10] is  one major  SAS method
that  features  enhanced  robustness  and  efficiency  in  simulations.
Holomorphic  embedding  has  shown  promising  performance  in
the steady-state[9, 10] and dynamic analysis[8] tasks of power systems.
The HE adopts  an  analytical  approximate  solution  as  a  continu-
ous  function  in  the  time  domain,  which  provides  a  very  flexible
selection  of  time  steps,  and  HE  guarantees  convergence  when
solving nonlinear  equations,  which  avoids  the  computation  fail-
ures in extended-term simulation.

More  important,  HE  shows  natural  advantages  for  handling
events  and  multi-timescale  simulation  because  of  its  analytical
form in the time domain. This paper will show the promising po-
tential  of  HE  for  hybrid  extended-term  simulation  based  on  a
simulation framework combining  steady-state  and dynamic  sim-
ulation. The dynamic simulation can be performed during system
transients, while  quasi-steady-state  (QSS) modeling can be adop-
ted after the transients fade away. Switching from dynamic to QSS
simulation can be efficiently performed with HE by using the HE
solution parameters, which avoids the extra simulation burden in
traditional approaches  based  on  evaluating  the  trajectory  vari-
ations. The extended-term simulation can be utilized for complex
analysis tasks such as resilience analysis[11−13], cascading outages[2, 7, 14],
restoration[15], and renewable energy control[16].

The contributions of this paper are threefold: 
1Division of Energy Systems, Argonne National Laboratory, Lemont, IL 60439, USA; 2School of Electrical and Computer Engineering, Georgia
Institute of Technology, Atlanta, GA 30332, USA; 3Department of Electrical and Computer Engineering, Texas A & M University, College Sta-
tion, TX 77843, USA; 4Department of Electrical and Computer Engineering, Michigan State University, East Lansing, MI 48824, USA
Address correspondence to Rui Yao, yaorui.thu@gmail.com

 

ARTICLE
https://doi.org/10.23919/IEN.2022.0006

 



(1)      We  present  the  HE  formulations  for  the  simulation  of
atomic  events  in  power  system  analysis.  The  atomic  event
simulators constitute the extended-term simulation.

(2)      We  propose  a  hybrid  simulation  scheme  that  switches
between dynamic  simulation  and  QSS  simulation.  Switch-
ing from dynamic simulation to QSS simulation can be dir-
ectly determined  from  the  analytical  form  of  the  HE  solu-
tion  and  thus  is  much  more  efficient  than  the  traditional
practices.

(3)      We  propose  an  extended-term  event-driven  simulation
framework  based  on  holomorphic  embedding.  Thanks  to
the  analytical  nature  of  HE  solutions,  the  event  scheduler
can handle various types of events with enhanced accuracy.

The rest of the paper is  organized as follows: Section 1 elucid-
ates how to simulate some typical types of events (atomic events)
using  HE;  Section  2  presents  a  hybrid  simulation  framework
combining the dynamic and steady-state simulation with HE; Sec-
tion 3 is the overall procedure of the event-driven extended-term
simulation; Section 4 is the case studies; and Section 5 is the con-
clusion of the paper.

1    Atomic event simulator based on HE
The  extended-term  simulation  comprises  several  kinds  of  basic
events, such as adding/cutting elements and ramping events. Here
we call  them atomic  events.  This  section  will  start  with  a  funda-
mental  formulation  of  HE,  and  will  then  introduce  the  methods
for simulating atomic events in HE.

1.1    Brief overview of HE for power system analysis
A power  system  can  be  modeled  by  differential  algebraic  equa-
tions (DAEs) in segments in the time domain:{

ẋ = f(x,y,p)
0= g(x,y,p)

(1)

x y p
p

p(t)

where  is the state variable,  is the algebraic variable and  rep-
resents the system parameter and control variable.  may change
with time, and within a time interval,  can be represented by
or approximated as a power series of time:

p(t) =
N

∑
k=0

p[k]tk (2)

Equation (1) can be solved by using HE[8]. The HE solution has
the following power series form:

x(t)≈
N

∑
k=0

x[k]tk, y(t)≈
N

∑
k=0

y[k]tk (3)

or  its  corresponding  Padé  approximation[17].  Therefore,  within  a
segment of time domain, the system dynamics are approximated
as a continuous function of  time,  showing that  HE is  completely
different  from  the  traditional  numerical  integration  methods  on
discrete  time points.  The HE formulation of  a  system with loads
and generators can be written as

(Pi(t)− jQi(t))W∗
i (t)−∑

l

YilVl(t)− ILi(t)+ IGi(t) = 0 (4)

Vi i Wi Yil

i l Y
Pi Qi

Y

i ILi

where  is the voltage phasor on bus , whose reciprocal is . 
is the element of row  and column  in the admittance matrix .
The  constant-PQ  loads  are  and   terms (positive  values  de-
note generation  and  negative  values  denote  loads),  and  the  con-
stant-impedance  loads  are  merged  into .  The  current  of  other
loads (e.g., constant-current loads, induction motor loads) on bus
 is represented by , and the current of all the synchronous ma-

IGichines is represented by .
The  events  in  the  power  system  can  be  classified  into  several

kinds of "atomic" events, such as ramping events, adding elements,
cutting elements, and instantly changing element parameters. HE-
based modeling and simulation of the atomic events will be elab-
orated upon in the following sub-sections.

1.2    Simulation of system dynamics with ramping events

TMi0

TMi0(t)
t

The continuous ramping of control variables or system configur-
ations,  such  as  the  ramping  of  generator  outputs,  automatic
voltage regulator (AVR) reference signals, or loads, can be repres-
ented with polynomials of time. For example, in the turbine gov-
ernor, the reference mechanical torque  can be adjusted by the
external control  (e.g.,  automatic  generation  control  or  the  ramp-
ing  command  from  operators).  According  to  (2),  can  be
expressed or approximated as a polynomial of time :

TMi0(t) =
Ntg

∑
k=0

TMi0[k]tk (5)

TMi0[k]where  are  known  coefficients.  These  coefficients  are  used
directly to  derive  the  equations  of  HE  coefficients  for  the  un-
known variables.

1.3    Simulating instant-switching events

1.3.1    General principles

α = 0
α = 1

An instant switch here means an event of instantly adding or trip-
ping components, corresponding to switch opening/closing oper-
ations.  Switching  instantly  changes  algebraic  variables  (e.g.,  bus
voltages),  and  creates  momentum  for  state  variables  to  change.
Therefore,  transients  usually  follow  the  instant-switching  events,
and on the occurrence of an instant-switching event, the dynamic
model should be used for a period of time until the system reaches
a new steady state. The basic idea of solving instant switches using
HE is to construct and solve HE formulations so that  cor-
responds  to  the  pre-switch  instant  and  corresponds  to  the
post-switch state. The next subsections will deal with some typical
types of events in detail.

1.3.2    Adding elements

xE

yE VE

IE

An added element could be a single device with one terminal (e.g.,
a  generator,  static  load,  induction  motor)  or  multiple  terminals
(e.g., a transmission line), or even more broadly, a subsystem. The
model of an added element may have its own state variables and
algebraic variables, and thus its own DAEs. A typical example is a
synchronous generator and its corresponding DAEs. After the in-
stant  of  adding  the  element,  the  original  system  and  the  added
element  need  to  satisfy  the  boundary  conditions  of  voltage  and
current  at  the  connection  points.  Generally,  we  assume  that  the
state variables of the new element are , and the internal algebra-
ic variables are ,  the terminal voltage of the element is ,  and
the current is . The behavior of the element can be modeled as:{

ẋE = fE(xE,yE,VE,IE,pE)

0= gE(xE,yE,VE,IE,pE)
(6)

At  the  instant  after  switching,  the  post-switching  states  of  the
system should  satisfy  the  algebraic  equations  of  the  original  net-
work and the added element:{

0= g(x,y,VE,IE,p)
0= gE(xE,yE,VE,IE,pE)

(7)

g

IE

where  represents the algebraic equations of the original system.
According to the implicit function theorem, normally the current
of the element  can be explicitly written as
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IE = gEI(xE,yE,VE,pE) (8)

To solve the post-switch state, we build the HE formulation:{
IE(α) = gEI(xE(α),yE(α),VE(α),pE(α))

0= g(x,y(α),VE(α),IE(α),p)
(9)

α = 0
IE(α) = 0 α = 1

α = 1

where,  as Figure  1 shows,   corresponds  to  the  pre-switch
state  and  requires  that .  corresponds  to  the  post-
switch  state.  Thus,  solving  (9)  at  will  derive  the  state  after
adding the element.
  

(a) α=0
Original system

x, y

xE, yE xE, yE

VE VE

x, y

Original systemElement to add

IE=0 IE

Element to added

(b) α=1

Fig. 1    HE solving post-switch state.
 

The solutions in (9) apply to various elements. An example will
illustrate the idea and the method. Many elements can be modeled
as Thevenin models:[

Ixi
Iyi

]
=

[
Yi11 Yi12

Yi21 Yi22

][
Exi−Vxi

Exi−Vyi

]
(10)

Vxi Vyi

Ixi Iyi
where  and  are the real and imaginary parts of the terminal
voltage,  respectively,  and  and   are  the  real  and  imaginary
parts of  the  terminal  current,  respectively.  For  instance,  a  syn-
chronous generator has the following form[8]:[

Ixi
Iyi

]
= M(δi)Y−1gi M(δi)

T

(
M(δi)

[ εdi
εqi

]
−
[

Vxi

Vyi

])
(11)

εdi εqi

δi

where  and   are  the  internal  potentials  on  d-  and  q-  axes,
respactively,  is the rotor angle, and

M(δi) =

[
sin δi cos δi

−cos δi sin δi

]
,Ygi =

[ ρsi −χqi
χdi ρsi

]
(12)

ρsi

χdi χqi

where  is the internal equivalent resistance of the generator, and
 and  are the internal equivalent impedance on the d- and q-

axes, respectively. For the Thevenin model (10), the HE formula-
tion for solving the post-switch state is:[

Ixi(α)
Iyi(α)

]
= α ·

[
Yi11 Yi12

Yi21 Yi22

][
Exi−Vxi(α)
Exi−Vyi(α)

]
(13)

α = 1and the solution of (13) at  is the post-switch state.

1.3.3    Cutting elements

Cutting  elements  is  generally  the  inverse  process  of  adding  the
elements. As in (7) and (8), the system with the element to be cut
follows the equation:{

0= g(x,y,VE,IE,p)

IE = gEI(xE,yE,VE,pE)
(14)

xE yE

x y

where the internal state variables and algebraic variables to be cut
are  denoted  as  and  ,  and  the  state  variables  and  algebraic
variables  of  the  rest  of  the  system  are  and  .  The  boundary

VE y

VE IE

YE = D(IEi/VEi)

voltage is , which is also included in . However, unlike the ad-
ded elements, the cut element will no longer be of interest (i.e., it is
regarded as unrecoverable), so a simple HE formulation based on
equivalent  admittance  can  be  constructed.  On  boundary  buses,
the voltage and current at  the pre-switch state are  and , re-
spectively,  which  is  equivalent  to  a  set  of  shunt  admittances

. Thus (14) can be replaced with

IE = YEVE (15)

and the according to (14), the HE formulation for solving the post-
switch state of the rest of the system is:

0= g(x,y(α),VE(α),(1−α)YEVE(α),p) (16)

The formulation (16) can reduce the computational burden be-
cause the internal states of the cut elements are omitted.

1.3.4    Changing element parameters

p

p p′

Some instant switches involve a change of element parameters ,
usually because  of  sudden changes  inside  elements.  A typical  ex-
ample  is  a  fault,  which  changes  the  admittance  parameters  and
thus  changes  the  admittance  matrix[8].  To  solve  the  post-switch
state,  assume the parameters  change from  to .  The following
HE formulation can be constructed and solved:

0= g(x,y(α),αp′+(1−α)p) (17)

2    Steady-state & dynamic hybrid simulation

2.1    Switching from dynamic to quasi-steady-state (QSS) mod-
els
To convert  dynamic  models  to  steady-state  models,  the  pre-
requisite  is  that  the  system  be  approximately  in  a  steady  state
(which  will  be  addressed  in  Section  2.3).  Usually,  the  generators
are equipped with automatic  voltage regulators  (AVRs) to main-
tain terminal voltage, so they can be converted to PV buses in the
QSS model.

The QSS model also applies when the transient inside the gen-
erator fades away. The system-wide control, such as an automatic
generation control  (AGC),  has a much larger time constant than
rotor  transients,  so  after  the  generator  transients  fades  away,  the
generator models can be converted to PV buses and the following
QSS model[18], considering the AGC actions, can be used:

(PGi−Ki∆f− jQGi)W∗
i − ILi−∑

l
YilVl = 0

ṖGi =−
∆f
Tgi

(18)

∆f
∆f= f− fs Ki = Di+ 1/Ri

Tgi

where  is the difference between the frequency and the nomin-
al frequency ,  is the coefficient represent-
ing the QSS frequency response[19].  is a control time constant of
the AGC[18].

2.2    Switching from steady-state to dynamic models
When there are no significant fast transients,  the QSS simulation
can  provide  satisfactory  accuracy  and  significantly  accelerate  the
computation.  When  the  simulation  comes  across  switch  events,
the  sudden  changes  in  algebraic  variables  triggers  the  transient
process  and  the  QSS  model  is  converted  back  to  full-dynamic
model.  The  PV  buses  will  be  converted  to  dynamic  models  of
synchronous generators with controllers.
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2.3    Efficient determination  of  steady  state  using  HE  coeffi-
cients
Traditional dynamic simulation usually uses the fluctuation of the
trajectories  to  determine the  steady state,  but  it  requires  an extra
period of simulation and is time-consuming. In contrast, HE can
enhance the switching by making use of the analytical form of the
solutions. Here we propose criteria for determining steady state by
using HE coefficients  in  power  series  (PS)  and  Padé  approxima-
tion (PA).

x(t) = ∑N
k=0 xktk

t [0,T]

The determination of steady state through PS or PA will  need
efficient  estimation  of  upper  and  lower  bounds  of  polynomials
within a given interval. So we first provide a general algorithm of
estimating such bounds before  introducing the  steps  for  determ-
ining  the  steady  state.  Considering  a  polynomial 
and an interval of  as . First, the polynomial can be written as

x(t) = (··· ((xNt+xN−1)t+xN−2)t+ ··· )t+x0 (19)

t [0,T]
xNt+xN−1

(xNt+xN−1)t+xN−2

y(t) Ny

N O(NyN)

here  represents  an  interval ,  and  following  the  interval
arithmetic,  we  can  derive  the  interval  of ,  and  then  the
interval  of ,  and  all  the  way  to  the  interval  of
the  entire  polynomial  by  unwrapping  the  parentheses.  Then  the
terminal values of the polynomial are lower and upper bounds of
the polynomial.  The  detailed  computation  procedures  are  in  Al-
gorithm 1.  For a vector of  polynomials  with size  and or-
der ,  the Algorithm 1 has complexity of ,  which is  very
efficient.

Next  we  introduce  the  approach  for  determining  steady  state
using  HE  coefficients.  Assume  the  power-series  approximate
solution of a trajectory derived by HE is

xT,PS(t) =
N

∑
k=0

x[k]tk (20)

t ∈ [0,Te]

xT,PS(t) [0,Te]

xT,PS(t) t

and the solution is effective within the interval ,  we aim
at estimating the rate of  changes of  in .  The average
rate of change of  from 0 to  is

RT,PS(t)
def
=

xT,PS(t)−xT,PS(0)
t

=
N

∑
k=1

x[k]tk−1 (21)

Algorithm  1. Calculate  bounds  of  polynomial  values  in  given
interval.

x(t) = ∑N
k=0 xktk t [0,T]Input: Polynomial , interval of  as .

xub xlb x(t) ∈ [xlb,xub]

t ∈ [0,T]
Output: Upper  and  lower  bounds , ,  s.t. 

when .
xub← xN xlb← xN1  , 

k= N− 1→ 02 for  do
xub < 0 xub3  if           //Interval arithmetic for 
xub ← xk4    

5  else
xub ← xubT+xk6    

7  endif
xlb > 0 xlb8  if           //Interval arithmetic for 
xlb ← xk9    

10  else
xlb ← xlbT+xk11    

12  endif
13 end for

RT,PS(t)
RT,PS(t) RT,PS,ub RT,PS,lb

xT,PS(t)
ΔT,PS = max{|RT,PS,ub |, |RT,PS,lb |} ∆T,PS

Algorithm  1  can  estimate  the  bounds  of .  Assume  the
upper and lower bounds of  are  and , respect-
ively.  So  the  average  rate  of  change  of  has  a  bound

.  If  is  smaller  than  a  preset

εT

N

threshold ,  then  this  variable  can  be  considered  as  entered
steady state.  Regarding  the  computational  complexity,  the  Al-
gorithm 1 only requires  addition and multiplication operations
for  each  variable,  which  means  linear  complexity  to  the  system
scale.  Thus  the  algorithm  only  adds  to  the  trivial  computation
burden to the overall simulation process.

Besides  power  series,  HE-based  simulation  usually  uses  Padé
approximations  to  obtain  larger  effective  time  steps  than  power
series[9, 20]. Because power series has smaller effective range, the cri-
teria based on (21) may be conservative.  So here we propose an-
other criterion for determining the steady state by using the coef-
ficients in  Padé approximations.  Assume the trajectory of  a  vari-
able approximated by the Padé approximation is

xT,PA(t) =
∑NA

k=0 xA[k]tk

∑NB
k=0 xB[k]tk

(22)

xA[k] xB[k]

NA+NB = N
NA NB

NA = ⌈N/2⌉ NB = ⌊N/2⌋
N

xB[0] = 1
t≤ Te

0≤ t≤ Te xA[k] xB[k]

where  and  are the Padé coefficients  on the numerator
and denominator,  respectively.  The orders  of  the  numerator  and
the denominator should satisfy . And to achieve the
best approximation results,  usually  and  should be as close
as  possible[21].  So  in  the  all  the  test  cases  in  this  paper,  we  use

 and  . And  based  on  our  previous  experi-
ence  on  power  system  simulation  based  on  HE,  choosing 
between 10 and 30 will usually get the best computation speed. To
make  the  Padé  approximation  unique,  it  is  usually  set .
Assume the solution (22) is effective when . The bounds of
(22) when  by using the coefficients  and  will
be derived next.

∑NB
k=0 xB[k]tk

[0,Te]

∑NB
k=0 xB[k]tk

First  we  assume the  denominator  of  (22)  does  not
change  sign  in  interval . This  assumption  usually  holds  be-
cause if  the denominator changes sign, at  least one time point in
the  interval  will  make  the  denominator  zero,  which  makes  (22)
not  well  defined for  the  simulation.  So  without  losing  generality,
we assume  be positive in the interval.

NA = NB

NA ̸= NB NA >NB

∑N′B
k=0 x′B[k]tk N′B = NA x′B[k] = xB[k] k≤ NB

x′B[k] = 0 c= xA[0]/xB[0]

Second  we  assume  for  the  following  derivations.  If
 in  (22),  e.g. ,  simply  replacing  the  denominator

with , where , , if  and oth-
erwise .  Denote ,  then (22)  can be written
as

xT,PA(t) = c+ ∑NA
k=0(xA[k]− cxB[k])tk

∑NB
k=0 xB[k]tk

= c+ ∑NA
k=1 x̃A[k]tk−1

∑NB
k=0 xB[k]tk

t (23)

x̃A = xA[k]− cxB[k]
xT,PA(t) t
where . Like (21), the average rate of change of

 from 0 to  is

RT,PA(t)
def
=

xT,PA(t)−xT,PA(0)
t

=
∑NA

k=1 x̃A[k]tk−1

∑NB
k=0 xB[k]tk

(24)

RT,PA(t)
∑NB

k=0 xB[k]tk xBlb xBlb > 0 > 0
RT,PA(t) xBlb

RT,PA(t)
∑NA

k=1 x̃A[k]tk−1 x̃Aub x̃Alb

RT,PA(t)

By using the Algorithm 1, bounds of numerator and denomin-
ator  in  can  be  obtained.  Assume  the  lower  bound  of

 is . If , i.e., a positive lower bound for the
denominator of  is gotten, then  can be used to estimate
the  bounds  of .  Assume  the  upper  and  lower  bounds  of

 by  using  Algorithm 1  are  and  ,  respectively,
then the upper and lower bounds of  can be obtained:

RT,PA,lb =
x̃Alb

xBlb

RT,PA,ub =
x̃Aub

xBlb

(25)

xT,PA(t)
∆xT,PA = max{|RT,PA,lb |, |RT,PA,ub |} ∆xT,PA < εT

and  the  average  rate  of  change  of  is  bounded  by
. And once , the studied

variable is considered as entered steady state.
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∆xT,PA ∆xT,PS

∆xT,PA < εT

∆xT,PS < εT

xBlb ≤ 0 ∆xT,PA

Here  we  can  use  both  and   for  determining  the
steady  state  of  variables.  For  a  given  variable,  if  or

, the variable is considered as entered steady state. Note
that  if ,  is not  well  defined  and  thus  the  Padé  ap-
proximation cannot be used to estimate the bounds for the stud-
ied variable.

∆xT,PA ∆xT,PSIn simulation,  and  of multiple variables need to be
calculated and tracked, and only when all the variables satisfy the
criteria above, the system can be considered to be in steady state.
Most variables in the computation can directly leverage the above
criteria for judging steady state, except the generator rotor angles.
Because the center of inertia (COI) of the system may not be ro-
tating at the nominal radius speed, the COI will not stop rotating
in  the  nominal  frequency  coordinate  even  if  system  transients
have well damped. Consequently, the rotor angles will keep chan-
ging even in the steady state. Therefore, the angle of one rotor will
be  selected  as  a  reference,  and  the  relative  angles  will  be  used  in
the above criteria.

3    Extended-term simulation framework

3.1    Event-driven simulation based on HE
Generally, there are two categories of events in the extended-term
simulation:
(1)      System events  represent  all  the  actual  events  in  the  system,

such as switch actions and ramping start/stop.
(2)      Simulation events  correspond to  changes  in  the  simulation

processes but are not actual events in the system, such as the
switching to a new simulation stage and switching between
dynamic and steady-state models.

h(x(t),y(t),p(t)) ≥ 0,t ≥ t0
h(x(t),y(t),p(t))

t

Some system events are triggered by satisfying some condition
. Once  the  HE  solution  of  (3)  is  ob-

tained,  the  value  of  is  tracked  by  substituting
time , and  the  time  of  the  event  can  be  approximately  determ-
ined by binary searches. As Figure 2 shows, because HE provides a
continuous  trajectory  of  system  states  in  the  time  domain,  HE
provides the  instant  of  the  event  more  accurately  than  the  tradi-
tional numerical integration methods that only provide values on
discrete time steps.
  

Event identif ied by numerical integration
Event identif ied by HE
Actual instant of event occurrence

Numerical integration
HE
True trajectory

�reshold
1

1

2

2

3

3

Fig. 2    Illustration of  event-tracking  errors  using  HE  and  traditional  nu-
merical integration simulation methods.
 

The  simulator  uses  an  event  scheduler  to  manage  the  event-
driven  simulation.  The  event  scheduler  tracks  all  the  events  and
determines  the  instant  of  the  earliest  event.  At  the  instant  of  an
event,  the  simulator  simulates  the  event  and  the  event  scheduler
updates the event list and prepares for the next event.

3.2    Overall work flow of extended-term simulation
Figure 3 shows the overall work flow of the extended-term simu-
lation. The simulation is driven by the event scheduler. The simu-
lation is able to deal with multiple islands and the collapse of part
or all of the system.

4    Test cases

4.1    2-bus test system

E= 1.01 z= r+ jx = 0.01+ j0.05
P+ jQ = 0.1+ j0.3 λ
dλ
dt

= 1 λ(0) = 0

Ith

We  used  the  2-bus  test  system[8] to test  the  event-driven  simula-
tion, as shown in Figure 4. We use the same system parameters as
ref.  [8],  i.e., , ,  and

.  Increase  the  load  level  at  a  constant  rate
 from the initial value  until  voltage collapse. The

task is to determine the instant that the current of the line reaches
a threshold . The 2-bus system has a closed-form solution: The
square of the line current is

I2(t) = 1
r2 +x2

[
E2

2
− (Pr+Qx)t−

E
√

E2

4
− (Pr+Qx)t− (Qr−Px)2

E2
t2
] (26)

I2(t) = I2th tthand by solving , the instant of the event  is

tth =

√
b2−4ac−b

2a
(27)

a= (Pr+Qx)2 +(Qr−Px)2 b= 2(Pr+Qx)(r2 +x2)I2th
c= (r2+x2)2I4th−E2(r2 +x2)I2th

where , ,
and .

N= 20
NA = NB = 10

In this  test  case,  we use  for the  HE power  series  solu-
tions, and  for the Padé approximation. Because HE
provides the trajectory of states as a continuous function of time,
the time of an event can be determined at arbitrarily high resolu-
tion with binary search. The modified Euler (ME) and trapezoidal
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Fig. 3    Flowchart of extended-term simulation.
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∆tth

tth

(TRAP) methods  with  time step  0.01  s  are  used for  comparison.
In  numerical  integration  methods,  when  the  threshold  falls
between two adjacent time steps, the time of an event needs to be
approximately  determined  by  interpolation.  With  the  ground-
truth solution (27), we can compare the error of event time  as
determined by different methods. The results in Figure. 5 indicate
that  the  traditional  methods  may  have  substantial  error  of ,
while  HE  has  very  stable  and  high  accuracy  for  determining  the
time of event occurrence.
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∆tthFig. 5    Event  detection  time  error  with  HE,  modified  Euler  (ME)  and
trapezoidal (TRAP) methods (with linear and cubic interpolation).
 

This  test  case  verifies  the  reliable  performance  of  HE  method
over  the  traditional  numerical  integration  approaches  in  event-
driven simulation. In the next sections, the extended-term hybrid
steady-state and  dynamic  simulation  approach  will  be  demon-
strated. As  we  have  shown  the  reliability  and  the  superior  per-
formance of HE-based simulation approach, we will compare the
hybrid steady-state and dynamic simulation approach with the full-
dynamic HE simulation approach in the next sections.

4.2    4-bus test system

T1 = 0.3 T2 = 0.1
Tgi = 5

In this  subsection,  we show the proposed extended-term simula-
tion method on a 4-bus test system. As Figure 6 shows, each bus
has ZIP and induction motor loads, and buses 1 and 4 have syn-
chronous  generators  with  AVRs  and  TGs.  The  TGs  have  time
constants  s,  s. The system is also equipped with
AGC, and the time constant of the AGC controller is  s. In
the  beginning,  each  generator  has  an  active  power  output  of
1.1436 pu.

During the 500 s  simulation,  the system periodically  adds and
cuts loads on buses 2 and 3 at time intervals of 30 s. The process

involves multiple  events,  fast  transients  of  generators  and  induc-
tion  motors,  and  slower  dynamics  introduced  by  AGC,  and  the
duration is  much longer  than the  conventional  dynamic  security
assessment.  People  can  choose  to  perform  the  HE  full-dynamic
simulation with  the  conventional  numerical  simulation  ap-
proaches or,  alternatively,  HE can be used to perform simulation
for better accuracy and computation speed[8]. However, the simu-
lation is still time-consuming for such a long process. Here we use
the  proposed approach for  switching  between dynamic  and QSS
models  based  on  HE,  and  compare  it  with  the  HE  full-dynamic
simulation results.

Figure 7 shows the frequency and voltage of the system (for full
dynamic simulation, the frequency is regarded as the mean value
of the  generator  rotor  speeds  weighted  by  the  inertia).  The  fre-
quency curve clearly reflects the tendency of AGC to restore sys-
tem frequency. The figure also shows the time intervals of the full-
dynamic simulation and QSS simulation. In the whole 500 s pro-
cess, only 66.32 s are in full-dynamic simulation, and about 87.7%
of the process is  simulated with QSS. The HE QSS+full-dynamic
hybrid simulation is significantly faster than the HE full-dynamic
simulation:  Full-dynamic  simulation  takes  47.32  s,  and  hybrid
simulation  only  takes  12.66  s,  which  reduces  the  computation
time  by  73.25%. Figure  8 shows  the  difference  of  the  simulation
results  between  full-dynamic  simulation  and  hybrid  simulation:
The result of hybrid simulation is almost the same with that of the
full-dynamic simulation, which verifies that hybrid simulation can
well reproduce the result of full-dynamic simulation.
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N= 20
NA = NB = 10

Te = 0.137
ω′

V2
4

vm2

εT = 10−3
ω′ ∆xT,PS ∆xT,PA

∆xT,PA V2
4 ∆xT,PS vm2

∆xT,PS ∆xT,PA

To  better  explain  the  HE-based  switching  from  dynamic  to
QSS models, some HE coefficients at the model switching point of
69.69  s  are  extracted.  We  use  for  the  HE  power  series
solutions,  and  for  the Padé approximation.  At  this
time  point,  the  simulation  switches  from  dynamic  model  to  the
QSS model.  The HE solution has an effective range  s.
Here the difference of rotor speeds between the two generators ,
the square of voltage magnitude at bus 4  and AVR variable on
generator 2  (on bus 4) are listed in Table 1. The threshold for
determining steady state is selected as . The results show
that  for ,  both  and  satisfy  the  steady-state  criteria,
while  only  for   and  for   satisfy  the steady-state
criteria. In any those cases, the variable are determined as entered
steady state because at least one from  and  satisfy the
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Fig. 4    2-bus test system.
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Fig. 6    4-bus test system.
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∆xT,PS ∆xT,PAcriteria.  This  shows  that  both  and   are  useful  for  the
effective switching from dynamic to QSS simulation.

4.3    Simulation of restoration on New England test system

N= 20
NA = NB = 10

We simulated  and  demonstrated  the  process  of  system  restora-
tion on the  IEEE 39-bus  (New England)  system.  System restora-
tion is  a  typical  process  involving complex  dynamics  in  different
timescales,  with  significant  topology  and  system  parameter
changes,  which  is  very  challenging  to  simulate[15, 22].  We  used  a
heuristic  model  to  generate  the rough system restoration process
in  steady-state  model[15],  and  then  the  detailed  system restoration
sequence  is  generated  based  on  the  dynamic  system  model.  The
generator on bus  39  acts  as  the  black  start  generator  for  the  res-
toration process. The buses, lines and generators are energized se-
quentially,  and the loads and generation are picked up gradually.
In  this  simulation  task,  the  generators  use  6th-order  model,  and
the  loads  use  ZIP+Motor  model.  The  entire  restoration  process
lasts 12,065  s,  and  full-dynamic  and  hybrid  simulation  ap-
proaches  are  used  to  simulate  them  respectively.  The  simulation
was implemented and tested on Matlab 2017b. Same as previous
test  cases,  we  use  for  the  HE power  series  solutions,  and

 for the Padé approximation.
During  the  whole  12,065  s  restoration  process  there  are  396

events, including adding lines, generators, static load, shunt capa-
citors, and induction motors, and ramping up generator power. In
the  hybrid  simulation,  8,057.3  s  (i.e.,  66.8%)  of  the  restoration
process  is  simulated  in  a  QSS  model. Figure  9 shows the  differ-
ence in  voltage  and  frequency  between  the  full-dynamic  simula-
tion and the  hybrid  simulation,  and the  trajectories  of  some sys-
tem states are shown in Figure 10. It can be seen that the results of
hybrid simulation are very close to those of full-dynamic simula-
tion. In terms of the computation speed, the full-dynamic simula-
tion takes 5,909.3 s to finish computation. The hybrid simulation
takes 2,779.2 s,  which is a time savings of about 52.97%. Consid-

ering  that  QSS  simulation  covers  66.8%  of  the  entire  restoration
process, the result shows that QSS simulation is significantly faster
than full-dynamic  simulation,  and  the  hybrid  simulation  ap-
proach  can  significantly  enhance  the  performance  of  extended-
term simulation without losing accuracy.
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5    Conclusions
This  paper  proposes  a  novel  extended-term simulation approach
based on semi-analytical simulation (SAS). The high accuracy and
efficiency  of  SAS  engine  powered  by  holomorphic  embedding
(HE) method  lays  the  foundation  for  the  extended-term  simula-
tion. The HE formulations for solving typical types of events (i.e.,
atomic events) are provided. And to efficiently accelerate simula-
tion under multiple timescales, the hybrid simulation of dynamic
and quasi-steady-state (QSS) simulation based on HE is proposed,
and its  accuracy has been verified.  The model switching between
dynamic and QSS simulation based on HE coefficients is efficient
and  convenient.  The  nature  of  the  HE  solution  as  continuous
functions in  a  time  domain  also  enables  better  handling  of  vari-
ous  events  in  the  extended-term simulation.  The  test  cases  show
that the proposed hybrid, event-driven, extended-term simulation
based on HE has  satisfactory  accuracy  and efficiency  and can be
used to simulate complex power system processes such as restor-
ation, cascading outages. Also, the SAS approach is not limited to
modeling conventional  power system components,  and it  can be
extended towards  electromagnetic  modeling  for  studies  on  re-
newable energy resources, HVDC[23], as well as even more general
modeling of other energy systems, e.g. natural gas systems[24].
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Table 1    HE  coefficients  (power  series)  of  rotor  speed  difference  in  4-bus
system

k ω′ V2
4 vm2

ΔxT,PS 6.11×10−4 0.0279 3.76×10−4

ΔxT,PA 1.26×10−4 9.85×10−4 0.0013
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