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ABSTRACT
Among various power system disturbances, cascading failures are considered the most serious and extreme threats to grid opera-
tions, potentially leading to significant stability issues or even widespread power blackouts. Simulating power systems’ behaviors
during cascading failures is of great importance to comprehend how failures originate and propagate, as well as to develop effective
preventive  and  mitigative  control  strategies.  The  intricate  mechanism  of  cascading  failures,  characterized  by  multi-timescale
dynamics, presents exceptional challenges for their simulations. This paper provides a comprehensive review of simulation models
for  cascading  failures,  providing  a  systematic  categorization  and  a  comparison  of  these  models.  The  challenges  and  potential
research directions for the future are also discussed.
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As  ones  of  the  most  complex  engineering  systems  in  the
world,  power  systems  interconnect  a  variety  of  electrical
components.  Among  various  power  system  disturbances,

cascading  failures  are  considered  the  most  serious  and  extreme
threats to the stability and reliability of power systems, which are
usually long sequences of dependent failures,  progressively weak-
ening the grid in a chain reaction-like manner. Although cascading
failures  do not  occur  frequently,  their  impacts  can be  severe  and
extensive once they occur, leading to widespread power outages or
even  a  blackout  of  the  entire  power  system.  Historical  cascading
and  blackout  events[1−3] are  such  as  the  1965  Northeast  Blackout,
the  1977  New  York  City  Blackout,  the  1996  Western  North
America  Blackouts,  the  2003  US–Canada  Blackout,  the  2006
European  Blackout,  the  2011  Southwest  Blackout  and  the  2012
Indian Blackout. In the past half a century, cascading failures and
blackout  events  occurred  every  few  years  worldwide.  Simulation
of cascading failures is crucial to their prevention and mitigation.
The  simulation  models  appropriately  constructed  for  cascading
failures can  help  comprehend  their  mechanisms,  evolution  pat-
terns, propagation paths and potential control strategies.

There are several definitions of cascading failures. According to
North  American  Electric  Reliability  Corporation  (NERC), “cas-
cading” refers  to “the uncontrolled  successive  loss  of  system ele-
ments triggered by an incident at  any location.  Cascading results
in  widespread  electric  service  interruption  that  cannot  be
restrained from  sequentially  spreading  beyond  an  area  predeter-
mined  by  studies”[4].  Another  definition  provided  by  the  IEEE
Task  Force  on  Understanding,  Prediction,  Mitigation  and
Restoration  of  Cascading  Failures[5] is “a  sequence  of  dependent
failures  of  individual  components  that  successively  weakens  the
power  system”.  Based  on  historical  records  of  cascading
failures[1–3],  various  causes  have  been  identified,  including  natural
disasters,  equipment  failures  and  human  factors.  These  factors
could lead to  an initial  failure  within a  local  region.  If  this  initial
failure is not cleared in time, it may propagate to a wide area and
result  in  a  cascading  event,  which  involves  multi-timescale

dynamics such as overloading, power redispatch, voltage and fre-
quency deviations,  load shedding,  frequency collapse and voltage
collapse[6].  Due to  the diverse  causes  and multi-timescale dynam-
ics, modeling cascading failures has been a task of great challenge.
Substantial efforts have been devoted to building cascading failure
models.  Nevertheless,  most  of  the  existing simulation models  for
cascading  failures  primarily  concentrate  on  specific  mechanisms
rather than covering the entire evolution process[7]. This paper sys-
tematically  reviews  and  compares  existing  simulation  models,
providing an overview of the existing approaches used for model
benchmarking. Meanwhile, it highlights the difficulties in effective
simulation of cascading failures, as well as the emerging challenges
introduced by renewable energy sources. The potential directions
to address these challenges are also discussed.

The rest of this paper is organized as follows. Section 1 introduces
historical cascading and blackout events in recent decades. Section
2 presents the evolution of cascading failures. Section 3 compares
simulation models of cascading failures, including physical models
and  probabilistic  models.  Other  emerging  models  such  as
machine learning-based models are also introduced. Section 4 dis-
cusses  challenges  and  potential  directions  for  the  future.  Finally,
Section 5 draws conclusions.

1    Historical cascading and blackout events
In this section, historical  cascading and blackout events in recent
decades are presented. Also,  the progression of cascading failures
based on a specific blackout event is analyzed.

1.1    Major large-scale blackouts
Cascading  failure  is  identified  as  a  key  contributor  leading  to
large-scale  blackouts,  as  indicated  by  technical  reports  of  those
blackouts[8–12].  In  recent  decades,  large-scale  blackouts  have
occurred globally[8–16], and a large number of people suffered from
power outages, as summarized in Table 1. 
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1.2    Analysis  of  the “August 14,  2003” blackout in the United
States and Canada
On August  14,  2003,  a  widespread  blackout  occurred,  impacting
wide areas of the Midwest and Northeast United States, as well as
Ontario, Canada. During this blackout, around 50 million people
suffered from power  outages.  In  the  United States,  the  estimated
total  economic  loss  ranged  from  $4  billion  to  $10  billion.  In
Canada,  the  gross  domestic  product  in  August  decreased  by
0.7%[10].  Since  this  cascade  event  is  one  of  the  most  famous  and
well-studied blackouts in the past twenty years, this paper utilizes
it as an example to illustrate the development process of cascading
failures.

The initiation of this blackout can be divided into four phases[10],
as  illustrated  by  a  timeline  in Figure  1 below.  After  the  loss  of
Eastlake  5  at  13:31  Eastern  Time,  the  transmission  line  loadings
were higher but still within the normal range. However, the com-
puter failures that happened right after resulted in unawareness of
the serious situation in the control room, and the subsequent trip-
ping of key FirstEnergy (FE) lines due to contacts with trees, trig-

gered  the  blackout.  Starting  from  16:05,  the  cascade  propagated
extremely  fast  and  cannot  be  stopped  by  any  control  actions,
resulting in a large-scale blackout in just 7 minutes. Based on the
analysis  of  this  blackout,  it  can  be  concluded  that  the  cascading
failure includes two stages. The progression of component failures
is  slow  in  the  early  stage  but  accelerates  significantly  in  the  later
stage.  The  detailed  evolution  of  cascade  failures  will  be  analyzed
and presented in the next section.

2    Evolution of cascading failures
Based on the investigation and analysis of those historical cascading
failure  events[8−13],  the  causes,  stages  and  sequences  of  cascading
failures are presented in this section.

2.1    Causes of cascading failures
Cascading  failures  can  be  caused  by  various  reasons,  which  are
categorized into three types as depicted in Figure 2 and summarized
below[6, 17–20]:

(1) Natural disasters:  strong winds (such as tornados and hur-

 

Table 1    Major large-scale blackouts

Date Location Duration Initial causes Loss of load (MW) People affected (Million)
01/23/2023 Pakistan 12 h Voltage fluctuation — 220
10/04/2022 Bangladesh 7 h A transmission line tripping — 140

02/08/2021 Texas, USA 2 days Cold weather 23,418 4.5

01/09/2021 Pakistan 20–22 h An engineering fault — 200

08/03/2020 USA 2 days Hurricane — 13.8

03/07/2019 Venezuela 7 days Equipment failures due to inadequate maintenance — 30

03/13/2016 Sri Lanka 8 h A power outage at the Biyagama Station — 21

03/31/2015 Turkey 10 h A line trip due to overloading caused angular instability
and led to system separation

— 70

11/01/2014 Bangladesh 10 h Transmission line failure — 150
07/30/2012 India 2 days Weak inter-regional corridors and overloading due to

multiple outages
36,000 620

09/08/2011 California, USA 12 h A misoperation at a capacitor bank caused a single 500 kV
line to trip due to inadequate situational awareness and
planning

7,835 2.7

02/04/2011 Brazil 16 h Transmission line failure — 40
11/10/2009 Brazil & Paraguay 2–4 h Heavy rains and strong wind 24,000 87

11/04/2006 Europe 2 h Operator error 16,720 15

09/28/2003 Italy 12 h A line trip caused by falling trees 27,000 56

08/14/2003 USA & Canada 2 h to 4 days Tree-to-line contacts, computer failures 61,800 50

01/02/2001 India 16–20 h Transmission system failure — 226
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Fig. 1    Timeline: The initiation of the “August 14, 2003” blackout.
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ricanes),  earthquakes,  thunderstorm  and  lightning  and  severe
weather  conditions.  One  example  is  the  February  2021  cold
weather-induced outages  in  Texas  and the  South Central  United
States[12].

(2) Equipment failures: electrical equipment failures, computer
failures and communication network failures. One example is the
“August  14,  2003” blackout  in  the  United  States  and  Canada,
which was caused by both electrical equipment failures due to tree
contacts and computer program failures[10].

(3) Human factors: operator errors due to inadequate situational
awareness or insufficient training. One example is the November
2006 UCTE system outage  which  affected  most  European coun-
tries. One of the main causes of this event was that the operators
failed to consider the correct values of the protection system when
taking corrective actions[9].

Preventing  and  mitigating  cascading  failures  is  challenging,
especially  with  the  first  and  third  types  of  main  causes,  namely
natural  disasters  and  human  factors.  Prevention  and  mitigation
efforts against these two types are primarily led by industry. Miti-
gating  the  cascading  failures  due  to  natural  disasters  involves
enabling  backup  capabilities  of  critical  infrastructure  and  even
establishing  a  backup  control  room,  while  the  cascading  failures
due to human factors can be prevented and mitigated by enforcing
regular  operator  trainings  and  drills  against  emergencies  and
enhancing operators’ decision support  tools.  In contrast,  the cas-
cading failures due to the second type, i.e. equipment failures, can
be effectively reduced or prevented through comprehensive plan-
ning studies.  Consequently,  numerous  existing  studies  are  con-
centrated  on  the  cascading  failures  caused  mainly  by  the  second
type to understand the mechanisms in initiation and propagation
of  failures  and  thus  develop  effective  prevention  and  mitigation
strategies.

In addition to the main causes that contribute to initiating cas-
cading failures mentioned above, there also exist some factors fur-
ther  accelerating  the  propagation  of  cascading  failures[8–13],  which

are  such  as  reduced  reliability  margin  and  abnormal  voltage  or
frequency  conditions.  The  diversity  and  uncertainty  of  causes
make  modeling  cascading  failures  challenging.  Various  methods
have  been  developed  to  address  these  complexities.  Some  utilize
stochastic  methods,  accounting  for  the  diversity  and  uncertainty
of causes  by  varying  the  failure  probabilities  of  electrical  compo-
nents[21−31].  Others focus on understanding specific  causes,  such as
hidden  failure  models[32–35],  which  explore  the  impact  of  hidden
failures on cascading failures. Additionally, high-level probabilistic
models  aim  to  approximate  the  average  influence  of  causes  on
cascading failures[36–41].

2.2    Stages of cascading failures
According to the analysis of historical cascading failures[8–13], it can
be  observed  that  the  evolution  of  cascading  failures  can  be  split
into two stages: the slow stage and the fast stage. Characteristics of
these two stages are summarized in Figure 3.

In the slow stage, the evolution of the cascading failure is relatively
slow and the time interval between successive events ranges from
tens of seconds to hours, and this stage usually lasts from several
minutes  to  several  hours.  In  this  stage,  initial  outages  caused  by
some  common  events,  such  as  overload,  short  circuits  and  open
circuits,  are  typically “N-1” or “N-2” contingencies.  Generally,
power  systems  should  satisfy  the “N-1  criterion”[42],  so  they  can
operate  reliably  even  if  a  key  generator  or  transmission  line  is
tripped. Some systems are even designed to operate following the
loss  of  two  important  facilities  (i.e., “N-2  criterion”).  Therefore,
after the initial outage, the system is typically in a normal or alert
state. However, the system may directly enter an emergency state
under  some  extreme  initial  events,  or  may  transit  from  the  alert
state to an emergency state due to a following contingency. Under
the  emergency  state,  operators  still  have  time  to  take  corrective
actions  to  drive  the  system  to  a  normal  state.  Dynamics  such  as
the  power  redispatch,  overloading,  low  voltage,  and  frequency
deviation can happen in this stage and usually have a slight effect
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Fig. 2    Main causes of initiating cascading failures.
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on the system stability. Nevertheless, if effective control actions are
not taken by operators immediately or any additional faults occur
before  the  system  is  restored  to  a  reliable  state,  the  system
becomes over-stressed and the cascade evolves to the fast stage.

In  the  fast  stage,  the  evolution  of  the  cascading  failure  is  very
fast  and  mainly  driven  by  the  transient  dynamics.  It  is  almost
impossible for operators to take remedial actions to stop the cascade
because  the  time  interval  between  successive  events  ranges  only
from  milliseconds  to  tens  of  seconds[43].  In  this  stage,  subsequent
transmission lines will trip due to overloading, which may further
lead to low voltage, low frequency, loss of synchronism, islanding,
and even voltage or frequency collapse. Thus, the subsequent fail-
ures accelerate the evolution of the cascade and finally may result
in a blackout.

As observed from the various stages  of  cascading failures,  cas-
cading failures involve multi-timescale dynamics, posing a signifi-
cant  challenge  for  modeling.  Researchers  have  developed  diverse
models to address this challenge. Some models are constructed in
the quasi-steady-state domain, efficiently capturing dynamics dur-
ing the slow stage while ignoring fast dynamics. In contrast, some
models  are  constructed  using  dynamic  models  to  trace  detailed
dynamics in both stages, achieving greater accuracy but lower effi-
ciency.

2.3    Sequences of cascading failures

F(j)
i

To facilitate the ease of conducting statistical analysis on cascading
failures,  each  cascade  event  is  typically  represented  by  a
sequence[5]. For the simulation data, one cascade event is naturally
grouped  into  an  outage  sequence.  However,  for  utility  cascade
event  data,  some  criteria  must  be  applied  to  divide  the  cascade
data  into  several  independent  cascade  events,  and  further  divide
each cascade event into several sets of failed components in finite
generations, forming an outage sequence. Given that system oper-
ators typically complete control actions within an hour, and auto-
matic reclosure operations or fast transient dynamics are typically
completed within a minute, Ref. [44] utilized these two time-scales
as  the  criteria  for  data  grouping.  First,  successive  related  outages
with time differences exceeding one hour are divided into different
cascade events. Second, successive outages with time differences of
more  than  one  minute  are  divided  into  different  generations  of
the  corresponding  cascade  event.  As  such,  each  cascade  event  is
represented  by  an  outage  sequence  with  finite  generations,  and
each generation  has  a  set  including  one  or  more  failed  compo-
nents.  The  cascade  event  will  terminate  if  there  are  no  further
component  failures. Figure  4 shows  the  sequences  of  multiple
independent cascade events, where N is the number of independent
cascade events, and  is the set of failed components in generation
i of cascade j.

3    Simulation models of cascading failures
As discussed in the previous section on the evolution of cascading
failures, it can be observed that the causes of cascading failures are
diverse and uncertain. Moreover, cascading failures include multi-
timescale dynamics. Therefore, it is challenging to model cascading
failures.  Many  researchers  have  been  working  on  developing
models  for cascading failures and diverse models  were proposed.
Generally, the existing cascading failure models can be categorized
into physical  models  and probabilistic  models[36, 45, 46].  The physical
models  are  established based on detailed power system networks
and physical constraints. Different from the traditional power sys-
tem tools,  which are  typically  designed for  specific  purposes.  For
instance, one may focus on steady-state analysis to determine the
optimal power flow solution under a particular loading condition.
Other tools might be designed for evaluating transient stability or
small-signal stability  in  response to  specific  disturbances.  In con-
trast, physical models for cascading failures simulate the progressive
failures and subsequent impacts on the system in a time-sequential
manner,  which  characterizes  how  cascading  failures  propagate,
involving modeling  various  factors  such as  automation,  commu-
nication,  EMS  (energy  management  systems),  protection  relays,
control  and  remedial  actions,  and  operation  modes,  which  are
unnecessarily power system components. The probabilistic models
are constructed offline based on assumed probability distributions
or large amounts of historical or simulated event data.

3.1    Physical models

3.1.1    OPA model

The  OPA  (ORNL-PSerc-Alaska)  model  is  a  DC  optimal  power
flow-based tool developed by Oak Ridge National Laboratory, the
Power Systems Engineering Research Center at  the University of
Wisconsin, and the University of Alaska[21, 22]. The flowchart of the
OPA model  is  shown in Figure 5,  representing a  general  process
for simulating cascading failures. The flowcharts of all other physical
models are  similar  to  this  one,  with  minor  variations  in  algo-
rithms. This model considers two time-scale dynamics: one is the
slow  dynamics  related  to  load  growth  and  power  grid  upgrade,
and another one is the fast dynamics related to power redispatch
due to line outages or overloading. The power redispatch is  con-
ducted  by  linear  programming,  which  aims  at  minimizing  load
shedding. The OPA model was validated on the WECC (Western
Electricity Coordinating Council) 1553-bus system[23]. The statistical
blackout  data  obtained  from  this  model  achieved  a  reasonable
agreement with  WECC  historical  blackouts.  However,  the  simu-
lation  results  on  the  probability  distributions  of  line  outages  and
cascade sizes did not match well with the utility data.

To  overcome  the  limitations  mentioned  above,  an  improved
OPA model was proposed[24]. This model incorporates more prac-
tical  and  comprehensive  factors  of  cascading  failures,  including
dispatching,  automation,  communication,  protective  relays,  and
low-probability failures  in  control,  operation  modes,  and  plan-
ning. The distribution of the blackout size generated by this model
closely aligns with historical  data.  However,  this  model still  relies
on a DC optimal power flow (OPF) method. While the DC-OPF
method is  efficient,  it  ignores the influences of  voltage deviations
and reactive power on cascading failures.

To address  the  limitations  of  the  DC-OPF-based OPA model,
an AC-OPA model was developed[25]. This model replaces both the
DC power flow and DC OPF methods with AC-based algorithms,
incorporating  a  voltage  stability  module  that  enables  modeling
cascading failures with considerations of reactive power and volt-
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age.  However,  it  does  not  account  for  frequency  influences  and
transient dynamics.

Later, an AC optimal power flow model considering frequency
deviation (AC-OPFf) model was introduced[26]. This model incor-
porates a dynamic load flow framework, taking into consideration
the static frequency characteristics of loads and generators within
the AC-OPA model. By considering frequency, this model allows
for  the  modeling  of  frequency-related  remedial  controls,  such  as
under-frequency  load  shedding  and  under/over-frequency pro-
tection.  However,  this  model  is  still  a  quasi-steady-state  model,
ignoring transient dynamics.

To capture more detailed transient dynamics in cascading fail-
ures,  an  enhanced  OPA  model  was  developed[27].  This  model
incorporates  transient  dynamics  through  time-domain simula-
tions. While it can simulate more realistic sequences of cascading
failures,  it  is  much  more  time-consuming compared  to  the  con-
ventional OPA model.

The flowcharts for the OPA variants can be obtained by making
several modifications to the flowchart of the original OPA model,
as summarized below:

(1) Improved OPA model: (a) Consider a failure probability for
“Calculate OPF” in the fast dynamics loop to simulate communi-

cation failures or EMS breakdown. (b) Add a “DC-OPF” block if
overloaded lines exist in the slow dynamics loop, simulating influ-
ences of operation modes and planning.

(2)  AC-OPA model:  Replace  all  the  DC power  flow and  DC-
OPF with the AC power flow and AC-OPF, respectively.

(3) AC-OPFf model: (a) Replace all the AC power flow and AC-
OPF  with  the  dynamic  load  flow  and  AC-OPF considering  fre-
quency, respectively. (b) Add under frequency load shedding and
generator frequency  protections  after  the  dynamic  load  flow cal-
culation.

(4)  Enhanced  OPA  model:  Add  a  dynamic  simulation  model
after each line outage in the fast dynamics loop.

3.1.2    Manchester model

The  Manchester  model  was  developed  aiming  at  calculating  a
security  index,  specifically  the  expected  cost  due  to  unscheduled
outages[28, 29].  This  model  is  based  on  the  AC  power  flow  method
and considers various factors, including hidden failures, generator
instability,  and  weather  conditions.  These  factors  are  modeled
with  different  failure  probabilities  of  electrical  components.  The
disadvantage of this model is that its accuracy relies heavily on the
accuracy of failure probabilities, which are not easy to determine.

3.1.3    Hidden failure model
A hidden failure is undetected when a system operates under nor-
mal  conditions,  but  it  will  be  exposed due to  some disturbances,
leading  to  incorrect  relay  protection  actions  and  unexpected  line
outages. Hidden failures are ones of the most important causes of
cascading failures. To consider this, a hidden failure model based
on the DC-OPF method was introduced[32−34]. In this model, hidden
failures  are modeled by allowing exposed lines to trip incorrectly
with  a  specified  probability.  A  simple  network,  as  shown  in
Figure 6,  is  utilized to explain what  exposed lines  are.  If  line 3  is
tripped due to disturbances, lines 1, 2 and 6 become exposed lines
because they are connected to the tripped line. The probability of
exposed  lines  tripping  incorrectly  is  determined  by  the  line  flow
limit.  Typically,  the  probability  remains  quite  low  when  the  line
flow  is  below  the  limit.  However,  it  begins  to  increase  linearly
from  the  point  where  the  line  flow  equals  the  limit,  continuing
until  the line flow reaches 1.4  times the limit,  at  which point  the
probability reaches its maximum value. Beyond this threshold, as
the  line  flow  continues  to  increase,  the  probability  remains
constant[35].  Additionally,  the  model  considers  the  influence  of
exposure  times  by  adjusting  the  probability  of  an  exposed  line
tripping incorrectly to zero after the exposed line has been tripped
once due to hidden failure,  which is  reasonable because,  in prac-
tice, the hidden failure of the exposed line is most likely to be fixed
after  the  first  exposure.  Because  the  hidden  failure  model  also
relies on the DC-OPF method, it ignores the influences of voltage
and reactive power on cascading failures. Furthermore, the proba-
bility function of hidden failures in this model is oversimplified.

3.1.4    COSMIC model

The  COSMIC  (cascading  outage  simulator  with  multiprocess
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integration  capabilities)  model  was  developed  to  simulate  the
detailed  dynamics  of  cascading  failures[47].  This  model  describes
system  dynamics  using  hybrid  differential-algebraic  equations
(DAEs). These equations include traditional DAEs related to tran-
sient  dynamics  and  discrete  equations  representing  dynamics
caused by protective relay actions.  The model considers five pro-
tective schemes, including over-current relays, temperature relays,
distance relays, under-voltage load shedding, and under-frequency
load  shedding.  Furthermore,  the  model  establishes  various  load
models using a static “ZIPE” model[48], which can represent constant
impedance (Z) load, constant current (I) load, constant power (P)
load,  exponential  (E)  load,  and  any  combination  of  them.  The
COSMIC  model  simulates  cascading  failures  through  time-
domain simulation,  which is  to  solve  the hybrid DAEs using the
trapezoidal  rule.  The simulation result  from the COSMIC model
aligns closely  with that  from the DC power flow-based model  in
the  early  stage  of  cascading  failures,  but  significant  differences
between these two models occur in the later stage when the evo-
lution of the cascading failure is mainly driven by rapid transient
dynamics.  Additionally,  the  COSMIC  model’s  simulation  results
show that load models have a great influence on the cascade size.
Therefore,  the accuracy of  load modeling is  crucial  for  cascading
failure  simulation.  Since  the  COSMIC  model  conducts  time-
domain simulation to obtain detailed dynamics, it is inefficient to
generate large amounts of cascade data for statistical analysis.

3.1.5    Dynamic PRA model

The dynamic probabilistic risk analysis (PRA) model was proposed
to  cover  both  the  slow  and  fast  stages  of  cascading  failures[30, 43].
This  model  divides  the  evolution  of  cascading  failures  into  two
phases, including a slow cascade process mainly driven by thermal
dynamics and a fast cascade process mainly driven by rapid tran-
sient dynamics. In this model, thermal dynamics, considering the
influence of climatic conditions, are modeled differently for over-
head  lines,  underground  cables,  and  transformers.  The  Monte
Carlo  algorithm  is  utilized  to  identify  dangerous  scenarios  that
could  lead  to  a  blackout  because  it  is  not  feasible  to  analytically
determine the potential outage sequences for various initial causes
of  cascading  failures.  Simulation  results  demonstrated  that  this
model  can  effectively  identify  dangerous  scenarios,  which  might
be overlooked when using models that do not account for thermal
effects  with  respect  to  the  temperature  evolution.  However,  the
computational  burden  is  substantial  due  to  the  requirement  for
time-domain  simulations  to  capture  fast  transient  dynamics.  An
additional  limitation  of  this  model  is  that  it  is  challenging  to
obtain  precise  failure  probabilities  influenced  by  thermal  factors,
even when actual data is available.

3.1.6    Multi-timescale quasi-dynamic model

Ref.  [31]  established a  multi-timescale  quasi-dynamic model  that
achieves  a  balance  between  efficiency  and  accuracy.  This  model
divides  the  dynamics  of  the  cascading  process  into  three  distinct
timescales:  short,  medium,  and  long  timescales.  The  short
timescale includes emergency load shedding, as well as the tripping
of  transmission  lines  or  generators  due  to  faults  or  overloading.
The medium timescale includes line tripping triggered by factors
like  tree  contacts  or  overheating,  generator  outages  due  to  over-
excitation  or  under-excitation,  and  power  flow  redispatch.  The
long timescale  accounts  for  load variations.  The model  simulates
cascading  failures  through  mid-term dynamic  simulations  con-
ducted in segmented time intervals with an initial state determined
by  long-term  dynamics.  Short-term  simulations  are  performed

when  specific  events  are  triggered.  By  incorporating  time-related
information,  the  multi-timescale  quasi-dynamic  model  achieves
higher accuracy compared to quasi-steady-state cascading simula-
tion models that overlook time effects. This model was applied to
simulate the “August 14, 2003” blackout in the United States and
Canada, closely aligning with the actual progression. Furthermore,
it is employed in the risk assessment of cascading failures using a
Markovian  tree  search  approach[49].  However,  a  drawback  of  this
model is the necessity to estimate the total cascading failure duration
to divide the time into intervals, and load variations of each inside
interval are ignored.

3.1.7    Software tools for cascading failures

Except  for  those  academic  physical  models  of  cascading  failures
mentioned  above,  there  are  also  several  industrial  software  tools
for cascading failures.

(1) DCAT
The dynamic contingency analysis tool (DCAT) was developed

by Pacific Northwest National Laboratory[50]. This tool is an indus-
try-grade open platform for analyzing extreme events and potential
cascading failures. It has three typical features[51]. First, it conducts
hybrid  simulations  that  integrate  both  steady-state  and  dynamic
analysis.  Second,  it  models  protection  schemes  for  generating
units,  transmission  lines  and  loads  in  the  dynamic  simulation.
Third,  it  models  both  manual  and  automatic  corrective  actions,
such as  generator  tripping,  load  shedding  and  system  reconfigu-
ration,  during  the  post-dynamic  steady-state  simulation  using
PSS/E.  Because  this  model  conducts  dynamic  simulation,  it  is
computationally expensive[52].

(2) ASSESS
ASSESS is a commercial tool developed collaboratively by RTE

in France and National Grid in the UK[53]. It provides a flexible and
comprehensive platform for conducting simulations under uncer-
tainty,  while  also  facilitating  the  analysis  of  extensive  datasets,
which allows for the extraction of  essential  insights to ensure the
secure operation of power systems. This is realized by integrating
diverse  functionalities,  including  the  security-constrained  OPF
methodology[54],  the  quasi-steady  simulation  tool “Astre”[55, 56],  the
time-domain simulation tool “Eurostag”[57], statistical analysis tools
and a  variety  of  sampling functions.  All  these  facilities  are  incor-
porated  into  a  unified  software  environment.  While  ASSESS  is
designed  for  a  wide  range  of  studies,  including  long-term plan-
ning, operational planning and system security assessment, it can
also  be  used  to  simulate  cascading  sequences  and  analyze  the
results using its built-in statistical analysis tools. Nevertheless, con-
ducting  cascading  failure  simulations  through  ASSESS  requires
careful  configuration.  Hence,  professional  training is  essential  for
this specific context.

(3) CAT
CAT  (cascade  analysis  tool)  is  a  commercial  module  within

TRANSMISSION  2000  suite[58],  developed  by  Commonwealth
Associates,  Inc.,  USA.  This  tool  conducts  cascade  analysis  in  a
steady-state domain through AC power flow calculations, aiming
at assessing the grid’s vulnerability to cascading failures. It conducts
simulations of cascade sequences by evaluating whether post-fault
states fall within user-defined thresholds. These thresholds include
the thermal overload threshold, low voltage threshold, and voltage
deviation threshold. In each generation of cascade sequences, only
one  component  is  allowed  for  disconnection,  specifically,  either
the most severely overloaded component or the load connected to
the bus with the lowest voltage. If the power flow of the post-fault
network  diverges,  the  load  connected  to  the  bus  with  the  lowest
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voltage will be tripped and the power flow of the updated network
will be recalculated. If divergence still occurs, the simulation is ter-
minated.  Additionally,  the  simulation  terminates  if  any  of  these
conditions  are  met:  there  is  no  load  connected  to  the  identified
lowest  voltage  bus;  the  subsequent  load  shedding  exceeds  the
allowable  maximum load  shedding  amount;  or  no  violations  are
detected. Furthermore, a severity index for each cascade sequence
is determined based on the cumulative load loss from contingencies
that result  in violations.  Because this  model  relies  on steady-state
analysis, it does not consider the transient dynamics of cascading
failures,  and  the  assumption  that  only  one  component  can  be
tripped in each generation may not always hold.

(4) TransCARE
TransCARE (transmission  contingency  and  reliability  evalua-

tion)  is  a  commercial  tool  developed  by  EPRI[59],  which  is  an
enhanced version of TRELSS (transmission reliability ealuation of
large-scale  systems)[60].  TransCARE  employs  a  quasi-steady-state
model to simulate the progression of cascading failures. Compared
to traditional OPF-based cascading failure simulators, this software
models the initial events of cascading failures from the protection
system  level,  allowing  the  customization  of  various  thresholds
such  as  the  overloaded  percentage  of  transmission  lines  and  the
low voltage  threshold  for  load  shedding.  Also,  TransCARE  con-
siders the influence of power system relay protection locations on
the  evolution  of  cascading  failures,  allowing  both  automatic  and
user-defined  breaker  placements.  Since  this  model  is  a  quasi-
steady-state  model,  it  overlooks  the  rapid  transient  dynamics  of
cascading failures. Another limitation is that this model is a deter-
ministic simulation approach, which ignores uncertainties arising
from  inherent  system  failures  that  contribute  to  the  complexity
and non-uniqueness of cascading failure propagation.

(5) PCM and PCMTS
The  PCMs  (potential  cascading  modes)  is  a  commercial  tool

integrated  within  the  POM  (physical  and  operational  margins)
suite, developed by V&R Energy and EPRI[61]. The POM is a con-
tingency analysis  software,  that  employs the full  Newton method
to  solve  AC  power  flow  equations[62].  Within  the  comprehensive
framework of the POM, the PCM tool conducts steady-state anal-
ysis  and  simulates  sequences  of  cascading  failures.  These
sequences are composed of component failures caused by various
factors, such as transmission line tripping due to overloading, load
shedding triggered by low voltage, and generator tripping resulting
from  voltage  violations.  The  PCM  also  includes  evaluation  and
visualization functions that quantify and rank the impacts of cas-
cading  failures,  providing  insight  into  the  evolution  of  cascading
failures and suggesting available mitigation strategies. The PCM is
based  on  steady-state  analysis,  which  ignores  the  rapid  transient
dynamics of cascading failures. To address this, a complementary
tool  named  PCMTS  (potential  cascading  modes-transient stabil-
ity) is incorporated into the POM environment[63]. PCMTS analyzes
cascading failures through time-domain simulation while consid-
ering  diverse  types  of  relays  including  over-current,  distance,
under-voltage  and  under-frequency  relays.  While  PCMTS
enhances model accuracy thanks to the consideration of transient
dynamics, it is computationally intensive. Additionally, a common
limitation of both the PCM and PCMTS is that their deterministic
modeling approach does not account for any uncertainties of cas-
cading failures.

3.2    Probabilistic models
When cascading failures are simulated using physical models that
reflect the actual topology of a power grid, the time performance

of simulation highly relies on the complexity of the grid.  In con-
trast,  high-level  probabilistic  models  can offer  better  efficiency of
simulation as they do not require physical  details  of power grids.
They can be constructed offline using a large amount of historical
or simulated cascading failure data and then assist system operators
in real-time decision making.

3.2.1    CASCADE model

The CASCADE model is a probabilistic model that only relies on
the  loading  conditions  of  system  components[45, 46].  It  starts  with
multiple  identical  components  initialized  under  random  loading
conditions  within  a  defined  range.  The  cascade  is  triggered  by
introducing  an  initial  load  disturbance  to  all  components.  If  a
component's  load  exceeds  the  loading  limit,  it  fails,  leading  to  a
fixed load increase for the remaining components. As more com-
ponents  fail,  the  stress  on  the  remaining  components  increases,
making  further  failures  more  likely.  The  CASCADE  model  is
straightforward, and it offers an analytical probability distribution
of cascade sizes, quantified by the number of failed components[64].
However,  due  to  its  lack  of  consideration  for  physical  details,  it
can  only  provide  general  insights  into  cascading  failures,  such as
the impact of loading conditions on cascade sizes.

3.2.2    Branching process model

The  branching  process,  a  stochastic  approach  used  to  model
reproduction, has been applied to study cascading failures, leading
to the branching process model[65]. In this model, the initial number
of  failed  components  in  generation  0  is  generated  by  a  Poisson
distribution. Subsequently, the number of failed components in all
the  following  generations  can  also  be  generated  using  the  same
Poisson distribution. The cascade terminates when the number of
failed components in the next generation reaches zero or when all
the  components  have  failed.  Therefore,  the  branching  process
model can be viewed as simulating a cascading sequence by pro-
ducing a series of random integers following the Poisson distribu-
tion. Parameters for the Poisson distribution are typically estimated
using a maximum likelihood estimator based on historical data or
simulation  data  from  other  cascade  models[66−68].  The  branching
process model can effectively approximate the distribution of the
blackout size, which is measured by the number of failed compo-
nents[44, 69−71].  Due  to  its  straightforward  procedure,  this  model
exhibits  high  efficiency.  However,  similar  to  the  CASCADE
model, the branching process model ignores the detailed dynamics
of cascading failures due to the lack of specific physical information
about the power networks. Consequently, it cannot provide infor-
mation regarding the propagation path of cascading failures.

3.2.3    Interaction model

The  interaction  model  is  a  data-driven  probabilistic  model[36−38].
This model can be derived from a large number of simulations or
historical cascading data, making the assumption that component
failures in the next generation are only determined by component
failures in the current generation.

A ∈ Zn×n

A' ∈ Zn×n

Supposing  the  total  number  of  components  is n,  a  matrix
 is  constructed based on the cascade events  data,  where

each element aij represents the number of times that the failure of
component i leads  to  the  failure  of  component j.  However,  this
simple assumption considers failures of all components as potential
causes of failure for each component in the next generation. Con-
sequently,  this  simplistic  approach  tends  to  overestimate  the
interactions  between  failed  components.  To  address  this  issue,  a
corrective  matrix,  denoted  as ,  is  constructed  based  on
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A a′
ij A'. The element  of  is described as follows:

a′
ij =

{
maxA(:, j), if A(i, j) = maxA(:, j)
0 , if A(i, j) < maxA(:, j)

(1)

From Eq. (1), it is evident that the failure of component j in the
next generation is not determined by the failures of all components
in the current generation but rather by the failures of certain critical
components.

A' B ∈ Rn×n

bij ∈ B
Based on , an interaction matrix  is defined, and its

element  is formulated as follows:

bij =
a′

ij

Ni
(2)

where Ni is the total number of times that component i fails in all
cascade events, and thus bij indicates an empirical probability that
the failure of component j is caused by the failure of component i.

B

B
i→ j

The interaction  matrix  indicates interactions  between com-
ponent  failures,  and it  can be  visualized by  an interaction graph,
which  is  different  from  the  actual  topology  of  the  grid.  In  this
graph, components are depicted as vertices, and nonzero elements
of  are depicted  as  directed  links,  representing  the  causal  rela-
tionships  among  component  failures.  For  example,  a  link 
indicates  that  the  failure  of  component i leads  to  the  failure  of
component j.  Each  link  has  a  weight  obtained  by  calculating  the
expected  number  of  times  that  component  failure  propagates
through  this  link.  This  weight  represents  the  contribution  of  the
link to the propagation of cascading failures in the system. More-
over,  a  set  of  key  links  and  key  components  that  have  the  most
significant impact on the propagation of cascading failures in the
system are identified. Key links are defined as those with substantial
weights, while key components are identified as vertices with sig-
nificant out-strength, which is the sum of weights of all links ema-
nating from a vertex.

Later, the single-layer interaction graph was extended to a multi-
layer  interaction  graph[39].  This  multi-layer  interaction  graph
model  offers  insights  into  the  propagation  of  cascading  failures
from three distinct  aspects:  the number of  line failures,  the load-
shedding  amount,  and  the  propagated  electrical  distance.  Other
data-driven probabilistic models similar to interaction models and
graphs are such as influence graph models[40, 41].

Many  mitigation  strategies  for  cascading  failures  have  been
proposed based on the interaction models[72−75]. The basic idea is to
determine the vulnerable components and the most likely propa-
gation  path  using  the  interaction  models.  Such  insights  enable
operators  to  take  targeted  control  actions,  such  as  load  shedding
or  islanding  to  mitigate  the  propagation  of  outages.  Therefore,
interaction  models  can  provide  effective  ways  to  understand  the
propagation  patterns  of  cascading  failures  from  cascading  failure
data and predict the most likely propagation scenarios, which can
guide operators in taking prompt and effective control actions to
mitigate the  propagation of  cascading failures.  However,  a  draw-
back  of  the  interaction  models  is  that  they  assume  a  one-to-one
causal  relationship  between  component  failures,  which  may  not
accurately represent practical situations where the causal relation-
ship can be one-to-many, many-to-one, or even many-to-many.

3.3    Comparison of physical and probabilistic models
The models  introduced above are compared in Table  2. In sum-
mary,  physical  models  are  built  based on electrical  networks and
power system laws,  which can be used to simulate power system
dynamics  and  the  evolution  of  cascading  failures.  DC  or  AC
power  flow-based  models,  characterized  as  quasi-steady-state

models,  neglect  transient  dynamics,  making  them  more  efficient
but less accurate compared to dynamic models. Within this cate-
gory,  DC  power  flow-based  models  are  more  efficient  yet  less
accurate  than AC power  flow-based models.  On the  other  hand,
probabilistic models are constructed based on assumed probability
distributions  or  data-based  statistical  analysis,  which  ignore
detailed  electrical  networks  and  power  system  laws.  Specifically,
the CASCADE  model  and  branching  process  model  are  con-
structed  based  on assumed probability  distributions.  While  these
models are more efficient than all the physical models, their appli-
cation is mainly limited to approximating the distribution of cas-
cading sizes. Interaction models are constructed based on statistics
of historical or simulated cascading failure data. Their construction
process can be time-consuming but once established off-line, they
can be  used on-line  to  efficiently  predict  the  critical  components
of cascading failures and the most possible cascade path, offering
valuable insights for the operator’s online decision support.

3.4    Other models
In recent years,  machine learning tools have been widely used in
the  study of  cascading  failures  to  reduce  computational  burdens.
Ref. [76] employed the support vector machine (SVM) algorithm
to predict whether the cascading failure will  happen or not given
an initial condition. Ref. [77] constructed an identification model
by a  deep learning framework to determine the vulnerable  set  of
cascading failures. Ref. [78] proposed a risk assessment strategy of
cascading  failures  based  on  deep  reinforcement  learning  by
expressing  cascading  failures  as  Markov  decision  processes.  Ref.
[79]  proposed  a  cascading  failure  screening  scheme  based  on  a
deep  convolutional  neural  network  and  depth-first  search.  Ref.
[80] utilized a graph convolutional network to identify critical cas-
cading failures, employing a layerwise relevance propagation algo-
rithm to uncover the reasons for predicted results. Ref. [81] devel-
oped a hybrid machine learning approach by integrating a random
forest classifier and a regressor to analyze the vulnerability of cas-
cading  failures.  Ref.  [82]  proposed an approach based on a  deep
convolutional  generative  adversarial  network  to  determine  the
interactions between failed components in cascading failures. Ref.
[83] developed a dual-path convolutional neural network classifier
to  identify  the  types  of  cascading  failures  in  high-proportion
renewable  energy  systems.  Machine  learning-based  models  are
computationally efficient.  However,  most of these models mainly
focus  on classifying whether  the  cascading failure  will  happen or
not,  or  assessing  their  impacts,  rather  than  simulating  cascading
failure sequences. These models have three notable drawbacks: (1)
they need a large amount of data, and the model accuracy highly
depends  on  the  quality  of  data;  (2)  hyperparameters  tuning  for
neural  network-based models  during  the  training  process  can be
time-consuming,  especially  for  high-dimensional  networks;  (3)
they do not provide detailed insights into the mechanisms of cas-
cading failures.

3.5    Benchmarking of simulation models of cascading failures
As introduced above, various simulation models of cascading fail-
ures  have  been  proposed.  Benchmarking  is  crucial  for  verifying
the effectiveness of these models. The benchmarking of simulation
models for cascading failures is primarily conducted through three
approaches, as summarized in Table 3[84−87].

4    Challenges and future research directions
This section explores the challenges of  simulation models  of  cas-
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cading  failures,  while  also  presenting  the  potential  directions  to

address these challenges.

4.1    Traditional challenges

One significant challenge of traditional challenges is to maintain a

 

Table 2    A comparison of physical and probabilistic models

Models Type Power system model Key features Limitations
OPA model[21−27]

(3.1.1)
Physical
model

DC or AC power flow
or AC power flow and
dynamic model

(1) Simulating the load growth and power grid
upgrade.
(2) Considering practical factors like dispatching,
relay protection, and low-probability failures in
control.

(1) DC- or AC-OPA: ignoring
transient dynamics.
(2) Enhanced OPA: slow.

Manchester model[28−29]

(3.1.2)
Physical
model

AC power flow (1) Considering a variety of cascading failure factors
by modeling components with different failure
probabilities.
(2) Enabling the estimation of a security index.

The model accuracy relies heavily on
the accuracy of failure probabilities,
which are not easy to determine.

Hidden failure
model[32−35] (3.1.3)

Physical
model

DC power flow Considering exposed times of hidden failures. (1) Ignoring voltage and reactive
power effects on cascading failures.
(2) The probability function of hidden
failures is oversimplified.

COSMIC model[47−48]

(3.1.4)
Physical
model

AC power flow and
dynamic model

(1) Modeling a wide range of protective schemes.
(2) Considering different load models.

Computationally expensive.

Dynamic PRA
model[30, 43] (3.1.5)

Physical
model

AC power flow and
dynamic model

(1) Constructing a two-level model by decomposing
the cascade process into two phases.
(2) Establishing different thermal failure models with
consideration of climatic conditions.
(3) Considering failure probabilities with respect to
the temperature evolution.

Computationally expensive.

Multi-timescale quasi-
dynamic model[31]

(3.1.6)

Physical
model

AC power flow and
dynamic model

(1) Simulating multi-timescale dynamics.
(2) Considering the time evolution of cascading
failure.

(1) The total time of the cascading
failure should be estimated.
(2) The load variation in the interval
is ignored.

DCAT model[50−51]

(3.1.7)
Physical
model

AC power flow and
dynamic model

(1) Conducting hybrid simulations.
(2) Modeling protection schemes and corrective
actions.

Computationally expensive.

ASSESS[53−57] (3.1.7) Physical
model

DC or AC power flow
and dynamic model

(1) Consider uncertainties.
(2) Have statistical analysis tools.

Professional training is needed.

CAT[58] (3.1.7) Physical
model

AC power flow Providing a severity index for each cascade sequence. (1) Each cascade generation only
allows one component to be tripped.
(2) Ignoring transient dynamics.

TransCARE[59] (3.1.7) Physical
model

DC or AC power flow Modeling cascading failures from the protection
system level.

(1) Ignoring transient dynamics.
(2) Ignoring uncertainties.

PCM[61] and PCMTS[63]

(3.1.7)
Physical
model

AC power flow or
dynamic model

(1) PCM has evaluation and visualization functions.
(2) PCMTS considers diverse types of relays.

Ignoring uncertainties.

CASCADE model[45, 46,

64] (3.2.1)
Probabilistic
model

None Having an analytical formula for the probability
distribution of cascade sizes.

(1) Assuming all components to be
identical.
(2) Assuming the failure of each
component only depends on its
loading level.

Branching process
model[65−67] (3.2.2)

Probabilistic
model

None (1) Simulating a cascading sequence efficiently by
yielding a sequence of random integers following the
Poisson distribution.
(2) Approximating the distribution of cascading sizes
effectively.

Mainly focusing on predicting the
final cascade sizes while ignoring the
details in failure propagation.

Interaction model[36−41]

(3.2.3)
Probabilistic
model

None (1) It is a high-level probabilistic model.
(2) Enabling the prediction of the most possible
cascade path and online decision-making support.

The one-to-one causal relation
between component failures is not
practical.

 

Table 3    Benchmarking of simulation models of cascading failures

Approach Key features and limitations
Sensitivity analysis It can assess the impact of assumptions and associated parameters on the outcomes from a simulation model by adjusting one

parameter at a time. If any assumption or parameter significantly influences the outcomes, the model may be deemed
unreliable. It is important to note that this method detects sensitive assumptions or parameters but cannot reveal their ground
truths and, as a result, may not accurately reproduce historical cascading events.

Comparing results to
real data

It is employed to assess a simulation model’s ability to replicate historical cascading events. However, this approach demands
extensive real data and records on historical cascading events, which are often unavailable or challenging to acquire.

Cross-validation It gauges differences by comparing the statistics of a simulation model's outcomes with those of other models, identifying
parameters that significantly contribute to their differences or necessitate an in-depth study. However, the effectiveness of this
approach, or in other words, the success of cross-validation is highly dependent on the models chosen.
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good  balance  between  accuracy  and  efficiency.  Most  existing
physical  models  primarily  focus  on  capturing  cascading  failure
dynamics within the quasi-steady-state domain while ignoring fast
transient  dynamics,  which  play  a  critical  role  in  the  evolution  of
cascading  failures.  Therefore,  these  quasi-steady-state  models  are
efficient  but  lack  accuracy.  Although  some  models  attempt  to
incorporate  transient  dynamics  and  relay  protections  through
time-domain simulations,  this  approach is  exceedingly time-con-
suming.  A  promising  research  direction  involves  developing
hybrid models that achieve an optimal balance between accuracy
and efficiency[88].

Furthermore, uncertainties in the evolution of cascading failures
present an additional challenge in cascading failure modeling[89−91].
These  uncertainties  are  induced by  various  factors,  including  the
unpredictability  of  initial  events,  variations  of  system  states,  and
potential  hidden  failures  within  the  system.  While  deterministic
models entirely ignore these stochastic factors, others that do con-
sider them  often  concentrate  on  just  a  subset,  lacking  compre-
hensiveness.

4.2    Emerging  challenges  from  the  integration  of  renewable
energy sources
With the increasing penetration of renewable energy sources, new
challenges are emerging. One challenge arises from the stochastic
nature of power systems, which is further amplified due to the sig-
nificant  influence  of  uncertain  weather  conditions  on  renewable
energy  sources,  such  as  solar  and  wind  power[92].  Consequently,
future  cascading  failure  models  should  not  only  address  the
stochastic  aspects  caused  by  conventional  factors  on,  e.g.,  load
changes and contingencies,  but also account for the uncertainties
introduced by the integration of renewable energy sources.

Another  challenge  stems  from  the  lower  inertia  and  the
reduced  reserve  reactive  power  exhibited  by  renewable  energy
sources compared to traditional synchronous machines. This dif-
ference  may  result  in  distinct  transient  dynamics,  such  as  larger
frequency and voltage deviations[93, 94], potentially leading to varying
sizes of cascading failures. Therefore, future modeling of cascading
failures should account for the diverse responses to the same initial
disturbance  at  different  penetration  levels  of  renewable  energy
sources.

5    Conclusions
This paper provides an overview of simulation models for cascading
failures,  categorizing them into physical  models  and probabilistic
models.  Other  emerging models  such as  machine  learning-based
models are also introduced. Physical models allow for simulation
of  power  system  dynamics  and  responses  and  offer  in-depth
insights into the mechanisms of cascading failures but can be time-
consuming  for  large-scale  power  grids.  Probabilistic  models
ignore detailed power system information but enable more efficient
simulations when only high-level probabilistic analysis is required.
The probabilistic models and machine learning-based models can
be  derived  from  large  amounts  of  simulation  data  generated  by
physical  models.  Therefore,  the  physical  models  are  of  great
importance for simulating cascading failure sequences and under-
standing  the  mechanisms  of  cascading  failures.  To  verify  the
effectiveness of simulation models, benchmarking approaches are
also discussed.

As  the  penetration  of  renewable  energy  sources  increases,  the
system exhibits more uncertainties and distinct transient dynamics

compared  to  the  traditional  power  system.  This  presents  new
challenges  in  modeling  cascading  failures.  Therefore,  future
research should focus on developing cascading failure models that
balance efficiency and accuracy while also considering the influence
of renewable energy sources.
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