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ABSTRACT
Distribution grid topology and admittance information are essential for system planning, operation, and protection. In many distribution
grids, missing or inaccurate topology and admittance data call for efficient estimation methods. However, measurement data may
be insufficient or contaminated with large noise, which will fundamentally limit the estimation accuracy. This work explores the the-
oretical precision limits of the topology and admittance estimation (TAE) problem with different measurement devices, noise levels,
and numbers of measurements. On this basis, we propose a conservative progressive self-adaptive (CPS) algorithm to estimate
the topology and admittance. The results on IEEE 33 and 141-bus systems validate that the proposed CPS method can approach
the theoretical precision limits under various measurement settings.
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The  vast  integration  of  distributed  energy  resources  and
electric vehicles raises both economic and security concerns
for modern distribution grids[1]. Smart grid operations such

as  state  estimation  (SE),  demand  response,  voltage  control,  and
pricing  are  increasingly  implemented  at  the  distribution  level.
However,  accurate  grid  topology  and  line  admittance,  which  are
prerequisites  for  the  above  operations,  are  often  unavailable  in
many  medium- and  low-voltage  distribution  grids.  Therefore,
efficient and accurate topology and admittance estimation (TAE)
is essential in future distribution grids.

μ

μ

Many  efforts  have  been  made  to  estimate  distribution  grid
topology and admittance.  Most  of  these works use data collected
from advanced metering infrastructures  (AMIs)  or  micro-phasor
measurement units ( PMUs). Some researches that only focus on
topology  identification  use  the  statistical  information  of  voltage
magnitudes,  such as  covariances[2],  mutual  information[3],  and the
conditional independence test[4]. Other researches address the joint
estimation  of  topology  and  line  admittance  by  formulating  the
problem as  maximum likelihood estimation[5−9].  The above works
often make some assumptions to simplify the problem, including
uncorrelated nodal power/current injections[3, 4, 10, 11], radial network
topologies[2, 8, 10−13], sufficient phasor measurements[5, 6, 8, 9], or accurate
voltage  measurements[7].  These  assumptions  may  hold  in  some
cases  but  hinder  practical  implementation  under  more  general
distribution  system  cases.  For  instance,  power/current  injections
can be highly correlated because of similar electricity consumption
or  rooftop solar  PV generation patterns[14].  The  distribution grids
may contain loops or even be heavily meshed[15]. The measurement
devices may not be sufficient at the distribution level, especially for

PMUs that contain phasor information[16].
In  fact,  TAE  in  distribution  grids  is  extremely  challenging

because  of  the  poor  measurements  and  nonconvexity  of  power
flow models[17, 18].  The TAE problem is  also regards as generalized
power system state estiamtion[19]. The best way to identify the pre-

cision limits of topology and admittance of distribution networks
based on  limited  measurement  devices  and  measurement  preci-
sions remains  unresolved.  Some recent  works  discuss  the  funda-
mental  limits  of  the  TAE  problem.  Moffat  et  al.  proved  that  the
admittance matrix cannot be estimated without any prior knowl-
edge when the system contains some zero power injection buses[8].
However, they did not consider any physical knowledge (e.g., the
admittance matrix  is  symmetric  and sparse),  which could greatly
improve  the  estimation  results.  Li  et  al.  provided  a  theoretical
relationship among  the  number  of  measurements,  prior  knowl-
edge,  and probability of  estimation error[9].  They proved a worst-
case sample complexity for the linear graph learning task, i.e., how
much  data  are  required  to  guarantee  a  certain  accuracy  (with
probability).  The  above  researches[8, 9] only  address  the  estimation
limits  for  linear  learning  tasks.  That  is,  the  voltage  and  current
magnitudes and angles are assumed to be available at all buses so
that  the  estimation  problem  can  be  formulated  by  the  linear
Ohm’s law. Grotas et al. proposed the lower bound for transmission
grids  under  the  DC  power  flow  (DCPF)  setting[20].  The  DCPF
approximation  simplifies  the  problem  but  introduces  great  error
to the estimation problem; this error is even larger for distribution
grids because of the high R/X ratio and the requirement for phasor
measurements.

This work addresses a more practical setting: to derive the the-
oretical  precision  limits  with  different  measurement  devices  and
measurement  precisions.  We  first  derive  the  Cramér-Rao  Lower
Bound (CRLB)[21] that can evaluate the best possible TAE precisions
under given measurement devices, noise levels, and the number of
data. Then, we show that designing an efficient algorithm for the
TAE problem is mathematically difficult. The TAE problem is far
more  memory  consuming,  ill-conditioned,  and  nonconvex  than
the  traditional  SE  problem[22].  Some  traditionally  well-behaved
methods can easily diverge (Newton’s method) or suffer from an
extremely slow convergence speed (gradient-based methods), even 
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under a simple 3-bus case. Furthermore, we propose an algorithm
for the TAE problem. The method contains a first-order optimizer
and  a  second-order optimizer  to  combine  stability  (or  conserva-
tive)  and  fast  convergence  (or  progressive)  features  within  one
method. The method also contains a hybrid line search strategy to
self-adaptively  tune  the  weights  of  the  first-order  and  second-
order  optimizers.  To  this  end,  we  name  the  proposed  algorithm
the  conservative  progressive  self-adaption  (CPS)  algorithm.  Case
studies on IEEE 33 and 141-bus systems show that the proposed
CPS method can  approach  the  theoretical  precision  limits  under
different experimental settings.

This work focuses on systems with a balanced power flow setting
and  Gaussian  measurement  noise.  The  framework  can  be
extended to address the unbalanced three-phase estimation prob-
lem and some non-Gaussian noise. We also do not consider active
injection  approaches[23, 24] because  they  require  sufficient  active
devices (e.g., smart inverters) and may not be compliant with the
grid code[25].

In short, the contributions of this work are as follows:
(1)      We quantify the theoretical precision limits for the distribu-

tion  grid  TAE  problem.  The  proposed  method  identifies
precision  limits  given  different  measurement  devices,  noise
levels,  numbers  of  measurements,  and  prior  topology
knowledge.

(2)      We  propose  the  CPS  algorithm,  which  is  specifically
designed  for  the  memory-heavy,  ill-conditioned, and  non-
convex  estimation  problem.  The  method can  approach  the
theoretical  precision  limits  under  a  lack  of  voltage  angle
measurements and different levels of measurement noise.

The remainder  of  this  paper  is  organized as  follows.  Section 1
introduces  the  method for  evaluating  the  precision limits  for  the
TAE problem.  Section  2  demonstrates  the  proposed  CPS  algo-
rithm.  Section  3  provides  case  studies.  Finally,  Section  4  draws
conclusions.

1    Precision limits for the TAE problem

1.1    Problem formulation
The TAE of a distribution grid can be formulated as a maximum
likelihood problem using AC power flow equations.
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where  denote the ( , )th element of  the conductance/sus-
ceptance matrix,  denote  the  active/reactive  power injection
measurements of bus  snapshot ,  denote the voltage mag-
nitude/angle  measurements  of  bus  snapshot , 
denote  the  evaluated  values  of ,  denote
the standard deviations of  the corresponding measurements,  and

 denote  the  bus  sets  for  which  the  corresponding
 measurements  are  available.  In  the  above  problem  (1),

the  estimation  of  and  is  equivalent  to  the  estimation  of
topology  and  admittance,  respectively,  where  zero  values  denote
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the disconnection of two buses and nonzero values denote admit-
tance.  We  also  recover  all  the  state  variables  and  as  a
byproduct.  The  objective  is  to  minimize  the  loss  function  (1a),
which is the weighted squared loss of the data from the measure-
ment  sets .  The  measurement  sets  can  be  any
combinations of the buses in the distribution grid, from the universe
to the empty set. The standard deviations  reflect the
precision  of  different  measurements.  The  estimated  values

 satisfy  the  AC  power  flow  equations  in  (1b).  By
neglecting the shunt admittance in the distribution grid[5, 8],  and

 become:

Gij = Gji =−gij, Gii = ∑
j

gij, (2a)

Bij = Bji =−bij, Bii = ∑
j

bij, (2b)

gij/bij i jwhere  denotes the conductance/susceptance of line ( , ).
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We  then  provide  a  general  formulation  of  the  estimation

model. We formulate all the measurements as an  vector :
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Similarly, we define vector  with each element corresponding
to the standard deviation of measurement . The estimated vari-
ables  contain  not  only  the  voltage  states  but  also  the  network
admittances, with the  state vector  formulated as
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[
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where  denotes  the  set  of  possible  connected  buses  and 
denotes the set of all the buses. If no prior topology information is
available,  contains all of the possible branches between any two
buses.  From  Eqs.  (1)−(4),  we  obtain  the  measurement  model  of
the TAE problem:

z= h(x)+ ε, (5)

ε M× 1where  denotes the  vector of measurement error.

1.2    Cramér-Rao lower bound
Equation (5) formulates the TAE problem into a standard unbiased
estimation  problem.  In  this  subsection,  we  use  the  Cramér-Rao
lower  bound to  estimate  the  precision  limit  of  the  problem.  The
purpose of estimating the precision limit is to guide the algorithm
of  the  TAE  problem.  CRLB  is  a  classic  theory  to  calculate  the
lower bound of the estimation variances of any unbiased estimation
problem[21] and has rarely been applied in power system analysis.

Wang  et  al.  derived  the  CRLB  for  the  power  system  SE
problem[26]. Grotas et al. derived the CRLB of TAE using a simplified
linear  DCPF  model[20].  Damavandi  et  al.[27] and  Xygkis  et  al.[28]

developed the Fisher information-based approach, which is closely
related to CRLB theory, for the meter placement problem. In this
section,  we  derive  the  CRLB  for  the  TAE  problem  under  the
accurate  nonlinear  AC  power  flow  formulation.  Compared  with
existing problems[20, 26−28], the present problem is a large-scale multi-
ple snapshot nonlinear estimation problem with unknown models
and state variables.

ε∼ N(0,σ)
C x

Theorem 1 (Cramér-Rao lower bound for topology and admittance
estimation). For the estimation problem (5) with , the
covariance matrix  of any unbiased estimator of  satisfies:
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C−F−1 ⩾ 0, (6a)

with F=HTdiag(σ−2)H, H=
∂h(x)
∂xT

, (6b)

F S×S
σ M× 1

where  denotes  the  symmetric  Fisher  information
matrix[21] and  denotes  the  vector  of  measurement  noise
standard deviations.

C−F−1
x

F−1

See Appendix A.1 for the proof.  Since  is  semidefinite,
the variance of , which reflects the estimation precision, is lower
bounded by the diagonal elements of :

σx ⩾ σcr
x = diag(F−1). (7)

z x
It  can be intuitively  interpreted that  the more information the

measurement  carries  about  the  estimated  state  variable ,  the
lower variance the estimators can obtain.

F−1

The CRLB provides an effective way of estimating the variance
(in other words, precision limit) of the estimated variable x, which
includes the admittances. The problem now becomes how to cal-
culate .

1.3    Fisher information matrix partition

ST
C2

N = N(N− 1)/2 MV Mθ

N
S= N(N− 1)+2NT

14256× 14256

The challenge of using the CRLB to calculate the precision limit of
the TAE problem is that the dimension of the Fisher information
matrix  is  very  large.  For  an N-bus  distribution  grid  system, 
contains  at  most  elements,  and  and 
contain at most  elements. In this case, the number of state vari-
ables is . Simply estimating the 33-bus distri-
bution system using 200 snapshots of measurement data, we have
to  calculate  the  Fisher  information  matrix  and  its  inverse  with

 dimensions.

F−1
However,  when  calculating  the  precision  limit  of  the  TAE

problem,  we  only  need  to  calculate  the  with  respect  to  the
admittances to be estimated, which is a small part of the inverse of
the Fisher information matrix.

To address the heavy memory consumption challenge, we par-
tition the Fisher information matrix and calculate its inverse in a
memory-saving manner.

F
H H H

h(x) x M
z S x H

x
z a
[{gij}{bij}] v T

Before analyzing the structure of , we first analyze the structure
of . Figure 1 shows the structure of the partitioned .  is the
Jacobi matrix of  with respect to . It has a row number of 
(the  same as )  and a  column number  of  (the  same as ). 
can be decomposed into a block matrix by the partition of  and

,  where  the  subscript  corresponds  to  the  admittance
 and the subscript  (from 1 to ) corresponds to the

voltage  magnitudes  and  angles  from  all  the  snapshots
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.  According to the partition of  (measurement
 from 1 to ), the block corre-

sponding to the subscript  is  a  full  matrix  since the admittance
appears  in  each .  However,  the  block  corresponding  to  the
subscript  is  a  sparse  matrix  since  only  the  measurement  from
one snapshot has the state variables  and  on the same snap-
shot. Therefore, the blocks that correspond to different snapshots
are zero.

F H
F

According to the expression of  with respect to  (Equation
(6b)), the nonzero blocks of  can be written as follows:

F=

[
Faa Fav

FT
av Fvv

]
=


Faa Fa1 Fa2 · · · FaT

FT
a1 F11

FT
a2 F22

· · · · · ·
FT
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[{gij}{bij}]

Note that  we formulate  (8)  in a  symmetric  way.  From (8),  we
can observe that the Fisher information matrix is a sparse matrix
because the voltage states in different snapshots are decoupled. In
other  words,  the  voltage  measurements  in  one  snapshot  do  not
contain any information about the voltage in any other snapshots.
We can take advantage of this feature and calculate the CRLB of

 in a memory-saving manner.

Ca

xa = [{gij}(i,j)∈ST{bij}(i,j)∈ST ]

Theorem 2 (Cramér-Rao lower bound with matrix partition). The
covariance  matrix  of  any  unbiased  estimator  of

 satisfies the following:
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Proof. The inverse of the Fisher information matrix is
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xaFrom Theorem 1, the CRLB of  is given by
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−1 ⩾ 0, with Fa

−1
= Iaa. (11)

Fa Fvvwhere  is the Schur complement of block :

Fa = Faa−FavFvv
−1FT

av. (12)

FvvSince  is a block diagonal matrix, we can compute the inverse
in a decoupled way and finish the proof:
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−1FT
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The structure of the Fisher information matrix and the method
of  calculating  the  inverse  are  shown  in Figure  2.  The  required
space  to  calculate  the  CRLB  is  largely  reduced  to ,

.  Since  we  decouple  the  states  from  different
snapshots,  the  space  complexity  does  not  increase  with  the
increase  in  snapshots.  We  only  need  to  compute  the  inverse  of
matrices  with  dimensions  of  ( )  and

 ( ).  Recalling  the  33-bus  example,  the  dimensions  of
the  matrices  are  and ,  much  smaller  than

.
In this way, we can efficiently calculate the inverse of the Fisher

Information matrix  to  estimate  the  precision  limit  of  the  admit-
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tance. It is further used in the TAE problem to guide the topology
search and the optimization of the estimation.

2    CPS algorithm

2.1    Geometric illustration of the TAE problem
As shown  in  Section  1.1,  the  estimation  problem  is  an  uncon-
strained nonlinear optimization problem and thus belongs to the
same  category  as  the  power  system  SE  problem.  However,  the
TAE problem is much more difficult to solve, and the traditional
methods  used  for  SE  problems  have  very  poor  performance  on
TAE problems.

102 104

In Figure 3, we provide an illustrative example of why the TAE
problem  is  much  more  difficult  to  solve  than  the  SE  problem:
(1)  The  TAE  problem  is  more  nonconvex  because  many  more
variables  (both the model  parameters  and the state  variables)  are
unknown and should be  optimized.  The multiplications  of  more
decision variables,  as  shown  in  (1b),  incur  more  severe  noncon-
vexity. (2) The TAE problem is more ill-conditioned than the SE
problem.  The  decision  variables  in  the  TAE  problem  have  very
different  scales.  For  example,  the  voltage  magnitudes  are  often
approximately  1  p.u.,  and  the  voltage  angles  are  often  below  1.0
rad.  However,  the  admittance  in  distribution  grids  can  be  very
large  (from  to  more  than ),  especially  when  the  lines  are
short.  As  a  result,  the  parameter  space  can  have  very  different
scales in different directions,  which makes the problem ill-condi-
tioned. Hence, we use a slightly nonconvex contour map to repre-
sent the SE problem in Figures 3(a) and 3(c). For comparison, we
use a highly nonconvex and ill-conditioned contour map to rep-
resent the TAE problem in Figures 3(b) and 3(d).

There are two types of methods to solve the unconstrained dif-
ferentiable  optimization  problem:  first-order  optimizations  (gra-
dient-based  methods)  and  second-order  optimizations  (Newton
or quasi-Newton-based methods)[29]. The first-order optimizations
use the local gradient information and iteratively search the solu-
tion. With proper step length, the first-order optimization is stable
because the direction of the gradient can reduce the loss function
(1a).  Such  a  strategy  may  work  for  SE  problems,  as  shown  in
Figure 3(a), but may become trapped for TAE problems, as shown
in Figure 3(b). On the other hand, the second-order optimizations
search  the  solution  iteratively  by  using  the  information  from the
second-order  Taylor  approximations.  This  kind  of  method  is
widely  adopted and effective  in  SE problems[22]. It  has  a  fast  con-

vergence speed for the problem in Figure 3(c). However, second-
order optimizations can easily diverge, as shown in Figure 3(d).

2.2    Framework of the algorithm
The  framework  of  the  proposed  CPS  algorithm  is  shown  in
Figure 4. We first obtain an initial value of the admittance by eval-
uating  a  simplified  model.  Then,  we  propose  an  optimizer  that
combines  the  advantages  of  both  first-order  optimizations  and
second-order optimizations. We take advantage of the stability (or
conservative)  and  the  fast  convergence  (or  progressive)  from the
two  methods.  We  also  propose  a  hybrid  search  strategy  to  self-
adaptively  tune  the  weights  of  the  first-order  optimizer  and  the
second-order  optimizer.  Next,  we update  the  topology each time
after the iteration converges. Finally, we stop the algorithm when
there  is  no  need  to  update  the  topology.  The  following  sections
will describe the details of each step of the framework.

In Figure 5, we also provide a geometric illustration of why the
CPS method can have good performance for the aforementioned
highly nonconvex and ill-conditioned problem. The CPS method
can be both conservative, as it takes the gradient descent direction
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Fig. 3    Geometric  illustration  of  the  SE  problem  and  TAE.  The  2-D  space
denotes  the  parameter  space.  The  black  lines  are  contour  lines  of  the  loss
function  value  in  (1a).  The  blue  dashed  lines  represent  the  local  second-
order  Taylor  approximations. (a) First-order  optimization  for  SE. (b) First-
order optimization for TAE. (c) Second-order optimization for SE. (d) Second-
order optimization for TAE.
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when the second-order  solution is  not  stable,  and progressive,  as
the second-order solution greatly reduces the loss function (1a). In
other words,  the CPS method can automatically choose a proper
“mode” between  the  first-order  solution  and  the  second-order
solution.
  

Progressive

Conservative

First-order search
First-order result
Second-order
approximation
Second-order result
Hybrid search
CPS result

Fig. 5    Geometric illustration of the CPS method.
 

2.3    Initial value

x
The proposed CPS algorithm starts by obtaining an initial value of
state  vector  from the  current  measurements.  Note  that  mea-
surement  availabilities  can  vary  greatly,  and  there  are  no  general
methods to obtain the initial value under all circumstances. Since
the initial value does not require a mesh network setup or accurate
parameters, we refer to Refs. [5, 7, 8, 10−12] for initial value esti-
mation under various conditions. Even the initial values can be set
as the values from the grid planning files[5]. In this work, we extend
the method in Ref. [7], which is explained in Appendix A.2.

2.4    First-order optimization
The  first-order  optimization  used  in  this  work  is  modified  from
the  adaptive  moment  estimation  (Adam)  optimizer[30],  which  is
widely applied and most favored in the training of deep learning
networks.  The  Adam  optimizer  combines  the  advantages  of  the
momentum  method  and  the  root  mean  square  propagation
(RMSProp) method[30].  On the one hand, Adam uses the moving
average  of  the  gradient  to  prevent  oscillations  during  iterations.
On  the  other  hand,  Adam  rescales  the  gradient  by  dividing  the
moving  average  of  the  squared  gradients  so  that  the  gradient  of
each variable is normalized to one or minus one.

On  this  basis,  we  improve  Adam  by  rescaling  the  gradient.
Adam rescales every gradient equally to one or minus one. How-
ever,  the  voltage  magnitudes,  angles,  and  admittances  have  very
different  scales;  and thus,  Adam  can  have  poor  performance.
Instead, we first normalize the gradient and use the approximated
CRLB to rescale the gradient. The details are shown in Algorithm
1 of the Appendix A.3.

2.5    Second-order optimization
The  second-order  optimization  used  in  this  work  is  modified
from Newton’s method[22, 29].

xk = xk−1−gk(Fk
)−1. (14)

gk(Fk
)−1

gk(Fk
)−1

Different from the SE problem, the TAE problem is a multiple
snapshot estimation problem. The challenge for Newton’s method
is the large memory consumption when calculating . We
can derive from Theorem 2 that  can also be calculated in
a memory-saving manner.
Theorem  3 (Second-order update  with  low  memory  consump-

Ftion). For the Fisher information matrix  in the form of (8) and
the gradient vector in the form of

g=
[
gT
a gT

v

]T

=
[
gT
a gT

1 gT
2 ... gT

T

]T

, (15)

g(F)−1  can be calculated in a memory saving manner:

d=−g(F)−1 =
[
dT
a dT

1 dT
2 ... dT

T

]T

, (16a)

with da = (Faa−
T

∑
t=1

FatFtt
−1Fat

T
)−1(ga−

T

∑
t=1

FatFtt
−1gt), (16b)

dt = (Ftt−Fat
TFaa

−1Fat)
−1(gt−Fat

TFaa
−1ga). (16c)

k k
Note that for simplicity of notation, we drop the superscript of

 that denotes the th iteration.

(Faa−∑T
t=1FatFttFat

T
)

Recall that the TAE problem is ill-conditioned due to different
scales of admittance, voltage magnitudes and angles. The inversion
of  may incur numerical instability in (16b).
Therefore, we use the Moore Penrose inverse [31] instead.

2.6    Hybrid line search
Neither  the  first-order  optimization  nor  the  second-order opti-
mization  can  provide  a  stable  and  efficient  search  for  the  highly
nonconvex  and  ill-conditioned  TAE  problem.  We  provide  a
hybrid line search strategy to combine the advantages of  the two
optimization  methods.  This  strategy  is  inspired  by  the  Armijo
Goldstein  condition[32],  a.k.a.,  the  backtracking  line  search.  We
modify  the  backtracking  line  search by  adding the  hybrid  search
strategy of first-order and second-order directions.

In detail, we first search for a step along the first-order direction
that satisfies both criteria of the Armijo Goldstein condition. That
is, we start with a sufficiently large step (thus satisfying criterion 1)
and then iteratively decrease the step size until the decrease in the
loss  function  is  sufficiently  large  to  correspond  to  the  step  size
(thus  satisfying  criterion  2).  This  approach  guarantees  a  stable
searching solution because the gradient direction will decrease the
loss  function.  However,  compared  with  the  second-order direc-
tion,  the  step  size  of  the  first-order  direction  may  sometimes  be
small,  which may jeopardize criterion 1. We then search the step
along  the  line  from  the  second-order  result  to  the  first-order
result.  We start  by  assigning  a  larger  weight  to  the  second-order
result and then iteratively decrease the weight of the second-order
direction  and  increase  the  first-order  direction.  Such  a  search
keeps criterion 2 (since the loss function drop is at least as large as
the  first-order  direction  drop)  while  improving  criterion  1  since
we  open  the  possibility  of  other  search  directions  to  avoid  the
drawback of  the  first-order  direction.  In  this  way,  we maintain a
sufficiently large proportion of the second-order optimizer as long
as it is stable.

The geometric  illustration is  shown in Figure 6.  The details  of
the hybrid line search are shown in Algorithm 2 of the Appendix
A.3.

2.7    Update the topology
We estimate the admittances of all possible bus pairs. Some pairs
are disconnected and have zero admittances. Therefore, we should
update the topology and set the branches with small admittances
to zero. We set small admittances to zero according to the CRLB
calculation.  Specifically,  after  each  hybrid  line  search  converges,
we compare the admittance of the branches to the self-admittance
of  the  bus  that  the  branches  connect  and  its  CRLB.  When  the
mutual admittance of two buses is small enough and its CRLB is
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small enough (which assures that the estimate is confident), there
is considered  to  be  no  branch  connection  between  the  corre-
sponding two buses. Numerical experiments show that using line
susceptance is more effective than using line conductance. Specif-
ically,  the  ratio  of  line  susceptance  to  self-admittance  is  used  to
judge whether the admittance is small enough.

It is common that some prior topology information of the dis-
tribution grids is available[7, 9], i.e., some bus pairs are impossible to
connect. Consequently, we can set the corresponding admittances
to zero from the beginning to accelerate the iterations. However, it
is not a prerequisite of these algorithms.

3    Case study

α = 0.9 r0 =−5 rmax = 20 β = 5 η = 0.01
γ = 10−5 γtopo = 0.05 γcr = 0.1

The power load data are from the Commission for Energy Regu-
lation  in  Ireland[33].  We  simulate  the  power  system  operational
data with the aid of MATPOWER 7.0[34].  The simulation strategy
is  the  same  as  in  Ref.  [35].  White  Gaussian  noise  is  generated
using the Monte Carlo simulation and is then added to the data to
simulate the measurement error. In all our case studies, we set our
hyperparameters as , , , , ,

, , and .

3.1    Convergence of the optimizer

P Q V

We  first  use  a  simple  3-bus  system  in Figure  7 to  compare  the
convergence of the proposed method with other methods. Each of
the  load  profiles  of  buses  2  and  3  is  generated  using  a  per-unit
value  of  100  aggregated  residential  loads.  We  assume  that  the
topology  of  the  3-bus  system  is  known  and  only  estimate  the
admittance.  We  estimate  the  admittance  with  50  snapshots  of
data, with , , and  measurements under 0.1% noise.
  

1 2 3

Fig. 7    The 3-bus system.
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We  compare  the  losses  during  iterations  with  three  methods:
the first-order optimization in Section 2.4, the second-order opti-
mization  in  Section  2.5,  and  the  proposed  CPS  algorithm.  As
shown in Figure 8, both the first-order and the second-order opti-
mization have very poor performances even with a very simple 3-
bus system.  The first-order optimization has  a  very slow conver-
gence speed. The loss is over  and fails to decrease after 10000
iterations.  The  second-order  optimization  is  not  stable,  and  the
loss  values  oscillate  in  the  range of . However,  the  pro-
posed  CPS  method  converges  in  only  63  iterations  with  loss
approaching .  The  performance  of  the  compared  three
methods is  thoroughly explained by the illustrations in Figures  3
and 5. The  proposed  CPS  method  shows  extraordinary  perfor-

mance in the TAE problem.

3.2    The bound attainability

P Q V θ

We  then  use  the  12.66  kV  33-bus  system[36] to  demonstrate  how
well the CPS method can approach the theoretical precision limits
in Section 1. The load profiles of each bus are generated using the
per-unit value of 100 aggregated residential loads. We assume we
have the , , ,  and  measurement from all  buses  with 0.1%
measurement error. The snapshot of the measurement is 120. We
run the  CPS algorithm 100 times  under  different  randomly gen-
erated measurement noise and obtain the mean absolute error of
admittances compared against their true value.  We also compare
the  admittance  estimation  error  of  the  CPS  algorithm  with  the
first-order  optimization  and  the  second-order estimation.  Fur-
thermore,  we  calculate  the  Cramer  Rao  bound-based  theoretical
precision  limit  calculated  by  the  proposed  Fisher  information
matrix partition  method in  Section 1.  All  of  the  admittance  esti-
mation errors and the theoretical precision limits are compared in
Figure 9.  The results  show that  the proposed CPS method is  1-3
orders of magnitude more accurate than the methods that rely on
the first-order or second-order algorithm only (note that the ordi-
nate is logarithmic). In particular, the first-order algorithm has the
highest error on average due to its weakness in the complex non-
convex  problem.  The  second-order  algorithm  has  a  slightly
smaller error; however, it has higher variance under different ran-
domly generated measurement noise due to its instability of con-
vergence.  By  comparison,  the  proposed  CPS  algorithm  has  the
lowest  error,  especially  its  worst  case  error,  which  is  significantly
smaller  than  for  the  first-order  and  second-order  algorithms,
showing  its  robustness  among  different  cases.  Its  mean  error  is
close to the theoretical  precision limit.  It  should be noted that  in
some  cases,  the  admittance  estimation  error  of  some  buses  is
smaller  than  the  theoretical  precision  limit  because  the  precision
limit is theoretical, where the value denotes the precision of infinite
times of estimation with infinite measurements, while the estima-
tion error is only a one-shot estimate based on a finite number of
measurements.

3.3    Performance under different settings
We use the 33-bus system and the 141-bus system[37] to show the
precision limits and the performance of the CPS algorithm under
different settings. The load profiles of each bus are generated using
the per-unit value of 100 aggregated residential loads. We compare
the following different  settings,  as  shown in Table  1. The experi-
mental  settings  include  the  types  of  sensors,  the  noise  level,  and
prior topology knowledge.

We  use  the  ratio  of  the  wrong  branch  number  to  the  true
branch number as the error of topology estimation:

Et =
Nwrong

Ntrue
× 100% (17)

The  topology  precision  limit  denotes  the  minimum  wrong
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Fig. 6    Geometric illustration of hybrid search.

 

1014 First order Second order CPS

1012

1010

108

Lo
ss

106

104

102

102

106

1010

1014

0

0 20 40 60

2,000 4,000 6,000
Iterations

8,000 10,000

Fig. 8    The loss of the 3-bus system during the iterations.
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branch number that the method can obtain when using the CRLB-
based  criterion  shown  in  Algorithm  3  of  the  Appendix  A.3  to
identify the topology and thus provides a benchmark of how well
the  topology  can  be  estimated.  We  use  the  relative  geometric
mean as the error of admittance estimation:

Ep =

(
N

∏
n=1

en
) 1

N

(18)

N en
n

where  is the number of variables to be estimated and  denotes
the relative error of the th variable:

en =
|ŷn− yn|

yn
× 100% (19)

ŷn ynwhere  denotes  the  th  estimated  value  and  denotes  its  real
value.  The  admittance  precision  limit  is  calculated  using  the
CRLB. All of the errors and the precision limit are transformed to
a scale of 100%.

As can be concluded from Table 1, the proposed CPS method

can approach  the  precision  limits  under  various  settings.  Never-
theless, there are some fundamental limits from the results: (1) the
estimation  error  will  greatly  increase  (more  than  one  degree  of
magnitude)  without  phasor  measurements;  (2)  prior  topology
knowledge is good compensation for poor measurements; (3) the
estimation  of  the  141-bus  system  with  larger  admittances  and
more buses is far more difficult than the estimation of the 33-bus
system and requires more accurate measurements.

3.4    Comparison of different methods

θ

We  compare  the  proposed  method  with  the  methods  proposed
by  Ref.  [7]  (denoted  as  M1)  and  Ref.  [8]  (denoted  as  M2).  It
should  be  noted  that  many  methods  are  currently  based  on  the
measurement of P, Q, V, and . However, assuming that each bus
has PMU measurements is not very realistic in a distribution net-
work. We compare one method that uses only P, Q,  and V mea-
surements  (M1)  and  one  that  uses P, Q, V,  and  measurements
(M2). The results are shown in Table 2.
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Fig. 9    The histogram of the admittance estimation error. (a) The error of line conductance. (b) The error of line susceptance.
 

Table 1    The theoretical precision limits and performance of CPS under different settings

System Snapshots Sensors Noise Prior topology knowledge
Topology

precisionlimits
(%)

Topology
estimation error

(%)

Admittance
precisionlimits

(%)

Admittance
estimation error

(%)
33-bus 120 P Q V θ, , , 0.1 No 0 0 0.264 0.236

33-bus mesh 120 P Q V θ, , , 0.1 No 0 0 0.296 0.281
33-bus 120 P Q V θ, , , 0.2 Yes 0 0 0.475 0.521

33-bus mesh 120 P Q V θ, , , 0.2 Yes 0 0 0.483 0.539
33-bus 120 P Q V θ, , , 0.2 No 3.125 3.125 0.701 0.746
33-bus 120 P Q V θ, , , 0.5 Yes 0 0 1.188 1.370
33-bus 120 P Q V, , 0.1 Yes 0 0 28.711 29.805

141-bus 200 P Q V θ, , , 0.1 Yes 0 0 2.346 2.823
141-bus 200 P Q V, , 0.01 Yes 0 0 21.747 33.625
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As shown in Table 2, the proposed method (M3) can approach
the theoretical precision limit for different systems, different mea-
suring  equipment,  different  noise  levels  and  different  topological
prior  knowledge.  By  comparison,  the  errors  of  topology  and
admittance identification of  M1 and M2 are larger.  M1 does not
have special treatment or modeling for the noise of voltage, which
makes it  difficult  for  M1 to deal  with the  situation of  large  mea-
surement  noise  of  voltage  amplitude.  Therefore,  the  parameter
identification accuracy of method M1 can approach the theoretical
parameter identification accuracy limit only when the noise is very
small (0.01%). Although M2 uses the total least squares regression
method to handle the noise of measurement equipment, it is diffi-
cult for the identification results to approach the theoretical accu-
racy  limit.  In  addition,  method  M2  must  rely  on  voltage  phase
angle measurements. The comparison illustrates that the proposed
method outperforms the methods in Ref. [7] (denoted as M1) and
Ref.  [8] in  terms  of  accuracy  and  adaptability  of  different  mea-
surements.

4    Conclusions
Our research advances the field by rigorously quantifying the the-
oretical  precision  boundaries  inherent  in  the  distribution  grid
TAE  problem.  We  systematically  evaluate  these  precision  limits
across  diverse  measurement  scenarios  encompassing  varying
measurement  devices,  noise  levels,  measurement  quantities,  and
prior  knowledge  availability.  Notably,  we  unveil  the  profound
intricacies  associated  with  the  TAE  problem,  characterized  by
nonconvexity  and  ill-conditioning,  distinguishing  it  from  the  SE
problem.

In  the  context  of  TAE,  conventional  optimization  techniques
such as Adam or Newton’s methods falter, even when confronted
with  a  relatively  straightforward  3-bus  system.  In  response,  we
introduce a novel CPS algorithm adept at dynamically fusing the
stability  of  first-order  optimization and the  rapid  convergence  of
second-order optimization. We further facilitate large-scale second-
order  optimization  by  decoupling  calculations  across  different
snapshots.

Through  comprehensive  case  studies  conducted  on  IEEE  33-
and  141-bus  systems,  we  empirically  validate  the  efficacy  of  our
proposed CPS method in approaching the theoretically established
precision  limits  across  diverse  operational  scenarios.  Our  work
also sheds light on critical insights, notably the substantial impact
of  the  absence  of  phasor  measurements  and  the  compensatory
role of prior topology knowledge.

In the future, our research agenda will extend toward exploring
the intricate interplay among measurement devices, measurement
noise levels, the number of snapshots, and the availability of prior
knowledge, thereby advancing our understanding of the underlying
theoretical relationships within this domain.

Appendix

A.1    Proof of Theorem 1
The  negative  log-likelihood  distribution  of  problem  (5)  is  the
product of the following Gaussian distributions:

p(z,x) =− ln
M

∏
m=1

1√
2π

exp
[
− (zm−hm(x))2

2σ2
m

]
(20a)

=
M

∑
m=1

[
(zm−hm(x))2

2σ2
m

+
ln(2πσ2

m)

2

]
. (20b)

p(z,x)
The Fisher information matrix is defined as the expectation of

the Hessian matrix of :

F= Ex

[
∂ 2

∂xT∂xp(z,x)
]

(21a)

= Ex

[
∂

∂xT

M

∑
m=1

(
− zm−hm(x)

σ2
m

∂hm(x)
∂x

)]
(21b)

= Ex

[ M

∑
m=1

1
σ2
m

∂ 2hm(x)
∂xT∂x [hm(x)− zm] +

1
σ2
m

∂hT(x)
∂x

∂h(x)
∂xT

]
.

(21c)

zm−hm(x)
Since the Gaussian noise distribution is symmetric to zero, the

expectation  of  over  the  whole  distribution  is  zero.
Therefore, we have

F=
∂hT(x)

∂x × 1
σ2

m
× ∂h(x)

∂xT
. (22)

According  to  the  CRLB[21],  the  covariance  matrix  is  lower
bounded by the inverse of the Fisher information matrix.

A.2    Method to obtain the initial value

(Pt
i ,Qt

i)
Vt

i

θt
i

x
[{V̂t

i}]
[{gij}{bij}] Pt

i Qt
i Vt

i

[{θ̂
t

i}]

We  extend  the  method  in  Ref.  [7]  to  obtain  the  initial  value,
assuming  there  are  power  injection  measurements  and
voltage magnitude measurements . The reason for this setting is
that phasor measurements  are usually not available in distribu-
tion grids. We also assume that the topology is radial at the initial
stage,  which can be relaxed in the following iteration stages.  The
initial  value  of  begins by  setting  the  voltage  magnitude  mea-
surement as the initial value of . Then, we estimate an initial
value  of  from  the , ,  and  measurements.
Finally, we obtain the initial value of  by the DC power flow
calculation.

[{gij}{bij}]The main difficulty is how to estimate  without voltage
angle measurements.

We start by estimating a radial topology using the voltage mag-
 

Table 2    Comparison of the performances of different methods

System Snapshots Sensors Prior topology knowledge
Topology

precisionlimits
(%)

Topology
estimation error

(%)

Admittance
precisionlimits

(%)

Admittance
estimation error

(%)
Noise(%)

33-bus 120 P Q V θ, , , 0.1 No 0.264 87.64 0.514 0.236
33-bus 120 P Q V θ, , , 0.2 Yes 0.475 96.37 3.382 0.521
33-bus 120 P Q V θ, , , 0.2 No 0.701 103.2 18.96 0.746
33-bus 120 P Q V θ, , , 0.5 Yes 1.188 63.73 20.32 1.370
33-bus 120 P Q V, , 0.1 Yes 28.71 87.64 â€” 29.81

141-bus 200 P Q V θ, , , 0.1 Yes 2.346 93.41 48.83 2.823
141-bus 200 P Q V, , 0.01 Yes 21.75 37.87 â€” 33.63
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nitudes  by  a  tree  structure  topology  construction.  We  use  the
average  value  of  the  voltage  magnitudes  to  obtain  the  root-leaf
relationship of the distribution grids. We assume that the voltage
magnitudes decrease from the root to the leaf buses. We only use
the  measurements  at  night  to  avoid  the  possible  bidirectional
power flow caused by distributed PV generation. We then calculate
the  moving  average  of  the  voltage  magnitudes  to  decrease  the
influence of measurement noise:

V̂1
i =

1
l

l

∑
t=1

Vt
i . (23)

Finally,  we  use  the  correlation  coefficient  to  construct  the
topology. We assume that the voltage magnitudes of the connected
buses  are  highly  correlated[3, 10].  See  Algorithm 4  of  the  Appendix
A.3 for details. Note that the proposed method may not obtain an
accurate  result  because  the  assumptions  may  not  be  satisfied  in
practice. However, Algorithm 4 only provides an initial value, and
the inaccuracy  can  be  corrected  in  the  following  iterations.  Fur-
thermore, some recent works also provide some topology estima-
tion methods[3, 10, 13] that can be used to obtain the initial topology.

We then estimate line admittance by introducing an approximate
power flow formulation without voltage angles.

αij = Pij/Qij sinθij ≈ θij

Theorem 4 (Phasor-free  power  flow).  The power  flow equations
can  be  approximated  as  (24)  under  the  assumption  that

 is a constant and .

Pi/Vi = (Vi−Vj)/z#
ij, (24a)

Qi/Vi = (Vi−Vj)/(z#
ijαij), (24b)

z#
ijwith the augmented impedance  defined as

z#
ij =

gij−bij/αij

g2ij +b2
ij

. (25)

Proof. The branch flow equations are formulated as
Pi/Vi = (Vi−Vj cosθij)gij−Vj sinθijbij

≈ (Vi−Vj cosθij)gij−Vjθijbij, (26a)

Qi/Vi =−(Vi−Vj cosθij)bij−Vj sinθijgij
≈−(Vi−Vj cosθij)bij−Vjθijgij, (26b)

sinθij ≈ θij (26a)×bij+(26b)× gijwhere we use the assumption . 
is

Pijbij

Vi
+

Qijgij
Vi

=−(b2
ij+ g2ij)θij, (27a)

θij =−
1
Vi

(
bijPij

b2
ij + g2ij

+
gijQij

b2
ij+ g2ij

)
. (27b)

Substitute (27b) into (26a) and substitute (27b) into (26b):

Pij

Vi
=

g2ij+b2
ij

gij−α−1ij bij
(Vi−Vj), (28a)

Qij

Vi
=−

g2ij +b2
ij

bij−αijgij
(Vi−Vj), (28b)

αij = Pij/Qijwhere .
1/z#

ij 1/(z#
[ ij]αij)

gij
bij

Afterwards,  we  can  estimate  the  values  of  and 
by least squares estimation and set them as the initial values of 
and , respectively.

gij = (Pi/Vi)
T(Vi−Vj)/[(Vi−Vj)(Vi−Vj)

T)], (29a)

bij = (Qi/Vi)
T(Vi−Vj)/[(Vi−Vj)(Vi−Vj)

T)]. (29b)

A.3    Pseudo codes

 
 

Algorithm 1 The first-order optimization
xk−1

mk−1
Inputs: The last state vector  and the moment of the last iteration

.
k= 1  1:   if the iteration step  then

x0
σcrx m0 = x0 σcrx

[wcr
a ,wcr

V ,wcr
θ ]

  2:       Calculate the empirical CRLB using the initial value  and get
              . Initialize . Get the mean value of  among
             admittances, voltage magnitudes, voltage angles, and get
             .

α  3:       Set the moment ratio .
  4:   end if

gk = ∇xk−1Loss
[wg

a,w
g
V,w

g
θ ]

  5:   Calculate the gradient by . Get the corresponding
        mean absolute value .

mk← [gka/w
g
a×wcr

a ,
gkV/w

g
V×wcr

V ,gkθ/w
g
θ×wcr

θ ]

  6:   Normalize and rescale the gradient by 
          .

mk = αmk−1+(α− 1)gk  7:   Update the moment .
mk gkOutputs: The moment  and the gradient .

 

 

Algorithm 2 The hybrid line search

xk−1Inputs: The last state vector .

k= 1  1:   if the iteration step  then
r0 rmax

β η
  2:       Set the start ratio , the maximum ratio , the incremental
            ratio , and the stop threshold .
  3:   end if

  4:   Do Algorithm 1.

mk gk  5:   Get  and .
r← r0  6:   .

r≤ rmax  7:   while  do

xk← xk−1+mk/βr  8:        .
r← r+ 1  9:        .

Loss(xk−1)−Loss(xk )⩽ η(gk)Tmk/βr 10:      if  then

mk←mk/βr 11:          .
 12:          Break.

 13:      end if

 14:    end while

dk 15:    Calculate  from (16).
r← r0 16:    .

r⩽ rmax 17:    while  do

w1 = 1/(1+ βr) w2 = βr/(1+ βr) 18:        . .

xk← xk−1+w1mk+w2dk 19:        .

Loss(xk−1)−Loss(xk)⩽ η(gk)T(w1mk+w2dk) 20:       if  then

xk−1← xk 21:            .

mk←mk/βr 22:           .
 23:           Break.

 24:        end if

r← r+ 1 25:         .

 26:   end while

xkOutputs: The vector of this state .
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Algorithm 3: Topology updating algorithm based on the CRLB

x0 STInputs Initial value of state vector . Current possible branch set .
k  1:   sets the maximum number of iteration steps to .

k= 0  2:   sets the current number of steps .

γiter  3:   sets the iteration convergence coefficient .

γtopo  4:   sets the admittance threshold .

γcr  5:   sets the CRLB threshold .

k⩽ K  6:   while  do
  7:       executes the algorithm 2.

max(|xk−xk−1|)⩽ γiter  8:       if  then
  9:           Sets the variable isChange = false denoting whether there is
                vtopology change.

σCR 10:          calculates the empirical CRLB , according to the currently
                 identified parameter values. See section section â…¡ for the
                 specific method.

bij/max(bii, bjj)⩽ γtopo σcrbij /max(bii,
bjj)⩽ γcr

 11:           if there exists , and 
                   then

bij = 0 gij = 0 12:              set , .

(i, j) ST 13:              moves all  that meet certain conditions out of the set .
 14:              sets isChange = true.

 15:           end if

 16:           if isChange==FALSE then

 17:             Break.

 18:           end if

 19:       end if

k← k+ 1 20:       .
 21:  end while

xk
ST
Outputs: Iterated state vector value . The current topology collection

.
 
  

Algorithm 4 Tree structure topology construction

[V1, ...,Vi, ...,VN]
Inputs: The voltage magnitude measurements of different buses

.
ST = /0

[Vd1, ...,Vdi, ...,VdN]
  1:   Initialize the topology set . Sort the average voltage
        magnitudes in a descending order .

l
[V̂d1, ..., V̂di, ..., V̂dN]

  2:  Get the  moving average of the voltage magnitudes
        .

i= 2∼ N  3:   for  do

j
argmaxj∈1∼i−1Corr(V̂di, V̂dj)

  4:      Get the bus  with maximum correlation coefficient
.

ST← (di,dj)  5:       .
  6:   end for

STOutputs: The topology set .
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