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ABSTRACT
Battery capacity assessment is a crucial research direction in the field of lithium-ion battery applications. In the previous research,
a novel data-driven state of health (SOH) estimation method based on the voltage relaxation curve at full charging is developed.
The experimental results have shown the evidence of the superiority of accurate battery SOH estimation based on physical features
derived from equivalent circuit models (ECMs). However, the earlier research has limitations in estimating battery capacity with a
diversity of battery charging states of charge. This study represents an extension of the previous work, aiming to investigate the
feasibility of this technology for battery degradation evaluation under various charging states so that the application capability in
practice is enhanced. In this study, six ECM features are extracted from 10-min voltage relaxation data across varying charging
states to characterize the battery degradation evolution. Gaussian process regression (GPR) is employed to learn the relationship
between the physical features and battery SOH. Experimental results under 10 different state of charge (SOC) ranges show that
the developed methodology predicts accurate battery SOH, with a root mean square error being 0.9%.
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Lithium-ion (Li-ion) batteries have emerged as a cornerstone
of energy storage solutions, powering an array of applications
like  smartphones,  electric  vehicles  (EVs)  and  renewable

energy systems[1,2]. These versatile  power sources have revolution-
ized  the  way  people  function  in  daily  lives  and  even  reshaped
entire  industries.  However,  a  fundamental  challenge  associated
with Li-ion batteries is their gradual degradation over time, which
inevitably impacts their performance and capacity[3,4]. This ongoing
wear and tear can lead to reduced energy storage capabilities and,
in some cases, safety concerns. To address these issues and maxi-
mize the operational efficiency of devices relying on Li-ion batter-
ies, accurate estimation of battery state of health (SOH) is impera-
tive.  SOH  serves  as  a  critical  parameter  in  assessing  a  battery’s
health and remaining capacity[5,6]. It not only influences the reliability
of consumer  electronics  but  also  plays  a  pivotal  role  in  the  opti-
mization  of  electric  vehicles’ driving  range  and  the  stability  of
renewable energy systems.

Currently, numerous precise methods for battery SOH estima-
tion  have  emerged,  broadly  categorized  into  model-based  and
data-driven approaches[7,8]. Model-based methods[9,10] entail a manual
analysis  of  the  relationship  between  external  factors  and  battery
aging, followed by the modeling of this connection. However, this
modeling  process  is  intricate,  and  normally,  models  for  different
types of batteries are not interchangeable, which amplifies the cost
in  practical  applications.  Data-driven  methods[11–13] employ
machine learning models to learn the relationship between battery
SOH  and  health  indicators  (HIs)  extracted  from  external  data.
Compared  to  model-based  approaches,  data-driven  methods  are
less complex to implement, and the HIs used are easier to obtain
in  practice.  Therefore,  they  hold  greater  promise  for  practical
applications. Many studies have achieved favorable SOH estimation

results  through  data-driven  methods.  Among  various  raw  data
sources  used  for  HIs  extraction,  the  relaxation  voltage  curve  in
charging  is  considered  relatively  accessible.  In  our  previous
research[14], we extracted six physical features from battery relaxation
voltage at  full  charging to  indicate  battery  degradation evolution,
and based on which,  a  Gaussian process  regression (GPR)-based
model was developed for accurate battery SOH estimation. How-
ever,  the  application  of  the  method  requires  a  full  charge  of  the
battery,  which  limits  its  applicability  in  practice.  To  address  this
limitation, this paper extends the previous methodology by exper-
imentally validating that this method can be applied to accurately
estimate  battery  SOH  under  varying  charging  states  of  charge,
thus further enhancing its practicality.

The  main  content  of  each  section  in  this  paper  is  as  follows.
Section 1 provides a detailed description of the process for gener-
ating experimental  data.  Section 2 introduces  the method frame-
work  developed  for  battery  SOH  estimation.  Section  3  presents
the  experimental  and  validation  results,  and  Section  4  concludes
this paper.

1    Experiment
This study employs a dataset obtained from 20 commercial Pana-
sonic  NCR18650BD  cells,  which  was  originally  generated  from
Ref. [15]. These cells consist of Li(NiCoAl)O2 as the main positive
electrode  material  and  graphite  as  the  main  negative  electrode
material.  The  upper  and  lower  cut-off  voltages  for  these  cells
are set  at  4.2  V and 2.5  V,  respectively.  According  to  the  manu-
facturer’s specifications, the cell exhibits a nominal capacity of 3.03
Ah when discharged at a rate of 0.606 A at 25 °C, with a nominal
voltage  of  3.6  V.  The  experimental  procedure  is  summarized  as 
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follows.
On  the  Arbin  BT-5HC  battery  tester,  20  cells  underwent

cycling  testing  across  10  different  state  of  charge  (SOC)  ranges,
yielding the corresponding relaxation voltage curves used for HIs
extraction. Table 1 displays the 10 SOC ranges with different start
and  end  SOC  values,  with  the  SOC  calculated  using  coulomb
counting. The SOC was set to 100% after a constant current–con-
stant  voltage  (CCCV)  charge  to  4.2  V,  and  0%  after  a  constant
current  (CC)  discharge  to  2.5  V.  For  cells  with  0% SOCstart,  they
first  underwent  CC  discharge  to  0%  SOC,  then  cycling  between
SOCstart and SOCend with CC charging and discharging. For other
cells, they were first charged to 100% SOC, then discharged to the
corresponding  SOCstart and  substantially  cycled  between  SOCstart
and  SOCend.  During  the  cycling,  the  ambient  temperature  was
maintained at  30  °C,  with  the  CC charging current  set  to  0.3  C-
rate  (C)  and  the  CC  discharging  current  set  to  1  C.  There  is  a
10-min resting between the discharging and charging phases, dur-
ing which period the voltage relaxation data was collected for fea-
tures extraction.
  
Table 1    SOC cycling ranges and corresponding number of cells

SOCstart SOCend Number of cells

0% 20% 2

20% 30% 2

0% 50% 2

40% 60% 2

25% 75% 2

10% 90% 2

0% 100% 2

50% 100% 2

80% 100% 2

90% 100% 2

 
The capacity tests were interspersed with cycling to periodically

calibrate the current capacity of  the battery for SOC calculations.
Initially, the cell’s capacity was calibrated every 10 days. After several
months  of  cycling  tests,  it  was  observed  that  the  capacity  was
decreasing almost linearly, and therefore, the calibration frequency
was then reduced to once in 20 days. The battery capacity calibration

procedure  is  as  follows.  First,  the  battery  was  charged  under
CCCV at 0.3 C until 4.2 V with a cut-off current of 0.02 C. Then,
after  one  hour  of  rest,  the  battery  was  discharged  under  CC  to
2.5  V  at  0.2  C,  followed  by  another  hour  of  rest  before  another
calibration. This process is repeated twice, with the second discharge
capacity recorded as the battery calibration capacity.

Figure 1 shows the battery SOH decline trajectories under dif-
ferent SOC ranges, with the SOH values at other cycles interpolated
with  cubic  splines  to  generate  enough  amounts  of  data  for
machine  learning.  Generally, Figure  1 shows  that  the  battery
degrades  faster  with  larger  SOC  swing  ranges,  with  the  batteries
cycled under 0%–100% SOC degrading the fastest. For the battery
cells cycled under the same SOC range, the degradation trajectories
are similar to each other with some differences.
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Fig. 1    Battery SOH decline trajectories under different SOC ranges.
 

2    Methodology
The methodology framework of this study is depicted in Figure 2.
The  battery’s  relaxation  voltage  curves  under  varying  charging
states  are  extracted  to  capture  the  battery  aging  evolution,  and
based  on  which,  an  equivalent  circuit  model  (ECM)  is  used  to
identify the six physical features for battery SOH estimation. Then,
the relationship between the physical features and battery SOH is
constructed by  using  GPR.  Detailed  descriptions  of  the  method-
ology are presented as follows.
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Fig. 2    The framework of the methodology in this study.
 

2.1    Features extraction
The second-order  resistor-capacitor  (RC) model  (as  expressed in
Figure 2)  is  used to extract  the key information linked to battery
aging  based  on  the  relaxation  voltage  data,  and  it  includes  six
parameters:  the open circuit  voltage (OCV),  the ohmic resistance

(R0),  the  first-orderpolarization  resistance  (R1),  the  second-order
polarization resistance (R2), the first-order polarization capacitance
(C1), and second-order polarization capacitance (C2). OCV reflects
the  disparity  in  Li-ion  concentration  between  the  positive  and
negative electrodes of the battery in a stable state. R0 signifies the
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ohmicpolarization, denoting a voltage drop caused by the physical
resistance  of  the  electrodes,  electrolyte,  and  separator. R1 and C1
represent  the  activation  polarization  during  the  charge  transfer
process.R2 and C2 correspond to the concentration polarization of
lithium ions during the solid-phase diffusion.

Based on the above ECM, the formula for the terminal voltage
of the cell is obtained:

Ut (t) = OCV− i(t)R0−U1 (t)−U2 (t) , (1)

Ut i
U1 U2

t
U1 U2

where  and  denote the terminal voltage and the current (positive
in  discharging),  respectively;  and  represent  the  potential
differences  across  the  two  RC  loops,  and  is  the  time  moment.
When the cell is at rest, the current is 0 A, thus  and  could
be calculated by:

U1 (t) = IR1e− t
R1C1 , (2)

U2 (t) = IR2e− t
R2C2 , (3)

I= i(0)where  represents the cut-off current before battery relax-
ation.  Combining Eqs.  (2)  and (3)  into  Eq.  (1)  yields  the  voltage
expression of the cell at rest as

Ut (t) = OCV− IR1e− t
R1C1 − IR2e− t

R2C2 . (4)

The parameters of OCV, R1, R2, C1, and C2 are obtained by fitting
Eq.  (4)  to  the  relaxation  voltage  data  under  different  charging
states by using nonlinear fitting techniques (such as but not limited
to  the  least  squares  method).  Then R0 is calculated  with  the  fol-
lowing derivation:

R0 =

∣∣∣∣Ut (0)−OCV
I

∣∣∣∣−R1−R2. (5)

2.2    Gaussian process regression

f(x)
m(x) κ (x, x’)

The GPR is selected as the machine learning method to map the
relationship  between  the  extracted  features  and  battery  SOH.  In
GPR, each sample  is assumed to follow a Gaussian distribution
with a mean  and covariance :

f(x)∼ GP(m(x) , κ (x, x’)) , (6)

m(x) = E [f(x)] , (7)

κ (x, x’) = E
[
(f(x)−m(x))(f(x’)−m(x’))T

]
. (8)

Based on this assumption, the training set forms a joint Gaussian
distribution.  Combined with the conditional  probability  formula,
the posterior predictive distribution of the test sample is obtained.

xi xj

The kernel function plays a crucial role in GPR and significantly
influences the model’s performance. The exponential kernel, cho-
sen for  its  capacity  to  deliver  robust  nonlinear  regression perfor-
mance, was used in this study. For two input points,  and , the
exponential kernel is expressed as:

kEXP (xi, xj) = σ2
f exp

(
− 1
σ l

√
(xi−xj) T (xi−xj)

)
, (9)

σf σ l

θ= {σf, σ l}

where  and  represent  the  signal  standard  deviation  and  the
characteristic length  scale,  respectively.  The  values  of  hyperpa-
rameters  are  optimized  by  minimizing  the  negative
log marginal likelihood, with the “fitrgp” function in MATLAB.

The  root  mean  square  error  (RMSE)  is  employed  to  measure
the estimation error on the testing set, calculated as follows:

RMSE=

√
1
n

n

∑
i=1

(yi − ŷi)
2, (10)

n yi ŷiwhere  is  the number of  samples,  is  the true value,  and  is
the estimated value.

3    Results

3.1    Features extraction

τ1 = R1C1 τ2 = R2C2

The  features  extracted  from  ECM  have  been  demonstrated  to
contain  physical  and  chemical  information  inside  the  cell[16].  The
voltage  response  of  the  battery  is  resulted  from  the  combined
effects of ohmic, activation, and concentration depolarization pro-
cesses, with the magnitude of each process, quantitively described
by the parameters of R0, R1, and R2 of ECM. Additionally, the time
constants  and  characterize  the  rates  of  the
latter two depolarization processes, with the larger values indicating
the slower diffusion rates. And the OCV indicates the cell’s balance
potential between the two electrodes.

Figure 3 displays the ECM features extracted from the 10-min
relaxation  voltage  data  at  different  SOCend values.  It  is  observed
that the internal resistances R0, R1, and R2 generally increase while
the capacitances C1 and C2 decrease as the battery fades, indicating
the intensification of the polarization. Note that in some cases, the
internal  resistances  decrease  a  little  at  the  early  stage  of  battery
aging. This phenomenon is attributed to the electrolyte filling the
small gaps between electrode particles at the early life stage of the
battery,  thus  expanding  their  internal  contacts  and  electron-ion
transfer paths[16].

As  shown  in Figure  3,  each  feature  exhibits  a  generally
monotonous  changing  trend  as  the  battery  SOH  declines.  Note
that the OCV trajectories differentiate for different SOCend values,
which aid the model in learning the battery aging information at
the corresponding SOC values and thereby improves its prediction
accuracy. There are some overlaps for the values of other features
(R0,  e.g.,)  at  different  SOH points  and  SOC ranges,  which  might
cause  the  model  unable  to  differentiate  these  samples  and  thus
decrease  its  prediction  accuracy.  Therefore,  it  is  important  to
involve  the  feature OCV for  improving  the  model  prediction
accuracy.  In Figure  3,  it  is  observed  that  for  the  batteries  cycled
with  100%  SOCend,  different  SOCstart values  make  a  significant
impact on the variation patterns of the features, which phenomenon
was generally overlooked in previous research.

3.2    SOH estimation

{OCV} {OCV,R2} OCV,R0,
R2 {OCV,R0,R1,R2} {OCV,R0,R1,R2,C2} OCV,R0,R1,R2,C1,
C2

Figure 4 illustrates  the average RMSEs of  the five-fold cross-vali-
dation  results  using  GPR  with  different  combinations  of  the  six
features as input. Note the training and test data are selected from
the whole experimental aging data of batteries. For the convenience
of display, the numbers from 1 to 6 are used to represent the features
OCV, R0, R1, R2, C1,  and C2,  respectively. Figure  4(a) shows  the
average  RMSEs,  with  the  corresponding  combination  of  features
presented in Figure 4(b). It is observed that the best battery SOH
estimation results based on 1 to 6 features’ input are, respectively,
obtained  with  the  feature  sets  of , ,  {

}, , ,  {
},  which  are  highlighted  in  bold  in Figure  4(b).  These  results

indicate the importance levels for different features, which can be
roughly ordered from the most to the less importance as OCV, R2,
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R0, R1, C2,  and C1.  Consistent  with  the  analysis  made  in  Section
3.1, it is observed that, among the single feature-based estimation
results,  GPR  based  on OCV estimates battery  SOH  most  accu-
rately.  Furthermore,  it  shows that OCV is  always included in the
feature  set  of  estimating  accurate  battery  SOH.  As  hypothesized
earlier, the other features, due to their limited capability in indicating
battery aging under different SOC ranges, struggle to obtain satis-
factory  estimation  results  when  used  as  the  only  model  input.
Generally,  the  best  estimation  result  with  0.32%  RMSE,  is
obtained  based  on  GPR  that  utilizes  all  six  features  as  input,
demonstrating that all features contribute to improving the model
prediction accuracy.

Figure  5 presents  the  comparison  results  of  SOH  estimation
based on different methods, where Figure 5(a) shows the estimation
results based on the six physical features while Figure 5(b) shows
the  results  based  on  six  statistical  features  proposed  in  Ref.  [12],
which represents one of the best in indicating reliable and accurate
battery  degradation  in  the  literature.  In  this  case,  the  ratio  of
training and test data is set to 1:1. That is, only one cell from each
SOC cycling range is randomly selected, with all their cycling data

used for training the GPR model,  while the remaining cells’ data
serve  as  the  test  data  set  for  model  validation.  This  data  splitting
strategy, although influenced by the battery inconsistencies, would
better  align  with  the  practical  application  scenarios  compared  to
the five-fold cross-validation. Figure 5(a) shows that, the estimated
SOH  values  under  different  SOC  cycling  ranges  are  close  to  the
observed  values,  demonstrating  the  model’s generalization  capa-
bility of estimating SOH upon random charging data. The errors
are  mainly  concentrated  between −2%  and  2%  (as  shown  in  the
embedded plot), and the RMSE of the test set’s estimation results
is 0.9%, confirming the model’s high prediction accuracy.

The six statistical  features include the maximum (Max),  mean
(Mean),  minimum  (Min),  variance  (Var),  skewness  (Ske),  and
kurtosis  (Kur),  which are  also extracted from the 10-min voltage
relaxation  data  for  fair  comparisons.  The  formulas  to  calculate
these  statistical  features  are  referred  to  Ref.  [12].  A  GPR  model
was also developed based on the six statistical features for battery
SOH estimation. Figure 5(b) illustrates that the estimation RMSE
is 1.03%, which is higher than that based on physical features. And
some estimations under 10%−90% SOC cycling range significantly
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deviate  from  the  observed  values  (as  shown  in  the  embedded
plot), further demonstrating the superiority of the physical features
in indicating reliable battery degradation evolution.

4    Conclusions
Battery  state  of  health  (SOH) is  a  crucial  parameter  for  assessing
the  extent  of  battery  degradation.  In  the  previous  research,  we
have  extracted  six  physical  features  from  the  battery  relaxation
voltage at full charging and constructed a machine learning model
based  on  Gaussian  process  regression  (GPR)  to  predict  accurate
battery SOH under different operating scenarios. In this study, we
further  extend  the  methodology  to  estimate  battery  SOH  under
different SOC ranges to further enhance its feasibility in practice.

This  paper  introduces  an  SOH  estimation  method  capable  of
adapting  to  different  battery  charging  states  of  charge.  The
methodology framework is mainly based on the previous research,
where the parameters of an equivalent circuit model are identified
based on the voltage relaxation data and used as physical features
to  indicate  battery  degradation.  Then,  the  GPR  is  used  to  learn
this  relationship  between  the  physical  features  and  battery  SOH.
This study introduces more aging data of batteries to validate the
model  performance  of  estimating  battery  SOH  under  varying
SOC  cycling  ranges.  The  cross-validation  results  indicate  the
importance of the OCV feature in improving the model accuracy
with changeable SOC cycling ranges, and it is important to involve
in  all  six  physical  features  to  estimate  accurate  battery  SOH.
Experimental results show that the method estimates battery SOH
accurately with a root mean square error of 0.9%, which accuracy
is higher than that of the model based on statistical features, vali-
dating  the  superiority  of  the  developed  method  in  battery  SOH
estimation using random partial charging data.

This  paper  demonstrates  an  important  extension of  a  recently
published  methodology,  which  greatly  improves  the  potential  of
the  method to  be  deployed  into  the  battery  management  system
and is expected to enlighten new thoughts of the researchers in the
field.
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Fig. 5    SOH estimation results based on features of (a) OCV, R0, R1, R2, C1, and C2; (b) Max, Mean, Min, Var, Ske, and Kur.
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