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ABSTRACT
With the integration of a voltage source converter (VSC), having variable internal voltages and source impedance, in a microgrid
with high resistance to reactance ratio of short lines, angle-based transient stability techniques may find limitations. Under such a
situation, the Lyapunov function can be a viable option for transient stability assessment (TSA) of such a VSC-interfaced microgrid.
However, the determination of the Lyapunov function with the classical method is very challenging for a microgrid with converter
controller dynamics. To overcome such challenges, this paper develops a physics-informed, Lyapunov function-based TSA framework
for  VSC-interfaced  microgrids.  The  method  uses  the  physics  involved  and  the  initial  and  boundary  conditions  of  the  system  in
learning the Lyapunov functions. This method is tested and validated under faults, droop-coefficient changes, generator outages,
and load shedding on a small grid-connected microgrid and the CIGRE microgrid.
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Modern microgrids often coordinate a group of generating
units  interfaced  with  voltage  source  converters  (VSCs)
and a set of loads with the capability to provide smooth

transformation  between  the  grid-connected  and  islanded  modes.
Such  features  and  flexibility  improve  the  customers’ electricity
resilience  under  grid  failures[1].  However,  the  resilience  benefit
offered by a microgrid will be in jeopardy if it cannot tolerate dis-
turbances  and loses  its  stability[2]. Therefore,  proper  transient  sta-
bility  assessment  (TSA)  is  required  for  both  offline  design  and
online operation of microgrids[3].

The ability of the synchronous generators to uphold their syn-
chronism  state  despite  severe  disturbances  in  the  system  makes
the rotor angle an inherent means for TSA of the system[4, 5]. How-
ever,  full-scale VSCs being integrated into the microgrid have no
rotating parts;  therefore,  rotor  angle  stability  finds  limitations  for
VSC-interfaced microgrids. Synchronverters[6] also known as virtual
synchronous  generators[7] or  virtual  synchronous  machines[8] are
developed to improve the angle instability mechanism of the VSC.
Despite  these  propositions,  microgrids  fail  to  satisfy  the  rotor
angle stability criteria.

Various control  strategies,  such  as  master/slave,  current  shar-
ing,  and  frequency/angle  droop  methods[3, 9] is  implemented  in
VSCs  to  support  the  power  system,  satisfying  fault-ride  through
(FRT) requirements of the grid codes[10]. Both the master/slave and
current  sharing  control  require  communication[3],  which  can  not
decide  in  case  of  communication  link  failure.  Whereas,  droop
methods do not require communication among the VSCs and are
suitable  for  distributed  implementation.  However,  these  droop
control options change the internal voltage and source impedance
of  VSC  unlike  the  constant  source  impedance  of  synchronous
generator  during  fault[11].  Moreover,  microgrid  lines  are  short  in
length and possess a low reactance to resistance ratio[12]. These fea-
tures make the VSC-interfaced microgrid a nonlinear system and
violate  the  assumptions  made  in  developing  the  power-angle
curve, which limits the applicability of equal-area criteria for TSA
of microgrids[13]. Thus, the dynamics of VSCs and microgrids need
to be analyzed under large disturbances to assess the transient sta-
bility of such nonlinear systems.

Several  direct  energy  methods  are  proposed  for  the  stability
assessment  of  microgrids.  These  energy  functions  are  specific
forms of Lyapunov functions that guarantee the system’s conver-
gence to stable equilibrium points. The method in Ref. [14] lever-
ages the energy function approach, assuming lossless lines, to certify
the stability of an equilibrium point. However, the method is not
valid  for  lossy  microgrid  lines.  Without  the  lossless-line assump-
tion, the method[3] decouples the slow dynamics via linearization[5]

and  fast  dynamics  by  linear  matrix  inequality[15] in  a  microgrid.
However, the proposed framework only provides a binary answer
to  the  TSA of  the  microgrids.  It  is  equally  important  to  estimate
the  extent  of  disturbances  that  can  be  tolerated  by  microgrids.
Methods  in  Refs.  [16]  and  [17]  construct  a  quadratic  Lyapunov
function  that  can  be  used  for  TSA  of  a  power  system  with  line
loss.  However,  TSA based on quadratic Lyapunov functions may
be overly conservative. The method in Ref. [18] leverages the sum
of square technique to construct a Lyapunov function for TSA of
networked microgrids. However, the technique is computationally
intractable when addressing large systems.

Various  methods  leveraging  the  advances  in  neural  networks
(NNs) and control theory are proposed to provide a rigorous and
scalable  TSA  in  VSC-interfaced  microgrids[19–21].  However,  these
methods suffer  from a lack of  trust  on the side of  grid operators
due  to  the  NNs’ black-box  nature.  Moreover,  machine  learning
approaches  are  based on data.  Acquirement  of  high-quality  real-
time  data  sets  for  both  normal  and  abnormal  situations  equally
well is a challenging task, as abnormal events tend to be rare. The
generation  of  such  data  sets  through  simulations  will  further
increase the computational burden that cannot be disregarded. To
overcome the problem of  limited availability  of  datasets,  physical
knowledge  of  the  model  is  directly  incorporated  into  the  neural
networks. In Refs. [22] and [23], a physics-informed neural network
(PINN) is proposed, which introduces the governing equations of
nonlinear systems in the training process of a neural network and
allows the screening of more than a hundred contingencies at the
same time that conventional methods would only screen a single
one.  Incorporating  the  differential-algebraic  equations  inside  the 
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neural network training, PINNs can learn through the incorporated
first  principles  models  instead  of  using  external  massive  training
datasets.

This  paper  presents  a  physics-informed Lyapunov-based tran-
sient  stability  assessment  of  VSC-interfaced  microgrids.  The
method learns a neural network structured Lyapunov function in
state  space,  considering  the  required  dynamics  of  the  Lyapunov
function. In addition, the problem of TSA due to the angle insta-
bility mechanism of VSC, short microgrid lines with high resistance
to  reactance  ratio,  and  dynamics  of  the  microgrid  are  presented
through  mathematical  deduction,  expounding  the  difference
between  VSC  and  synchronous  generators.  The  performance  of
the  proposed  method  is  tested  for  a  three-bus  grid-connected
microgrid  and  a  CIGRE  microgrid.  The  comparative  assessment
shows the advantage of the proposed PINN approach in prediction
accuracy  and  evaluation  loss  over  the  standard  neural  network
method for TSA of the VSC-interfaced microgrid.

The contributions of this paper are fourfold: (i) a mathematical
expression for transient stability analysis of VSC is derived; (ii) the
computational complexities of conventional Lyapunov function in
TSA  are  studied,  considering  the  VSC  control  strategies  and
microgrid  dynamics;  (iii)  a  PINN-enabled  Lyapunov  function  is
learned in state-space, and (iv) extensive validations of the efficacy
of the data-free, physics-informed approach to TSA. The remainder
of this  paper  is  organized as  follows:  Section 1  analyses  the  chal-
lenges  associated  with  angle  stability  analysis  for  VSC-interfaced
microgrids. Section 2 describes the dynamics of the VSC-interfaced
microgrid and  associated  challenges  with  the  mathematical  for-
mulation of the Lyapunov function. Section 3 describes a PINN-
based Lyapunov approach to TSA. Section 4 validates the new tool
on  two  microgrids,  followed  by  the  comparative  assessment  in
Section 5. Section 6 concludes the paper.

1    Challenge with angle stability analysis for VSC-
interfaced microgrid
Satisfying FRT requirements of the grid codes, VSC remains con-
nected to the grid even during fault conditions[24]. The fast dynamics
of  the  converter,  operating  at  a  high  pulse  width  modulation
(PWM) frequency, allows it to survive even transient disturbances.
Therefore, the VSC output voltage and current behavior are con-
trolled by the associated control strategies during transient condi-
tions. Intermittency and variability further complicate the controller
operation,  resulting  in  varying  internal  voltage  and  source
impedance  of  VSC,  which  further  affect  the  relation  of  output
power  and  angle  difference  of  VSC  and  grid  bus  voltages.  This
influences the angle stability analysis for TSA of the microgrid in
the  presence  of  VSC.  Thus,  the  impact  of  control  algorithms  on
VSC output power and bus voltage angle is studied in the context
of transient (angle) stability.  An analysis  is  carried out in the fol-
lowing.

EVSC∠φ Eg∠0
ZVSC∠θVSC = RVSC + jXVSC Zline∠θline =

Rline + jXline

R X Vo∠δ
Io∠ϕ

Figure 1 shows an impedance diagram of VSC connected to the
grid.  and  are internal and bus voltages of VSC and
grid,  respectively.  and 

 are  impedances  of  VSC source  and line,  respectively.
 and  refer to resistance and reactance, respectively.  and

 are output voltage and current, respectively. Here, subscripts
VSC, g,  and  line  refer  to  the  VSC  source,  grid,  and  line,  respec-
tively.

The  output  complex  power S of  VSC  can  be  expressed  as
in Ref. [25].

S= Vo∠δ (Io∠ϕ)∗, (1)

where

Vo∠δ = EVSC∠φ−ZVSC∠θVSC Io∠ϕ, (2)

and

Io∠ϕ =
Vo∠δ−Eg∠0
Zline∠θline

. (3)

Substituting Eqs. (2) and (3) in Eq. (1) and separating real and
imaginary parts of S, we have the active power P as given by,

P=
EVSCVoZline sin(φ+θline)

R2
line +X2

line

sinδ

+
EVSCVoZline cos(φ+θline)+2RVSCVoEg

R2
line +X2

line

cosδ

+
EVSCEgZline cos(φ+θline)−RVSC(V2

o +E2
g)

R2
line +X2

line

.

(4)

δ
The partial derivative of active power P in Eq. (4) with respect

to  is given by,

∂P
∂δ

= Pmax sin(μ− δ), (5)

where

Pmax =

((
EVSCVoZline sin(φ+θline)

R2
line +X2

line

)2

+

(
EVSCVoZline cos(φ+θline)+2RVSCVoEg

R2
line +X2

line

)2)1/2

,
(6)

μ = arctan
(

EVSCZline sin(φ+θline)

EVSCZline cos(φ+θline)+2RVSCEg

)
. (7)

From Eq. (5), the unique criteria of stability is satisfied if,

∂P
∂δ

> 0, ∀ 0 < δ < μ. (8)

δ μ
The active power attains its maximum value when the maximum

value of  is equal to  in Eq. (7).

δmax = arctan
(

EVSCZline sin(φ+θline)

EVSCZline cos(φ+θline)+2RVSCEg

)
. (9)

δmax EVSC∠φ ZVSC∠θVSC Zline∠θline

EVSC∠φ ZVSC∠θVSC

Zline∠θline

Here,  is  a  function  of ,  and .
Among them,  and  depend on converter current
constraints  and  control  strategies.  With  the  change  in  associated
controller  modes,  these  values  of  internal  voltage  and  source
impedance  vary.  Furthermore,  depends  on  the  line
parameters of a microgrid, which is resistive in nature, unlike the
inductive nature of transmission lines. Therefore, the existing P−δ
curve to study the stability of the conventional system may be dif-
ferent for VSC.

Pmax δmaxTo study the impact of control strategies on the  and ,
we consider a 25 kV, 60 Hz system with 100 kW VSC connected
at  one  end,  as  shown in Figure  1.  The  nominal  voltage  droop  is

 

Grid

Zline∠θlineZVSC∠θVSC

VSC

EVSC∠φ Eg∠0 Vo∠δ 

Io∠Ø
+
-

Irradiance

Fig. 1    Impedance  diagram  of  grid-connected  VSC  with  variable  internal
source voltage EVSC and associated impedance ZVSC.
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Zline = 3.64∠53◦
chosen  as  2%  at  the  maximum  reactive  power  output  of  VSC.

 Ω. The method for the computation of the internal
voltage  and  source  impedance  is  presented  in  Appendix.  In  the
following, the impact of control options on the different parameters
used  in  Eqs.  (6)  and  (9)  to  describe P−δ curve  are  discussed  in
detail.

1.1    Variable VSC source impedance

EVSC

RVSC XVSC

RVSC

0.31 0.03
100 W/m2 1000 W/m2 Pmax 2.7
1.8 δmax

77.8◦ 40.9◦

δmax 90◦

90◦

VSC’s output current pattern varies with the change in irradiation
level, maintaining the balanced output voltage. This results in the
variation in the internal voltage and source impedance of the con-
verter. Figure  2 shows  the  variation  of  internal  voltage  and
source  impedances  and  of  VSC  with  irradiance  level.
The  decrement  in  irradiation  increases  the  internal  voltage  and
source impedance of VSC or vice versa. When  reduces from

 pu  to  pu  with  the  increment  in  irradiance  from
 to ,  in  Eq.  (6)  reduces  from  pu to

 pu. Similarly,  in Eq. (9) reduces in inversely proportional
manner from  to , as shown in Figure 3. This confirms
that  will  be  less  than  for  the  VSC-interfaced  microgrid,
whereas it is equal to  for the ideal characteristic.
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Fig. 2    Variation  of  (a)  internal  voltage EVSC,  and  associated  source
impedance of VSC: (b) equivalent resistance RVSC, and (c) equivalent reactance
XVSC with irradiance levels.
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Fig. 3    P−δ characteristic  curves  for  different  irradiance  levels  of  VSC  and
an ideal characteristic curve.
 

1.2    High R/X ratio of microgrid line

Rline/Xline = 2.3 > 1 θline

0−π 90◦

Because  of  the  resistive  nature  of  the  microgrid  lines  (i.e.
), the line impedance angle  lies in the range

of , whereas it is approximately  for the highly inductive

δmax Pmax

Zline∠θline

transmission line. Thus,  and  are the decreasing function
of .

1.3    P−δ curve for VSC-interfaced microgrid
For the ideal case, VSC system pursues the following conditions:

φ = 0◦(i) VSC internal voltage angle is set for .
θline = 90◦(ii) The line parameters are mainly inductive, i.e. .

RVSC ≈ 0(iii) The source impedance of VSC is set for .
δmax 90◦

φ ̸= 0◦ RVSC ̸= 0
θline ̸= 90◦ δmax ̸= 90◦ Pmax

100,200,300,800
1000 W/m2

δ = 0◦

The corresponding  will be approximately , as shown as
black color curve. However, due to the significant impact of control
strategies  on  VSC,  and .  Similarly,  a  high  R/X
ratio of the line causes . Therefore,  and 
have different values for each P−δ curves at  and

 solar  irradiance,  as  shown  in Figure  3.  Note  that
curves have an offset at  due to the constant part in Eq. (6).

δ
δ δa

∂P/∂δ > 0 Ps

∂P/∂δ < 0

Moreover, the inertia causes inevitable swings on the rotor of a
generator in a  disturbance.  VSC has no rotating part  and output
power  and  angle  relation  depend  on  the  control  scheme.  As
shown in Figures 4(a) and 4(b), with the increases in irradiance, P
becomes large, whereas  does not change significantly and follows
a monotonically increasing trend. Therefore, if  is equal to  at
the  point  on P−δ curve,  the  system  satisfies  the  stability  criteria
(i.e., ).  For  point b at  power ,  the  stability  criteria
change  (i.e., ),  and  the  behavior  of  VSC  change
inversely such that the system losses stability. Therefore, the tran-
sient  stability  assessment  of  the  VSC-interfaced  microgrid  is  not
possible with the conventional approaches. A method is needed to
access the transient stability of microgrids with a high R/X ratio of
lines  connecting  VSC  with  variable  internal  voltage  and  source
impedance.
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Fig. 4    Variation of output (a) active power P, and (b) angle δ of VSC with
irradiance pattern.
 

2    Challenges  with  mathematical  formulation of
lyapunov function for VSC-interfaced microgrid
As discussed in Section 1, the associated control options have sig-
nificant impacts on the system behavior.  A time domain analysis
has been carried out in this section to explain the dynamics of the
microgrid. After linearization, the system dynamics can be defined
as in Ref. [12].∆ẋVSC

∆i̇dq
line

∆i̇dq
load

=

AVSC . .
. Aline .
. . Aload


∆xVSC

∆idq
line

∆idq
load

 , (10)

AVSC

Aline Aload

idq
line idq

load

∆xVSC

where  is  a  VSC  controller  matrix,  which  includes  droop
coefficients of reactive power-voltage and power-frequency droop
controls, steady-state frequency of the system, the cut-off frequency
of  the  low-pass  filter,  and  inductance  and  capacitance  of  the
inverter  filter.  includes  the  parameters  of  the  line. 
includes the load parameters.  and  are dq components  of
the currents flowing in the line and load, respectively.  rep-
resents the states of s converters.
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[∆xVSC] = [∆xVSC_1...∆xVSC_i...∆xVSC_s]
T, (11)

where the states of each converter i are

∆xVSC_i = [∆δi ∆Pi ∆Qi ∆ϕdqi ∆γdqi ∆ildqi ∆vodqi ∆iodqi]T. (12)

s p
q

13× s+2×p+2×q

Considering a microgrid of m nodes with  converters,  lines,
and  load  points,  the  system  has  a  dimension  of

.  Here,  the  reference  frame  of  converter
number 1 is taken as the common reference frame. The differential
equations can be expressed in the matrix form as follows:

ẋ= Amgx, (13)

where

x= [∆xVSC ∆ilineDQ ∆iloadDQ ]
T,

Amg =

AVSC . .
. Aline .
. . Aload

 .

x= 0Assuming, the microgrid in Eq. (13) is in equilibrium at .

V : x→ Rm
≥0

The stability notions of interest for the dynamic systems can be
certified if a Lyapunov function can be found. A smooth function

 is a Lyapunov function of the system (13) with equi-
librium point 0 if the following conditions hold:

V(0) = 0,
V(x) > 0 ∀ x ∈ S, \0,
V̇(x)≤ 0 ∀ x ∈ S, \0.

(14)

S x= 0where  is the stability region. For each equilibrium point ,
there  exists  a  unique  Lyapunov  function.  However,  for  such  a
complex system with variable system parameters, the determination
of  the  Lyapunov  function  is  very  challenging.  Therefore,  a
machine learning approach is proposed in this work to find a Lya-
punov function for such a microgrid to assess its transient stabil-
ity.

3    Physics-informed method
A Physics-informed Lyapunov function is  proposed to assess  the
transient stability of the microgrid in the presence of a high share
of VSCs. The method considers the initial and boundary conditions
and  governing  equations  to  construct  a  Lyapunov  function.  The

function is learned by minimizing the loss function. The details of
the proposed approach are discussed in the following subsections.

3.1    Lyapunov function with physics informed neural network
structure

x
x ∈ Rm

v1 ∈ Rn

PINN Lyapunov function is  approximated by a  deep neural  net-
work about how well it matches the governing partial differential
equations and initial and boundary conditions, as shown in Figure
5.  The  deep  neural  network  has  several  hidden  layers  and  one
output layer. The inputs to the first hidden layer are the states  in
Eq. (13) which are time-dependent. The input  and output
of  the  first  hidden  layer  are  related  via  relation  in  as
defined by,

v1(x) = tanh(b1+w1x), (15)

b1 ∈ Rn w1 ∈ Rn×m

n

v1
v2 ∈ n

where  and  are  bias  and  weight  matrices,
respectively, of the first layer.  is the number of neurons in each
layer. Hyperbolic tangent function tanh(.) is chosen as an activation
function in this study. Similarly,  is an input for the second hidden
layer, and output  of the layer can be defined as

v2(x) = tanh(b2 +w2v1), (16)

b2 ∈ Rn w2 ∈ Rn×n

V ∈ R
x V x

where  and  are  bias  and  weight  matrices,
respectively,  of  the  second  layer.  This  process  continues  in  the
same manner up to the last output layer. The output of the output
layer  is ,  which  is  interpreted  as  the  Lyapunov  function
evaluated at vector .  is related to  via a relation given in Ref.
[26], which is defined by,

V(x) = tanh(bl +wltanh(bl−1+wl−1tanh(...+w1x))). (17)

l
bl ∈ R wl ∈ R1×n

V

where  is the total number of layers in the deep neural network.
 and  are bias and weight matrices, respectively, of

the output layer. Eq. (17) indicates that the Lyapunov function 
depends on the input states and the weight and bias matrices.

The  first-order  derivative  of  the  Lyapunov  function  with
respect to time can be computed as in Eq. (18).

V̇(x) = dV
dt

=
∂V
∂x

∂x
∂ t

, (18)

∂V/∂xFor V in Eq. (17),  will be,
∂V
∂x

= (1−V2)wl
∂ (tanh(bl−1+wl−1tanh(...+w1x)))

∂x
, (19)

 

x

t

σ 

σ 

σ 

σ 

σ 

σ 

σ 

σ 

σ 

σ 

VV0

Vt0

min Σ MSE

BC

Mon

IC

PDE
∂

∂

∂t
∂t ∂x

∂x

∂V

∂V
−λ

(0, x0)−Vt0

V (0, x0)−V0

V (tb, 0)

min (V (0, xm)−Vm, 0)

∂V

∂t

NN

I

MSEf

MSEV

MSE0

MSEb

MSEmon

 

Vm

∂
∂t

λFig. 5    Schematic of PINN for Lyapunov function governing equation. NN: deep neural network, PDE: partial derivative equation with parameter , IC: initial
conditions, BC: boundary conditions, and Mon: monotonically decreasing conditions.
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∂V/∂x ∂x/∂ t=
ẋ= Amgx V̇

Substituting  from  Eq.  (19)  in  Eq.  (18)  and 
 from Eq. (13) in Eq. (18), the differential equation  can

be expressed in a simplified matrix form as follows,

V̇(x) = (1−V2) wl Amg x γ, (20)

where

γ = ∂
∂x

(tanh(bl−1+wl−1tanh(...+w1x))).

V̇

which  includes  the  states,  weight  and  bias  matrices  of  various
neutrons  at  different  layers.  The  above  equation  reveals  that  the
derivative  requires  the  dynamics  of  the  microgrid  in  Eq.  (13),
which may not be available for this purpose.

f(t,x)

To solve the problem of data-driven solution of non-linear partial
differential equation in Eq. (18) to find V with inequality constraints
in Eq. (14), let us define  to be given by,

f := Vt+N[V; λ], x⊂ Rm, t ∈ [0,T], (21)

with initial conditions,

V(0, x) = C and Vt(0, x) =−C, (22)

and boundary conditions,

V(t,0) = 0. (23)

V(t,x)
N[V; λ]

λ
f(t,x)

C
V(0,0)

where  denotes the latent (hidden) solution and is approxi-
mated by a deep neural  network.  is  a  nonlinear operator
parameterized  by  system  parameter .  This  assumption  along
with Eq. (21) results in a physics-informed neural network .
This network can be derived by applying the chain rule for differ-
entiating compositions  of  functions  using  automatic  differentia-
tion. Here, the subscript t denotes partial differentiation in time. 
is a constant. Its value is set to 0 at  in training.

3.2    Loss minimization
V(t,x) f(t,x)

λ
The shared parameters  of  the neural  networks  and 
along with the parameter  of the differential operator, considering
initial and boundary conditions, can be learned by minimizing the
mean squared error loss.

MSE=MSEV +MSEf +MSE0+MSEb +MSEMon, (24)

where

MSEV =
1
NV

NV

∑
i=1
|V(tiV, xi

V)−Vi|2, (25)

MSEf =
1
Nf

Nf

∑
i=1
|f(tif, xi

f)|2, (26)

MSE0 =
1
N0

N0

∑
i=1
(|V(0, xi

0)−Vi
0|2+ |Vt(0, xi

0)−Vt
i
0|2), (27)

MSEb =
1
Nb

Nb

∑
i=1
|V(tib,0)|2, (28)

MSEMon =
1
Nm

Nm

∑
i=1
|min(V(0, xi

m)−Vi
m,0)|2. (29)

MSEV

(tiV, xi
V,Vi)NV

i=1 V(t,x) MSEf

Here, the interpretation of the Loss function in Eq. (24) is pre-
sented as follows. The first term  corresponds to the training
data  on . Second term  corresponds to a

(tif, xi
f) MSE0

(xi
0,Vi

0)
N0
i=1 MSEb

(tib, xi
b)

Nb
i=1

MSEMon

V̇≤ 0 (xi
m)

Nm
i=1

V x

finite set of collocation points . Third term  corresponds
to  the  loss  on  the  initial  data .  Fourth  term 
enforces the periodic boundary conditions.  corresponds
to the collocation points on the boundary. Fifth term  cor-
responds  to  the  monotonicity  loss  to  ensure  that V must  be
monotonically  decreasing  in  the  range S so  that . 
corresponds to the collocation points. L-BFGS optimizer is used to
minimize the mean square error loss of Eq. (24) in this study. The
derivatives  of  the  network  output  with  respect  to  the  input 
are  evaluated  exactly  and  efficiently  via  back-propagation.  It
includes  information  on  VSC  control  dynamics  such  as  droop
controls, lines, and loads, as in Eq. (13). The details of VSC control
dynamics are given in Ref. [12].

4    Results
The proposed approach has  been evaluated on two systems:  first
for three bus grid-connected microgrids to analyze the impact of
the  fault  and  change  of  droop  control;  second  for  the  CIGRE
microgrid  to  analyze  the  impact  of  generator  outage  and  load
shedding on the transient stability of the system. All experiments
in  this  section are  conducted  on a  DELL (2.5  GHz Intel  Core  i7
11th Gen) with Python 3.9.12 and TensorFlow 2.9.1.

4.1    Grid-connected microgrid
Consider  a  220  V  (per  phase  RMS),  50  Hz  microgrid  of  three
buses with three VSCs of 10 kVA each, two lines, and two resistive
loads  of  7.3  kW  and  5.8  kW,  respectively[12].  The  detailed  system
diagram with VSCs ratings, loads, and line parameters is shown in
Figure  6.  Frequency  droop  of  0.3%  at  the  maximum  real  power
output and voltage droop of 2% at the maximum reactive power
output  is  chosen  for  all  VSCs  to  equally  share  the  power.  After
training the proposed algorithm 500 times which takes 42.1882 s,
the learned output is  a Lyapunov function. Figures 7(a) and 7(b)
show  the  learned  Lyapunov  function  and  its  time  derivative,
respectively. The learned function is positive definite and its time
derivative  is  negative  definite,  which  suggests  that  the  function
learned  is  a  Lyapunov  function  and  can  be  used  for  TSA  of  the
grid-connected microgrid.
 
 

Load1=5.8 kW 

To grid
0.23+j0.1 Ω 0.35+j0.58 Ω 

123

10 kVA

Load2=7.3 kW 

AG fault
PPV_3

10 kVA 10 kVAV3∠δ3 V2∠δ2 V1∠δ1

B1 B2

Fig. 6    Impedance  diagram  of  grid-connected  VSC  with  AG  fault  in  the
middle of line 23.
 

For the system, two cases are studied. Case-A discusses the per-
formance of the method after the clearance of phase A-to-ground
(AG) fault with 0 Ω fault resistance from line 23. Case-B presents
the  impact  of  change  in  reactive  power-voltage  droop coefficient
on the system’s transient stability.

Case-A    Impact of fault clearance

0◦ 0 δ3

A bolted AG fault is created in the middle of the line connecting
bus 2 and bus 3, resulting in 0 value of the output power of VSC
at bus 3. The fault is removed at 0 s. The time-domain simulation
result of the power output and voltage angle of the VSC at bus 3
are shown in Figures 8(a) and 8(b) with initial conditions x(0) of

 and  kW. It is observed that all the interface variables  and
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PVSC_3

>

 tend to return to their equilibrium point after the removal
of  the  fault  at  0  s.  This  ensures  the  stability  of  the  system after  a
disturbance. Similarly, with the initial condition, the learned Lya-
punov function in Figure 7(a) is V(x(0)) = 0.05  0 and it strictly
decreases  with  time  before  the  system  reaches  the  equilibrium
point. This validates the applicability of the proposed approach as
the results of the proposed method match the simulation results.

Case-B    Impact of droop coefficient variation

In the real system, there might be a case when the parameters of
the controller are not properly tuned, which may affect the stability
of the system. In such a situation also, the physics-informed Lya-
punov  function  finds  application  in  determining  the  stability  of
the  VSC-interfaced  microgrid.  To  demonstrate  the  situation,  a
hypothetical  case  is  simulated  where  the  droop  coefficient  of  the
active  power-frequency  droop  control  of  VSC  3  at  bus  3  is
changed to –4%, while other system parameters are kept same in

δ3 PVSC_3 δ3

PVSC_3

the given system, shown in Figure 6.  After training the proposed
algorithm for the modified system, the learned Lyapunov function
and its time derivative are shown in Figures 9(a) and 9(b), respec-
tively.  The  learned  function  is  negative  and  its  time  derivative  is
positive for various combinations of  and , such as  = 0
rad  and  =  0  pu.  Results  confirm  that  the  given  microgrid
with –4% droop coefficient for VSC 3 is not satisfying the Lyapunov
stability criteria mentioned in Eq. (14), and is unstable. Therefore,
the proposed physics-informed Lyapunov function is an essential
tool  for  determining  the  stability  of  microgrids  having  variable
control dynamics.
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Fig. 9    (a) Lyapunov function and (b) time derivative of Lyapunov function
for a grid-connected microgrid under unstable conditions.
 

4.2    CIGRE microgrid

S1 S2 S3 S4

>

The  scalability  of  the  proposed  PINN  technique  is  validated  for
the 12.47 kV, 60 Hz CIGRE microgrid[27],  as  shown in Figure 10.
Single-phase networks are connected at buses 2, 5, 13, and 14. The
system  is  managed  by  8  VSCs  of  capacities  20  kW,  20  kW,
663  kW,  1.5  MW,  30  kW,  552  kW,  254  kW  and  10  kW  with
droop  control  connected  at  buses  3,  4,  6,  7,  8,  9,  10,  and  11,
respectively. Case is simulated where switches , , , and  are
opened at 1 s. VSCs and loads at buses 7, 8, 9, 10, and 11 are dis-
connected from the system. For the remaining system, a Lyapunov
function is learned in 137.2566 s. Figures 11(a) and 11(b) show the
learned  Lyapunov  function  with  positive  definite,  holding
V(x(0)) = 0.268  0 and its time derivative with negative definite,
respectively,  for  the  contingency.  This  suggests  that  the  learned
Lyapunov function can be used for the TSA of the CIGRE microgrid
after the source and load disconnection.

P δ
PVSC_3

PVSC_4 PVSC_3 δ3 δ4 δ6

The time domain simulation results  of  output power  and 
at  buses  3,  4,  and 6  in Figures  12(a) and 12(b) show that ,

, , ,  and  attain their equilibrium values after a
disturbance  at  1  s.  Similarly,  all  state  variables  tend  to  their  pre-
dispatched value and the system attains its stability after generation
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Fig. 7    (a) Lyapunov function and (b) time derivative of Lyapunov function
for a grid-connected microgrid under stable condition.
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disconnection and load shedding.

5    Comparative assessment
The  proposed  PINN  Lyapunov  approach  is  compared  with  the
neural Lyapunov method in Ref. [21] for TSA of microgrid shown
in Figure 5. The operating condition of the system is already dis-
cussed in Section 4.1 in detail. Different cases studied for this pur-
pose are discussed in detail in the following sections.

5.1    Prediction accuracy

The level of accuracy of the PINN approach is compared with NN

Nlayer

NNeuron

NNeuron ×Nlayer

for a given dataset for each case. The deep neural network structure
varies in the number of layers ( ) and the number of neurons
( ) in each layer for each case. Figure 13 shows the prediction
accuracy with PINN and NN approach for different combinations
of . It is observed that PINNs consistently outperform
simple  NN  across  all  tested  combinations.  With  the  number  of
layers, the prediction accuracy increases, whereas only using more
neurons  per  layer  leads  to  insignificant  accuracy  improvements.
This is  because  PINN evaluates  the  dynamic  of  the  system addi-
tionally to improve the accuracy of the output for a given limited
data point. The incorporation of more ayers using physics provides
a clear benefit over a simple NN.
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Fig. 13    Comparison of prediction accuracy of PINN and NN.
 

NNeuron NLayer

20×8
40×8

To evaluate the performance of the learned Lyapunov function
for each class, a classification report is given in Table 1. The report
provides  a  summary  of  metrics  that  describe  the  function’s per-
formance,  such  as  precision,  recall,  and  F1-score  for  different
combinations  of  and .  The  predicted  dataset  is  of
continuous type; therefore, a cut-off of 0.7 is chosen to get balanced
datasets for class 0 and class 1. It is observed that the combination

 results in a high precision score (closer to 1) for class 0 and
class 1. Similar results are obtained for combination . High
precision  demonstrates  the  model’s  ability  to  make  fewer  false
positive errors at the cost of the recall, i.e. 0.62 for class 1. To provide
a balanced assessment of a model’s performance, F1 score metric
takes into account both precision and recall. For class 0, both high
precision  and  high  recall  result  in  a  high  F1  score,  whereas  for
class 1, F1 score is helping to strike a balance between high precision
and  low  recall.  On  the  contrary,  for  both  training  models,  the
weighted  average  accuracy  remains  constant  as  it  is  not  much
affected by the increase in neurons per layer.

5.2    Evaluation loss
An  over-fitting  problem  frequently  occurs  in  many  machine
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learning models. Figure 14 shows the evaluation loss on the vali-
dation  of  the  data  set  with  respect  to  epoch.  It  is  observed  that
until 70 epochs, both PINN and NN quickly reduce the loss, how-
ever,  afterward,  only the PINN can improve the performance on
the validation set. Hence, continuing the training process leads to
reducing the evaluation loss at the expense of longer computation
time with each epoch.
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Fig. 14    Comparison of evaluation loss of PINN and NN.
 

5.3    Comparison with traditional methods
Table 2 provides a comprehensive comparative assessment of the
proposed physics-informed method with traditional transient sta-
bility  assessment  methods,  such  as  time-domain  simulation,
energy  function  methods,  modal  analysis,  and  machine  learning
techniques. Each method is evaluated across accuracy, complexity,
applicability, and data requirements criteria. Time-domain meth-
ods  are  highly  accurate,  but,  higher  complexity  for  non-linear
VSC dilutes its applicability to microgrids. Modal analysis methods
are less complex, but, require a detailed system model which is not
practically  available  due  to  variable  control  options  in  VSCs.
Energy  function-based  methods  are  moderately  accurate  and
complex.  The  inclusion  of  data-driven  neural  techniques  with
energy  functions  may  further  reduce  the  complexity  of  the
method; however,  it  requires large training datasets.  On the con-
trary, the proposed method provides highly accurate solutions for
each microgrid  connected to  the  grid.  In  the  method,  the  model
physics  is  directly  incorporated  into  the  deep  neural  networks,
therefore,  requiring  less  training  dataset.  This  comprehensive
comparison highlights the strengths of the proposed approach and
the  limitations  of  traditional  methods  in  assessing  the  transient
stability of the VSC-interfaced microgrid.

6    Conclusions
Different  control  algorithms  embedded  in  VSCs  influence  the
internal  voltages  and  associated  source  impedance.  Moreover,
microgrids  consist  of  short  lines  with  high  R/X  ratio.  Therefore,
the  conventional  transient  (angle)  stability  assessment  technique
finds limitations in the presence of the converter-controlled VSC
in a microgrid.  In addition,  the computation of  the conventional
Lyapunov function is very time-consuming for such large systems
with  converter  dynamics.  To  access  the  transient  stability  of  the
VSC-interfaced  microgrid,  physics  informed  neural  Lyapunov
approach is proposed in this paper. The method incorporates the
dynamics  of  the  system  and  initial  and  boundary  conditions  for
learning the Lyapunov function in state space. The effectiveness of
the approach is tested on a grid-connected microgrid for fault and
droop coefficient variation cases and a CIGRE microgrid for gen-
erator outage and load-shedding cases. Simulation results validate
that  the  proposed method does  not  require  microgrid  dynamics.
A comparative assessment of the proposed PINN Lyapunov with
the simple neural Lyapunov and traditional methods demonstrates
the strength of the proposed approach in transient stability assess-
ment  of  the  VSC-interfaced  microgrid,  where  the  parameters  of
the  VSC  are  influenced  by  the  irradiance  level.  Future  research
direction will  be  the  examination of  the  influence  of  other  inter-
mittent sources like wind power generation on the VSC parameter
variation.

Appendix
The voltage relation for the circuit (see Figure 1) is as follows,

Vo∠δ = EVSC∠φ− Io∠ϕ ZVSC∠θVSC, (30)

Separating  real  and  imaginary  parts  and  rearranging,  Eq.  (30)
can be rewritten as

[
Vo cosδ
Vo sinδ

]
=

[
1 0 − Io cosϕ Io sinϕ
0 1 − Io sinϕ − Io cosϕ

]
EVSC cosφ
EVSC sinφ

Rl

Xl

 , (31)

The simplified form of Eq. (31) can be

 

Table 1    Classification report

NNeuron = 20 Nlayer = 8, NNeuron = 40 Nlayer = 8, 
Precision Recall F1 score Precision Recall F1 score

Class 0 0.99 1.00 0.99 0.98 1.00 0.99

Class 1 0.93 0.62 0.75 0.94 0.62 0.74

Accuracy 0.98 0.98

Macro avg 0.95 0.81 0.87 0.97 0.81 0.87

Weighted avg 0.98 0.98 0.98 0.98 0.98 0.98

 

Table 2    Comparison of proposed and traditional transient stability assessment methods

Methods Accuracy Complexity Applicability Data requirements

Time-domain simulation[28, 29] High High Small to medium Detailed system models

Energy function method[14, 15] Moderate Moderate Small to large System parameters

Modal analysis[16–18] Moderate Low Small to large Detailed system models

Neural network technique[19–21] Variable Low to moderate Small to medium Large training dataset

Proposed method Very high Low Small to large Less training dataset
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[V] = [I][B], (32)

where [V] and [I] are corresponding voltage and current matrices,
respectively. Matrix [B] contains internal voltages and impedances
of VSC. The unknown parameters in [B] can be computed as

[B] = [(I′I)−1I][V]. (33)

EVSC

ZVSC

On  solving  Eq.  (33),  real  and  imaginary  components  of 
and  can be obtained from Ref. [11].
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