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ABSTRACT

Metal halide perovskite solar cell (PSC) has successfully distinguished itself in optoelectronic field by virtue of the sharp rise in
power conversion efficiency over the past decade. The remarkable efficiency breakthrough at such a fast speed can be mainly
attributed to the comprehensive study on film deposition techniques, especially the effective management of surface and interfacial
defects in recent works. Herein, we summarized the current trends in performance enhancement for PSCs, with a focus on the
generally applicable strategies in high-performance works, involving deposition methods, compositional engineering, additive engi-
neering, crystallization manipulation, charge transport material selection, interfacial passivation, optical coupling effect and con-
structing tandem solar cells. Promising directions and perspectives are also provided.
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erovskite solar cells (PSCs) have emerged as a promising
Ptechnology for achieving high performance. Solution pro-
cessibility and the low levelized cost of electricity (LCOE)
(3.5-4.9 US cents/kWh) further add its market attractiveness".
The rapid advance is the joint consequence of the increasing
understanding of film processing techniques and the superior
intrinsic photoelectric properties of perovskite, e.g., strong light
absorption, long and balanced carrier diffusion length, benign
defect tolerance, easily tunable bandgaps, etc. These merits endow
PSCs with the capability to achieve up to certified 26.1% efficiency
in a short time period”, which is around 82% of S-Q limit. Com-
pared with the relatively mature photovoltaic technologies like Si
and GaAs solar cells, there is still room for improvement, and thus
understanding the mechanisms behind high performance is
critical.
Metal halide perovskite materials were first utilized as the sen-
sitizer in dye-sensitized solar cells in 2009 by Kojima et al., and the

methyl ammonium lead iodide (MAPbL;)-based solar cells
showed a power conversion efficiency (PCE) of 3.8%". Based on
this pioneering work, numerous studies on PSCs have sprung up,
where the milestone efficiency enhancement works are summarized
in Figure. 1. At the early stage, the efficiency breakthrough was
mainly driven by the optimization of device structure, precursor
composition and film formation processes. Park’s group innova-
tively substituted spiro-OMeTAD for liquid electrolyte as the hole
transport layer and constructed all-solid-state PSC with 9.7%
PCE". Subsequently, in 2012, Snaith’s group constructed meso-
superstructure OIHP device by replacing TiO, with the insulating
scaffold Al,O; and the PCE exceeded 10% for the first time®. This
work proved the bipolar charge transport nature of perovskite
materials, inspiring the development of the first planar-hetero-
junction PSCs". The inferior morphology and crystal quality were
the major reasons for poor device performance in that period.
Many approaches were proposed to improve the film formation
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Fig.1 The milestone works in the efficiency enhancement history of PSCs (reprinted with permission from Ref. [9], © 2014 Macmillan Publishers Limited. All
rights reserved; Ref. [13], © 2015, American Association for the Advancement of Science; Ref. [14], © 2017 The Authors, some rights reserved; exclusive licensee
American Association for the Advancement of Science. No claim to original U.S. Government Works; Ref. [15], © The Author(s), under exclusive licence to
Springer Nature Limited 2019; Ref. [18], © The Author(s), under exclusive licence to Spring; Ref. [19], © 2022 The Authors, some rights reserved; exclusive
licensee American Association for the Advancement of Science. No claim to original U.S. Government Works; Ref. [20], © The Author(s), under exclusive
licence to Spring 2023; Ref. [21], © © The Author(s), under exclusive licence to Spring 2023).

process of perovskite, e.g., sequential deposition”, antisolvent
dripping", intermediate phase®'”, solvent annealing"", etc. Snaith’s
group developed dual-source thermal evaporation method to
deposit planar-heterojunction PSCs and raised the PCE to 15.4%
in 2013™. In 2014, the construction of intermediate phase in the
antisolvent dripping process through the addition of dimethyl-
sulphoxide (DMSO) effectively retarded the crystallization pro-
cess, yielding uniform and dense film with a PCE of 16.2%".
Through composition engineering and intramolecular exchange,
the PCE of formamidinium lead iodide (FAPDI;)-based PSCs
passed the 20% watershed in 2015 by Seok and his collegues!.
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Subsequent performance enhancement was mainly enabled by
charge transport material design and passivation. The solution-
processed perovskite films will inevitably involve large amount of
defect, which can act as non-radiative recombination centers,
induce ion migration and impede charge transport. Up to now,
various charge transport modification and passivation strategies to
reduce defects at grain boundary, top and buried interface have
been proposed, which greatly enhance the performance of PSCs.
Excess Pbl,, halide or pseudo halide anions, alkylammonium
halogen, Lewis acid and base are proved to be effective passivators,
which motivates the further efficiency improvement. In 2017, by
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adding extra triiodide ions during two-step deposition process of
FAPbL, the deep-level traps were effectively reduced and a certified
PCE of 22.1% was achieved". In 2019, Yous group used
phenethylammonium iodide (PEAI) to passivate the upper surface
of perovskite film, further increasing the efficiency to 23.7%", the
analogues of which were widely adopted to form 2D capping layer
for passivation in the latest high-efficiency works" . In 2021,
Seok’s group. further raised the PCE to 25.5% by passivating the
defects at buried interface™. You’s group found out that the excess
Pbl, could benefit the photovoltaic performance but undermine
the long-term stability of perovskite solar cells. They utilized RbCl
additive to convert the excess Pbl, during sequential deposition
into an inactive (PbI,),RbCl compound and enabled a 25.6% cer-
tified PCE with high stability"”. Noticeably, PSCs with inverted
configuration (p-i-n) have made great progress these days through
charge transport layer and interface engineering. He’s group utilized
dimethylacridine-based molecular doped in perovskite precursor
to construct a well-matched p-perovskite/ITO contact, together
with all-round grain boundaries passivation, yielding a certified
PCE of 25.39%". Nowadays, the reported efficiency of regular (n-i-
p) PSCs has reached 25.7%, enabled by the high-quality film
derived from alkylammonium chlorides (RACI) controlled crys-
tallization®".

Further improvement of performance for single-junction PSCs
will be hard since it has approached the Shockley—Queisser (SQ)
limit. Constructing tandem cells is an effective way to break the
SQ limit. Notably, all-perovskite tandem solar cells have achieved
28% PCE for 0.049 cm’, surpassing the record efficiency for single-
junction single-crystal silicon solar cells (26.8%)". Recently, a
breakthrough has been made for perovskite-Si tandem solar cells,
in which an impressive PCE of 33.7% was achieved by researchers
in King Abdullah University of Science and Technology®. Since Si
solar cell still occupies the mainstream market (over 90%), com-
bining perovskite with the already mature manufacturing process
flow of Si solar cells could be a plausible way for it to step into the
efficiency and cost-driven photovoltaic market.

In this review, the driving force behind the fast performance
enhancement of PSCs since beginning is analysed and summa-
rized, which mainly involves deposition process optimization,
compositional engineering, additive engineering, crystallization
manipulation, charge transport materials, interfacial engineering,
optical coupling effect and constructing tandem solar cells. Fur-
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thermore, the remaining challenges and promising directions for
some strategies are also provided. This review aims to provide an
empirical guidance to the development of PSCs and stimulate fur-
ther research activity towards the goal of fabricating efficient and
stable perovskite solar cells for commercial use.

1 Typical deposition methods of perovskite
films

1.1 Solution-based deposition methods

The film morphology of the light-absorbing layer in perovskite
solar cells has a direct impact on the optoelectronic properties of
the film, including light absorption, carrier diffusion and recom-
bination, which dominates the photovoltaic parameters. The mor-
phology of perovskite films, including surface coverage, flatness,
thickness and grain distribution, is highly dependent on the
preparation processes®. A variety of fabrication technologies have
been developed, among which the solution-based deposition
method is the current mainstream method®. The solution process
refers to dissolving the precursor components of perovskite into a
suitable solvent in advance, then depositing the precursor solution
on the substrate by means of spin coating, drop coating, blade
coating, spraying or inkjet printing, and finally crystallizing into a
film after annealing to remove the solvent. The commonly used
deposition methods for perovskite solar cells are summarized in
Figure 2.

1.1.1  One-step spin-coating

The one-step spin-coating method, also called the one-pot
method, was once the most commonly used method to prepare
perovskite films due to its simplicity. In this method, lead salts and
organic ammonium salts are dissolved together in polar solvents
(including dimethylformamide (DMF), dimethyl sulfoxide
(DMSO) and y-butyrolactone (GBL)) to form a precursor solu-
tion, which is then spin-coated in a single pass to form a film™.
Due to the high boiling point and poor volatility of such polar sol-
vents, the formed perovskite film suffers from serious agglomera-
tion®. To improve the morphology, a series of measures, including
adjusting the composition ratio, replacing the solvent, optimizing
the intermediate phase and introducing anti-solvent, were proposed
by the researchers.
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Fig.2 Summary of commonly used deposition methods for perovskite solar cells.
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Anti-solvent engineering is a milestone in the development of a
one-step method. The anti-solvent is added dropwise during spin-
coating of the precursor solution. Anti-solvent is miscible with the
host solvent without dissolving the perovskite, which can induce
rapid supersaturation and manipulate the crystallization process of
perovskite®. The fast speed of supersaturation induced by anti-
solvent splashing makes the nucleation rate greater than the crystal
growth rate, leading to rapid crystallization to form a dense film.
In 2014, Seok’s group introduced toluene as an anti-solvent for
the first time to obtain a flat and dense perovskite film. The per-
ovskite device obtained by this method showed a remarkable effi-
ciency of 16.2% with no hysteresis. Since then, anti-solvent engi-
neering has become indispensable in one-step methods. After a
detailed classification of more than a dozen common anti-sol-
vents, Taylor et al. proposed a universal method to prepare high-
quality films by optimizing the time window™.

Intermediate phase engineering is another important mean to
improve the quality of crystallization™. The one-step deposition
process of films can be roughly divided into three parts: precursor

solution, intermediate phase and crystal growth. Due to the robust
coordination ability, the lead salts, organic ammonium salts and
polar solvents in the precursor solution could constitute a solid
intermediate phase. DMSO was introduced into the DMF solvent
system because of the easier formation of a stable intermediate
phase with PbL,. By adding N-methyl-2-pyrrolidone (NMP) to the
precursor solution to regulate the intermediate phase, Bu et al.
fabricated high-performance perovskite solar cells without using
anti-solvent in ambient air® Pbl, preferentially combined with
NMP rather than DMF to form stable adducts, which greatly sup-
pressed the formation of &-phase perovskite Figure 3(a).
PbL,eNMP served as a template to react with FAI/Csl in situ,
thereby transforming into the needy a-phase perovskite. The
above method could also be further extended to the preparation of
large-area devices.

1.1.2 Two-step spin-coating

The two-step method was first introduced in perovskite by
Gritzel's group which split the spin-coating process into two
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Fig.3 (a) Schematic diagram of crystal growth for the formation of FAPbI, perovskites with or without NMP (reprinted with permission from Ref. [30], © 2021 The
Authors, some rights reserved; exclusive licensee American Association for the Advancement of Science. No claim to original U.S. Government Works). (b) Procedure
of perovskite seeding growth method. (c) Growth dynamics of the seed-assisted growth method. Reproduced with permission from Ref. [34], © The Author(s) 2018.
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steps”. In this method, lead salts and organic ammonium salts are
dissolved in different solvents, and the PbI, layer and organic
amine salt components are spin-coated successively. Benefiting
from the layered loose structure, Pbl, and organic ammonium
salts can be transformed into dense perovskite films through
solid-liquid diffusion reactions™. The alcoholic solvent of the
organic ammonium salts is dried immediately after being
dropped, so thermal annealing is crucial for crystallization™.
Owing to better experimental operability and repeatability, the
two-step method has gradually gained the favor of researchers.
For the two-step method, substantial works have concentrated on
the regulation of components in the precursor solution and the
annealing conditions. For instance, Park’s group revealed the
effect of organic ammonjum salt concentration on grain size,
obtaining a PCE of 17%". Recently, You’s group added RbCl to
the lead salt precursor to convert PbL, into an inactive (PbL,),RbCl
compound, which stabilized the perovskite phase and yielded the
currently highest certified PCE of 25.6% for FAPbI; perovskite
solar cells via two-step methods™.

Inspired by epitaxial growth in silicon solar cells, Zhao’s group
proposed a seed-assisted growth method to further improve the
film quality of the two-step method™. Different from spontaneous
growth in the traditional method, they introduced submicron
perovskite seeds in Pbl, precursor solution as nuclei to induce sub-
sequent growth of perovskite from bottom to top Figure 3(b).
The seeded region and the unseeded region exhibited two distinct
growth kinetics modes. Obviously, the seed-assisted growth mode
was significantly faster than the random nucleation growth, occu-
pying the dominant position. In fact, spontaneous crystallization
consists of two stages, nucleation and growth, bounded by the
critical radius r*. The growth stage can only proceed when the
nucleus radius exceeds the critical radius 7*. With the help of the
ready-made nucleus provided by perovskite seeds, the crystal
growth of perovskite can easily overcome the Gibbs free energy
barrier and commence directly from the seeds Figure 3(c). As a
result, a highly crystalline perovskite film with significantly
reduced grain boundaries will be obtained. Therefore, the per-
ovskite solar cells based on the seed-assisted growth method
achieved a PCE of 21.5% and better operating stability (60% of the
initial PCE after 140 h). Later, Li et al. developed CsCl-enhanced
perovskite seeds with bromide-rich composition through halogen
engineering and component regulation, which further expanded
the grain size to 1.5 pm with more vertical cylindrical grains®*.

The seed-assisted growth method provides a new path for
modulating crystallization dynamics, grains dimensions and per-
ovskite composition. On this basis, researchers have successively
devised many different types of perovskite seeds. For example,
different from other types, all-inorganic perovskite seeds (CsPbBr;
and RbPbI,, etc.) can be used not only as nucleation sites but also
as a stabilizer for the FAPbI; black phase™*. In addition, the 2D
perovskite seeds were found to endow the PbL, film with a meso-
porous structure, facilitating the penetration of organic salts™.
Recently, Shen et al. realized array-distributed perovskite crystallites
on a substrate through a polydimethylsiloxane (PDMS) template,
which greatly improved the controllability of the growth of the
perovskite light-absorbing layer™. Another role of seed-assisted
growth is to tailor the facet orientation. The carrier lifetimes,
defect types and densities of perovskite films with different crystal
facet orientations are quite different*’. Usually, perovskite film
with preferred facet orientation showed favorable photovoltaic
performance in solar cell devices. Recently, Luo et al. selected
highly oriented low-dimensional perovskites as seeds to induce
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the growth of 3D perovskites, thereby obtaining the desired crystal
plane orientation and stacking mode™. The selected Dion—Jacob-
son (DJ) phase perovskite crystal grew along the (00L) crystal
direction; thus, the 3D perovskite grew from this template epitax-
ially presented a preferred orientation in the (00L) direction. As a
result, the obtained perovskite films exhibited excellent crystal
quality. More interestingly, the low-dimensional perovskite seeds
diffused to the grain boundaries of 3D perovskite, forming a type-
I band structure to passivate defects. This novel approach enabled
dramatic performance improvements in perovskite photovoltaic
devices, with a PCE of 23.95% and an FF of 0.847.

1.1.3  Other solution-based methods

Spin-coating is the mainstream method for laboratory fabrication
of high-efficiency perovskite solar cells, but unfortunately, it is not
suitable for large-scale industrial production due to inhomogeneity
of scale-up and waste of raw materials. To adapt to large-scale
production, many new manufacturing processes have been devel-
oped. The drop-coating method was developed for large-area
devices owing to the facile procedure™. However, when the sub-
strate area is larger than 100 cm’, it is powerless for this method to
guarantee the uniformity of the film. Spraying-coating and inkjet
printing were applied to the preparation of perovskite films as
early as 2014, but the difficulty of thickness control and crystal-
lization speed hinder their further development™*. In contrast to
the above methods, meniscus coating is a new technology with
high material utilization and compatibility with roll-to-roll pro-
duction lines™. According to whether the blade is in contact with
the substrate, it can be divided into blade coating and slot-die
coating™. Benefiting from the precise adjustment of the moving
speed and distance of the blade, the efficiency of large-area devices
obtained by meniscus coating has exceeded 20%". The advantages
and disadvantages of different preparation processes are compared
in Table 1",

1.2 Vacuum evaporation methods

Although most of the reported high-efficiency PSCs were fabricated
by solution-based methods, the solution-processed PSCs still face
several formidable challenges to meet the requirements of future
commercialization™. The first key issue is the uniformity limitation
of the spin-coating method. Most of the high-PCE devices were
achieved on small-area devices via spin-coating, while the unifor-
mity and homogeneity of the perovskite film may be deteriorated
on large-scale substrates. Furthermore, the remaining solvent may
damage the underlying layers (e.g., hole transport layer (HTL) in p-
i-n PSCs), undermining the device performance and long-term
stability. Moreover, the soluble lead used in the solution method
(e.g., PbI,-DMSO complexes) has the risk of contaminating the
soil and groundwater. In addition, the solvent used, usually with
high purity, is rather expensive, costly and time-consuming and is
difficult to recycle. Last, it remains difficult to fabricate tandem
solar cells on textured silicon cells with a solution-based method.
Decades of practices in PV technologies like CIGS, CdTe, III-
V and HJT silicon solar cells have shown the preference for
vacuum-based technologies in industrial production due to supe-
rior uniformity, conformality and reproducibility in large scale
while fabricating thin films (~1 um or less thickness)™. The vacuum
evaporation procedure is usually performed in a vacuum cham-
ber, and no solvent is used during the process, eliminating the risk
of environmental pollution caused by the lead halide and saving
the solvent cost. Furthermore, the film thickness can be precisely
controlled by monitoring the deposition rate with a quartz crystal
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Table1 Comparison of commonly used fabrication technologies for perovskite films

Method Strength

Weakness Highest PCE

One-step spin-coating Facile and easy to operate.

The uniformity of perovskite films decreases sharply 25.8% (0.1 cm?)™

Two-step spin-coating Excellent experimental operability and

repeatability.

with increasing area; massive raw materials are

25.03% (0.08 cm?)©!
wasted.

Drop-coating The experimental process is the easiest and

can resist high humidity.

The experimental conditions are not easy to control 21.08% (0.04 cm?)"”
and difficult to repeat.

Spraying-coating Suitable for low cost, high volume, and

rapid manufacturing.

Difficult to control film thickness and quality. 19.4% (0.025 cm?)™*!

Inkjet-printing Easy to print specific preset patterns.

There are special requirements for the annual
perovskite ink; lack of a suitable printer.

22.1% (0.16 c?)!

Blade-coating The structure of the equipment is simple

and the utilization rate of materials is high.

Squeegee may cause contamination. 23.19% (0.04 cm?)®*!

Slot-die coating The coating is noncontact, and the ink will
not splash; the film formation uniformity is

good.

Difficult to achieve patterned coating. 22.7% (0.09 cm?)®!

Solution-vapor combination The vacuum deposition of FAI produces a
homogeneous FAI film.

Solution processed Pbl, is inhomogeneous and is
unfavorable for large-scale devices.

24.1% (0.1 cm?)®¥

Dual-source evaporation Dual-source evaporation can fabricate
highly uniform perovskite layer in a single

process.

The evaporation rate and thickness of each precursor 20.28% (0.16 cm?)"”
cannot be decided. Mutual interference between FAI
and PbI, may exist.

Sequential evaporation Both the evaporation rate of the lead halide

and the ammonium salt can be monitored.

More expensive instruments needed. 24.42% (0.1 cm?)™*!

Chemical vapor deposition ~Chemical vapor deposition can produce
high-quality perovskite film with over an

area of m® scale.

Unsuitable for depositing lead halide layer. The
related parameters are complex and need to be
carefully controlled.

15.5% (0.1 cm?)®

microbalance (QCM), and the evaporated precursors can be uni-
formly and evenly deposited onto the rotating substrate, which is
conducive to large-scale industrial fabrication. Three main tech-
nical routines have been developed: co-evaporation, two-step
sequential routine and chemical vapor deposition®* among
which the former two are commonly used and their schematics
and development timeline are shown in Figures 4(a) and 4(b). Co-
evaporation and two-step sequential routine are all based on ther-
mal evaporation, which belongs to physical vapor deposition. The
reactants are either simultaneously or sequentially evaporated
onto the substrate and react in-situly to produce perovskite layer.
While chemical vapor deposition (CVD) utilizes gas-state precur-
sors to deposit perovskite layers through chemical reactions. CVD
is commonly carried out in a tube furnace, which contains a high-
temperature region for material sublimation, and low-temperature
region for precursor deposition.

1.2.1 Dual-source coevaporation

To date, many efforts have been made to fabricate PSCs using the
vacuum thermal evaporation method. Nevertheless, the PCE of
evaporated PSCs still lags behind that of the solution-based
method. The dual-source coevaporation method is first explored
and demonstrates the uniformity of the vacuum thermal evapora-
tion method. Early in 2013, Liu’s group first proposed the
coevaporation of PbCl, and MAI to fabricate MAPbI;_Cl, and
achieved a PCE of 15.4%". In 2017, Bolink’s group developed
multi-sources (3 and 4) vapor deposition technologies and suc-
ceeded a best PCE of 16% based on the multi-cation perovskite
materials®’. Meanwhile, the crystal growth mechanisms of multi-
cation perovskite films and the interface defects between perovskite
and charge transport layers under co-evaporation have also been
noticed as main factors to further push the performance of PSCs.
In 2020, Bruno’s group coevaporated MAI and Pbl, and reached a
PCE as high as 20.28%. Albrecht et al. in 2021®” and Johnston et
al. in 2022 reported their champion devices under three- and
four-sources vapor deposition with PCEs of 20.4% and 19.3%,
respectively, by carefully controlling the process of perovskite
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crystal growth. At present, PSCs based on the co-evaporated per-
ovskite films have a record efficiency of 20.6%, which was
reported by Bruno’s Group on the year of 2021 and Albrecht’s
Group on the year of 2020"".

Although the dual-source coevaporation process can fabricate
PSCs with good uniformity, it still has several drawbacks. First, the
much higher vapor pressure of the ammonium salt compared
with that of lead halide makes it difficult to simultaneously evapo-
rate both precursors with a stable evaporation rate. The temperature
of the crucible for evaporating lead halide is much higher than
that for ammonium salt, which can significantly change the pressure
of ammonium molecules in the chamber, making evaporation
difficult to control. In addition, it is difficult to identify the exact
evaporation rate of the lead halide and ammonium salt with a single
QCM. Last, it is found that a minor amount of the ammonium
salt may remain in the chamber after evaporation, which may
affect the subsequent evaporation process and reduce the batch-to-
batch reproducibility.

1.2.2  Two-step sequential routine

A typical sequential routine consists of two steps: inorganic pre-
cursors (PbX, and CsX) were firstly evaporated, then inorganic
precursors reacted with such organic vapor (FAX, MAX and/or
mixtures) to form perovskite films. Compared with the dual-
source coevaporation method, the two-step sequential evaporation
method avoids the risk of mutual interference by evaporating pre-
cursors separately. Both the evaporation rate of the lead halide and
the ammonium salt can be monitored by the QCM, and thus the
film thickness of each layer can be controlled precisely”™. This
technology was first reported by Lin’s group in 2014”. In this initial
attempt, MAPbI; PSCs received an efficiency of 15.4%. Soon after
that, in 2016 the same group improved the PCE of MAPbI; PSCs
to 17.6%", and revealed that extremely high vacuum degree, e.g.,
~107 Pa, was not necessary for high-efficiency devices. This
implies that vacuum-based PSCs are affordable to the industry
because expensive high vacuum equipment is not inevitable. In
2018, Tong et al. applied defect passivation strategies to enhance
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the PCE up t018.2%". In 2021, Ku’s and Peng’s group. optimized
their interphase-related defects passivation strategies and reported
a PCE of 20.45%"7. Up-to-date, the champion PCE for all-
vacuum-processed PSC is 21.32%, which was reported by Feng
et al. in 2021". Recently, Zhang et al. combined single-source
evaporation of FAI and spin-coating of lead halide to fabricate
MA-free PSCs"*, which achieved a PCE of 24.1% (certified 23.9%)
and 22.8% for 0.1 cm® and 1 cm? Cs-FA-based devices, respec-
tively. They demonstrated the uniformity of the vacuum-
deposited FAI layer and obtained the highest reported PCE of MA-
free devices with good stability. Li’s group proposed a Cl-containing
alloy-mediated sequential vacuum thermal evaporation approach
and systematically studied the crystallization process of evaporated
PSCs*. They coevaporated PbCl,, Pbl, and Csl to form the Cl-
alloyed film, on which a FAI layer was deposited. They
demonstrated that the Cl-alloyed lead halide precursor film
(CsggsPbly 5 Cl,) exhibited better crystallinity and a stronger
degree of preferential orientation. The resulting PSCs yielded
PCE:s of 24.42%, 23.44% (certified 22.6%) and 19.87% for 0.1 cm?,
1 cm’ and 14.4 cm? devices, respectively, which is the highest PCE
of evaporated PSCs to date. The sequential vacuum evaporation
method has proven its feasibility and industrial potential in fabri-
cating PSCs and other photoelectronic devices.

1.2.3  Chemical vapor deposition

Chemical vapor deposition (CVD) has attracted increasing atten-
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tion due to its film homogeneity and industrial compatibility. The
CVD method can produce highly uniform layers with an area
over 1 m?, which has been demonstrated in the silicon photovoltaic
industry. Different from the vacuum thermal evaporation method,
CVD uses gas-state precursors to deposit perovskite films through
chemical reactions™. In 2014, Qi’s group first introduced hybrid
chemical vapor deposition (HCVD) to fabricate PSCs™. A PCE of
11.8% with good stability was achieved. Recently, they demon-
strated the upscaling ability of the HCVD method®™. They
deposited a Cy, interlayer to avoid the damage to the sputtered
SnO, (ETL) during the HCVD process and fabricated
Csy1FA(oPbl, oBr,; PSCs with enhanced phase and thermal stabil-
ities. They obtained more than 10% efficiency in a PSC module
with a designed area of 91.8 cm’ Nevertheless, most of the
reported literature focused on the vapor deposition of ammonium
salt, while the lead halide layer is still based on vacuum evaporation
or solution-based methods due to the waste of material and the
much higher temperature of the furnace in comparison with
ammonium salt. Furthermore, the furnace pressure, flow rate of
gas, heating temperature of the substrate, ammonium salt, and
distance between the substrate and precursor need to be carefully
controlled during the CVD process, increasing the complexity of
the experiment™. In addition, it is difficult to deposit an ultrathin
layer at the interface of the perovskite layer or charge transport
layer by the CVD process for surface passivation or interface
modification, which may potentially become a hazard toward fab-
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ricating PSCs with high efficiency and good stability.

Challenges PCEs of vacuum-based PSCs are still lagging behind
solution-based PSCs. One of the main challenges is that organic
precursors sublimed but not evaporated slowly, resulting in com-
plicated control of perovskite crystals and thereby forming large
amount of defect in target perovskites. Although researchers have
already realized the importance of passivating defects in vacuum-
based perovskite films, only a few choices are available. Therefore,
it is urgent for chemists and material researchers to inventing or
developing materials adopting to vacuum technologies.

2 Compositional engineering of lead halide
PSCs

2.1 Mainstream 3D perovskite materials

In the initial stage, 3D structured organic-inorganic hybrid per-
ovskite materials MAPbI; and MAPbBr; were firstly utilized as
light harvesting material in liquid-state solar cells by Miyasaka T.,
demonstrating a PCE of 3.81% with extremely poor stability®.
Following that, Kim et al. reported the first full solid-state MAPbI,-
based PSC with impressive efficiency exceeding 9% and dramati-
cally improved stability, which was recognized as the landmark
breakthrough in PSCs field”. Since then, dramatic attentions have
been paid to composition engineering of perovskite materials to
further improve the photovoltaic performance.

One effective engineering strategy is anionic component regu-
lation® . Partly substituting I with Br or Cl ions can easily tune
the bandgap and regulate the crystallization process of perovskite
films. Especially, the introduction of Cl anion can extend the
charge carrier lifetime and diffusion length, which is essential for
restricting the charge recombination™*. The other strategy is the
optimization of A-site cation. FA* and Cs" are the most frequently
used A-site cations except MA™. Substituting the MA* with a
slightly larger FA* decreases the bandgap, from which higher
photo absorption and higher theoretical efficiency limit can be
expected for FA-based perovskites®. However, FAPDI; suffers
from poor crystallinity and phase instability, which limited the
development progress of the corresponding PSCs at the starting
stage™ . To tackle these issues, multiple cations and certain ratio
of bromine anion were introduced to stabilize the black-phase
FAPDI; (e.g, FA,_,MA.Pb(I,_Br,); and FAgs_MA,CsyesPb(I;,
Br,);) through reducing the Goldschmidt tolerance factor 7, which
became the dominant compositions in highly-efficient PSCs at
that time">**. However, the incorporation of MA* and Br~ comes
at the cost of a blue-shifted absorption spectrum, limiting the further
enhancement of J,. and PCE. Moreover, MA erodes the thermal
stability and Br induces phase segregation of relative composi-
tions. Therefore, stabilizing a-FAPbI; while maintaining its inher-
ent bandgap is highly desirable for highly-efficient and stable
PSCs'*". How to produce pure a-FAPbI; films with high film
quality and high phase stability at room temperature become one
of the research hotspots recently. Additive engineering of precursor
solution is one of the most commonly used method to stabilize
black phase FAPbI,. Several reports proposed that adding slightly
excess methylammonium chloride (MACI) or methylenedi-
ammonium dichloride (MDACL) can successfully stabilize the
pure a-phase FAPbI,, facilitate the crystallization and increase
grain size of FAPbI, films, yielding a certified PCE of more than
23% for the resulting PSCs***”. Lu et al. used methylammonium
thiocyanate (MASCN) vapor treatment to convert yellow &-
FAPDI; to the kinetically stable a-FAPbI;. The vapor-treated a-
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FAPbI; PSCs achieved a PCE greater than 23% together with
excellent long-term operational stability®. Jeong et al. introduced
a pseudo-halide anion formate (HCOO") to reduce anion-vacancy
defects in the FAPbI; perovskite films, which suppressed the non-
radiative recombination of charge carriers"”. With the improved
crystallinity of the a-phase FAPbI; films, an impressive PCE of
25.6% (certified 25.2%) was obtained with a J. of 26.35 mA/cm? a
V. 0f 1.189 V and FF of 81.7%.

2.2 3D/low-dimensional perovskite integrated light absorption
layer

Even though the efficiency has been greatly improved, the long-
term stabilities of 3D organic-inorganic hybrid perovskite materials
mentioned above are still lagging far behind commercialization
requirements. Constructing low-dimensional (LD) and all-inor-
ganic CsPbX; compositions are adopted to enhance the stability.
All-inorganic CsPbX; composition engineering will be discussed
in the following sections. LD perovskites with 2D, 1D and 0D
structures present superior moisture stability than 3D
perovskites® . Besides, the incorporation of low-dimensional
(LD) perovskites in 3D perovskites have the ability to reduce trap
density and impede the ions migration no matter in the bulk or
on the surface” ™. In this scenario, LD/3D hybrid perovskites
might be one of the ideal candidates for solar cell commercializa-
tion.

The 2D perovskites are comprised of alternating organic spacer
layers and inorganic frameworks. Most of the existing literature
focused on 2D bulk incorporation, which incorporates single or
multiple long carbon-chain organic ammoniums into
precursor”.  Snaith’s group introduced n-butylammonium
cations into a mixed-cation lead mixed-halide 3D perovskite. The
2D thin sheets were inserted into the highly orientated 3D per-
ovskite grains, leading to the efficient suppression of non-radiative
charge recombination. The solar cells with an optimal n-butylam-
monium content exhibited average stabilized PCE of 17.5 +
1.3%"™. The oriented growth of layered organic molecules inhibited
the charge transfer in the vertical direction. Yuan et al. introduced
the m-conjugated terpyridyl coordinated Cr’* ion in perovskite
precursor, enabling multi-interactive charge-carrier transport
channels within 3D perovskites'*. Recently, the surface treatment
with 2D perovskite generally enables higher conversion efficien-
cies, which was attributed to the effective passivation of surface
defects™ .. Jang et al. grew a stable and highly crystalline 2D
(C4HoNH,),Pbl, film on top of a 3D film using a solvent-free solid-
phase in-plane growth method. The resulted 2D/3D PSCs
achieved a certified steady-state efficiency of 24.35%, owing to an
intact 2D/3D heterojunction with a thick 2D film. The encapsulated
device retained 94% of its initial efficiency after 1056 h under the
damp heat test (85 °C/85% relative humidity)"™. At the interface
of 3D/2D perovskite, a transition layer with n > 1 was formed.
Tailoring the dimensionality (n) of the 2D perovskite fragments at
the electron-selective interface of inverted PSCs by applying oley-
lammonium iodide (OLAI) was essential to enable efficient top-
contact passivation. The resulting inverted PSCs delivered a 24.3%
PCE and retained >95% of their initial value after >1000 hours at
damp-heat test conditions, thereby meeting one of the critical
industrial stability standards for PV modules"™.

While tremendous progress has been realized in 3D/2D per-
ovskite research in recent years, the 1D/3D and 0D/3D perovskites
remain relatively underexplored. In the case of 1D perovskites,
[MX(]* octahedra are connected in chain through face-sharing,
edge-sharing or corner-sharing formation and surrounded by
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organic ammonia cations. Fan et al. obtained a series of 1D and
1D/3D hybrid perovskite materials. Based on the 1D/3D hybrid
perovskite, the solar cells presented self-healing properties and
long-term stability"”". Likewise, Liu et al. made a 1D Pbl,-bipyridine
(BPy) (II) perovskite, which was further utilized to prepare
1D-3D PSCs. The good lattice-matching blocked negative ion
migration channel in 1D-3D heterojunction domains, accounting
for the good stability"”. Bi and coworkers employed 2-diethy-
laminoethylchloride hydrochloride (DEAECCI) to induce the for-
mation of 1D/3D perovskite. The devices exhibited good stability
under ambient air, 85 °C and illumination conditions". How-
ever, the stability enhancement came at the cost of the device PCE,
which was mainly due to the low carrier mobility of as-induced
1D perovskites. Building charge transport channel via organic
groups with -t conjugate structure is one of the effective methods
to improve charge-transport properties in 1D perovskites. Fan, Li
and coworkers introduced 5-aminoquinoline (Aq) and terpyridine
(Tpy) as organic spacer with - conjugate structure to construct
1D perovskites. The electron mobility of 1D/3D hybrid perovskite
was increased by nearly three orders of magnitude™ ", Addi-
tionally, the residual strain release in the heterojunction is conducive
to optimize the carrier transport of the low-dimensional per-
ovskite. The in-situ cross-linkable polymerizable propargylam-
monium (PA") was introduced at the surfaces and grain boundaries
toform a 1D/3D perovskite heterostructure, which could signifi-
cantly improve the interfacial carrier transport in the perovskite
films. Remarkably, the cross-linked 1D/3D perovskite solar cells
achieved a champion PCE of 21.19%, which maintained 93% of
their initial efficiency after 3055 h of continuous illumination
under the maximum power point (MPP) operation conditions"?.
Perovskites with 0D structures at the molecular level are bulk
assemblies of individual metal halide octahedral units. Li et al.
realized 3D/0D Cs,FA,_Pbl;-[GaAA;], (0 < x <1) hybrid per-
ovskites with core-shell grain structure, which remarkably
enhanced the long-term stability of perovskite solar cells while
remaining high efficiency"”. Besides, the Cs,Pblg and Cs,PbBr,
compounds with 0D structure can surround the black-phase per-
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In summary, compositional engineering plays a vital role in
breaking the bottleneck of PSCs performance. a-phase FAPbI;
composition is still the ideal choice for the record high-efficiency
PSCs in the foreseeable future. Moreover, it is crucial to balance
the trade-off between stability and efficiency through the con-
struction of LD-3D perovskite structure.

3 Additive engineering

Additives play an important role in the development of perovskite
solar cells. Unlike dopants, additives can’t alloy into the crystal lat-
tice of perovskites", but additives can affect the crystallization
process and thereby affect the morphology, crystallinity and opto-
electronic properties of the perovskite films. Various additives
have been reported, such as chlorides, iodides, pseudo-halides,
surfactants, ionic liquids, Lewis acids or bases and polymers. The
reported additives can be divided into two types: volatile additive
and incorporated additive (Figure 5). The main role of volatile
additives is regulating the crystallization process of perovskite,
thus improving crystallinity and film morphology. The incorpo-
rated additives have different functions depend on their chemical
structure, such as defect passivation, suppressing ion migration,
enlarging grain size, improving uniformity, releasing stress and
stabilizing crystal structure. In this section, we introduce some
representative additives for using in perovskite solar cells.

3.1 Volatile additives

Volatile additive doesn’t exist in the final perovskite films, but it
exists in some intermediate phases, thus affecting nucleation and
crystal growth and resulting in perovskite films with improved
morphology, crystallinity and photovoltaic performance. Chlorides
are the earliest and most commonly used additives in solutions of
perovskites. For the MAPbI; films made by one-step method
without anti-solvent quenching, the solution without MACI addi-
tive will end up crystalizing into needle-like crystals"”. The large
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voids among the needle-like crystals lead to insufficient light
absorption and leakage of photocurrent, resulting in low device
performance. By adding MACI into the MAPbI; solution, smooth
and compact MAPDI; film with increased crystallinity and signifi-
cantly enhanced PCE was achieved. No CI” can be detected in the
final perovskite films, suggesting that MACI escaped from the film
during crystallization and thermal annealing"”"¥. TGA-MS mea-
surement further confirms the sublimation of MACI during ther-
mal annealing”. MACI were also used in FA-rich perovskites,
enabling preparation of perovskite films without using anti-
solvent™. Using NH,Cl as additive results in similar effect but the
crystallization speed is faster than the film with MACI, which may
be due to that NH,CI is more volatile™. To date, almost all of the
high-performance perovskite solar cells have incorporated chloride
additives in the precursor solutions.

For the two-step deposition of perovskites, additives can be
used in the first step (deposition of Pbl,) and/or the second step
(deposition of ammonium salts). By adding MACI into Pbl, solu-
tion, a porous Pbl, film can be prepared after volatilization of
MACI, which facilitates the reaction with MAI"™ MACI additive is
also a commonly used additive for the second step, which facilitates
the fabrication of the perovskite solar cells with the highest PCE
that uses the two-step method!>*".

Additives also play an important role in inorganic perovskite
solar cells. Hydroiodic acid (HI) was found effective to improve
film quality in some early works, but subsequent works showed
that HI can react with DMF and produce a new compound of
DMAI"™. Then DMAI became a popular additive for the prepa-
ration of CsPbl;-based perovskite solar cells. ToF-SIMS and
nuclear magnetic resonance (NMR) results confirmed the absence
of DMA" residue in final CsPbl; perovskite film, indicating that
DMAI would not alloy into the crystal lattice of CsPbl,
perovskite™. Both DMAI (volatile additive) and pheny-
ltrimethylammonium iodide (PTAI) (incorporated additive) were
used in the preparation of the state-of-the-art inorganic perovskite
solar cells with a PCE of 21.0%*. Unlike DMAI, PTAI remains in
the final perovskite film, forming low-dimensional perovskites
with Pbl,, which enhances the phase stability of CsPbl; and sup-
presses non-radiative recombination.

3.2 Incorporated additives

The incorporated additive remains in the final perovskite film and
plays the roles of defect passivation, inhibiting ion migration and
stabilizing perovskites. Pseudo-halides, such as SCN-, BH, and
HCOO', which show similar chemical properties with halides, can
also be used as additives. Early works reported that SCN™ may
substitute part of the I in perovskite lattice, but subsequent works
showed that it forms a layered structure with Pb** and I Kim et
al. found that pseudo-halide anion formate (HCOO") can suppress
anion-vacancy defects at grain boundaries and on the surface of
perovskite films"”. Moreover, the crystallinity was augmented for
the films with HCOO'. A certified PCE of 25.2% was achieved for
perovskite solar cells with HCOO™ additive.

Potassium (K*) containing additives were recently found effective
to reduce hysteresis of perovskite solar cells. Stranks’s group
investigated the existence of potassium in perovskite films by
using scanning transmission electron microscopy-energy disper-
sive X-ray spectroscopy (STEM-EDX), grazing-incidence wide-
angle X-ray scattering (GIWAXS) and hard-X-ray photoelectron
spectroscopy (HAXPES)™. They found a potassium-rich phase at
the grain boundaries as well as at the interface. They concluded
that potassium does not incorporate into the perovskite lattice, but
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playsa role of surface passivation, which enhances photolumi-
nescence and reduces hysteresis of the perovskite solar cells.
Huang’s group used KPF; as additive for MA-free perovskite and
achieved PCEs of 20.42% and 19.54% for 17.1 cm’ and 65.0 cm’
cells, respectively. Recently, a certified PCE of 25.5% was achieved
for perovskite solar cells with KI additive and MDACI, dopant"®.
All these examples have proved the effectiveness of potassium on
enhancing the photovoltaic performance of perovskite solar cells.

Tonic liquid is another type of frequently used additives. Bai et
al. incorporated ionic liquid of BMIMBE, into perovskite film and
achieved enhanced PCE with markedly improved long-term sta-
bility™”. XRD measurement suggests that neither [BMIM]* nor
[BF,]" incorporates into the perovskite crystal lattice. ToF-SIMS
measurement suggests that the [BF,]” locates mainly at the per-
ovskite/NiO interface, while the [BMIM]" exists throughout the
film. Some ionic liquid can be used as solvent, such as methylamine
formate (MAFa). When using MAFa as the solvent for Pbl,, the
residual Fa* in PbL, precursor facilitates the reaction with MAIL
resulting in improved film quality and device performance.

Surfactant additives can be used to improve the wettability of
perovskite solution and the uniformity of perovskite films, especially
for making large-area films on non-wetting surface. Huang’s
group added a small amount (tens of parts per million) of L-a-
phosphatidylcholine (LP) into perovskite solution to alter the fluid
drying dynamics and increase the adhesion of the perovskite ink
to the underlying PTAA™. The additive enables the blading of
smooth perovskite films at a high coating rate of 180 m:h™. By
adding carbohydrazide (CBH) into perovskite solution, the contact
between perovskite and substrate interface can be improved. By
combining CBH with a series of additives (n-dodecylammonium
iodide, LP, MAH,PO,, and p-F-PEA), perovskite films with a PCE
of 23.6% were made by blade-coating™.

Polymers can be used as additives in both perovskite and
charge transport layers. Bi et al. incorporated poly(methyl
methacrylate) (PMMA) into the anti-solvent and found that
PMMA can be a template for the nucleation and crystal growth of
perovskite, resulting in larger grains and enhanced PCE™. Peng et
al. used PMMA:PCBM as an ultrathin interface passivation layer
in perovskite solar cells, achieving a fill factor of >86% and a PCE
0f22.6% for a 1 cm’ cell™". The most common ground for polymer
additives is that almost all of their structures contain C=0 or C-O,
which can interact with Pbl, in the precursor solution, thereby
affecting the crystallization and passivating the defects in perovskite
films. Polymer additives can also be used to improve the tolerance
for humidity during film and device preparation, such as
poly(ethylene oxide) (PEO) and polyvinylpyrrolidone (PVP)!* ",

4 Crystallization control of perovskite films
through precursor and anti-solvent engineering

Printing solar panels at a low cost and large scale has been a long-
standing pursuit to secure a clean and sustainable future. This
hope is recently fueled by the solution processability of halide per-
ovskites, which have become the driving force for the burgeoning
perovskite solar cell technology. To unleash the commercial
potential of the technology, it is of paramount importance to control
perovskite crystallization from solution and minimize defects that
may compromise optoelectronic performance of the perovskite.
Currently, the widely used solvents for dissolving the reagents, viz.
lead halide and amine halide, are the aprotic polar solvents by
virtue of their amenability to form Lewis acid-base adducts with
the reagent ions. Naturally, the control of crystallization can be
divided into intrinsic adjustment of perovskite precursor solution
and extrinsic adjustment of anti-solvent, perhaps in conjunction
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with other auxiliary operations.

4.1 Precursor engineering

Three prime factors for processing a perovskite film need to be
considered while preparing the perovskite precursor solution,
namely the components of perovskite, thickness of the perovskite
film and the anti-solvent dripping window. In order to obtain a
compact precursor film, adjustment of precursor solvents will be
the first measure coming to mind. Indeed, the solvent engineering
pioneered the early development of perovskite solar cells' .
The upshot was the consensus on utilizing mixed solvent
dimethylformamide (DMF) and dimethyl sulfoxide (DMSO) for
processing perovskite solar cells (PSCs), and the DMF/DMSO
ratio has basically remained unchanged along the way. In a nut-
shell, the hallmark of a good precursor solvent is its ability to opti-
mize the anti-solvent dripping window, perovskite grain size and
film thickness, which conduces to the quality of perovskite films
and efficiency of PSCs.

Next, the ratio of reagents has important influences on the
crystallization processes, such as the anti-solvent dripping, the for-
mation of intermediate phases and the process of annealing. To
fabricate perovskite with the ABX; structure, one would naturally
start with equimolar amount of AX and BX,, where A denotes
methylamine (MA), formamidine (FA) or cesium (Cs); B denotes
lead (Pb) or tin (Sn); X denotes halogen. However, it turned out
that high-efficiency PSCs are difficult to obtain with the use of
stoichiometric reagents and in the absence of anti-solvent drip-
ping. The actual situation of perovskite crystallization is more
complicated due to a tangled interplay among solution supersatu-
ration, solvent evaporation during coating, intermediate forma-
tion, aging and annealing, perovskite phase transition, etc. Zhao et
al. reported the positive influence of methylamine hydrochloride
(MACI) on the perovskite film in 2014 by regulating crystallization
and significantly improving the PSC efficiency. In 2015, Yan et al.
studied the colloidal chemistry of perovskite precursor solution
and exploited the strategy of excess AX to greatly improve the
coverage and quality of perovskite films, reaping a PSC efficiency
of over 17% even without anti-solvent dripping™*®. The need for
excess AX is posed by the tendency of the precursor solution to
form AX-lacking intermediates such as Pble2DMSO,
Pb,l;42DMSO and MA,Pb;lge2DMSO, which can be smoothly
transformed to high-quality MAPbI; films only when the MAI
supply is sufficient"”. Among the various AX, MACI in excess is
especially helpful for the fabrication of a suite of perovskites with
different compositions, primarily because it is relatively volatile
and thus can be easily removed from the film during annealing at
a later stage of the crystallization™”. Besides, MACI not only
improves the crystal quality of perovskite films but also assists the
phase transformation of §-FAPDI; to a-FAPbL™ ", making it
applicable to the fabrication of FA-based perovskites.

Now using excess ammonium halide has become a time-
proven strategy to fabricate high-quality perovskite films. Inter-
estingly, this strategy can be extended to other A cations to fabricate
high-quality films of mixed cation perovskites, even the inorganic
perovskite"” and the Pb-free perovskite FASnI;". For example,
the incorporation of excess Csl could stabilize the CsPbL,Br phase
by reducing the surface Gibbs free energy, forming peculiar
microphase-separated perovskite films™?. The incorporation of
additional halide piperazine dihydriodide (PDIL,) could tune the
crystallization kinetics of precursor solution and reduce the energy
barrier of nucleation in the fabrication of FASnL;". In practice,
one needs to consider how much excess AX is required to fabricated
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a desirable perovskite film. If AX can be removed during annealing
or excess AX can play useful roles in the target film, the precursor
solution can allow AX to exceed the stoichiometric ratio by a
larger margin. However, if AX cannot be removed during annealing
or excess AX can only do harm to optoelectronic performance of
the perovskite film, the precursor solution then needs to be prepared
to limit the excess AX.

For large-scale perovskite fabrication in the future, the excess
AX strategy could be the most potential path to expand the
solution-processed method. It can effectively restrain the phase
segregation that is adverse to photovoltaic performance, and
simultaneously optimize the perovskite crystallization. In particu-
lar, the excess AX strategy opens many possibilities for the fabri-
cation of perovskites to couple with more scalable fabrication
methodologies and machineries. Although the protocols and
technical details may alter during upscaling, the basic principles
still apply. Taken together, precursor engineering, e.g., with the
excess of AX, will have major impacts on the development of per-
ovskite optoelectronics.

4.2 anti-solvent engineering

anti-solvent method is a standard trick for growing single crystals
by introducing the anti-solvent into a miscible solvent that contains
the dissolved precursor. It was adapted to the spin-coating fabri-
cation of perovskite films, and the most general implementation
of this method is through anti-solvent dripping during the high-
speed spin-coating of the precursor solution. The anti-solvent can
partly remove the solvent from the liquid film with the help of the
centrifugal force. During the anti-solvent dripping, the elevated
supersaturation results in rapid nucleation and crystallization,
forming a compact precursor film. Since the pioneering introduc-
tion of the anti-solvent dripping method in 2014"'*, researchers
have been able to fabricate high-quality perovskite films in a simple
way, which brought laboratory-scale PSCs into the racing stage of
efficiency record. As such, anti-solvent dripping has become the
most popular fabrication method in the research laboratories
worldwide. However, with the increasing urgency of scaling-up
production, the limitations of anti-solvent dripping have increas-
ingly come to attention. First, anti-solvent dripping is faced with
difficulties in operation and repeatability. The dripping operation
seriously relies on skills of the operators, so it has proved difficult
to repeat the high-efficiency PSCs even when fabricated using the
same formulation but in a different environment with a different
machine. Second, when anti-solvent dripping is applied to the
fabrication of large-area perovskite films, these difficulties of oper-
ation will multiply.

To solve these problems, it is necessary to analyze and control
the crucial operating parameters in the anti-solvent dripping pro-
cess. The effectiveness of anti-solvent dripping largely depends on
the intrinsic properties of the anti-solvent and the composition of
perovskite precursor solution. The selection criteria of anti-solvent
include toxicity, polarity, boiling point, dipole moment, miscibil-
ity, etc. In actual experiments, the operator needs to judge the anti-
solvent dripping window, which is commonly taken as a perfor-
mance metric of a given anti-solvent. First of all, the dripping
quantity and dripping rate will influence the resulting precursor
film, which is composed of the Lewis acid-base adducts and a certain
amount of solvents, and will be completely transformed into a
perovskite film only after annealing. When the dripping quantity
is insufficient, the supersaturation will be too low to achieve rapid
crystallization. On the other hand, when the dripping rate is too
fast, the dwell time of dripping will be too short to reach adequate

iEnergy | VOL 2 | September 2023 | 172-199



Major strategies for improving the performance of perovskite solar cells REVIEW

supersaturation in a typical spin-coating process. Second, the
judgement of anti-solvent dripping window is also influenced by
other factors, such as the time point, position and direction of
dripping, even the operator per se. Note that the judgement of anti-
solvent dripping window is often based on visual inspection of
film quality, PSC efficiency measurements or other characteriza-
tions, which are either rough or time-consuming. In order to
obtain a compact precursor film, a balance need to be struck
between coordination and crystallization. Precursor solvent is
required to have an appropriate coordination ability, and if too
low, the negative influences from anti-solvent dripping will domi-
nate, but if too high, the formed perovskite will react with the sol-
vent. Meanwhile, anti-solvent is required to have an appropriate
miscibility with the precursor solvent. Enhancing extraction ability
of the anti-solvent can guarantee a rapid crystallization, but too
strong extraction may lead to precipitation of Pbl,. The relation
between coordination and crystallization with respect to the per-
formance metrics of precursor solvent and anti-solvent need to be
further systematically investigated.

Summarizing the above, the operational precision of anti-solvent
dripping needs to be improved, perhaps through automation.
Ultimately, the anti-solvent dripping should be adapted to large-
scale production technologies. In this direction, any prospective
extension of the anti-solvent method will need to inherit its
advantages of system homogeneity and adjustability while striving
for good repeatability.

4.3 Promising directions

Given that the solvent engineering is relatively mature for small-
area spin-coating processing of perovskite films, now it is the right
time to move it in the direction of commercial front. Large-scale
fabrication of perovskite films can draw lessons from small-area
spin-coating experience in terms of solvent engineering. For
instance, the precursor solutions and intermediate phases remain
similar, and the strategies and mechanisms that are effective on
the fabrication of small-area perovskite films should be also oper-
ative in the fabrication of large-area perovskite films. What does
differ between the two are the coating equipment and the auxiliary
crystallization methods, which need to be designed to work on the
shared principles of the respective crystallization processes. In fact,
the strategy of excess AX has been demonstrated recently to work
well for the large-scale fabrication of perovskite films by Bu et al.
using a self-drying precursor ink". In this case, anti-solvent-free
fabrication was achieved by employing the strategy of excess
MACI and the co-solvent system of DMF/NMP, which lowered
the formation energy by forming a mixed-cation perovskite and
enlarged the grain size of the resultant perovskite film. Such use of
excess AX in partnership with a low-solubility solvent is expected
to afford an indispensable formulation for the large-scale fabrication
of perovskite films. Here the deficiencies of both partners can be
mutually offset. For example, the excess AX increases the solubility
of Pbl, to complement the low solubility deficiency of the solvent.
In the meantime, volatilization of the low-solubility solvent can
sensitively boost the supersaturation to complement the low
supersaturation deficiency of the excess AX.

Regarding extension of the anti-solvent method to the large-
scale fabrication of PSCs, certain modifications and optimizations
are necessary. Some developments in this direction are already
ongoing with hopes looming on the horizon, such as alternatives
to spin-coating coupled anti-solvent dripping, mixed anti-solvent
and functionalized anti-solvent. First, anti-solvent bathing in lieu
of anti-solvent dripping was used by Kim et al. for the roll-to-roll
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(R2R) production of perovskite films with the advantages of high
throughput, low cost and flexible substrates™”.. The researchers
could fabricate uniform FA-based perovskite films on both rigid
and flexible substrates by the anti-solvent bathing method in tert-
butyl alcohol (tBuOH) and ethyl acetate (EA). anti-solvent bathing
is expected to expand the application scope of the anti-solvent
method for the large-scale fabrication of perovskites. More inter-
estingly, some of the deficiencies of anti-solvent dripping can be
avoided by using the anti-solvent bathing method. Second, the
properties of anti-solvent can be well adjusted by using a mixed
anti-solvent instead of the pure solvent to achieve synergistic
extraction of the precursor solvent™ . One can optimize
polarity, miscibility and volatility of the mixed anti-solvent against
those of the individual components. For example, the mixed anti-
solvent of EA and toluene was developed for the fabrication of
large-area perovskite films". Even using the anti-solvent drip-
ping, the uniformity of large-area perovskite films can be greatly
improved with the mixed anti-solvent. From a technological point
of view, the mixed anti-solvent strategy can significantly promote
the effectiveness of the anti-solvent dripping method. Further
developments towards large-scale fabrication require to upgrade
the anti-solvent dripping to other operating modes, such as anti-
solvent bathing, anti-solvent dipping, anti-solvent spraying and
anti-solvent blading. To accomplish the development, appropriate
equipment will need to be customized.

Another development path in the future could be functionalized
anti-solvent. One example is the use of a saturated solution of
phenethylammonium iodide (PEAT) and toluene as the anti-solvent
to form 3D-2D (MAPbL;-PEA,Pb,I,) graded perovskite
interface™. Such 3D-2D graded interface with changed energy
levels helped to obtain an open-circuit voltage of 1.17 V and
improve the device stability. An ethanol solution of methylamine
bromide (MABr) was also used as the anti-solvent to improve the
perovskite film quality and passivate the surface defects despite the
ethanol dissolving FAI, thanks to the compensation effect of the
MABr™. Similarly, an isopropanol (IPA) solution of FAI and
MABr was used as the anti-solvent to improve the quality of per-
ovskite films and optimize the energy level alignment of PSCs"".
The charge transport materials, such as PCBM, fullerene derivative
a-bis-PCBM and ITIC, were doped into the anti-solvent to passivate
the grain boundaries"®"*. An anti-solvent can dissolve ordinary
polymers and the functional conjugated polymers to form func-
tionalized anti-solvents. For example, researchers dissolved
poly(methyl methacrylate) (PMMA) into a mixed anti-solvent to
control nucleation and crystallization of perovskites, achieving a
film with a low defect density and large grain size. P-type and n-
type conjugated polymers were also doped into anti-solvents to
passivate the grain boundaries and improve the water resistance of
PSCs".. In a word, by modulating nucleation and crystallization,
functionalized anti-solvents can modify perovskite films in-situ
and in-time, and thus facilitate the development of PSCs.

5 Charge transport materials design and passi-
vation strategies

Depending on the deposition order of electron transport layer
(ETL) and hole transport layer (HTL), the cell structure can be
divided into regular (n-i-p) or inverted (p-i-n) architectures.
Notably, the two device structures typically require systematic
development of suitable ETLs and HTLs. The ideal ETLs and
HTLs should possess the following properties: (1) appropriate
energy level matched with absorption layer to reduce the V,loss;
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(2) high conductivity and charge mobility to reduce series
resistance; (3) high film quality and good coverage to avoid current
leakage; (4) good defect passivation capability at the perovskite
interface. In this section, we briefly review the evolution of the
charge transport materials, grain boundary passivation and contact
passivation for highly efficient and stable PSCs, which are illustrated
in Figure 6.

5.1 Development of the charge transport materials

The evolution of ETLs has played an important contributing factor
to the rapid progress in high-performance PSCs. Historically, the
first n-i-p PSC reported by Miyasaka”, employed mesoporous
titanium dioxide (m-TiO,) as the ETL. Since then, PSCs based on
the mesoporous structure of dye-sensitized solar cells (DSSCs)
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have achieved rapid efficiency development. However, it was
found that TiO,-based PSCs had an inherent instability under UV
illumination arising from light-induced desorption of surface-
adsorbed oxygen"*. Furthermore, the high sintering temperature
(400-500 °C) required for the m-TiO, films complicated the man-
ufacture process, and hinders their application in flexible modules
and perovskite-based tandem devices. To date, many ETLs have
been explored to replace the m-TiO, stack in PSCs, e.g., low-tem-
perature processed metal oxides SnO,™, ZnO", BaSnO;",
Zn,SnO," as well as sulfides CdS™. Among all these materials,
SnO, has been considered as the most promising alternative to
TiO, in n-i-p structured devices due to its excellent properties,
such as wide bandgap with high optical transmittance over the
whole visible range, a high electron mobility, deep conduction
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band and good energy level alignment with absorption layer. At
present, the PCE of SnO,-based planar structured PSCs has been
increased to 25.7%", the highest certified efficiency of single-
junction PSCs.

Meanwhile, organic conducting materials such as graphene,
fullerene, and its derivatives (such as PCBM and Cy,"") have been
widely used as ETLs in p-i-n structured PSCs. The first inverted
planar PSC selecting fullerene derivative PCBM as the ETL,
achieving a PCE of 3.9%. Using non-fullerene acceptors as ETLs
in inverted PSCs is also one of the directions that is worth explor-
ing.

HTLs with the function of hole extracting and electron blocking
can largely boost the photovoltaic performance of PSCs. Park and
Gritzel first introduced 2,2,7,7'-tetrakis (N,N-di-pmethoxyphenyl-
amine) 9,9 -spirobifluorene (spiro-OMeTAD) as the solid-state
HTL to replace liquid electrolyte, resulting in much improved
efficiency (9.7%) and stability. Up to now, spiro-OMeTAD is the
dominated HTL material in high-performance n-i-p structured
PSCs. However, the hygroscopic dopants used in sprio-
OMeTAD™ as well as the necessary oxidation process in air"®
inevitably cause stability problems. So new HTLs needs to be
explored to obtain PSCs with both high efficiency and superior
stability. Jeong et al. developed spiro-OMeTAD analogues (spiro-
Naph series) and obtained a high PCE of 24.43%"*. Jeong et al.
used P;HT as the HTL in contact with the modified perovskite
layer without any dopants to improve the stability’. Further-
more, dopant-free polymer materials are also the materials of
choice. Fu et al. developed a solution-processable two-dimensional
(2D) polymer 2DP-TDB, exhibiting a high PCE of 22.17% as
dopant-free HTL", and then featured an excellent PCE of 24.53%
by blending the polymer PM6 and polymer PMSe as HTL without
any ionic dopants"”. Furthermore, some inorganic materials such
as CuSCN™ and Cul"”, were also scrutinized to obtain more stable
PSCs.

In inverted structure, poly (3,4-ethylene dioxythiophene): poly
(4-styrenesulfonate) (PEDOT:PSS) was initially used as the HTL.
Its green-solvent processibility and tunable conductivity provide it
a promising prospect™™ . Unfortunately, the intrinsic work func-
tion of PEDOT:PSS is only 5.2 eV, leading to low open circuit
voltage. Subsequently, poly-bis (4-phenyl) (2,4,6-trimethy-
Iphenyl) amine (PTAA) was developed to substitute PEDOT:PSS,
and the highest certified efficiency (25%) for single-junction
inverted PSCs adopted PTAA as the HTL'. Nevertheless, the
hydrophobic nature of PTAA presents great challenges for per-
ovskite deposition. Alternatively, inorganic p-type metal oxide
semiconductors may replace these organic HTLs for inverted
PSCs, such as NiO,”, MoO,™, and V,0," with outstanding
chemical stability and acceptable hydrophilicity.

5.2 Grain boundary passivation

In polycrystalline films, point defects such as vacancies and inter-
stitials as well as impurities usually diffuse and concentrate at
grain boundaries, thereby serving as major sites for bulk nonra-
diative recombination within the perovskite absorber. Interstitial
and substitutional defects [Pb;, Ip,, Iz, Pb;] with low formation
energies constitute potential deep-level traps within the perovskite
absorber that can induce nonradiative recombination losses'™.
While predominant positively charged iodide vacancies (V7
along with Pb* (V) form shallow-level traps [cation vacancies,
anion vacancies and anti-site substitutional defects]"”.
Self-passivation effects resulting from perovskite grains being
encapsulated by a thin layer of excess Pbl, to form type-I straddling
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gap heterojunction reduces carrier recombination at GBs. How-
ever, the thickness of encapsulating Pbl, must be optimized to
prevent charge accumulation effects at GBs. Extrinsic wide-gap
additives for encapsulating perovskite grains such as ALO; and
oligomeric silica™ have been employed.

Alkylammonium halogen salts can also serve as passivation
agents, via hydrogen or ionic bonding, for cation and anion
defects at GBs. These include linear alkylammonium halogen
compounds such as n-butylammonium, iso-butylammonium,
ethylammonium, and guanidinium can induce the formation of a
wider bandgap low-dimension perovskite phases at GBs similar to
the excess Pbl, passivation mechanism. While longer linear alky-
lammonium radicals such as octlyammonium can directly passivate
GBs without the formation of a low-dimension perovskite
phases™. Meanwhile benzene-containing alkylammonium halo-
gen compounds have an excellent multifunctional passivation
effect at GBs and surfaces due to the formation of ordered layered
2D-perovskite phase. The multifunctional passivation can be
attributed to the fact that m-conjugated benzene unit promotes
charge transfer and minimizes neutral iodine defects, amine group
coordinates with interstitial Pb** cations and forms a halogen bond
with the iodide ion, and the iodide ions fill the vacant iodine sites.
Furthermore, the hydrophobicity of the phenyl group enhances
the moisture resistance and stability of PSCs.

An extensive range of additives including small molecules,
fullerene derivatives, inorganic acids, ionic liquids", polymers"",
nanoparticles™ and solvents have been employed to tune the
crystal growth mechanism and resulting morphology for
enhanced perovskite grain linkage and to minimize GB surface
area. As a result of the wide range of available additives, this
approach remains one of the key strategies to enhance both the
performance and stability of PSCs.

Electron pair acceptors (Lewis acids) and donors (Lewis bases)
serve as an important class of passivating agents for charged traps
at perovskite GBs and surfaces"®. Lewis acids form adducts with
free halide ions and Pb; anti-site defects while Lewis bases bond to
under-coordinated Pb* interstitial ions"* without electron trans-
fer. Fullerene and its derivatives, also employed as ETLs, are popular
Lewis acids candidates resulting from their electron affinity.
Whereas compounds containing atoms with electron lone pairs
such as nitrogen, sulfur, or oxygen, and phosphorus atoms serve
as Lewis bases. These include derivatives of pyridine, thiophene,
and imidazole derivatives as well as the impressive outcome of
employing trioctylphosphine oxide (TOPO)™ for perovskite
passivation to yield very high PL quantum efficiencies. More
recently, molecules with polyfunctional groups allow for interaction
with multiple defect sites to yield enhanced passivation effects.
The introduction of molecules such as 11-Maleimidoundecanoic
acid (11MA) and (5-mercapto-1,3,4-thiadiazol-2-ylthio)acetic acid
containing multiple active Lewis base sites for GB and surface
passivation has led to enhanced performance and stability"™ ™,
Furthermore, zwitterion molecules containing both Lewis acid
and Lewis base units, such as choline halides, can simultaneously
passivate cation and anion related defects.

5.3 Contact passivation

5.3.1 Perovskite/ETL interface

In the case of planar and mesoporous n-i-p structured devices, the
most employed ETLs are SnO, and TiO,, respectively. The n-type
character of both transport layers is derived from the presence of
oxygen vacancies, which in turn, can serve as electron traps".
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Surface passivation with halide and alkaline ions have proven to
ameliorate some of these issues™". More recently, the use of addi-
tives with multiple interaction sites for multifunctionality at the
perovskite/ETL interface results in enhanced performance and
stability"”. Adamantane derivatives at the perovskite/SnO, interface
have been used for the synergistic effect of defect passivation and
interfacial residual strain release™”. Biguanide hydrochloride has
been demonstrated to simultaneously enhance the electron
extraction across the perovskite/SnO, interface and the perovskite
growth, leading to the highest efficiency of 24.4% till date for two-
step deposited perovskite films™. However, the most significant
development regards the use of multiple hydrogen and coordinative
interactions via carboxyl groups on polyacrylic acid (PAA) to
ensure conformal contact between SnO, quantum dots and the
underlying compact TiO, layer"™”.

For PSCs with inverted structures, the Lewis base approach for
surface passivation at the perovskite/Cg, interface via the use of
polyfunctional groups attached to an electron-rich unit has been
very effective and the PCE was improved to over 25%. This work
is very promising as it provides alternative fabrication routes to
achieve high performance other than regular structured cells
adopting p-doping of the spiro-OMeTAD HTL. Furthermore, low-
dimensional quasi-2D perovskite passivation approach has
recently been successfully introduced, e.g., introducing oleylam-
monium iodide at the perovskite/C, interface to achieve efficient
heat-stable PSCs.

5.3.2 Perovskite/HTL interfaces

At the perovskite/spiro-OMeTAD interface (commonly encoun-
tered in regular structured PSCs), the formation of a wider
bandgap Ruddlesden-Popper 2D-perovskite phase using relatively
long alkylammonium spacer cations to form a 2D/3D hetero-
junction has proven to be very effective at passivating surface
defects, suppressing ion migration, and provides a moisture-resis-
tant surface capping layer. In a recent work, a pseudo-halide anion
engineering approach introduced formate ions at surfaces and
GBs to strongly interact with undercoordinated Pb* and passivate
iodide vacancies, which resulted in a PCE of 25.6%. Similar anion
engineering approach has been previously employed for an ion-
exchange between iodide and PFy ions to enhance moisture-
resistance and performance™. The functional polymers have also
been used as an interface layer between perovskite and spiro-
OMeTAD layers. This layer could not only passivate surface
defects but also improve device stability owing to their superior
hydrophobic properties™’. In 2018, Yang’s group first introduced
a conjugated polymer (PTQ10) as an interfacial layer in PSCs and
obtained a PCE of 21.2% with improved stability"”. The PCE was
improved to over 24% when using a two-dimensional polymer
interface layer™”. Depositing a hydrophobic functional interlayer
between the perovskite and spiro-OMeTAD layers has been
proved to be an efficient strategy to improve the device perfor-
mance.

Ininverted structures, the buried interface is typically per-
ovskite/PTAA; whereby pre-washing with solvents is typically car-
ried out to improve the wettability of the perovskite precursor
solution on hydrophobic PTAA. Recent work has shown that the
inclusion of PEAI in the pre-washing step led to enhanced perfor-
mance due to uniform perovskite film growth on PTAA™.
Besides, embedding alkaline metal salts such as NaCI*” or RbCI*"
in the HTL proves to be a universal method to enhance perovskite
crystal growth.

5.4 Perspectives

In sum, the works described above clearly highlight the efficacy of

186

Major strategies for improving the performance of perovskite solar cells

the two general passivation schemes-molecules with polyfunctional
groups for the passivation of various defect sites; and wide-gap
materials such as 2D-perovskite phases—along with halide ion
engineering approach within the bulk and at interfaces. There
is no doubt that, over the coming years, new multifunctional
additives to simultaneously ameliorate various interfacial and
bulk defect sites for enhanced performance and operational
stability shall be discovered. However, there remain challenges
to be overcome, some of which include: the development of
dopant-free HTL alternatives to spiro-OMeTAD, such as dopant-
free polymer alloys in regular structured devices whose dopants
trigger perovskite degradation; a deeper knowledge of the
structure-property relationships and relative strengths of various
chemical interactions upon the introduction of multifunctional
additive molecules in order to fully understand the chemical pas-
sivation process and speed up the additive material discovery.
Furthermore, the development of advanced post-treatment pro-
cessing methods and materials characterization techniques is nec-
essary for advancing interfacial engineering™". For example, further
advancements in solution-processed techniques will be required
for tailored dimensionality, growth direction and phase purity of
low-dimensional perovskite formation over their 3D counterparts
to ensure atomically sharp 2D/3D heterojunctions for optimal
charge extraction. In addition, the development of advanced
material characterization and data analysis techniques is vital for a
full understanding of the defect distribution at the buried per-
ovskite-transport layer interface closer to the bottom contact.

6 Optical management through optical coupling
effect

Beyond the optimization of the perovskite active layer, optical
coupling plays an important role in boosting the device perfor-
mance. As perovskite devices consist of multiple functional layers
and corresponding interfaces, their light utilization efficiency is
limited due to interference, reflection, and fixed optical path.
Effective optical structure design and construction significantly
suppress the optical loss of perovskite optoelectronic devices via
optical in-coupling for light trapping in photovoltaic devices and
optical out-coupling for light extraction in luminescent devices.

6.1 Optical in-coupling for light trapping

For the perovskite photovoltaic devices, the utilization of incident
light is restrained by the Yablonovitch limit of 4n* (where # is the
refractive index of the absorbing material)*. Fortunately, the
designed micro-nano structure provides an opportunity to break
the absorption limit of films through the optical in-coupling for
light trapping. The incident light is folded into the absorber layer
with elongated optical paths and thus the photocarriers generation
is increased, which is favorable for perovskite optoelectronic
devices.

Various approaches have been introduced to make structured
devices, including laser ablation, photolithography, and nanoim-
printing. Usually, light harvesting strategies using single micro-
nano structures toward optical in-coupling mode mainly include
the antireflection (such as grating®, moth-eye™, whispering-
gallery™ and inverse opal®), back scattering®™”, scatter enhance-
ment®™ and surface plasmon polariton (SPP) resonances
(Figure 7)®. The micro-nano structures can remarkably improve
the light harvesting efficiency and enhance the performance of
devices. Earlier, the top and bottom surface of thin films have
been independently designed and optimized with different periods
and grating structures to enhance light trapping®®*". To achieve
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hierarchical light-trapping nano-architectures, Song et al. in 2021
developed moiré interference structures using the DVD imprinting
method for the efficient moiré-PSCs. The light harvesting ability
of the fabricated PSCs was greatly enhanced and could be well
manipulated through changing the rotation angle. Moiré interfer-
ence structure boosted the light harvesting to approach the practical
4n* limit with the reduction of reflection loss within the whole visible
light range, even exceeding the average value of the practical 4n*
limit ranging from 400 nm to 500 nm®>".. As a result, the effi-
ciencies of the PSCs were increased to 20.17% (MAPDI;) and
21.76% ((FAPbL,), . (MAPbBr;),).

6.2 Optical out-coupling for light extraction

Although the quantum efficiency of perovskite emitters is
approaching unity, the device efficiency of perovskite luminescent
devices is still limited because of the unsatisfactory light extraction.
This stems from optical loss mechanisms including SPP modes
and waveguide modes caused by the commonly used planar
device architecture that features narrow light escaping cone®**".

Optical out-coupling micro-nano structures including nanogra-
ting™, nanophotonic®”, down-converter™¥, nanoarray®” and
moth eye™ have been developed to suppress SPPs and waveguide
modes for efficient perovskite luminescent devices (Figure 7).

The light emitted from perovskite emitters may couple with
free electron gas at the adjacent metal surface and excite plasma
oscillations, namely SPP. The SPP decays exponentially along the
metal surface, thereby leading to optical loss®. Given that the
coupling of SPP to light in a dielectric medium is forbidden due to
the mismatch of wavevector, periodic optical structures that can
provide additional wavevector are proposed to reduce the SPP
loss. Directly patterning the perovskite film to generate a 1D grat-
ing-featured emitting layer has been proposed by Mao et al.®. A
twofold increase in radiance was achieved. In contrast, indirect
patterning approach that constructs perovskite layer on a patterned
structure to obtain conformal morphology seems to be a more
reliable way to reduce SPP loss without affecting the crystallinity
of perovskite film. Zhang et al. fabricated PeLED based on an
anodic alumina membrane with periodic structure as the substrate
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and waveguide modes for efficient perovskite luminescent devices.

iEnergy | VOL 2 | September 2023 | 172-199

187



REVIEW

and obtained a breakthrough in device efficiency with EQE
increasing from 8.19% to 17.5%"". Different from direct coupling
of SPPs to light, Chen et al. utilized red perovskite nanocrystal to
absorb SPPs excited by sky-blue light and reemitted them as red
light™*.

Owing to the total internal reflection at the interfaces that have
high refractive index mismatch, light emitted from perovskite
emitters may be coupled into waveguide modes and be trapped in
perovskite emitters. It is possible to suppress waveguide modes by
reducing the thickness of the emission layer, but the raise in SPP
loss and drop in electrical property of perovskite film may occur
simultaneously. Accordingly, destructing the Fabry—Perot cavities
that support the waveguide modes is regarded as the most effective
strategy to reduce waveguide loss. Li et al. directly printed the per-
ovskite film using thermal nanoimprint lithography, thereby
obtaining a periodically patterned perovskite/air interface™.
Besides the significantly enhanced emission characteristics, the
patterned perovskite film acts as a high-Q cavity with large mode
confinement, which enables the application of an optically
pumped laser. Similarly, depositing the perovskite film on a pat-
terned polymer resist can also generate a perovskite/air interface
with periodic pattern and enhance the optical out-coupling®. For
PeLEDs, the waveguide modes are mainly supported by interfaces
of perovskite/charge injection layer, ITO/glass, and glass/air due to
the high refractive index mismatch. Accordingly, Jeon et al. intro-
duced a randomly distributed nanohole array into SiN film sur-
rounded by ITO and glass to extract the light from perovskite film
and boosted the EQE of near-infrared PeLEDs to 14.6%"". Shen
et al. patterned the front electrode with quasi-random moth-eye
nanostructure to control the morphology of the lower surface of
perovskite film and obtained a 1.5-fold increase in EQE™". The
integration of moth-eye nanostructure also enhanced the efficiency
in flexible PeLED™. Besides the destruction of the planar device
structure, inserting metal nanoparticles that feature localized surface
plasmon resonance (LSPR) is another approach to suppress the
waveguide modes. Shi et al. demonstrated a 1.55-fold emission
enhancement by embedding Au nanoparticles into PeLED*,

For perovskite optoelectronic devices, the implementation of
optical coupling structures can boost the light propagation from
source to acceptor, improving the device efficiency without causing
any loss in electrical performance of functional layers. However,
optical coupling in perovskite devices involves many optical phe-
nomena, while the contribution of different mechanisms and cor-
responding optimization strategies have not been fully under-
stood. In addition, for the manufacturing of large-scale devices,
issues including the fabrication of large-area templates and precise
control of the layer morphology need more investigation.

7 Perovskite-based tandem solar cells

The certified record-efficiency 26.1% of single-junction perovskite
solar cells has approached the S-Q limit”. Multi-junction tandem
solar cells (TSCs) consisting of a wide-bandgap (wide-E,: 1.65-1.9
eV) top subcell and a low-E, (1.1-1.3 V) bottom subcell have the
theoretical efficiency of ~44% to break this S-Q limit via minimizing
the thermalization losses® . Wide tunability of perovskite
bandgaps ranging from ~1.2 to 2.3 eV offers great opportunities
for applications in various perovskite-based tandem configura-
tions, such as perovskite/Si, perovskite/perovskite (all-perovskite),
perovskite/CIGS, and perovskite/OPV, as shown in Figures 8(a)
and 8(b).

Perovskite-based tandems have two configurations, ie., two-
terminal (2-T) and four-terminal (4-T), where the former is realized
by optically and electrically connecting two subcells together, and
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the latter is constructed by mechanically stacking two subcells.
Here, we will mainly focus on the milestone achievements and
future perspectives for 2-T perovskite-based tandems.

7.1 Development milestones

In the past years, the efficiencies of 2-T perovskite/Si, all-per-
ovskite, perovskite/CIGS, and perovskite/organic tandems have
been rapidly boosted to certified 31.3%, 28%, 24.2% and 23.1%, as
shown in Figure 8(c), respectively, showing great promise for
industrialization of perovskite-based tandem PV technology.

7.1.1 Perovskite/Si tandem

2-T perovskite/Si TSCs have compatibility with current Si tech-
nology, and therefore, it is currently the focus of TSCs. The usage
of a nanocrystal Si recombination junction that provides high
resilience to shunts was demonstrated by Sahli et al. A fully textured
monolithic perovskite/SH] TSC delivered a certified PCE of
25.2%™9. In 2020, Hou et al. reported TSCs combing fully textured
Si  heterojunction bottom cells with solution-processed
micrometer-thick perovskite top cells*. The combined enhance-
ments from enhanced depletion width at the bases of Si pyramids,
increased carrier diffusion length, and suppressed halide phase
segregation enabled an independently certified PCE of 25.7% for
such perovskite/Si TSCs. Xu and his co-workers reported the
usage of triple-halide alloys (I/Br/Cl) to adjust the bandgap and
stabilize the semiconductor under illumination®. Al-Ashouri et
al. demonstrated a 2-T perovskite/Si TSC with a certified PCE of
29.15% by using a SAM layer, ie, methyl-substituted carbazole,
that facilitates fast hole extraction and efficient passivation at the
hole-selective interface™". A very recent record efficiency of 33.7%
suggests the promising future of 2-T perovskite/ Si TSCs®.

7.1.2  All-perovskite tandem

Snaith’s group reported the monolithic all-perovskite TSC with a
1.2 eV mixed Sn-Pb low-E, perovskite as the bottom subcell
absorber in 2016, delivering an efficiency of 17.0%™. Jen’s group
utilized the synergistic effect of interfacial modification with
Indene-Cg, bis-adduct (IC4BA) for ~1.2 eV low-E, PSCs and
compositional engineering for ~1.8 eV wide-E, PSCs to obtain the
2-T all-perovskite TSC, showing a high V. 0f 1.98 V and a stabilized
PCE of 18.5%™".

Zhao et al. employed a bulk passivation strategy via chlorine
doping to enlarge grain sizes and reduce electronic disorder in low-
E, (~1.25 eV) perovskite layers. Combined with effective
Ag/MoO,/ITO ICL, efficient 2-T all-perovskite TSCs with 21%
efficiency were achieved, which was the highest value for monolithic
all-perovskite TSCs in 2018*. Further replacing Ag/MoO,/ITO
with sole ITO as ICL effectively increase the near-infrared trans-
mittance of ICL to enhance the J,. and thus the PCE to 23.1%"".
ITO not only protects the underneath layers from damages when
depositing the subsequent subcell, but also acts as part of the ICL
for charge recombination.

Besides ITO, the atomic layer deposited (ALD) SnO,/Au ICL
has been developed®*. Tan’s group exploited the compropor-
tionation reaction of metallic Sn and the oxidized Sn* to reduce
the Sn vacancies in Sn-Pb low-E, (1.22 eV) perovskites, which
increased the carrier diffusion length to 3 um and led to impressive
certified PCE of 24.8% for 0.049 cm’-area all-perovskite TSCs™”.
Strongly reductive surface-anchoring zwitterionic molecules were
introduced into the low-E, perovskite precursor to inhibit Sn*
oxidation and passivate defects at the grain surface, leading to a
certified PCE of 242% for ~1 cm’area tandem devices™. A
recently certified record efficiency of 26.4% for 0.049 cm’-area all-
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Fig.8 (a) Typical device structure of 2-T perovskite-based tandems. (b) Theoretical simulation of PCEs for 2-T perovskite-based tandems with different bandgap
combinations (reprinted with permission from Ref. [227], © 2018, The Author(s)). (c) The efficiency progress of 2-T perovskite-based tandems.

perovskite TSCs was again reported by Tan group in 2022 via
incorporating 4-trifluoromethyl-phenylammonium passivators to
improve the quality of thick (~1.2 pm) low-E, perovskite
absorber™ contributing to a higher J, of 16.5 mA/cm’ in the tan-
dem device.

Very recently, the highest certified efficiencies of small-area
(~0.1 cmy’) and large-area (~1 cmy’) for all-perovskite TSCs have
reached 28.0% and 26.4%, respectively.

In addition to these accomplishments achieved on rigid sub-
strates, significant progress has also been made for all-perovskite
TSCs on flexible substrates and tandem solar minimodules (~20
cm’)® 2% These excellent achievements pave the way to future
commercialization of all-perovskite TSCs.

7.1.3  Perovskite/CIGS tandem

Cu(In,Ga)Se, (CIGS) typically has the E, of 1.1 eV, which is suitable
for the bottom subcell absorber. Perovskite/CIGS tandems possess
the following distinct advantages: (1) Higher absorption coefficient
of CIGS can reduce the film thickness and thus lower the fabrication
cost. (2) Perovskite/CIGS tandem cells can be prepared by all
solution processing, compatible with flexible photovoltaics®*24.
Todorov et al. reported the first 2-T perovskite/CIGS TSC in
2015, which delivered a PCE of 10.9%"*. The main challenge for
high-performance 2-T perovskite/CIGS TSC is the significant
electrical loss originating from the poor interfacial contact
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between CIGS and perovskite layers. Due to the rough surface of
CIGS, it is difficult to deposit uniform and dense perovskite film
on the CIGS subcells, leading to large nonradiative charge recom-
bination and low FFs. In 2018, Han et al. deposited boron-doped
ZnO (BZO) and ITO layer atop the CIGS film, followed by chemical
mechanical polishing (CMP) to smoothen the ITO surface, pro-
moting the formation of uniform and dense perovskite films and a
certified PCE of 22.43% for 2-T perovskite/CIGS TSC*”. Taking
advantage of self-assembled materials (SAMs), it is possible to
directly deposit a conformal HTL on the rough surface. Albrecht’s
group employed self-assembled monolayer (SAM) 2PACz ((2-(9H-
carbazol-9-yl) ethyl) phosphonic acid) to replace PTAA as HTL
and obtained a certified PCE of 23.26% on 1.03 cm’-area cells®*.
Later, they utilized Me-4PACz ((4-(3,6-dimethyl-9H-carbazol-9-
yl) butyl) phosphonic acid) as SAM and a 1.68 eV-perovskite as
top cell, leading to a certified record PCE of 24.2%""".

7.1.4  Perovskite/organic tandem

Perovskite/organic TSCs have been attracting increasing attention
due to the recent advances of organic solar cells (OSCs) with the
extension of the spectral response beyond 1000 nm using non-
fullerene acceptors, as well as solution processability, light weight,
and flexibility"* ****. Most importantly, orthogonal solvents for
preparing the perovskite and organic absorbers make it feasible for
large-area solution-processing.
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Except for large V. loss in wide-E, (~1.80 eV) subcells, the
optical loss in the ICL limits the PCE enhancement of
perovskite/organic TSCs, where thin metals (Ag or Au) and
organic/inorganic charge transport layers as ICLs are typically
employed. However, such thin metal-based ICLs would induce
notable optical loss, which significantly sacrifices the J,. and limits
the PCE below 22%™*". Recently, Chen et al. reported a
BCP/1ZO (4 nm)/MoO, sandwich layer as ICL and demonstrated
a PCE of 23.6% (22.95% certified), which is much higher than that
of ICL using BCP/Ag/MoO,*. Moreover, Brinkmann et al.
inserted ALD-InO, between ALD-SnO, and MoO, as ICL, yielding
a record PCE of 240% (23.1% certified) for 2-T
perovskite/organic TSC™". These two works set a milestone for
highly efficient perovskite/organic tandems.

7.2 Challenges and perspectives

Although great progress of perovskite-based tandems has been
made, further development of this promising PV technology
could focus on the perovskite top/bottom subcells, design of ICL,
stability, and scaling-up manufacture.

7.2.1 Minimizing V. deficit

One limiting factor of 2-T perovskite-based tandem device per-
formance lies in the wide-E, perovskite top subcells®***. First,
large V. deficit (typically >400 mV) limits the performance of
wide-E, perovskite top subcells, especially for P-I-N type 2-T per-
ovskite-based tandems. In order to achieve higher V,, minimizing
or passivating various defects in the bulk or surface of perovskite
absorbers is of extreme significance, which can be well tackled
with high-quality perovskite films and multifunctional passivation
agents. Moreover, interfacial energy levels between wide-E, per-
ovskite absorbers and charge transporting layers should be aligned
to minimize the interfacial recombination. Therefore, effective
charge transport materials with proper energy levels should be
carefully selected and developed. Interfacial modification layers
are another effective strategy to reduce losses at the interfaces of
perovskite/charge transport layers/metal electrode. Ideally, the 2-T
perovskite-based tandems could achieve the highest V. of ~2.0 V
for perovskite/Si tandem®, ~2.25 V for all-perovskite tandem,
~2.01 V for perovskite/CIGS tandem® and ~2.15 V for per-
ovskite/organic tandem®".

7.2.2  Current matching for higher J

Current matching of subcells governs the J. of 2-T perovskite-
based tandems, as the lower J. of the subcells determines the
overall J,. of monolithic TSCs.

The future trend of N type Si solar cells requires N-I-P type
perovskite top subcells for efficient TSCs. However, parasitic
absorption of Spiro-OMeTAD limits the . of N-I-P type top cells
for 2-T perovskite/Si TSCs. Although P-I-N type perovskite top
subcells is popular recently™”, further development of novel thin
inorganic HTLs is highly desired to replace thick organic ones.
Therefore, low-temperature processed NiO, will be the focus in
the future. Moreover, depositing inorganic charge transport layer
directly on wide-E, perovskite absorbers may reduce the cost and
simplify the fabrication process by completely removing inorganic
buffer layers (e.g., SnO,, MoO,) which are normally deposited to
protect weak organic charge transport layers (e.g, Spiro-
OMeTAD, Cq, PCBM) from the bombardment of sputtering of
transparent conductive electrodes (TCOs). Additionally, stacking
materials with gradient refractive index, especially at front incident
surface and ICLs, should suppress reflection loss at interfaces to
achieve higher J. Fully textured c-Si bottom subcells for perfect
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light trapping is still necessary to guarantee the maximum J_ of 2-
T perovskite/Si TSCs, although this complicates the fabrication
process of wide-E, perovskite top cells***". Parasitic absorption of
the TCOs in the NIR region affects J,. as well. Selection of proper
TCOs with higher charge mobility instead of higher carrier density
(e.g., IZO, IO:H, and IZrO) may deliver a higher overall J,. of 2-T
perovskite/Si TSCs™!. Finally, design of metal grids is another factor
affecting the J_ since the cell under the shade of metal grid hardly
contributes current®. Theoretically, half of the maximum J,. (42.5
mA/cm?®) of c-Si solar cell®”, ie., approximately 20 mA/cm’, is
achievable as the J for high-performance 2T PVK/c-Si TSCs.

For all-perovskite TSCs, thick Sn-Pb (over 1 pum) perovskite
absorber is extremely significant to enhance the spectral response
in NIR region to get the current matched from both subcells.
Therefore, the addition of antioxidants in the precursor and the
passivation of bulky and interfacial defects will prolong the carrier
lifetimes and diffusion length, thus enhancing the performance.
Over 17 mA/cm? for all-perovskite TSCs is expectable.

Optimizing the interfacial contact between CIGS and perovskite
subcells to reduce the electrical loss is critical for the J. improve-
ment. Since CIGS and silicon have similar bandgaps, approximately
20 mA/cm?’ is also achievable for 2-T perovskite/CIGS TSCs*.

The low J,. (~15 mA/cny’) is the major obstacle that limits the
efficiency of 2-T perovskite/organic TSCs, primarily due to pho-
tocurrent limits from OSCs. Developing more efficient low-E,
donor and acceptor materials with high carrier mobility and
absorption coefficients, as well as optimizing the morphology of
heterojunction film are crucial for high-performance OSCs. J,. of
around 16 mA/cm’ for perovskite/organic TSCs is expected.

7.2.3 Rational design of ICLs

ICLs should have high vertical conductivity for effective charge
recombination, low lateral conductivity for less current leakage,
and balanced spectral distribution for current matching of sub-
cells. Ideally, when the refractive indices of ICLs approximately
amounts to the geometric mean of perovskites and other
absorbers, the minimized reflection is obtained when the optical
thickness equals to one fourth of the wavelength irradiating on the
bottom subcell. However, refractive index of commonly used
TCO such as IZO and ITO is approximately 2, which results in
internal reflection at the interfaces due to a large refractive index
contrast. Nanocrystalline Si with lower lateral conductivity is a
promising recombination junction candidate to reduce interfacial
reflection losses and parasitic absorption as well as suppress shunt
paths between the top and bottom subcells, thus increasing the J.
and FF of bottom subcell.

In particular, for solution-processed all-perovskiteand per-
ovskite/organic tandems, protecting the underneath existing layers
is very crucial when depositing the subsequent layers. Multi-layer
stacking ICLs could function well, but parasite absorption across
these layers should also be minimized. Meanwhile, thin metals are
likely to damage the device stability. Therefore, searching new
materials with high NIR transmittance is feasible to further reduce
parasite absorption losses.

7.2.4  Improving stability of perovskite absorbers

The instability of wide-E, perovskite top absorbers mainly origi-
nates from the perovskite top cells. Instability intriguing factors
include: external factors (humidity, oxygen, heat, UV light, electrical
field, etc.) and internal factors (ion migration, defects). Proper
encapsulation can eliminate the external factors such as humidity,
oxygen, and even UV light if UV protection layer is applied during
the encapsulation®”. Intrinsic factors can be tackled by successful
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engineering of single-junction PSCs in crystallization™!, composi-
tion™, interface™ and passivation®. Moreover, layers delamina-
tion during the temperature-cycling test happens due to a huge
thermal expansion coefficient contrast® and charge transporting
layer with suitable thermal coefficient to adjacent layers (perovskite
and TCOs) needs to be considered to avoid physical failure of
device.

Phase segregation is severe in Br-rich wide-E, perovskites. High
content of Br could accelerate the crystallization rate of wide-E,
perovskites, leading to the separation of I-rich and Br-rich
domains as well as small grain size. Therefore, the usage of appro-
priate additives into the precursor to modulate the crystallization
process is urgent, which could inhibit the phase segregation. In
addition, surface modifications are also beneficial to mitigate the
migration of halide ions on the wide-E, perovskite surface, which
could make the phase more stable™.

Easy oxidation of Sn hinders high-performance all-perovskite
tandems. Except for the protection via effective encapsulation,
antioxidants, reducing agents, and defect passivators applied to Sn-
Pb low-E, perovskite absorbers would largely enhance the stability
of low-E, perovskite bottom subcells, benefiting the overall stability
of all-perovskite tandems.

7.2.5 Scaling-up manufacture

The wafer-scale manufacture of 2-T PVK/ Si TSCs is another big
challenge. Previous reports of 2-T perovskite/Si TSCs are mostly
based on small area and spin-coating technique®™ >, Some
attempts have also been tried to scale up the devices but the effi-
ciency declines as area increases™ ”* 9. Historically, Oxford PV
recently announced a record efficiency of 26.8% with a full area of
274 cy?, which is the first time for 2-T perovskite/ Si TSCs to
exceed the efficiency of 26.6% of single-junction c-Si solar cell in
full size™. There is still much room for efficiency improvement
compared with the fresh record 31.3% especially in V, and J, >

Techniques such as slot-die coating and vapor depositions for
fully textured TSCs are suitable for scalable fabrication, which
demonstrates satisfactory compatibility with commercial manu-
facture of mature Si and emerging photovoltaic technology.

Considering that all-perovskite, perovskite/CIGS, and per-
ovskite/organic tandems can all be fabricated by solution process-
ing, it is very promising to expect flexible devices based on high-
throughput and low-cost roll-to-roll manufacturing, enabling
flexible and lightweight applications for building-integrated pho-
tovoltaics (BIPV) and portable power supply.

8 Conclusions

The past few years has witnessed great progress for PSCs through
comprehensive tools controlling the film deposition process. This
review gives an overall analysis over the efficiency improvement
strategies since the beginning of first PSC device. At the early
stage, the performance enhancement is mainly driven by the
development of fabrication methods and device structures.
Whereafter, the research focus concentrates on the deposition of
high-quality perovskite thin films through compositional engi-
neering, additive engineering and crystallization manipulation,
which pushes the efficiency to over 20%. At the very recent stage,
interfacial engineering including charge transport layer modifica-
tion and passivation are indispensable strategies for achieving high
performance in state-of-art PSCs. Moreover, optical management
through the proper use of optical coupling effect to reduce optical
loss and constructing tandem solar cells are also effective tools to
further raise the efficiency. Finally, we believe that the better
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understanding of different passivation mechanisms and better
defect management, especially at buried interface, is the break-
through point for performance leap in the foreseeable future.
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