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ABSTRACT
With  the  continual  deployment  of  power-electronics-interfaced  renewable  energy  resources,  increasing  privacy  concerns  due  to
deregulation  of  electricity  markets,  and  the  diversification  of  demand-side  activities,  traditional  knowledge-based  power  system
dynamic  modeling  methods  are  faced  with  unprecedented  challenges.  Data-driven  modeling  has  been  increasingly  studied  in
recent years because of its lesser need for prior knowledge, higher capability of handling large-scale systems, and better adaptability
to  variations  of  system  operating  conditions.  This  paper  discusses  about  the  motivations  and  the  generalized  process  of  data-
driven modeling, and provides a comprehensive overview of various state-of-the-art techniques and applications. It also comparatively
presents  the  advantages  and  disadvantages  of  these  methods  and  provides  insight  into  outstanding  challenges  and  possible
research directions for the future.
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Accurate modeling  is  an  essential  prerequisite  for  simula-
tion, analysis, control, and protection of power systems[1, 2].
The  time  scale  of  power  system  phenomena  vary  widely

from microseconds  to  days.  Among  them,  electromagnetic  tran-
sients and electromechanical transients are the relatively fast phe-
nomena of system-level (instead of component-level) interest, and
are thus often referred to as power system dynamics.  With accu-
rately  described  dynamic  characteristics,  system  operators  can
effectively  perform  a  variety  of  planning  and  operation  tasks
towards the  goals  of  reliability,  efficiency,  resiliency,  and  sustain-
ability. On the contrary, the absence of proper models may lead to
disastrous  consequences  as  has  been  demonstrated  by  historical
blackout  events.  For  example,  after  the  1996  Western  Electricity
Coordinating  Council  (WECC)  blackout,  the  analysis  using  the
WECC’s  standard  dynamics  database  failed  to  produce  results
consistent  with  fault  dynamics[3],  which  implies  that  prior  to  the
blackout, the operator did not have the basis to perform effective
security  assessment  and  make  proper  decisions  accordingly.  The
increasing  penetration  of  renewable  energy  sources  also  calls  for
higher requirements for modeling accuracy. After the 2016 South
Australia  blackout,  the  Australian  Energy  Market  Operator
(AEMO) discovered that the software settings in some wind farms
prevented  repeated  restarts  once  frequency  or  voltage  events
occurred too often. These wind farms tripped unexpectedly during
the  incident,  causing  a  shortage  of  power  supply  in  the  South
Australian power grid and ultimately leading to the occurrence of
the blackout[4]. However, the scale of modern power systems is so
large  that  accurate  modeling  of  every  component  at  system-level
analyses  would lead to a  computational  disaster.  A careful  trade-
off must be made between accuracy and computational efficiency.

A natural way to model the dynamic behavior of power system

components is the use of physical laws. From first principles such
as  circuit  laws  and  motion  laws,  mathematical  relationships
between physical variables can be derived. For example, a complete
mathematical  model  of  a  cable segment can be derived based on
physical  information such as  material,  geometry,  and length[5].  In
addition  to  theoretical  derivation  by  physical  laws,  dedicated
offline experiments can be performed to determine the parameters
of a model, for example, the classical locked-rotor test and no-load
test can be used to identify the parameters of motors[6].  Modeling
approaches  described  above,  where  everything  from  the  model
structure to the model parameters is derived based on the physical
laws or obtained through dedicated experiments before the object
put into service, can be referred to as knowledge-based modeling
(KBM)  approaches,  as  they  exclusively  rely  on  knowledge
acquired prior to the operation of the component or system. KBM
approaches  have  been  widely  used  in  power  systems.  Another
example is transmission grid equivalence methods such as coher-
ence[7] and synchrony[8].  However, with the continual evolution of
power systems, especially the rapid growth of the power electronics
for renewable energy integration, the dynamics of power systems
have  changed  dramatically  and  traditional  KBM  approaches  are
faced with two major challenges. First, it has become increasingly
difficult to construct appropriate models that exhaustively reflects
the physics of power system components, as much of the required
prior  knowledge  is  difficult  to  obtain.  The  dynamics  of  Inverter
Based Resources (IBRs) are complex due to their low inertia and
high dependence on their control algorithms[9, 10]. Different manu-
facturers of IBRs adopt different control strategies and are reluctant
to disclose their control models. Second, as renewable energy gen-
eration  is  widely  distributed,  the  number  of  parameters  of  KBM
models  regarding  individual  components  becomes  astronomical. 
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Meanwhile, the impact of these parameters becomes less significant
as  the  sizes  of  the  generation  devices  becomes  smaller.  It  is
intractable to attain and utilize such a high-dimensional exhaustive
KBM model to describe and simulate system behaviors.

To  tackle  these  challenges,  data-driven  modeling  (DDM)  has
become  a  sensible  option.  DDM  refers  to  approaches  relying  on
the  measurement  data  generated  from  the  actual  operation  of
power  systems after  the  object  to  be  modeled is  put  into  service.
The advantages of DMM are three folds. (1) Unlike KBM, DDM
does not require complete prior knowledge about the object to be
modeled,  which makes  it  highly  applicable  to  both gray-box and
black-box components or subsystems. (2) DDM approaches allow
the optimal determination of model structures via data, which has
the potential of reducing model complexity without losing domi-
nating characteristics.  (3) DDM approaches allow the determina-
tion  of  model  parameters  without  offline  experiments,  hence
potentially  saving human effort,  reducing equipment downtimes,
and  allowing  online  adjustment  as  system  operating  conditions
change. Despite the major advantages described above, successful
DDM typically requires a large amount of dynamic data, which is
highly  challenging  in  traditional  power  systems.  In  recent  years,
with  the  proliferation  of  advanced  measurement  devices  such  as
phasor measurement units (PMUs), merging units (MUs), digital
disturbance  recorders  (DDRs),  and  smart  inverters  (SIs),  the
obstacle  of  data  availability  is  being  cleared  for  the  development
and implementation of DDM. The applications of DDM has been
witnessed in various fields such as wind farm modeling[11], photo-
voltaic  (PV)  plant  modeling[12],  transmission  grid  equivalence[13],
distribution grid equivalence[14], load modeling[15], etc.

To discuss the objectives of DDM, power system dynamics can
be characterized by the following set of equations:

d(x)
dt

= f(x,u,θ)+w,
y= h(x,u,θ)+v,

(1)

x u y
θ f
h w v

f h
θ

y
u

where  denotes  the  states;  denotes  the  inputs;  denotes  the
outputs;  denotes system parameters;  denotes the state transfer
function;  denotes the output function;  and  denote the pro-
cess noise and output noise, respectively. The objectives of DDM
of power systems is to determine model structures  and  and to
obtain their parameters , such that the output of the model is as
close as possible to the output  measured from the actual system
with  the  same  input .  Therefore,  model  construction  and
parameter identification are the essential steps for dynamic model
equivalence.  At  the  same  time,  as  DDM  many  use  massive  and
corrupted  measurement  data,  data  pre-processing  may  also  be
performed to assist model construction and parameter identifica-
tion.

As discussed in the previous section, the area of power system
modeling  has  been  constantly  evolving.  There  are  already  some
literature surveys on the modeling of various components, such as
wind  farm  modeling[11],  load  modeling[16],  or  the  modeling  of  an
entire power grid[17]. There are also review articles that discuss the
modeling  within  long  time  scales,  such  as  load  forecasting[18],
which are not within the scope of power system dynamics.  In all
these  surveys,  DDM  is  mentioned  as  one  of  the  modeling
approaches  without  in-depth  coverage.  Furthermore,  as  these
papers only review DDM approaches for specific types of compo-
nents, they provide limited insight into the generic methodologies
that apply to various types of components. A general overview of
DDM with a systematic summary and comparison across different
components  and  methodologies  is  still  missing.  Considering  the

continual  growth of  renewable  energy,  the  increasing  complexity
of  power  system  dynamics,  and  the  recent  advancement  of  data
analytics  and  machine  learning,  DDM  is  bound  to  play  an
increasingly important role  in the near future.  Therefore,  a  com-
prehensive  survey  of  DDM  of  power  systems  is  considered
imperative to portray the state of the art of this research area and
to provide insight into the challenges to be further addressed. This
is  exactly  the  objective  of  this  paper.  The  attention  of  this  paper
will be paid to the three main steps of DDM, data-preprocessing,
model  construction,  and  parameter  identification.  It  should  be
noted that for parameter identification, this paper only reviews the
techniques  that  are  part  of  holistic  modeling  approaches;  pure
online parameter  identification  techniques  without  model  con-
struction effort,  especially  those for electric  machines,  will  not  be
reviewed  in  this  paper.  This  is  due  to  the  fact  that  the  online
parameter identification of electric machines has been a relatively
mature  area[19–21];  online  parameter  identification  of  electric
machines  is  closer  to  KBM  methods  with  an  add-on  parameter
identification  function,  as  the  model  structures  of  electric
machines  are  rigorously  derived from and supported by physical
laws.

The rest  of  the  paper  is  organized as  follows.  Section 1  briefly
introduces  data  pre-processing  techniques  for  DDM.  Section  2
presents various model structure methods according to the objects
to be modeled and the essence of the methods, and also describes
the  conceptual  relations  between  different  methods.  Section  3
describes  various  parameter  identification  methods  following  the
determination of model structures, including the problem formu-
lations,  solution  techniques,  and  several  special  issues  to  be
addressed. Section 4 concludes the paper with discussions on the
limitations of the existing approaches and exploration of possible
future research directions.

1    Data pre-processing
DDM uses the measurements generated during system operation
for model  construction  and  parameter  identification.  The  mea-
surements  are  likely  to  contain  noise  and  bad  data  arising  from
sensor  imperfection  and  failures,  communication  delays  and
packet losses, etc. The direct use of raw data may reduce the accu-
racy  of  DMM[21, 22].  In  addition,  the  massive  volume  and  high
dimensionality of raw data may present difficulty for direct infor-
mation extraction[23].  Therefore,  data  pre-processing  is  sometimes
performed  for  denoising,  bad  data  removal,  and  dimensionality
reduction, producing refined datasets that can be directly used for
model construction and parameter identification.

In recent years, data preprocessing for DDM has received more
attention  than  ever  before.  One  reason  is  that  earlier  research  is
more limited to theoretical developments and typically uses simu-
lated data for validation of the methods, ignoring the data quality
problems that exist in the real world. Another reason is that some
parameter identification methods themselves have certain denois-
ing effects. However, as DDM continues to evolve from theoretical
research to practical applications, data pre-processing is bound to
receive  more  attention.  This  trend  is  confirmed  by  increasing
adoption of a data pre-processing stage in recent DDM methods.

1.1    Denoising and bad data detection
Denoising techniques and bad data processing are not exclusive to
DDM. Some widely used filters can also be adopted for data pre-
processing. However, for the case of DMM, it is important to note
that the dynamic processes that require attention cannot be filtered
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out  as  noise  during  the  filtering  process.  Ref.  [21]  compares  the
advantages and disadvantages of three filters, the moving average
(MA)  filter,  the  Savitzky−Gorey  (SG)  filter,  and  the  butterworth
(BW) filter, in the presence of different noises, and also constructs
three  metrics  to  measure  the  performance  of  the  filters,  namely
efficiency  in  noise  removal,  preservation  of  the  dynamic  features
of the original signal, and the quality at the terminal points (start
and end of the disturbance). The SG filter is ranked first in terms
of dynamic feature preservation and the quality at terminal points,
and is ranked second after the MA filter in the efficiency in noise
removal,  and thus it  is  overall  recommended to use the SG filter
for data pre-processing.

In addition to the aforementioned techniques,  Ref.  [22] uses a
Hampel filter (HF) in addition to the SG filter for noise reduction
to improve the accuracy of parameter identification. Ref. [24] uses
Hampel  filter  for  bad  data  detection,  including  missing  data
detection  and  outlier  location  detection,  while  for  denoising,
wavelet denoising technique is  used.  In addition to the above fil-
ters,  Ref.  [25]  adopts  a  prior  automatic  filtering  by  means  of
Gaussian processes modeling.

As denoising and bad data processing are not unique to DDM,
it is expected that more types of filters will be applied to DDM in
the future. The three metrics proposed in Ref. [21] provide a good
set of criteria for the selection of filtering techniques for DDM.

1.2    Feature extraction and dimensionality reduction
Another purpose of data pre-processing is to extract features and
reduce the dimensionality of data to facilitate the following model
construction  or  parameter  identification  procedures.  In  this
regard, the Prony’s method, which combines data pre-processing
with  model  construction,  is  a  widely  used  approach  for  feature
extraction.  For  example,  Refs.  [26]  and  [27]  use  Prony’s  method
for dynamic equivalence of distribution networks. The main com-
ponents  of  the  system  dynamics  are  obtained  directly,  and  the
model construction is completed while filtering the harmonics not
of  interest.  Singular  value  decomposition  (SVD)  is  a  popular
method  for  matrix  rank  reduction  too.  This  technique  has  been
employed  in  eigensystem  realization  algorithms  (ERA),  matrix
pencils  (MP),  and  dynamic  mode  decomposition  (DMD).
Ref. [28] presents a tutorial of ERA, MP, and the Prony’s method.
Particularly,  the  Prony’s  method  was  refined  with  SVD-based
rank reduction and achieves better eigenvalue identification capa-
bility.

The  other  category  of  methods  is  clustering  methods  that
reduce  the  dimensionality  of  data.  For  example,  Refs.  [24]  and
[29] utilize the k-means++ clustering algorithm and fuzzy cluster
analysis  to  cluster  data  from  the  distribution  network.  For  each
cluster with similar properties, an equivalent model is generated to
represent  it.  This  reduces  the  number  of  equivalent  models  and
data  dimensions  without  compromising  their  accuracy.  For  the
equivalent  modeling  of  the  transmission  network,  a  coherence
analysis  method  is  also  used  due  to  the  presence  of  numerous
synchronous motors[30, 31]. This method identifies a category of data
with  similar  properties  and  generates  an  equivalent  model  for  it.
The aforementioned  methods  can  effectively  reduce  the  dimen-
sionality of the data, facilitating the construction of efficient models
in subsequent steps.

Since  the  methods  for  feature  extraction  and  dimensionality
reduction are closely related to the subsequent model construction
and parameter identification steps, more details will be introduced
in Sections 2 and 3.

2    Model construction
In this section, we will explore one of the two core steps in DDM,
i.e.,  model  construction.  Since  the  topic  of  this  paper  is  DDM,
purely KBM without using any data collected after the component
of subsystem is put into operation will not be explored. The model
construction methods of DDM can be divided into three categories
according  to  the  degree  of  reliance  on  prior  physical  knowledge.
The  first  category,  called physics-inspired  model  construction,  are
methods  that  are  not  rigorously  supported  by  physics  but  reflect
insights into  physical  characteristics  of  certain  types  of  compo-
nents.  A  prominent  physics-inspired  model  is  the  typical  ZIP
model of loads, which characterize the aggregate effect of loads by
three  components  in  parallel:  constant  impedance  load,  constant
current load, and constant power load[32]. This is clearly inspired by
certain  known  types  of  loads,  such  as  electric  heaters  without
automatic control (constant impedance), battery chargers (constant
current),  and  electronic  devices  (constant  power).  While  there  is
usually no evidence that an actual load block to be modeled only
consists of these three ideal types loads, they can fit the behaviors
of most aggregated loads relatively well. Note that physics-inspired
model construction is different from KBM, as KBM delivers models
that  are  clearly  and  rigorously  supported  by  physics  (e.g.,  the
swing  equations  of  an  individual  SG  following  the  laws  of
motion), whereas physics-inspired modeling are essentially “fitting
functions” with  structures  inspired  by  physical  phenomena  (e.g.,
aggregated load characteristics  heuristically  broken down to con-
stant impedance,  constant  current,  and  constant  power  compo-
nents).  Another  category  of  approaches,  which  does  not  require
any  prior  knowledge  at  all,  is  referred  to  as purely  data-driven
model construction.  A prominent example is  the neural-network-
based  model  construction  approach[33].  This  approach  requires
almost no prior knowledge of the modeled objects and uses a unified
architecture to model different objects. The last category of meth-
ods,  which combine the characteristics of physics-inspired model
construction methods and purely data-driven model construction
methods, can be referred to as data-assisted physics-inspired model
construction or hybrid  model  construction,  which integrates  some
prior  knowledge  of  the  object  with  certain  purely  data-driven
methods via multiple stages or parallel blocks[24].

The rest  of  the section is  organized as  follows.  We classify  the
common objects to be modeled into four categories, load, renewable
energy,  transmission  grid,  and  distribution  grid,  as  shown  in
Figure 1. The model construction approaches for each category of
objects  are  described  in  one  subsection.  For  each  category  of
objects  (in  each  subsection),  the  existing  model  construction
approaches are  then  presented  separately  based  on  the  catego-
rization  introduced  above  (physics-inspired,  purely-data-driven,
and data-assisted  physics-inspired,  i.e.,  hybrid).  The  relationships
between the categories of methods, and between the categories of
objects  that  each category  of  methods  can be  used to  model,  are
shown in Figure 2.

2.1    Load modeling
Load  is  an  essential  component  of  any  power  system.  There  are
many  well-established  load  modeling  approaches.  For  example,
the  two  commonly  used  static  load  models,  ZIP  model[32] and
exponential  load  (EL)  model[34],  have  simple  structures  with  few
parameters to be identified, and have been widely used and tested
in  practice.  Ref.  [32]  uses  ZIP  model  to  characterize  real-world
household  loads  in  New York.  The  EL  model  considers  that  the
active  and  reactive  power  consumption  are  exponentially  related
to the voltage. Ref. [34] uses the EL model to equivalence different
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loads  under  substations  and  finds  that  the  model  obtained  good
performance for commercial loads, industrial loads, and residential
loads.  Ref.  [35]  treats  the  parameters  of  the  ZIP  model  and  EL
model  as  time-varying  parameters  and  fits  the  load  by  online
parameter identification.

However,  with the deepening of electrification, the diversity of
loads  is  also  growing.  Static  load  models  cannot  accurately
describe  the  dynamic  processes  associated  with  loads,  hence
dynamic load models should be constructed.

2.1.1    Physics-inspired model construction

A summary of commonly used dynamic load models is presented
in Figure  3.  Traditionally,  it  is  considered  that  the  dynamics  of
loads mainly occur from motor-type loads. Therefore, a common
load model  structure  is  a  traditional  ZIP or  EL model  in  parallel
with an IM (induction motor) model, as illustrated in Figures 3(a)
and 3(b). The model better integrates residential loads with indus-
trial  loads  and  is  therefore  used  in  many  applications.  Ref.  [36]

uses the ZIP + IM modeling approach to equivalence loads, but its
parameters  are  calculated  using  a  component-based  approach
based on offline data, which is refined later with online data. Refs.
[37–42] use ZIP + IM model and measurement data for parameter
identification.  Refs.  [43]  utilizes  the  EL  +  IM model  and  explore
an  improved  parameter  identification  method,  which  not  only
maintains  accuracy  but  also  enhances  the  convergence  speed  of
the algorithm. Ref. [29] uses the ZIP + IM model for equivalence
and  fuzzy  cluster  analysis  to  find  the  best  substation  data  that
characterizes the load information. The adaptability of the model
is enhanced by considering the rotor impedance in the IM model
as  a  time-varying  parameter.  Ref.  [44]  compares  the  ZIP  +  IM
model,  EL  +  IM  model,  and  Z  +  IM  model  and  finds  that  the
ZIP  +  IM  model  has  the  optimal  adaptation  capability  in  most
cases. Ref. [45] uses the static component model, random compo-
nent model and EL model to characterize loads under a substation
and finds  that  different  models  are  suitable  for  different  types  of
users. For example, the static model is more suitable for shopping
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Fig. 1    Composition of power systems and objects to be modeled.
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One or more static models parallels with one or more dynamic models (ZIP +IM[37–42], EL +IM[43,44], WECC load model[48], 
etc.). �e exponential recovery load model (ERLM) that incorporates the recovery process[50,66,67].

Synchronous motor models of di�erent order slike 3 order SG model[97] and 6 order SG model[98].
Detailed model include automatic voltage regulator (AVR)model and the governor model[99,100].

Detailed models for considering the control system according to di�erent renewable energy sources (Wind turbine[68–73], PV 
plant[74–76], etc).Generalized VSC modelor equivalent impedance model considering mainly the inverter part[79–82].

Depending on the type of load and distributed generation, one or several load models are selected in parallel with several
generation models For example, ZIP+SG model[128–130] and ZIP+detailed IBR model[132−135]. 

Representation of the model by a set of equations of inde�nite form (order).
For example, the transfer function[105] or di�erential algebraic equation[13,121], etc .

Some classical neural network models: ANN[60,61], RNN[64], LSTM[140,141], GRU[144], etc.
Neural networks combined with fuzzy theory and some new methods: RBFNN[63], GDFNN[65], Neural ODE[145], etc.

Direct extraction of feature components according to the characteristics of dynamic response.
Some of the classic methods, such as the Prony's method[26,27], DMD method[106], SVD method[108], subspace[109], etc.

Systems with multiple similar characteristics, are modeled using aggregated analysis of the data[108,113]. Use cluster analysis or 
correlation analysis to equate the system to one or more physics inspired models or pure data-driven models[89–93].

A hybrid model is composed by combining physics-inspired modeling and purelydata-driven modeling according to the 
characteristics of the model[66,67,86,87,118–120,125–127,152–155].

Fig. 2    Model construction: objects and approaches.
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malls.  WECC[46] and North  American  Electric  Reliability  Corpo-
ration  (NERC)[47] models the  increasing  number  of  power  elec-
tronics  devices  by  a  piecewise  function  related  to  bus  voltage,
which  is  referred  to  as  the  electronic  model.  On  this  basis,  Ref.
[22] modeled the loads using the ZIP + electronic model.

A  more  comprehensive  composite  model  than  the  ZIP/EL  +
IM  model  is  the  standard  dynamic  load  model  proposed  by
WECC[48].  Ref. [48] presents the composite load model of WECC
(CMPLDW), and the authors discuss the reason for choosing this
model as well as its effectiveness. CMPLDW contains a substation
transformer  model,  a  feeder  model,  and  six  parallel  equivalent
loads shown in Figure 3(c).  The six  equivalent  loads are  a  three-
phase  IM,  three  single-phase  IMs  connected  to  the  three  phases
respectively,  a  ZIP  load,  and  an  electronic  load.  The  increased
complexity  of  the  model  brings  about  greater  expressiveness  but
requires a large number of parameters to be fitted. Ref. [49] discusses
the parameter identification technique when using CMPLDW for
load equivalence.

In  contrast  to  the  idea  of  obtaining  an  equivalent  model  by
connecting  different  types  of  load  components  in  parallel,  it  has
been found that there is a recovery process for the load when the
voltage  surge  is  over,  so  an  exponential  recovery  load  model
(ERLM) or the general load model shown in Figure 3(d) is proposed
based on this  characteristic[50].  The expression of  ERLM is  shown
in Eq. (2). 

Ps = P0

(
Vt

Vt0
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where  represents the total  power response,  and , respec-
tively,  denote  the  static  power  response  and  power  recovery, 
stands  for  the  transient  power  response,  is  the  load  recovery
time  constant,  and  represent  the  relevant  values  before
voltage  changes,  and  and  represent  the  static  and dynamic
load-voltage dependence coefficients.

The ERLM introduces a first-order inertial filter to characterize
the load recovery process with greater expressiveness than the EL
for more complex nonlinear dynamics[51–56]. Ref. [15] linearizes the
ERLM  and  compares  the  advantages  and  disadvantages  of  the
original model with the linearized model. The linearized model is
more  concise  but  less  accurate  than  the  original  model,  and  the
desired  model  can  be  selected  according  to  the  requirement  of
accuracy.

The above four models  and some variants (e.g.,  Z+IM model)
constitute basic types of physics-inspired load models, which have
received a lot of research over the years. The ZIP + IM model and
the EL + IM model have simple structures with very few parame-
ters, but at the cost of limited expressiveness. As the loads become

more diverse,  the dynamics of loads cannot be fully attributed to
motors.  CMPLDW  covers  almost  all  the  major  dynamic  load
types and has the potential  to characterize complex load dynam-
ics, but  its  own  complex  structure  makes  the  parameter  identifi-
cation very challenging. ERLM has a strong expressive power and
can  be  combined  with  transfer  function  methods  to  obtain
stronger  performance  in  characterizing  dynamics.  Overall,  the
determination of model structures is largely based on user’s expe-
rience, and there is a need to develop additional data analytics to
assist  the  selection  of  model  structures  with  a  good  tradeoff
between accuracy and complexity.

2.1.2    Purely data-driven model construction

Load model construction can also be achieved without reliance on
prior  knowledge  of  the  dynamic  properties  of  loads.  This  is
referred to as purely data-driven methods.

A typical approach is to describe the dynamic properties of the
loads  through  a  generally  selected  mathematical  expression.  For
example,  Ref.  [57]  uses  a  quadratic  equation  for  load  modeling.
Refs.  [58]  and  [59]  adopt  a  second-order  transfer  function  to
characterize  the  load  characteristics.  However,  the  manually
selected fixed model structure limit its capability of equivalence.

Another  commonly  used  class  of  purely  data-driven  model
construction approach is neural networks. Refs. [60] and [61] use
artificial  neural  network  (ANN)  to  equivalence  conventional
loads. They take the voltage at the current time as well as the voltage
and  power  at  past  times  as  input  and  the  power  at  the  current
time as output. Ref. [62] utilizes a similar approach to equivalence
third-order motor loads. With the development of neural network
technology, Ref.  [63] applies radial basis function neural network
(RBFNN) and the lookup table (LUT) method to equivalence the
electric arc furnace loads. The method used in this paper is not a
naive ANN, but is closer to the principle of an autoencoder, where
dynamics  are  characterized  by  feeding  multiple  sets  of  data  to
obtain a set of many-to-many mapping relations. Ref. [64] uses a
recurrent  neural  network  (RNN) to  equivalence  composite  loads
including nonlinear dynamic loads such as electronic loads, and is
validated using simulated data. Ref. [65] puts forward a generalized
dynamic  fuzzy  neural  network  (GD-FNN)  model  to  describe
dynamic load characteristics.

Neural  network  models  have  stronger  generalizability  and
expressiveness than physics-inspired models,  but there is  no uni-
versal method for selecting neural network models, and the selec-
tion of network layers and activation functions depends on expe-
rience.  In  addition,  the  lack  of  physical  insight  results  in  a  larger
number of parameters to optimize, which in turn requires a larger
amount of data for parameter identification.

2.1.3    Data-assisted physics-inspired model construction

As mentioned earlier, the ERLM characterizes the recovery process
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of  loads  after  a  perturbation  by  means  of  a  first-order  low-pass
block. By replacing this first-order transfer function with a higher-
order  transfer  function,  the  ERLM  could  become  even  more
expressive.  Ref.  [24]  uses  this  improved  ERLM  for  fitting  more
complex  dynamics  by  identifying  the  parameters  of  the  transfer
function. Ref. [66] superimposes a damped oscillation component
on  the  existing  ERLM.  An  oscillatory  component  load  (OCL)
model  is  constructed  with  increased  complexity  than  the  ERLM
model.  These  types  of  methods  can  be  viewed  as  data-assisted
physics-inspired (hybrid) methods, as they still rely on the insight
into the load recovery phenomenon, but allows a general formu-
lation  of  the  transfer  function  that  does  not  have  clear  physical
meanings and has to be identified by measurement data.

Considering  the  limited  capability  of  transfer  functions  of  a
fixed order,  the  load  dynamics  can  be  better  expressed  by  deter-
mining the order of the transfer function through measurements.
Ref. [67] adjust the order of the transfer function via a vector fitting
technique in an improved ERLM. The best order is first obtained
by  each  loop  fitting  and  then  the  system  model  is  determined.
Due  to  the  fact  that  this  method  can  fit  different  dynamics  by
changing the model order, it has strong versatility and has become
one of the popular methods in recent years.

As load modeling and distribution grid modeling have overlaps
in  certain  domains,  to  facilitate  the  distinction,  only  load models
that  do  not  produce  significant  bidirectional  power  flows,  i.e.,
without distributed energy resources (DERs), are described in this
section.  The  model  construction  approaches  that  incorporate
DERs will be described in Section 2.4.

2.2    Inverter-based resource (IBR) modeling
Renewable energy  sources,  such  as  hydro,  wind,  geothermalen-
ergy,  tidal  energy,  and  photovoltaic,  have  experienced  significant
growth in  recent  years  due  to  the  increasing  demand for  carbon
emission reduction. At the same time, energy storage technologies
such  as  electrochemical  energy  storage,  pumped  storage
hydropower,  and  compressed  air  energy  storage  have  also  made
significant  advancements  in  frequency  regulation.  These  energy
storage technologies are utilized to compensate for the intermittent
nature  of  renewable  energy  sources.  Among  them,  the  IBRs  like
wind  and  solar  generation,  due  to  the  dynamic  differences
between  power  electronic  devices  and  traditional  synchronous
generators (SG),  is  rapidly  changing  the  dynamics  of  power  sys-
tems.

This  section  will  focus  on  the  model  construction  approaches
for  power-electronics-interfaced  renewable  energy  sources  from
the grid perspective, as is shown in Figure 1. Note that the focus of
the  section  will  be  on  model  construction  for  a  single  renewable
energy  source  or  a  large  centralized  renewable  power  plant.  The
aggregated modeling of a mix of numerous distributed generations
and loads will be discussed in Section 2.4.

2.2.1    Physics-inspired model construction

Similar to the idea of equivalencing loads in aggregate, a renewable
power  plant  with  a  large  number  of  inverter-based  resources
(IBRs) can be represented by a single detailed IBR model. Ref. [68]
equivalence  wind  farms  with  fixed-speed  wind  turbines  (FSWT)
to IM models  and performs online  parameter  identification.  Ref.
[69] equivalences a wind farm with doubly-fed induction generators
(DFIG)  to  an  aggregated  wind  turbine  model.  Such  aggregated
model representation has been adopted in Refs. [70] and [71] for
type-3 wind farm subsynchronous resonance (SSR) investigation.
In  addition  to  the  power  electronic  loads  mentioned  earlier,

WECC has also developed a standard DFIG model including the
control  system  for  equivalencing  DFIG  wind  farms  in  Ref.  [72].
Ref. [73] equivalences a permanent magnet synchronous generator
(PMSG) wind farm to an aggregated PMSG. After wind farms are
equivalenced to a single turbine, it is connected to the grid behind
an impedance. A similar approach can be used for solar photovotaic
(PV) systems. For example, Ref. [74] equivalences a solar PV farm
in a distribution grid to a single-inverter PV system connected to
the grid. Refs. [75] and [76] provide further simplified models for
type-4  wind  farms  and  solar  PVs  farms  by  considering  only  the
grid-connected  converter  controls  while  ignoring  or  simplifying
dc-side dynamics.  A data-driven approach has been used for dc-
side dynamics simplification in Ref. [76] .

Ref.  [77] equivalences high-voltage direct  current transmission
systems (HVDC) and proposes a reinforcement learning method
for parameter identification.

Another  common  type  of  methods  are  the  impedance  or
admittance models in the dq frame[78]. Impedance models of IBRs
are useful for existing analysis tools such as small-signal analysis[79].
Ref. [79] describes two type of stability analysis methods based on
dq admittance.  With  the  entire  system  viewed  as  a  network  of
admittance  components,  the  relationship  between  the  current
injection and the nodal voltage may be expressed by the network
admittance.  Furthermore,  the  circuit  problem  may  be  converted
to a feedback system. The first type of stability analysis is based on
the loop gain of the open-loop system. Frequency domain analysis
based on Bode plots or Nyquist diagrams can lead to stability pre-
diction.  The  second  method  is  based  on  the  closed-loop  system.
The  eigenvalues  of  the  system  can  be  found  and  frequency-
domain modal  analysis  may be followed up to identify the influ-
encing components of a certain mode[80].

An  excellent  feature  of  impedance  or  admittance  is  that  they
can be obtained through setting up a measurement testbed,  con-
ducting experiments (e.g., frequency scan), and postprocessing the
data collected, as shown in Ref. [81], or by use of online transient
response data[82].

The decentralization and diversity of control modes in IBRs, as
well as the privacy of control systems information from manufac-
turers,  increase  the  difficulty  of  model  construction.  They  will
remain  to  be  outstanding  challenges  for  research  in  the  near
future.

2.2.2    Purely data-driven model construction
General  mathematical  modeling  approaches  that  do  not  require
physical  insight,  such  as  transfer  functions  or  state  transition
equations,  are  also  applicable  to  renewable  energy  sources.  Ref.
[83] takes PV inverters compliant with the IEEE 1547-2018 stan-
dard[84] as objects to be modeled, and uses the SysId system (inte-
grated  in  MATLAB)  to  perform  linear  fitting  and  obtain  its
approximate state transition equations. Ref. [85] uses the trajectory
segment linearization method to downscale and equivalence wind
farm dynamics under large disturbances.

Neural-network-based  model  construction  for  renewable
power  plants  has  also  been  discussed  in  literature.  Ref.  [86]  uses
ANN to model the wake effects of wind farms. Ref. [87] first con-
verts  the  continuous  DFIG  model  into  a  discrete  model  and
obtains  the traditional  linear  ARMAX model,  then constructs  an
equivalent  dynamic  model  of  DFIG  using  neuro-fuzzy  networks
by  considering  the  data  uncertainty  on the  radial  basis  function-
based  neural  network  model.  Ref.  [25]  utilizes  ANN  to  fit  the
power curve of a wind turbine.

2.2.3    Data-assisted physics-inspired model construction

Data-assisted  physics-inspired  model  construction,  or  hybrid
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model  construction,  which  combines  purely  data-driven
approaches  with  physics-inspired  approaches,  either  through
multiple sequential stages or parallel blocks, have been extensively
investigated in order to achieve both accuracy and computational
efficiency.

For example, for large clusters of renewable energy generation,
such  as  large  wind  farms  and  solar  PV  plants,  the  physical-
inspired  equivalant  model  of  a  single  IBR  may  not  be  accurate
enough due to the diverse weather conditions, control logics, and
topological  locations  of  different  IBRs  in  the  cluster.  Therefore,
data-driven clustering algorithms are used to develop equivalence
with  multiple  physics-inspired  IBR  models  representing  a  set  of
IBRs under different operating conditions. Ref. [88] pilots the use
of physics-informed machine learning to enable AI-based electro-
magnetic transient simulations, which is capable of capturing fast
and slow dynamics in induction machines and is adaptive to various
levels  of  data  availability.  Ref.  [89]  first  clusters  DFIGs  using  the
support vector machine (SVM) clustering method based on wind
speed data from the wake effect model, and later obtains equivalent
DFIG models. Ref. [90] exploits a similar idea as Ref. [89] to classify
DFIGs  into  groups  by  a  fuzzy  C-mean (FCM)  clustering  algo-
rithm.  Ref.  [11]  first  performs  a  detailed  modeling  of  the  DFIG
including the specific control systems (grid-side converter control,
rotor-side  converter  control,  pitch  control,  and  speed  control);
after  that,  the  performances  of  single-turbine  equivalence,  and
multi-turbine  equivalence  are  compared  and  an  SVM  is  used  to
classify  the  turbines  for  order  reduction.  Ref.  [91]  clusters  wind
turbines using a hierarchical clustering method based on geometric
template  matching  between  power  output  and  wind  speed.  Ref.
[92]  uses  the  refined  composite  multiscale  entropy  (RCMSE)
method  with  multi-view  FCM  (V-FCM)  to  form  a  new  multi-
scale  V-FCM (SV-FCM) for  improving  the  traditional  clustering
methods  for  wind  farm  equivalencing.  Ref.  [93]  equivalences
urban  wind  farms  and  clusters  coherent  wind  farms  using
dynamic time  warp  (DTW)  distances  instead  of  Euclidean  dis-
tance.  Ref.  [94]  combines  neural  networks  to  achieve  equivalent
impedance identification at different operating points under fixed
control modes.

In addition to  the combination of  clustering analysis  with tra-
ditional physics-inspired models, clustering analysis can also form

another category of hybrid modeling approaches with neural net-
works. For example, Ref. [12] first clusters PV power plants by k-
means clustering algorithm, after which each cluster is equivalenced
using deep belief network. Neural networks can also be combined
with physics-inspired models to form hybrid model construction
approaches.  Ref.  [95]  improves  the  accuracy  of  modeling  by
aggregating VSC clusters into one equivalent VSC and connecting
an ANN in parallel to the equivalent VSC, with the ANN correcting
errors caused by the aggregation.

Data-assisted  physics-inspired  model  construction  makes  full
use of  prior  knowledge while  enjoying advantages  of  data-driven
modeling approaches, such as compensation for fitting errors that
cannot  be  explained  by  physics-inspired  models  as  well  as  the
reduction of model dimensionality by the analysis of measurement
data.

2.3    Transmission system modeling
The  discussion  in  this  section  on  transmission  grid  modeling
refers to the equivalent modeling of some parts of the transmission
grid that do not require detailed analysis from the perspective of a
specific  part  of  interest.  This  is  because  as  the  transmission  grid
becomes increasingly  complex,  accurate  modeling  of  all  its  com-
ponents  can  result  in  significant  computational  costs.  Equivalent
modeling  of  the  parts  that  do  not  require  detailed  analysis  is  an
efficient solution.

The difference in the number of interfaces between the area(s)
to be equivalanced and the areas(s) to be analyzed can lead to dif-
ferent methods. For example, when viewing the transmission grid
from the perspective of a distribution grid, there is usually a single
port  between  the  two,  as  shown  in Figure  4(a). In  another  sce-
nario,  as  shown in Figure  4(b),  there  are  multiple  ports  between
the two, and equivalence accuracy must be ensured at each inter-
face.  Single-port  models  can  be  considered  as  a  special  case  of
multi-port models[30].

In  conventional  transmission  systems,  the  dynamics  is  largely
driven by SGs. Therefore, the equivalence of transmission grid to
one  or  more  SGs  behind  impedance  has  been  widely  studied[8].
Using the coherence method,  the equivalent SG’s  parameters  are
calculated directly based on the power angle and power measure-
ment of the generator, etc. This method is shown to work well in
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conventional SG-based power generation system architectures[7].
The accuracy of conventional model reduction and equivalence

approaches  is  limited  by  the  accuracy  of  prior  knowledge  about
the transmission  grid.  With  the  deployment  of  precision  mea-
surement devices such as PMUs and DFRs, it becomes possible to
record the dynamic interactions between two regions of the trans-
mission  systems.  As  such,  DDM  begins  to  draw  more  attention
and research effort.

2.3.1    Physics-inspired model construction

Similar  to  the  traditional  approach,  for  some  situations  where
renewable energy has a relatively low penetration rate, the simplest
way  remains  to  represent  the  transmission  grid  by  one  or  more
SGs,  while  using  measurement  data  for  parameter  identification.
Ref.  [96]  models  the  transmission  grid  containing  the  field  flux
decay equation with the IEEE type 4 ST exciter model for a set of
swing equations. Ref. [97] uses a 3rd-order synchronous machine
model in parallel with a set of constant PQ loads. In Ref. [98], the
transmission grid is equivalent to a 6th-order SG with an excitation
system.  Refs.  [99]  and  [100]  add  a  2nd-order  automatic  voltage
regulator  (AVR)  model  and  a  3rd-order  governor  model  to  the
6th-order  SG model.  For  a  small  hydropower  generation cluster,
Ref. [101] uses one hydropower generator model in parallel with a
set of ZIP load models for system equivalence.

The construction of equivalent models must consider the capa-
bility of capturing complex dynamics of a large transmission grid
with  numerous  generators  and  loads.  The  more  complex  the
model structure and the higher order, the better the representation
of the actual transmission grid dynamics. especially those of exci-
tation  systems  and  turbine-governors.  However,  with  this  also
comes  the  increasing  computation  and  data  requirements  for
parameter  identification.  The  advancing  computational  power
and sensor deployment in recent years has opened up the possibility
of more complex and accurate modeling.

For large power systems with multiple clusters of SGs, the simple
equivalence to one machine may be lead to large errors. Ref. [102]
represents  each  region  of  the  system  to  be  modeled  to  an  SG
behind  an  equivalent  impedance.  Ref.  [103]  uses  a  two-machine
system for  representing  the  transmission grid.  Ref.  [104]  reduces
the  dimensionality  of  the  entire  WECC  grid  by  characterizing  it
with a five-machine system. The multi-machine models may sim-
ulate system with multiple SG clusters more accurately, but bring
about the same issue of increased complexity for parameter iden-
tification.

2.3.2    Purely data-driven model construction

In addition to using the general approach of transfer functions for
equivalence[105], it is also possible to obtain the information needed
for  model  construction  directly  from  the  dynamic  data,  i.e.,  the
dynamic feature extraction method.

Ref.  [106]  explores  the  optimal  choice  of  time  windows  for
obtaining  grid  dynamics  using  the  DMD  method.  The  DMD
approach is  to  fit  the  nonlinear  dynamics  through a  set  of  linear
systems, preserving the main linear part by singular value decom-
position (SVD).  Based on the  DMD method,  Ref.  [107]  uses  the
Koopman operator to extract the system dynamics. Ref. [108] also
uses  SVD  to  extract  dynamic  features,  but  then  selects  the  main
features to determine the feature generators. The system states are
reconstructed by a linear combination of the feature generators to
yield  nonlinear  dynamics.  The  subspace  identification  method  is
also  common  for  dynamic  extraction.  Ref.  [109]  adopts  this
method to equivalence power system dynamics with measurements

only.  The  method  mainly  leverages  the  theoretical  result  that  a
nonlinear  dynamic  system  can  be  equivalent  to  an  infinite-
dimensional linear system, and thus identifies and reconstructs the
main  subspace  of  this  infinite-dimensional  linear  space  to  fit  the
nonlinear  dynamic  system.  In  Ref.  [110]  ,  a  neural  dynamic
equivalence  (NeuDyE)  approach  integrates  physics-aware
machine  learning  and  neural-ordinary-differential-equations
(ODE-Net)  to  discover  a  dynamic  equivalence  of  the  external
power grid  while  preserving  its  dynamic  behaviors  after  distur-
bances with guaranteed closed-loop accuracy.

O(n3)

The purely  data-driven methods  eliminate  the  dependency on
the prior knowledge of the system with some costs. For example,
SVD increases  the  number  of  operations,  and  the  state  subspace
method  introduces  pseudo-inverse operations  with  a  computa-
tional complexity of .

Similar to the model construction for other objects, neural net-
works have been used for modeling transmission system dynamics
leveraging  their  excellent  expressive  power.  Ref.  [111]  uses  two
neural networks to equivalence the grid. The first neural network
is the bottleneck ANN, which forms a reduced order model. The
second one is  an RNN that replaces discrete ordinary differential
equation  (ODE)  to  make  predictions  at  discrete  time  steps.  Ref.
[13]  proposes  an  equivalent  method  for  a  set  of  reduced-order
differential-algebraic  equations  (DAEs)  of  a  transmission  grid,
with  the  differential  equations  in  the  DAEs  partially  replaced  by
ANNs.  Ref.  [112]  adopts  an  Elman  neural  network  for  dynamic
modeling. As  with  any  other  modeling  tasks  using  neural  net-
works,  there  are  challenges  in  choosing  the  number  of  network
layers,  activation  functions,  etc.,  which  have  been  largely  been
addressed by trial-and-error approaches in the existing literature.

2.3.3    Data-assisted physics-inspired model construction

In power system operations, prior knowledge of the transmission
grid almost always exist  to a certain degree.  Exploitation of  prior
knowledge  together  with  data  could  enhance  the  efficiency  and
reliability of the model construction methods.

For  example,  without  high  renewable  energy  penetration,  the
dynamics of the transmission grid are largely driven by groups of
SGs, hence the model construction can first be assisted by clustering
analysis or coherence methods using SG characteristics. Ref. [108]
exploits MATLAB clustering toolbox before the modeling process.
Ref. [113] studies the coherence of the generators in the transmis-
sion grid using the measurements of frequencies and power angles
of  the  SGs,  and  equivalences  coherent  units  to  2nd-order  SG
models, after which the parameters are identified using measure-
ment data. Ref. [30] takes the power angles for coherence analysis.
After each coherent unit is represented by a SG model, and the SG
models are connected through an external equivalent impedance.
A  hybrid  dynamic  simulation  method  for  sensitivity  analysis  is
developed  to  determine  the  key  parameters  to  be  identified.  Ref.
[114]  relies  on  the  system  topology  to  directly  determine  the
coherent units as opposed to relying on power angles.

In addition, Ref. [115] adopts an autoregressive with exogenous
inputs (ARX) model structure. Ref. [116] discusses model reduction
at  the  electromechanical  transient  level,  using  a  set  of  physics-
informed  PDEs  for  the  Australian  grid  by  converting  the  tidal
equation to an algebraic equation and the swing equation to a dif-
ferential equation. Ref. [117] constructs a stochastic model for the
grid  frequency  and  solves  the  equivalent  parameters  one  by  one
based on kramers-moyal,  fokker-planck in stochastic theory with
the measured data of the system.

For  the  multi-port  network  equivalence  modeling  shown  in
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Figure 4(b), neural networks have a greater advantage. The com-
plexity of multi-port models, compared to single-port models, lies
in  the  interdependence  of  properties  between  different  ports
determined by the system topology and operating conditions. It is
difficult to explicitly use prior knowledge to develop representations
of such interdependence. Neural networks, with their rich expres-
sive  power,  are  well-suited  for  fitting  the  hidden  relationships
between data at different ports when combined with prior knowl-
edge such as system topology. Ref. [118] equivalences each port to
an SG model  with excitation,  but this  is  difficult  to represent the
relations between different ports. Ref. [31] reduces the order of the
complex system by the coherence analysis  method,  after  which a
set  of  ANNs  is  complemented  at  each  port  to  fit  the  difference
between  the  reduced-order  network  and  the  actual  power,  thus
achieving  highly  accurate  equivalence.  Ref.  [119]  adds  control
parameters, switching  states  and  other  information  to  the  tradi-
tional power and voltage variables as ANN inputs, which leads to
better fitting of the grid dynamics. In Ref. [120], a complete black-
box equivalence method for large transmission grids is proposed.
The  voltages  and  angles  of  all  ports  are  used  as  inputs  to  obtain
the active and reactive power of all ports. The equivalence model
is  an  artificial  neuro-fuzzy  inference  system,  which  contains  two
parallel  networks  with  different  structures  to  better  simulate  the
system. For  faster  dynamic  simulations  under  arbitrary  contin-
gencies that result  in network topology changes,  Ref.  [121] trains
neural network (NN) models that represent the dynamic compo-
nents  in  the  transmission  grid  and  integrates  such  NN  models
with the algebraic equations that represent the physical models of
AC power flow. As such, there is no need for re-training the NN
models when network topology changes as it only affects the alge-
braic equations.

The physics informed neural network (PINN) utilizes physical
knowledge to provide guidance for the construction of neural net-
works  in  the  solution  to  physical  problems,  which  is  promising
direction of research[122]. In recent years, PINN has garnered com-
prehensive attention and application in various fields of the power
system[123]. The previous section mentioned the Koopman operator
analysis method based on DMD, which can be effectively utilized
to analyze the dynamics of complex nonlinear systems. However,
using  the  DMD  algorithm  requires  that  the  spectrum  of  the
Koopman  operator  is  discrete[124].  Correspondingly,  the  PINN
method incorporates physical constraints, treating the neural net-
work as a nonlinear approximator and assigning physical meaning
to  its  inputs  and  outputs,  thus  effectively  approximating  the
Koopman operator[124]. Ref. [125] employs an autoencoder to learn
the Koopman operator, and experimental results on the IEEE 39-
bus 10-machine test system demonstrate that this method exhibits
better accuracy in state prediction and transient stability compared
to  the  EDMD  algorithm.  Ref.  [126]  introduces  a  method  called
deepDMD that utilizes automated dictionary learning to learn the
Koopman  operator.  This  method  employs  deep  learning  to
simultaneously learn the Koopman operator and search for high-
dimensional  spaces  to  obtain  efficient  and  sparse  dictionaries,
which  is  shown  to  improve  the  accuracy  of  high-dimensional
dynamic  system  prediction  by  an  order  of  magnitude  compared
to the EDMD method. Ref. [127] employs a deep input-Koopman
learning approach to capture system frequency dynamics, including
open-loop swing  equations,  market  behavior,  deception  mecha-
nisms, and more. This ensures that the controller remains robust
even in the presence of price deception.

The hybrid methods reviewed above are based on diverse theo-
ries and take good advantage of the prior knowledge of transmission

systems, achieving satisfactory results in many applications such as
stability analysis[31], system identification[112], etc.

2.4    Distribution system modeling
The  transmission  system  equivalence  reviewed  above  are  largely
for the modeling of a transmission grid from a regional transmission
operator’s point of view. The other common challenge to address
in  transmission  system  operation  is  to  model  the  aggregated
dynamics of distribution systems. Similarly, as shown in Figure 1,
when analyzing a distribution system, it is sometimes necessary to
model  the  aggregated  behaviors  of  parts  of  system,  such  as  a
feeder  section  or  a  microgrid.  Therefore,  the  implication  of  the
distribution system modeling discussed in this section is to model
the dynamics of  a  whole or a  part  of  a  distribution system when
analyzing  the  system at  the  higher  level.  As  mentioned  before,  if
the  distribution  system  does  not  contain  distributed  generators
(DG),  most  of  which  are  commonly  renewable  energy  sources,
then it can be considered as load modeling as reviewed in Section
2.1. Therefore, the influence of DGs, which gives rise to active dis-
tribution  systems,  is  the  focus  of  discussion  in  this  section.  In
addition, this section is different from Section 2.2, in that this section
is  concerned  with  aggregated  modeling  of  a  distribution  system
with numerous DGs and loads, whereas Section 2.2 discusses the
modeling of a large pure renewable energy plant. As active distri-
bution  systems  carry  the  characteristics  of  all  the  three  systems
reviewed above  before  (load,  renewable  energy,  and  power  net-
work),  it  is  not  surprising that  almost  all  the categories  of  model
construction methods reviewed above can be found here.

2.4.1    Physics-inspired model construction

Based on the fact that a distribution system consists of loads and
DGs, one of the simplest equivalents is to select a model from the
load  model  inventory  and  a  model  from  the  generation  model
inventory, and connect the two in parallel.

Refs. [128] and [129] take the parallel approach by constructing
a ZIP + IM model in parallel with an SG model connected to the
grid  through  an  inverter.  However,  the  inverter  model  of  Refs.
[128] and [129] does not take into account its control characteristics
and only equivalence the filter. Ref. [130] uses ZIP + asynchronous
machine + SG for equivalence and increases the number of states
by introducing a grid connection switch for the equivalent SG.

For those distribution systems where renewable energy consti-
tutes  the  main  type  of  DGs,  the  SG  model  can  be  replaced  with
the detailed model of a renewable energy generation system. Ref.
[74] constructs a complete PV equivalence model including control
and protection, based on which an EL + IM model is developed to
represent  distribution  systems  with  a  high  penetration  of  solar
PV[74, 131].  Refs.  [132]  and  [133]  replace  the  PV-based  IBR  model
with the IBR model of wind turbines for the distribution systems
with high penetration of wind power. Ref. [134] constructs a dis-
tribution  system  model  by  means  of  paralleled  wind  power  IBR
model + PV IBR model + ZIP model, and it mainly focuses on the
uncertainty  caused  by  geographical  distribution.  Ref.  [135] con-
structs  an  equivalent  model  for  a  microgrid  with  a  static  load  +
7th-order  SG  model  +  detailed  VSC  model.  The  VSC  model  is
constructed based on the classical double closed-loop vector con-
trol.  Ref.  [136]  proposes  an  equivalent  model  consisting  of  three
components in parallel, two EL models, an IM model with an IBR
equivalent model including the inner control loop, which manifests
satisfactory performance under large perturbations.

This  composite  model  is  simple  in  structure  and  fast  for
parameter identification. The prerequisite for good performance is
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that  accurate  prior  knowledge  of  the  main  types  of  DGs  in  the
system. In addition, sources of accuracy losses also result from the
ignorance  of  the  distribution  network  properties,  especially  the
impact  of  the  DG  locations  over  the  network  topology  on  the
dynamic responses.

2.4.2    Purely data-driven model construction

The  same  methods  used  for  the  modeling  of  other  objects  also
work for the modeling of distribution systems.

Neural  networks  are  one  of  the  widely  studied  methods  for
characterizing distribution systems containing complex dynamics.
Ref. [137] constructs an ANN for modeling using previous voltage
and power data as well as present voltage data as input. Ref. [138]
has the same inputs as Ref. [137], but RBFNN for modeling. Ref.
[139]  establishes  a  digital  twin  system  for  distribution  systems
through  ANN.  Ref.  [139]  verifies  the  accuracy  of  ANN-based
models under different scenarios and finds them to be more accu-
rate  for  active  power  compared  with  reactive  power  prediction.
Ref.  [137] considers the multi-order characteristics of the system,
thus  incorporating  past  data  as  inputs  to  better  simulate  multi-
order  systems.  In  contrast,  RBFNN uses  radial  basis  functions  as
activation  functions[138],  enabling  faster  convergence  speed  when
dealing  with  nonlinear  problems,  making  it  more  capable  of
approximating  complex  nonlinear  relationships,  and reducing its
sensitivity to noise.

In  Ref.  [14],  distribution  system  dynamics  are  modeled  using
RNN,  where  the  input  is  a  time  series  of  voltage  differences  and
the output is  the difference of currents.  But it  is  well  known that
RNN has the problem of vanishing gradient, which means that it
only  has  short-term  memory  capability.  Therefore,  Long  short-
term  memory  (LSTM)  networks  have  been  promoted  in  recent
years with more complex structures and better performances[140, 141].
Ref. [142] models the distribution grid with LSTM and verifies the
equivalence  under  different  faults.  Ref.  [143]  provides  a  more
detailed  analysis,  first  demonstrating  that  the  dynamics  of  a
microgrid can be expressed by a set of DAEs, then further deriving
the  fact  that  the  DAEs  can  be  expressed  by  an  LSTM  model,
which is used to model the microgrid. LSTM has the potential to
yield  better  results  but  also  has  higher  complexity  and  a  larger
number  of  parameters  to  identify/learn.  Gated  recurrent  units
(GRUs) have a simpler structure by eliminating some parameters
while maintaining similar performance as LSTM. Ref. [144] splits
the dynamics of the microgrid into two components: one charac-
terized  by  a  set  of  DAEs,  and  the  other  representing  unknown
factors not captured by the DAEs. It fits the latter component by
GRU to correct the output of the DAEs, yielding a more accurate
result than  pure  DAE  models  of  microgrids.  More  recent  meth-
ods, such as neural ordinary differential equations (neural ODEs),
have  also  been  employed  to  describe  distribution  system  or
microgrid dynamics in continuous time[145].

In  addition  to  neural  network  methods,  dynamic  feature
extraction methods  have  been applied in  the  field  of  distribution
grid or microgrid equivalence. Refs. [26] and [27] use the Prony’s
method  for  model  construction.  General  system  identification
approaches are also common, e.g., Ref. [146] constructs the model
directly with a general set of DAEs. Ref. [147] uses the state space
method  for  modeling.  Ref.  [148]  compares  the  Prony’s  method
with the state space method and finds that both have satisfactory
equivalence performance in most cases, with the Prony’s method
being superior in only some special cases.

Overall,  in  the  dynamic  modeling  of  distribution  systems,
purely  data-driven  methods  receive  relatively  more  interest  than

other objects  to be modeled in power systems,  largely due to the
complexity  of  distribution  system  structures  as  well  as  the  sheer
number and diversity of the components.  These methods do not
rely on any prior knowledge of the object, but are highly demanding
on data. For physics-inspired modeling, even when there is a lack
of data  for  accurate  identification  of  model  parameters,  the  dis-
crepancy  of  results  from  the  model  and  the  reality  is  often  in  a
moderate  range  due  to  strong  generalization  capability  of  model
structures with built-in prior knowledge. However, for the purely
data-driven approaches, the response of the model may drastically
diverge from reality if there is not enough training data or the test
scenario is an unforeseen one, as the model may be subject to both
overfitting and underfitting simultaneously without sufficient and
representative training data.

2.4.3    Data-assisted physics-inspired model construction

Drawing on the idea of modeling IBRs, equivalent impedance can
also  be  used  for  distribution  grid  or  microgrid  equivalence.  The
difference  is  that  the  equivalent  impedance  method  for  IBRs
requires an prior knowledge about the control loops, while in Ref.
[149] for distribution system modeling, the approach of an equiv-
alent  impedance  model  is  developed  with  online  equivalent
parameters obtained by a machine learning algorithm.

Consistent with load modeling, the improved ER model is used
for distribution grid modeling. Ref. [150] modifies the expressions
in  the  parameters  of  the  improved  ER  model  to  enabling  the
capability  of  representing  bidirectional  power  flow.  The  order  of
the transfer function of the improved ER model is determined by
fitting in the frequency domain. Ref.  [151] obtains similar results
by changing the input to the difference of voltages and introducing
a symbolic function to the ER model.

Likewise,  clustering  algorithms  can  be  combined.  Ref.  [151]
first  clusters  the  data  using  the  density-based  spatial  clustering
method, after which the dynamics of each cluster is modeled and
finally superimposed to obtain the entire dynamic model.

Ref. [152] devises a neuro-dynamic state estimation method for
networked  microgrids.  This  approach  establishes  an  ODE-Net-
based dynamic model of the unidentified subsystems, enabling the
estimation of dynamic states of the remaining microgrids through
Kalman filters. Ref. [153] models microgrids using system identi-
fication  theory.  This  method  simulates  frequency  droop  control
and  local  secondary  load  frequency  control,  while  incorporating
reactive  power  and  system  voltage.  It  uses  instantaneous  power
theory  to  treat  current  as  the  output  of  the  model.  Ref.  [154]
investigates  the  problem  of  equivalence  when  a  microgrid  has
multiple  interfaces  with  the  distribution grid.  (similar  to  the  case
in Figure  4(b)).  It  first  captures  the  dynamics  of  each  microgrid
using the Prony’s  method,  then performs a  clustering analysis  to
reduce  the  number  of  systematic  orders.  Ref.  [155]  develops  a
combination of the ARX method and the state space method for
different perturbations to increase the adaptability of the model.

As seen from the review above, there are many possible ways to
form a hybrid method based on the chosen physics-inspired and
data-driven  methods  and  the  mechanism  to  combine  them.
Hybrid methods  typically  integrate  prior  knowledge  and  mea-
surement data well  and thus gain significant popularity in recent
studies.

2.5    Summary of model construction methods
In  this  section,  a  categorized  introduction  is  provided  for  the
model construction of loads, renewable energy sources, transmis-
sion grid, and distribution grid in power systems.
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The dynamic models of these four categories of objects all con-
form to the form of  Eq.  (1)  (which is  a  physically  general  form).
However, differences and similarities in the corresponding model
architectures,  stemming  from  their  respective  characteristics,  are
illustrated in Figure 5. We choose some of these relationships for
specific illustration.  When  comparing  transmission  and  distribu-
tion  grids,  both  exhibit  complex  nonlinear  dynamics,  making
them suitable for methods like DMD. However,  the modeling of
an  external  transmission  grid  might  involve  multi-port equiva-
lence,  unlike  the  distribution  grid  which  is  typically  single-port
due  to  its  radial  structure.  Additionally,  most  transmission  grids
still primarily  feature  SGs,  allowing  for  approaches  such  as  syn-
chrony,  whereas  distribution  grids  are  dominated  by  IBRs  and
loads.  These  differences  result  in  different  model  construction
approaches. For the comparison between the modeling of renew-
able energy power plants and the modeling of transmission grids,
they both need to aggregate multiple dynamic sources, calling for
the application of aggregation algorithms. The distinction between
them lies in the different dynamic sources: the former is inverter-
based,  while  the  latter  is  primarily  SG-based.  When  comparing
IBR  (renewable  energy  source)  model  construction  with  load
model  construction,  they  both  require  aggregating  equivalent
models to a single port, but their emphasis on equivalence differs.
The modeling of a renewable energy plant focuses on aggregating
the dynamics of the same type of component under different control
modes/operating conditions (e.g., the same types of wind turbines
with different wind speeds or the same types of solar arrays with
different  irradiances),  while  load  model  construction  emphasizes
aggregating  the  dynamics  of  different  types  of  components  (dif-
ferent types of loads). Finally, the dynamics of the distribution grid
are mainly provided by loads and IBRs, therefore, the construction
of  the  distribution  grid  model  is  influenced  by  both  loads  and
IBRs.

In  terms  of  the  classification  of  model  construction  methods,
we  categorize  them  into  three  groups:  physics-inspired,  data-
assisted physics-inspired, and purely data-driven. These three cat-
egories  vary  in  their  reliance  on  prior  knowledge,  ranging  from
high  to  low,  while  their  reliance  on  data  follows  the  opposite
trend. The “degree of reliance” here might be difficult to quantify,
but  the  criteria  to  distinguish  between  the  three  categories  of
methods are distinct. For physics-inspired model construction, the
model structure is derived purely from prior knowledge about the

object, not from the data. Note that for physics-inspired methods,
the parameter identification process may still rely on data (as dis-
cussed in Section 3), but data does not play a role in model con-
struction,  i.e.,  determining  the  structure  of  the  model.  Its  high
reliance on prior knowledge means that if the object is a complete
black  box,  this  method  cannot  be  applied  since  the  construction
its model structure would be unfeasible.  In contrast,  purely data-
driven methods for model construction only extracts information
from data without using any prior knowledge about the physics of
power  systems.  These  methods  can  be  used  to  construct  models
for  black-box  systems,  but  typically  have  high  data  requirements
and  low  interpretability.  General-purpose  transfer  functions  and
neural networks are typical examples of this category of methods.
Finally,  any  methods  that  leverages  information  from  both
knowledge about systems physics and measurement data are clas-
sified  as  data-assisted  physics-inspired model  construction meth-
ods. The  criteria  above  can  be  used  to  classify  any  model  con-
struction methods into one and only one of the three categories.

With  the  comprehensive  literature  review  presented  above,  it
can  be  observed  that  the  three  categories  of  approaches,  i.e.,
physics-inspired,  purely  data-driven,  and  data-assisted  physics-
inspired,  are  all  evolving  towards  greater  complexity  but  higher
accuracy over time.  For physics-inspired model  construction,  the
load  modeling,  for  example,  has  evolved  from  the  simple  ZIP  +
IM  model[36] to  the  comprehensive  CMPLDW  model[48],  with  an
increasing  number  of  modeled  load  types.  This  provides  a
stronger  capability  of  characterizing  load  behaviors;  meanwhile,
the  complexity  of  the  models  has  also  increased,  along  with  the
growing  number  of  parameters  that  need  to  be  identified.  This
trend is also reflected in other modeling approaches, such as IBR
modeling progressing from grid-side models[75] to the models with
DC side dynamics[76], and transmission network modeling with an
increase  in  the  order  of  synchronous  generator  (SG)  models[97–99].
For  purely  data-driven  model  construction,  similar  trends  are
observed.  Taking  neural  network-based  methods  as  an  example,
the  initial  ANN  methods  have  simple  structures  with  fewer
parameters[137]. They are suitable for fitting relatively straightforward
dynamic characteristics.  Through  improvements  in  model  struc-
ture  and  activation  functions,  methods  like  RBFNN[138] achieve
better fitting results and convergence speeds. Subsequently, widely
used  methods  like  RNN[14],  LSTM[140],  and  GRU[144] employ  time
series modeling,  enabling better fitting of higher-order dynamics.

 

Transmission grid

Distribution grid Load

Renewable energy

1

2

3

6

5

4

1
Both can use dynamic extraction techniques. Distribution grids are mostly single-port, while 
transmission grids may have multi-portsituations. �e dynamics of distribution grids are primarily 
composed of DGs and loads, while those of transmission grids are mainly comprised of SGs. 

3
Load modeling needs to re�ect the dynamic characteristics of di�erent types of components,
whereas IBR modelingneedsto consider the dynamic characteristics of the same type of components
under di�erent operational states/control modes.

2
Both can utilize aggregation techniques.
�e dynam ics of IBRs areinverter-based, while those of the transmission grid are SG-based.

4
Since load is a component of the distribution grid, the construction approach for load modelsis also 
encompassed within the construction approach of the distribution grid model.

5
Since IBR is a component of the distribution grid, the construction approach for IBR models is also 
encompassed within the construction approach of the distribution grid model.

6 �e dynamic characteristics of loads and transmission grids di�er signi�cantly, butsomegeneric 
methods can be applied to both.

Fig. 5    The relationship between various objects.

REVIEW Data-driven modeling of power system dynamics

 

210 iEnergy | VOL 2 | September 2023 | 200–221



The neural-ODE method[145], compared to discrete-time modeling
approaches,  allows continuous-time modeling. The emergence of
deep learning further enhances the fitting capabilities. As has been
extensively  shown  in  the  literature,  as  the  complexity  of  models
increases, the accuracy of modeling generally improves. However,
this also comes at  the cost of  more intensive computation, larger
amount of required training data, higher risks of falling into local
optima, and more challenges for interpretability.

These  developments  and changes  have raised higher  demands
for  model  parameter  identification,  which  is  precisely  the  main
focus of Section 3.

3    Parameter identification
Once the model structure is determined, the next step of DDM is
parameter  identification,  i.e.,  using  measurement  data  to  obtain
the parameters of the model, and ultimately completing the entire
modeling process. This section will be divided into four subsections
to comprehensively introduce the state of the art of DDM parameter
identification techniques, including problem formulation, solution
algorithms, sensitivity analysis, and online identification methods.

3.1    Problem formulation

f h

For  some clustering  problems,  the  parameters  may  be  calculated
offline. For example, Refs. [89] and [93] use the clustering algorithm
to  obtain  aggregated  turbine  parameters  directly.  But  for  most
other cases, as stated in Eq. (1), once the model structure is deter-
mined,  that  is,  and  are  determined,  the  main  objective  of
parameter identification is to find a set of parameters such that the
output of  the model  can best  match the measurement data.  This
will  lead to an optimization problem, and the formulation of  the
objective  function,  i.e.,  the  difference  between the  model  outputs
and the observed measurements, is an important area of study.

There  are  many  ways  to  represent  the  distance  between  the
model outputs and observed measurements, which affect the per-
formance of the identification method. The most common is the
Euclidean distance, i.e., L2 norm given by Eq. (3):

J=
N

∑
i=1

(ŷi (θ)− yi (θ))2 (3)

ŷi yi

θ J

where  characterizes  the  output  sequence  of  the  model  and 
denotes the actual sequence of measurements. The objective is to
find a set of parameters  such that  is minimized[50, 52, 53, 59, 66, 68] etc.
This  problem  is  known  as  the  least  squares  problem.  The  least
squares  estimator  is  known  to  be  the  unbiased  and  minimum-
variance estimator  for  linear  systems  under  Gaussian  noise.  Fur-
thermore,  the  solution  algorithms  of  least  squares  problems  is
computationally efficient and numerically stable, and thus it is the
mostly  widely  implemented  objective  function  for  parameter
identification.  Lease-squares  parameter  identification  have  been
integrated  into  various  computational  software,  such  as
MATLAB[155].  Parameter  identification  of  neural  networks,  also
known as the weight optimization or training process,  also tends
to consider the least squares as the cost function to minimize[62, 63].
In addition to the classical form of Eq. (3), it can also be averaged
or averaged with a square root.  Ref.  [133] adds some restrictions
to it, using the potential barrier function for equivalent identifica-
tion.

However,  the  least-squares  method  also  has  some  drawbacks,
such as  its  ideal  Gaussian  noise  assumption.  Actual  noise  distri-
butions  of  measurement  data  may  be  non-Gaussian  and  long-
tailed,  and  sometimes  may  even  be  colored  or  time-varying,  in

which  case  the  performance  of  least-square estimators  may  sub-
stantially  deteriorate.  The  least  squares  also  treat  each  individual
measurement  with  equal “trustworthiness”,  and  is  unable  to
account  for  the  different  accuracy  levels  of  different  information
sources.  In addition,  the least-squares method is  very sensitive to
outliers,  and  a  gross  measurement  error  can  have  a  high  impact
on the estimated parameters. Furthermore, the least squares does
not  take  into  account  the  uncertainty  of  the  model  structure,
which  can  lead  to  over- or  under-fitting  problems.  Finally,  the
least-squares solution is not optimal for nonlinear systems.

To cope with some of the aforementioned problems, other dif-
ferent  formulations  of  objective  functions  have  been  studied  in
DDM  in  recent  years.  For  example,  a  classical  variant  of  least
squares, is weighted least squares (WLS):

J=
N

∑
i=1

Wi(ŷi (θ)− yi (θ))2 (4)

Wiwhere  indicates the weights of residuals[29, 37, 39, 74, 99, 100]. By assigning
different weights to different measurements, WLS can account for
different levels of measurement uncertainty. In other words, WLS
can incorporate prior knowledge of the data into the identification
process,  assign  high  weights  to  highly  reliable  data,  suppress  the
adverse effects of outliers, and enhance flexibility and accuracy.

Another typical variant is recursive least squares (RLS)[87, 156].  By
recursive,  it  means  to  update  the  estimated  parameters  after  the
receipt of each new measurement, which makes it well suited for
real-time applications and able to adapt to changing environments
and  model  dynamics.  Close  to  RLS  is  the  application  of  the
Kalman  filter  framework  for  parameter  identification[51, 73, 157, 158],
which  also  updates  the  identification  results  at  each  data  update.
The  difference  is  that  RLS  has  a  single  stage  of  measurement
update  while  the  Kalman  filter  framework  uses  a  two-stage pro-
cess, model prediction and measurement update.

To reduce overfitting and improve model interpretability, regu-
larization  methods  have  been  applied  to  least-squares  problems,
such  as  least  absolute  shrinkage  and  selection  operators
(LASSO)[107, 159]:

J= 1
N

N

∑
i=1

(ŷi (θ)− yi (θ))2 + λ
n

∑
l=1

∣∣θref
l − θl

∣∣ (5)

λ n
θref

where  is a scaling factor;  is the dimensionality of parameters
and  is  a  reference  value  for  the  parameters.  Compared  with
traditional  least  squares,  Lasso  adds  a  penalty  term,  the  most
important feature of LASSO is that it also allows feature (parame-
ter)  selection  by  reducing  the  less  important  parameters  to  zero,
alleviating the overfitting problem and simplifying the model.

In addition to L2 norm, L1 norm can also be used to describe
distances. It leads to the least-absolute-value formulation[57, 119, 160]:

J= 1
N

N

∑
i=1

|ŷi (θ)− yi (θ)| (6)

The approach takes the absolute value of the residual for mini-
mization.  The  most  prominent  property  of  the  least-absolute-
value estimator is to reduce the effect of outliers on the model fit-
ting,  gaining  a  much  higher  robustness  than  traditional  least-
squares  estimator.  The  problem  can  be  converted  into  a  linear
programming problem.  The computation cost  is  higher  than the
least-squares,  but  with  the  advancement  of  linear  programming
solvers  and  computational  power,  it  has  become  a  less  limiting
factor than before.

Most recently,  Chen et  al  proposed a  new method of  data  fit-
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ting.  Instead  of  fitting  the  time-series  output  data,  the  objective
function in Ref. [161] is to fit a data Hankel matrix formed by the
output measurements. This data Hankel matrix has a low rank. In
turn,  a  rank-constrained optimization problem is  formulated.  To
solve  this  problem,  rank  constraints  may  be  relaxed  to  a  convex
optimization problem:

J=
∥∥H∗

v,h−Hv,h (θ)
∥∥2

F (7)

H v h
θ

where  is  a  Markov  matrix,  and  represent  the  number  of
rows and columns of the matrix, and  represents the parameters
or states  to  be  optimized.  Through  convex  iteration,  the  opti-
mization  problem  is  solved  and  the  model  parameters  can  be
found.  This  problem  formulation  and  solving  strategy  has  been
applied in Ref. [162] to find the parameters of a synchronous gen-
erator and a grid-following inverter.

The aforementioned objective functions (loss functions) can be
used to estimate parameters in physics-inspired models as well as
the  training  of  data-driven  models  such  as  the  NN.  However,
PINN goes further by incorporating physical domain knowledge.
The general form of the PINN can be expressed as follows:

J= L(ŷ, y)+ λR(W,b)+ γRphy (X, ŷ) (8)

L R
Rphy

where  is the conventional loss function;  is the parametric reg-
ularization term and  is the physical regularization term based
on  the  relationship  between  equations  of  physical  principles  and
predict  output[123].  This  formulation  effectively  integrates  physical
knowledge into deep learning.

3.2    Solution algorithms

3.2.1    Solution to LS and NLS problems

With the problem formulation defined, the next step is to devise a
suitable solution method. For linear systems, closed-form solutions
exist for the least squares problem[50, 59]. Ref. [34] derives its solution
under perturbation directly from the exponential model. Ref. [56]
identifies  the  parameters  in  multiple  stages.  Some  of  them  are
obtained directly  by offline experiments,  and the remaining ones
are identified via measurements. Ref. [85] uses the iterative rational
Krylov algorithm  to  solve  the  least  squares  problem  with  lin-
earization of the trajectory.

However, in reality, power system components are largely non-
linear.  For  nonlinear  least  squares  (NLS)  problems,  the  solution
cannot  be  obtained  directly.  Iterative  methods  are  typically
required to approach the solution. The traditional quasi-Newton-
type  method  is  well  established,  and  the  Levenberg-Marquardt
method,  which is  more  robust,  has  gained recent  favor[52, 53, 66, 68, 129].
Other  algorithms,  such  as  Gauss–Newton[146],  Broyden,  Fletcher,
Goldfarb,  and  Shanno[163],  have  also  been  shown  to  be  reliable.
These methods have been integrated into many existing software
packages,  such  as  ORIGIN  7.5  and  MATLAB’s  PSAT
toolbox[26, 52, 83, 104, 105, 128, 147].  These  iterative  methods  do  not  guarantee
that  the  solution  found  is  the  global  optimal  solution.  For  NLS
problems,  there  are  often  many  local  optimums  in  the  solution
space. One major limitation of traditional methods is that they are
likely  to  fall  into  local  optimums,  which  is  highly  dependent  on
the initial guesses and search strategies.

3.2.2    Heuristic optimization algorithm

For  nonlinear  parameter  identification  problems,  in  order  to
tackle local optimums and search for better solutions especially in
high-dimensional  spaces,  intelligent  (heuristic)  algorithms  are

often applied.
Refs.  [58, 97, 135]  use  the  genetic  algorithm  inspired  by  the

process  of  natural  selection  in  biology  to  identify  optimal  model
parameters. Ref. [57] relies on a population diversity-based genetic
algorithm  (PDGA)  to  implement  global  search,  which  is  faster
than  traditional  GA  computation.  Refs.  [30]  and  [118]  adopt  a
non-dominated sorting genetic algorithm II (NSGA-II) as a multi-
objective  optimization  algorithm.  Ref.  [72]  improves  GA  in  four
aspects: parameter initialization, individual selection, self-adaptive
crossover  and  mutation  and  iterative  identification  to  improve
recognition  efficiency.  Ref.  [29]  performs  initial  search  with  the
GA  method,  and  then  applies  the  simplex  search  method  to
quickly obtain the optimal solution. GA can also be used to solve
least-absolute-value problems[112].

Particle swarm algorithms (PSO) are also a very common class
of  methods  applied  for  solving  parameter  identification
problems[164].  Refs.  [136]  and  [153]  use  the  evolutionary  particle
swarm optimization (EPSO) to solve NLS problems. Ref. [98] uses
the  novel  salp  swarm  algorithm  (SSA),  an  alternative  to  PSO
designed to handle multi-modal and high-dimensional optimiza-
tion problems, capable of balancing global and local search.

Compared  with  the  PSO  algorithm,  the  GA  algorithm  is  less
sensitive to  the  initial  conditions  and  more  robust,  but  the  con-
vergence  speed  is  typically  slower  and  the  computational  cost  is
typically high; the PSO algorithm is simpler with fast convergence,
but it is more likely to be stuck in local optimums. Both algorithms
have  their  own  advantages  and  disadvantages,  and  it  may  be
appropriate  to  use  a  combination  of  the  two  to  achieve  better
results.  For  example,  Refs.  [43]  applys  crossover  operation to the
PSO algorithm by borrowing the idea of crossover operation from
the genetic algorithm so as to improve the convergence of PSO.

In  addition  to  the  above  two  commonly  used  heuristics,  Refs.
[15] use an adaptive simulated annealing (SA) method to identify
parameters  and  the  Cramér–Rao  Lower  Bound  to  evaluate  the
estimation accuracy.  In Ref.  [149], the shuffled frog leaping algo-
rithm is  applied to  determine the  approximate  range of  parame-
ters, and the GA method is implemented to quickly find the solu-
tions. A new heuristic optimization algorithm called mean-variance
mapping  optimization  (MVMO)  is  proposed  in  Ref.  [99].  The
MVMO  method  maps  random  variables  to  the  range  of  0  to  1
through  a  set  of  mapping  functions  whose  inputs  are  the  mean
and variance of the current optimal solution. This method has the
feature  of  being  able  to  search  for  but  not  get  trapped  in  local
optimal  solutions.  Ref.  [100]  improves  the  MVMO  algorithm  to
include multi-parental crossover for enhanced search capabilities,
in  addition  to  a  swarm  intelligence-based  procedure.  Ref.  [74]
prefers  the  evolutionary  algorithm  (EA),  a  meta-heuristic  global
optimization method, which provides adaptive rules that allow the
search to be tailored to specific scenarios.  Ref.  [101] introduces a
self-adaptive  control  parameters  modified  differential  evolution
(SACPMDE)  algorithm  that  adjusts  the  crossover  probability
constant  based  on  the  current  convergence  state.  This  adaptive
adjustment improves the convergence properties of the algorithm.

3.2.3    Learning-based algorithms

Neural networks can be used not only for model construction but
also  for  assisting  parameter  identification.  In  Ref.  [96], measure-
ment  data  under  grid  perturbation  are  leveraged  to  identify  the
parameters of equivalent SG model based on a radial-basis function
network. Ref. [160] applies ANN as one of its parameter identifi-
cation  methods,  which  yields  better  results  than  the  standard
multi-start  algorithm available  in MATLAB Global  Optimization
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Toolbox.  In  addition  to  neural  networks,  the  support  vector
machine is also shown to be a viable means for assisting the solution
of  linear  regression  and  its  dual  model[22], where  quadratic  pro-
gramming is formulated to determine the respective parameters of
ZIP and electronic  load.  Finally,  Ref.  [92]  exploits  the  transfer  Q
learning to optimize the parameters, demonstrating stronger opti-
mization efficiency.

While learning-based algorithms have shown strong capabilities
for obtaining solutions to optimization problems,  the parameters
of  the  learning  algorithm  itself  also  require  to  be  optimized.  For
example, for the LSTM model in Ref. [42], a L2 norm with regu-
larization is used as the optimization objective for the parameters
of the neural network itself.

3.2.4    Frequency domain identification method

For a  frequency-domain model  like  ERLM, the  transfer  function
parameters can be determined via frequency domain analysis. Ref.
[115] uses QR factorization to optimize the ARX model parame-
ters. Refs. [45] and [113] leverage the well-developed curve fitting
algorithm integrated in MATLAB. In Ref. [150], the vector fitting
(VF)  method  is  applied,  which  can  approximate  in  frequency-
domain the transfer function by means of a two-stage linear least
squares  problem.  Both  methods  produces  the  parameters  of  the
function with the best fit and assess the quality of the fit. Ref. [24]
uses refined instrumental variable (RIV) approach to estimate the
equivalent ERLM parameters. The convolution with a fixed Gaus-
sian kernel is adopted to identify the parameter of the equivalent
PDE in Ref. [116].

Other  methods  such  as  Prony’s  method[148],  state  subspace
method[109],  etc.,  have  integrated  their  own  frequency  domain
parameter identification in the modeling phase. These frequency-
domain identification methods have been widely used with satis-
factory results.

3.3    Time-varying parameter problem
In existing DDM methods, it is most common to collect historical
measurement data and obtain a set of parameters that best fit the
entire  dataset.  However,  it  is  possible  that  system  characteristics
vary  over  time  due  to  the  changes  of  system  operating  points,
ambient  conditions,  external  inputs,  and/or  system  properties
itself,  in which case the optimal model parameters may also vary
widely[34]. If the model parameters are not adapted in real time, the
accuracy of the model may deteriorate, affecting the performance
of model-dependent applications for ensuring power system relia-
bility,  efficiency,  and  resiliency[165].  For  example,  the  accuracy  of
model parameters is significant factor for effective protection set-
tings[166].  Therefore,  various  approaches  have  been  proposed  to
enhance the adaptation of parameter identification in DDM.

3.3.1    Hyperparameters or event-oriented method

One essential idea to tackle the time variance of model parameters
is to select different sets of parameters according to systems states
or events,  such that  the selected parameters can best  characterize
the dynamic behaviors of the components under different scenar-
ios.  Hyperparameters  can  be  defined  for  the  selection  of  model
parameters.

Refs.  [34]  and  [52]  consider  the  effect  of  different  seasons  on
loads,  and  different  sets  of  parameters  are  obtained  for  different
seasons. In Ref. [38], optimal parameters under different categories
of system perturbations are first obtained, then support vectors are
used  to  determine  parameters  to  be  adopted  online.  Ref.  [41]
develops  an  event-oriented  time  window  selection  method  for

parameter identification. When a voltage change event is detected,
the  original  ZIP-based  modeling  parameters  change  accordingly;
otherwise,  the  parameters  remain  the  values  best  describing  the
steady state. The time window used for parameter identification is
adjusted to identify the full range of system parameters to accom-
modate  the  various  events.  Ref.  [160]  selects  the  optimal  model
according to  different  motor  penetration  rates,  wherein  the  sea-
son, perturbation,  or  motor  penetration rate  constitutes  a  hyper-
parameter.

In  some  methods,  the  relationship  between  hyperparameters
and  model  parameters  also  needs  to  be  identified.  Ref.  [54]  first
obtains  the  parameters  for  different  load  conditions  by  the  well-
established NLS tool and later uses a linear approximation to cap-
ture the relationship between load composition, total power varia-
tion and parameters, which is referred to the LAGERM method. It
is found in Ref. [55] that the optimal parameters obtained by solving
for different  operating  conditions  such  as  dynamic  load  perme-
ability  and voltage  disturbance levels  are  different.  Therefore,  the
optimal parameters for different backgrounds are first  solved for,
and subsequently,  a  set  of  ANNs  are  used  to  construct  the  rela-
tionship  between  the  background  and  the  parameters.  Ref.  [23]
first classifies the available data using clustering algorithms. Then,
an equivalent model is constructed and parameter identification is
performed for  each category of  data.  After  completing the  above
steps, a robust parameter derivation was achieved using an ANN.
Ref.  [98]  proposes  a  similar  approach  to  those  in  Refs.  [23]  and
[55],  but  finally  the  optimal  parameters  are  selected  by  a  fuzzy-
logic selection mechanism. Ref. [21] employs an empirical selection
method  for  the  three  obtained  optimal  models  to  represent  the
behaviors of loads under different perturbations.

3.3.2    Online parameter identification

Online parameter identification is another way to solve the prob-
lem. The main difficulty of online parameter identification is that
it  needs  to  be  done  with  time  constraints,  i.e.,  the  computation
time for  processing  the  data  received  in  a  time  window must  be
no longer than the length of the time window itself. Many intelligent
algorithms are limited by the speed of computation and cannot be
executed  in  an  online  manner.  Therefore,  relatively  mature  NLS
or  LS  solvers  or  novel  fast  identification  methods  are  applied  to
the  online  parameter  identification  problems.  Ref.  [68]  performs
online  parameter  identification  using  the  Levenberg-Marquardt
method by collecting data  from multiple  branches.  In Ref.  [115],
system model parameters are identified in real time using the least
squares method based on linear expansion of the system operating
points. The  disadvantage  is  that  the  approximation  error  of  lin-
earization.  Ref.  [156]  achieves  online  parameter  identification
using a robust recursive least squares method based on the Huber
M-estimator,  which  incorporates  a  convex  cost  function  and  a
strategically  variable  forgetting  factor  adjustment  scheme.  In  Ref.
[39], the parameter identification is expressed as a WLS optimiza-
tion  problem  and  solved  by  the  Newton-Raphson  method.  Ref.
[167]  proposes  a  manifold  boundary  approximation  method
(MBAM), whose basic idea is to approximate a high-dimensional,
but  thin  model  manifold  by  its  boundary  that  only  requires  the
model flow pattern to have a boundary hierarchy without other a
priori assumptions.

Once  the  model  structure  is  determined,  online  parameter
identification is also possible by applying the Kalman filter frame-
work  that  treats  the  model  parameters  as  variables.  Considering
the nonlinearity of the model, extended Kalman filtering (EKF)[158]

and  unscented  Kalman  filter  (UKF)[51] have  been  applied.  In  the
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case  of  a  large  number  of  parameters,  Ref.  [73]  uses  physical
knowledge  to  directly  calculate  the  external  impedance  of  the
clustered wind turbine model and identifies the parameters inside
the  clustered  wind  turbine  in  real  time  based  on  an  adaptive
extended Kalman filter (AEKF).

Deep learning and reinforcement learning can also be used for
online  parameter  identification.  Ref.  [94]  uses  physics  informed
neural  network  (PINN)  for  online  parameter  identification  of
equivalent  impedances.  A  migration  learning  approach  is  also
used to accelerate the training by applying a large amount of sim-
ulation data. An LSTM model for time-varying parameter identi-
fication  is  devised  in  Ref.  [42],  and  a  combined  time-varying
parameter identification (TVPI) problem of the system-wide load
modeling is constructed. Reinforcement learning is more adaptive
and  convergent  than  traditional  machine  learning  methods.  The
capability  of  reinforcement  learning  to  adapt  parameters  to
changes  in  the  system  to  be  modeled,  while  being  designed  to
converge  to  an  optimal  solution  over  time,  are  properties  that
make it  well  suited  for  online  parameter  identification problems.
Ref.  [134]  adopts  an  enhanced  reinforcement  learning  algorithm
to identify the parameters of the equivalent model in real time. A
deep  reinforcement  learning  approach  is  designed  in  Ref.  [77],
which  can  tackle  more  complex  systems  than  Kalman  filtering
and achieve faster speed than intelligent algorithms in the modeling
of HVDC systems.

3.4    Sensitivity analysis
Even  with  some  intelligent  solution  methods,  the  NLS  problem
may still suffer the problem of not converging to the global optimal
solution.  Ref.  [168]  analyzes  the  case  of  locally  optimums  of  the
NLS  problem  and  proposes  two  solutions,  the  most  effective  of
which  is  to  reduce  the  number  of  parameters,  in  addition  to
rewriting the equations as a quadratic programming problem with
linear  constraints.  Complex  models  usually  have  a  large  number
of parameters; for example, the ZIP model has only three param-
eters but the CMPLDW model has 121 parameters, which makes
it very difficult  to find the global optimum in parameter identifi-
cation even using intelligent methods. The explosive growth of the
number of parameters also poses a challenge to the computational
efficiency of  online parameter identification.  At the same time,  if
the  measurement  data  are  not  rich  enough  to  fully  reflect  the
effects of all parameters, or the effects of some parameters are not
structurally visible,  the parameter values may not be reliably esti-
mated,  and  ill-conditioned  parameter  estimation  problems  may
arise[44].

The aforementioned challenges give rise to the research topic of
parameter  sensitivity  analysis.  With  sensitivity  analysis,  the
parameters with  a  strong  influence  on  the  dynamics  can  be  effi-
ciently  found[29],  so  as  the  pathological  parameters[168]. Subse-
quently,  the  important  parameters  are  separately  identified  and
the pathological  parameters  are  set  to  some fixed a  priori  values,
which reduces the dimension of the problem while addressing the
ill-conditioning  problem  as  well.  With  these  benefits,  sensitivity
analysis has received increasing attention in DDM in recent years.

The trajectory sensitivity analysis method is a common class of
methods  for  parameter  sensitivity  analysis[146].  Ref.  [40]  uses  this
method to determine the sensitivity of different parameters of the
equivalence model. Therefore, the parameter values recommended
by  the  IEEE  standard  model  are  used  for  some  less  sensitive
parameters to reduce the difficulty of parameter identification and
increase  the  computation  speed.  Similarly,  important  model
parameters  are identified by the improved genetic  algorithm and

the NSGA-II in Refs. [72] and [30], respectively. The definition of
trajectory sensitivity can be shown by Eq. (9):

S̄yi /θj [t1 ,t2 ] =
1
N

N

∑
k=0

∣∣∣∣∣∣ ∂yi/yi
∂θj/θj

(
t1+k

t2−t1
N

)
∣∣∣∣∣∣ (9)

S̄yi /θ[t1 ,t2 ]
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t1 t2 N

where  represents  the  average  sensitivity  within  the  time
window  from  to ,  is  the th  output,  and  is  the th
parameter. The implication is that by dividing the output between

 and  into  segments, the sensitivity of each segment is calcu-
lated and then averaged. Ref. [91] analyzes the parameter sensitivity
and  model  robustness  of  the  wind  field  aggregation  model.  As
mentioned earlier, one of the main difficulties of online parameter
identification  is  computational  efficiency,  which  is  addressed  in
Ref.  [69]  by  online  identification  of  key  parameters  and  offline
identification  of  the  remaining  parameters,  wherein  the  key
parameters  are  extracted  through  sensitivity  analysis.  Ref.  [29]
employs  the  probabilistic  collocation  method  (PCM)  to  analyze
the  uncertainty  of  the  parameters  and  the  effects  of  parameter
uncertainties on the dynamics.

θref

Finally,  Ref.  [49] performs a detailed analysis of all  parameters
of  CMPLDW,  combining  parameter  sensitivity  analysis  with  K-
medoids clustering to obtain the sensitivities and dependencies of
all  parameters,  and  showing  the  correlations  among  all  121
parameters  by  MDS-Based  visualization.  On this  basis,  using  the
LASSO model, the a priori known parameters are set to reasonable
values  in Eq. (5).

4    Conclusions
This  paper  summarizes  the  recent  developments  of  data-driven
modeling  techniques  for  power  systems  dynamics.  The  paper
generally  divides  the  DDM  into  three  steps  and  summarizes  the
recent  techniques  in  each  step.  In  the  data  pre-processing  step,
state-of-the-art methods for denoising, bad data detection, feature
extraction,  and  dimensionality  reduction  are  reviewed.  In  the
model construction step, this paper comprehensively discusses the
four  types  of  components/subsystems  to  be  modeled:  load,
renewable energy source, transmission grid, and distribution grid.
For  each  one,  model  construction  methods  are  introduced
according to the degree of reliance on data: physics-inspired (low
reliance),  purely  data-driven  (high  reliance),  and  data-assisted
physics-inspired (median to high reliance). It is observed that the
model  construction  approaches  of  different  objects  share  many
similar methodologies, such as parallel physical models, differential
equations, transfer functions, and neural networks, as well as their
combinations. In the parameter identification step, different prob-
lem  formulations  and  common  solution  methods  are  discussed.
The state of the art of the two critical and recently popular topics,
online  parameter  identification  and  sensitivity  analysis,  are  also
summarized  in  terms  of  their  motivations  and  existing  works.
With the continual advancement of data analytics and deployment
of  high-presision  sensors  in  power  systems,  it  is  foreseeable  that
DDM will gain increasing popularity in the near future. Based on
the observations of the literature survey, we identifies several chal-
lenges and gaps for future research.

4.1    Experiment design for data generation
Data  are  the  most  critical  elements  for  DDM.  A  proper  set  of
measurement data, collected from normal operation or deliberate
experiments,  should  cover  the  dynamics  to  be  modeled  in  terms
of time scale, magnitude, and mode. Selection of input and output
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channels  requires  an  understanding  of  the  original  system
dynamics.  An  example  of  data-driven  modeling  of  phase-locked
loop  (PLL)  is  discussed  in  Ref.  [169],  where  experiments  are
designed to have the voltage’s  phase angle as  the input while  the
PLL’s angle as the output with the recognition that the main func-
tion of PLL is to track phase angles. Speeding up data generation
experiment is also desired. For example, it is well known that fre-
quency  scan  to  obtain  an  admittance  model  based  on  real-code
black-box  models  supplied  by  original  equipment  manufacturers
is  very time-consuming.  Therefore,  many wideband perturbation
techniques have been proposed in the literature, such as the recent
Gaussian  pulse-based  perturbation  in  combination  with  system
identification algorithms[170].

4.2    Selection of model construction methods
The  model  construction  methods  for  common  objects  in  power
systems  are  mentioned  in  Section  2.  For  any  given  object,  there
are multiple model construction methods available. The selection
of  the  most  suitable  model  construction  method  for  a  specific
application  is  a  topic  worth  exploring  in  the  future.  At  the  same
time, as the operating condition or external environment change,
the best model construction methods may also change. Therefore,
it is worth investigating what information needs to be collected to
allow the adaptive selection of model construction methods.

4.3    Integration of prior knowledge and measurement data
As the penetration of renewable energy continues to increase, the
dynamics  of  modeling  objects  will  become  increasingly  complex
and diverse. Reducing the degree of dependence on prior knowl-
edge in various DDM methods will become an increasingly urgent
issue.  For  example,  neural  network  methods  do  not  require  any
prior knowledge. However, purely-data-driven techniques typically
make predictions that lack trustworthiness and interpretability. In
addition, the selection of network architecture and hyperparameters
still  heavily  relies  on  the  human  experience.  The  integration  of
prior knowledge may effectively enhance the trustworthiness and
interpretability  and  guide  the  selection  and  generation  of  model
architectures.

In  this  regard,  the  PINN  method  effectively  combines  prior
physical  knowledge  with  deep  neural  networks,  representing  a
promising  endeavor  that  has  found  applications  in  various
domains of the power system. In the future, it might be possible to
extend  the  application  of  PINN,  which  has  proven  effective  in
predicting complex dynamic models in transmission networks, to
tasks such as the modeling of IBRs and loads.

4.4    Modeling of dynamics of different time scales
For  traditional  power  systems  dominated  by  SGs,  the  dynamics
are dominated by electromechanical transients with a time scale of
hundreds of milliseconds or above. However, with the proliferation
of  power  electronic  devices,  electromagnetic  transients  are
becoming  more  important  for  system-wide  analysis.  For  a  single
component, such as a synchronous generator or an inverter-based
resource, a model can be constructed based on its dynamic char-
acteristics. However, for a distribution system with various equip-
ment,  it  is  critical  to  investigate  how  a  unified  or  hierarchical
model can be constructed to characterize the dynamics at different
time scales.

4.5    Continuous-time modeling
Traditional  modeling  based  on  physical  knowledge  can  yield  a
continuous-time model of the system that allows not only numer-

ical simulation of the dynamics but also analytical studies such as
small-disturbance  stability  analysis.  They  also  allow  flexible  step
sizes in numerical integration. However, most of the state-of-the-
art modeling approaches, such as deep neural networks, can only
obtain discrete-time models with a predetermined step size. They
are not fully compatible with the continuous-time models and the
existing  analytical  and  numerical  techniques  widely  applied  in
power systems. It remains a critical challenge to investigate methods
for  integrating  discrete-time  and  continuous-time  models  or
devising neural network models in continuous time domain.

4.6    Data imperfection and heterogeneity
In most existing efforts  of  DDM, it  is  assumed that data is  accu-
rate,  complete,  and  sufficient.  However,  in  reality,  data  are
streamed  from  various  measurement  devices  such  as  PMUs,
SCADA,  and  digital  fault  recorders.  Different  measurement
devices typically have different sampling frequencies. The integra-
tion  of  measurement  data  obtained  at  different  time  scales  and
sampling frequencies  is  a  challenge  that  remains  largely  unad-
dressed for DDM. Moreover, the data obtained from measurement
devices are not perfect. They not only contain noise but may also
include bad data due to device and system malfunctions or cyber
attacks.  Therefore,  as  discussed  in  Section  1,  data  pre-processing
techniques  and  robust  modeling  techniques  will  also  become
essential topics in DDM research.

4.7    Data privacy issues
In  addition  to  the  issues  of  data  imperfection  and  heterogeneity,
another potential problem with data is privacy. As indicated in the
survey, existing methods almost always assumed that the required
dataset  is  available.  However,  in reality,  due to security concerns,
the party  that  manufactures  or  operates  the  component  or  sub-
system to be modeled may not provide all  the necessary data for
performing  DDM.  This  is  particularly  common in  a  deregulated
electricity  market  environment.  Federated learning is  an effective
way  to  address  the  risks  associated  with  data  exchange  between
different  parties[171].  It  achieves  privacy  by  distributing  model
training to client devices and uploading updated model parameters
instead  of  raw  data  to  a  centralized  server.  As  the  privacy  issue
draws  attention,  methods  like  federated  learning  are  likely  to  be
explored to achieve a better balance between model accuracy and
data privacy.

4.8    Online parameter identification and model construction
The accuracy of dynamic models is critical to the secure operation
of  power  systems.  During  the  operation  of  the  power  grid,  the
characteristics  of  components  and  subsystems  inevitably  change
with ambient  conditions,  such as  solar  irrandiance and tempera-
ture, control modes, such as grid-following and grid-forming con-
trols of IBR, and service statuses, generator and line maintenance.
If DDM cannot capture these changes, it cannot accurately reflect
the real dynamics of the system. Therefore, in-depth investigation
of online parameter identification to enhance the adaptiveness
of  dynamic  models  is  required  in  future  studies.  Besides
online  parameter  identification,  online  model  construction
may  also  be  an  interesting  topic  to  explore.  Almost  all  the
model construction methods discussed in Section 2 have fixed
structures  once  determined  offline.  However,  this  may  not
always be the best strategy. For example, if there are topological
changes in the distribution grid, the structure of the equivalent
model  of  the  distribution  grid  may  need  to  be  changed  in
addition  to  the  model  parameters.  Another  example  is  wind
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farm  modeling  —  it  may  be  the  best  strategy  to  adapt  the
number the number of equivalent wind turbine models to the
operating  condition  of  the  wind  farm.  Therefore,  online
model construction, sometimes reflected by the online adap-
tation of model hyperparameters has great potential for inves-
tigation.

4.9    Scarcity of data
Compared  with  the  traditional  KBM,  DDM  relies  less  on  prior
knowledge  and  more  on  data.  Therefore,  a  large  amount  of  real
data needs to be collected or generated to enable DDM. However,
measurement  data  recording  power  system  dynamics  are  always
limited. The most obvious example is that system operators cannot
actively  conduct  experiments  of  fault  in  a  real  grid,  but  have  to
passively  wait  for  faults  to  occur.  When there  is  no  enough data
for  training,  there  are  two  possible  solutions.  The  first  one  is  to
make  use  of  data  more  effectively.  For  example,  by  applying  the
knowledge of previously trained models on other objects, transfer
learning  can  significantly  reduce  the  need  of  data  of  a  specific
objected to be modeled[172]. The second one is to generate synthetic
data  to  assist  training.  Generative  modeling could be an effective
method to populate the data space in DDM training[173].

4.10    Interpretability or explainability of the model
KBM and physics-inspired methods naturally have a high degree
of interpretability. This is because each component of the compu-
tation  graph  has  its  corresponding  physical  meaning,  allowing
operators  to  easily  understand  the  mechanism  of  the  model,
thereby  comprehending  and “trusting” the  model.  However,  in
the field of deep learning or, more broadly, in the context of black
box  problems,  the  interpretability  is  becoming  increasingly
important issue to address. Ref. [174] provides a general definition
of  interpretability  as “the ability  to  explain  or  present  in  under-
standable  terms to  a  human”,  and introduces  some interpretable
machine  learning methods  applied  in  smart  grids.  In  the  field  of
deep learning,  the  complexity  of  models  has  reduced  their  read-
ability.  Furthermore,  due  to  their  detachment  from  real-world
physical  significance,  despite  achieving  considerable  success,  they
still struggle to gain trust from operators. In practice, deep neural
networks  (DNNs)  have  been  found  susceptible  to  being  misled,
misclassifying inputs that bear little resemblance to real inputs[175].
Model interpretability is a relatively new topic, and in light of this
situation, introducing physical factors into neural networks (such
as  PINN)  is  a  promising  approach  to  enhance  interpretability.
Other interpretable  machine  learning  methods  can  also  be  con-
sidered for application in data-driven modeling of power systems.

4.11    Stability of the power system
Stability analysis in power systems heavily relies on the accuracy of
the  models.  In  fact,  an  important  application  of  DDM  is  to
enhance the accuracy of stability analysis, e.g., the incorporation of
DDM into transient stability simulations. However, the design of
DDM  methods  has  largely  been  conducted  independently  from
the  context  of  stability  analysis.  The  impact  of  DDM  errors  on
power system stability analysis has been largely unstudied, and the
design of DDM methods has not been well guided by the needs of
stability  analysis.  One potential  approach to  these  problems is  to
enhance the interpretability of DDM, allowing operators to have a
prior understanding and awareness of the potential errors associ-
ated with DDM. Another approach is to modify the problem for-
mulation  of  DDM  by  explicitly  addressing  the  needs  of  stability
analysis. For example, modeling errors are critical around the sta-

bility boundaries, as small errors can result in completely different
stability labels. In DDM, these areas should have more data sam-
ples,  carry  greater  weights,  or  enjoy  greater  robustness  in  the
DDM training process. This way, the DDM can be better directed
towards  the  enhancement  of  stability  analysis  in  power  system
planning and operation applications.

4.12    Summary
DDM is not a category of methods exclusively used in the field of
power system dynamics.  With the development of computer sci-
ence, signal processing, and system engineering, new DDM meth-
ods  and  applications  are  emerging  in  a  variety  of  science  and
engineering  fields[176].  It  is  expected  that  new  DDM  methods  for
power systems dynamics will  draw on these advancements  while
tightly incoporating  the  characteristics  and  needs  of  power  sys-
tems.
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