The development of solid oxide co-electrolysis of H₂O and CO₂ on large-size cells and stacks

Jingjing Liang¹, Jianzhong Zhu¹, Minfang Han¹¹, Xiufu Hua², Duruo Li² and Meng Ni³

ABSTRACT

In the context of carbon neutrality, conversion of CO_2 into CO is an effective way for negative carbon emission. Electrochemical reduction is a novel developed pathway, among which, solid oxide co-electrolysis technology is promising for its high efficiency and low electricity demand. Researches concerning the large-size cell and stack of application level are important. This review, targeting at the not yet fully understood reaction mechanism and the most concerning issue of durability, details the reported factors playing important roles in the reaction mechanism and durability of co-electrolysis. It is found that the operating conditions such as inlet mixtures and applied current significantly affect the reaction mechanism of co-electrolysis and the experiments on button cells can not reflect the real reaction mechanism on industrial-size cells. Besides, the durability test of large-size single cells and stacks at high current with high conversion rate and the potential of solid oxide co-electrolysis combing with intermittent renewable energy are also reviewed and demonstrated. Finally, an outlook for future exploration is also offered.

KEYWORDS

Solid oxide co-electrolysis, large-size cell, stack, reaction mechanism, durability.

F ossil fuel as a major energy source helps fulfill the energy demand of the development of modern society, but at the same time the related large amount of CO_2 emission and its concomitant environmental issue have elicited the attention around the world. In 2020, China announced the vision of carbon peak and carbon neutrality targets based on the inherent requirement to promote sustainable development. In this context, the demand for technological innovations in carbon capture and utilization (CCU) is gradually increasing and researches concerning not only a transition to alternative environment-friendly energy source but also mitigation and repurposing of excessive CO_2 are in full swing^[1, 2]. CO_2 can be converted to a wide range of add-value chemicals such as synthetic fuels etc. and the routes have been grouped in detail in Ref. [1] as showed in Figure 1.

Among these routes, electrochemical reduction of CO₂ has recently picked up a lot of ground for the advantages of its high reaction rate, controllable conversion rate through electrode potential, tunable product selectivity, clean power source such as solar and wind renewable energy, and high potential for large scale application^[3-6]. Compared with other low temperature and medium temperature electrolysis technologies, solid oxide electrolysis cell (SOEC) technology emerges as the leader in terms of Faradaic efficiency, energetic efficiency and electric power consumption for CO2 conversion[7, 8]. Compared with alkaline electrolysis (AE) and proton exchange membrane electrolysis (PEME) with relatively higher technology readiness, SOEC can directly convert CO₂ into CO while the others are not designed to. Besides, the high temperature (600-900 °C) operation reduces the demand for electricity and enables the utilization of excess heat from nuclear power plant, metallurgical plant, etc., which would significantly improve the system efficiency.

However, the attempts to convert CO_2 through SOEC were mainly conducted in the form of co-electrolysis, in which case both H₂O and CO₂ were introduced into the cell simultaneously and syngas can be obtained^[9,10]. Generally, the performance of CO₂ electrolysis was significantly inferior to that of H₂O electrolysis because of the lower diffusion rate of CO₂ and higher activation energy of CO₂ reduction. In comparison to pure CO₂ electrolysis, co-electrolysis showed a lower activation energy, lower polarization resistance, and faster electrochemical kinetic^[10-12]. Besides, carbon deposition which would cause irreversible damage to the fuel electrode can be suppressed when H₂O was injected along with CO₂. What's more, syngas with tunable ratio of H₂/CO can be obtained in one reactor and can be utilized for downstream sectors^[13,14].

However, the reaction mechanism is not yet fully understood for co-electrolysis. To estimate the energy requirement, composition and production rate of syngas, the reaction mechanism, that is, the reaction processes should be clarified^[10]. Besides, satisfactory performance of co-electrolysis was constantly demonstrated in recent years on either button cells or stacks, and the performance was no longer the major obstacle in the commercialization of SOEC^[15-17]. Durability and longevity have been the main limiting factors. Studies on co-electrolysis were mostly based on the stateof-the-art Ni-yttria-stabilized zirconia (Ni-YSZ) cermet supported cells. Some other alternative materials were also explored and applied, but Ni-YSZ fuel electrode was overwhelming in industrial application^[18]. To understand the development status of SOEC coelectrolysis technology for future application, this review mainly focused on the reaction mechanism and durability of SOEC coelectrolysis with conventional Ni-YSZ fuel electrode on large-size single cells and stacks.

¹Fuel Cell and Energy Storage Center, Department of Energy and Power Engineering, Tsinghua University, Beijing 100084, China; ²Yangtze Delta Region Institute of Tsinghua University, Zhejiang, Jiaxing 314006, China; ³Department of Building and Real Estate, The Hong Kong Polytechnic University, Hong Kong 999077, China

Address correspondence to Minfang Han, hanminfang@tsinghua.edu.cn

Fig. 1 Classification of CO₂ utilization technologies. Reprinted with permission from Ref. [1], © 2021 Elsevier.

1 Reaction mechanism of co-electrolysis on large-size single cells

1.1 Description of solid oxide co-electrolysis processes

The working principle of solid oxide co-electrolysis was shown in Figure 2.

Mixture of CO₂+H₂O+H₂ or CO₂+H₂ was always injected into the cathode of SOEC, where H₂ was indispensable for Ni-based cathode protection. Syngas with tunable ratio of H₂/CO can be acquired in the outlet. Meanwhile, O₂ was produced at the side of anode.

The possible reactions occurred during co-electrolysis were showed as follows:

Cathode:

$$H_2O + 2e^- \to H_2 + O^{2-}$$
 (1)

$$\mathrm{CO}_2 + 2\mathrm{e}^- \to \mathrm{CO} + \mathrm{O}^{2-} \tag{2}$$

$$H_2 + CO_2 \leftrightarrow H_2O + CO(RWGS reaction)$$
 (3)

Anode:

$$O^{2-} - 2e^- \to \frac{1}{2}O_2$$
 (4)

For sole H₂O electrolysis and sole CO₂ electrolysis, only Equations (1) and (2) occurred respectively. In the case of co-electrolysis, both Equations (1) and (2) were possible to proceed simultaneously. There may be competition between these two reactions. Except for electrochemical reaction, the reversible thermochemical reaction of water gas shift (RWGS) reaction was also parallel, thus making the real reaction processes during co-electrolysis complicated. The fact of easier splitting of steam due to the lower activation energy and faster diffusion triggered the discussion about whether CO₂ electrochemical splitting still occurred in the presence of steam already. And if CO₂ electrochemical reduction did occur, what was the contribution of CO₂? Bisides, how did the operating conditions (injecting mixtures, applied current, etc.) affect the contribution of these two reactions? These questions were con-

Fig. 2 working principle of solid oxide co-electrolysis.

stantly answered and discussed by various research groups all over the world.

1.2 Reaction mechanism differences based on button cells and large-size cells

However, so far, there has been no consensus about the reaction mechanism of co-electrolysis. One of the main reasons was that the relevant exploration was mainly conducted on button cells^[19-22] and only limited results were reported on large-size single cells (\geq 16 cm², usually 100 cm²)^[10, 23-28]. The button cells could not reflect the gas composition and current density unevenness, etc., of largesize cells^[29,30] because of a low reactant conversion rate and an electrode surface-perpendicular gas supply path. This resulted in that the reaction mechanism explored on button cells could not represent the real reaction mechanism of large-size cells. For example, our group^[22] reported the dominant electrolysis of H₂O during coelectrolysis on a button cell, while, it was meanwhile reported that the CO₂ electrolysis dominated the performance of co-electrolysis when the applied current density was higher than 0.13 A·cm⁻² on a 100 cm² industrial-size cell^[23] when the same mixture of 90% CO₂+ 10% H₂ was supplied as showed in Figure 3.

That was, when the button cell and the industrial-size cell sharing

Fig. 3 (a) The effect of applied current and inlet mixture on the reaction mechanism of co-electrolysis; (b) the possible equivalent circuit of co-electrolysis^[28].

a similar structure were operated at the same operating conditions, different reaction mechanisms were reflected. The performance near the inlet part of a large-size cell can be simulated by a button cell with the same structure at the same operating conditions. The different reaction mechanism of the button cell and the large-size cell may indicate different reaction mechanisms across the largesize cell along the gas flow direction. Therefore, the studies of the reaction mechanism on large-size cells were the focus of this paper.

1.3 Reaction mechanism reflected on large-size cells

Limited work focusing on the large-size cells indicated that H_2O electrolysis dominated the performance of co-electrolysis and only in the case of higher CO_2 concentration in the inlet mixture and higher reactant conversion rate (higher applied current) could CO_2 electrolysis occur. The relevant experiments and results were summarized in Table 1.

Kim et al.^[10] explored the reaction mechanism of co-electrolysis in the case that the concentration of H₂O was equal or higher than that of CO₂. A planar cell with an active area of 25 cm² with a structure of Ni-YSZ|YSZ|GDC (gadolinium-doped ceria, the same as CGO)|LSC (strontium-doped lanthanum cobalt)-GDC was tested. It was found that H₂O was the primary reactant during coelectrolysis and CO₂ contributed to the electrochemical reaction through replenishing steam through RWGS reaction. Stoots et al. ^[24] from Idaho National Laboratory announced a 50% higher area specific resistance (ASR) of CO₂ electrolysis than that of steam electrolysis according to the testing results of a button cell and a ten-cell stack. Given the almost overlapping polarization characteristics (j-V curves) of H₂O electrolysis (54.9% H₂O+22.5% H₂) and co-electrolysis (54.9% H2O+22.6% CO2+22.5% H2), they stated that no CO₂ was electrochemically split and CO was produced only by the RWGS reaction. Similar results were obtained by Thaler et al.^[25] on a 5-cell stack showing no clear difference in cell performance between H₂O electrolysis (50% H₂O+50% H₂) and co-electrolysis (33.3% CO₂+33.3% H₂O+33.3% H₂). Therefore, they claimed that only H₂O was electrochemically reduced while CO₂ was only converted by RWGS reaction.

Some other studies were also conducted with higher CO₂ concentration in the inlet gas supply. Li et al.^[27] who studied the reaction mechanism of co-electrolysis of 45% CO₂+45% H₂O+10% H₂ and 70% CO₂+10% H₂ on a 63 m² Ni-YSZ|YSZ|LSM (lanthanum magnetite doped with strontium)-YSZ planar cell at 800 °C.

They stated that H₂O electrolysis first started and CO₂ electrolysis initiated and parallelly occurred with H2O electrolysis at high current during co-electrolysis and the occurrence moment of CO₂ electrolysis was affected by the inlet mixture. Similarly, it was indicated by Wu et al.^[28] that the current density may affect the amount of CO2 that was electrochemically reduced on a 60 cm2 flat-tube single cell with the structure of Ni-YSZ|YSZ|GDC|LSCF (strontium and iron-doped lanthanum cobalt)-GDC. Similar results were obtained in our group^[23] and it was found that composition of inlet mixture significantly affected the occurrence moment of individual CO₂ electrolysis through affecting the concentration of H2O. For mixture of 50% CO2+50% H2, H2O electrolysis dominated the performance of co-electrolysis during the loading process from open circuit voltage (OCV) to 1.37 V. The contribution of electrochemical CO₂ reduction on the CO production was also calculated experimentally and it was found that 77.2% and 58.0% of CO was acquired from CO2 direct electrochemical reduction for mixture of 90% CO₂+10% H₂ and 70% CO₂+30% H₂ at 0.2 A·cm⁻² respectively. Earlier, similar results reported by Ebbesen et al.^[26] tested the performance of co-electrolysis on a Ni-YSZ based planar cell of 16 cm². Based on the position of ASR of co-electrolysis (25% H2O+25%CO2+25%CO) which was in between that of H₂O electrolysis (50% H₂O+25% H₂) and CO2 electrolysis (50% CO2+25% CO), it was claimed that the electrochemical reduction of CO2 and H2O both occurred during co-electrolysis.

It can be seen that, even different operating conditions were applied and different conclusions were reached, reported literature shared something in common. In the case of higher H₂O concentration than CO2 concentration in the inlet, H2O electrolysis dominated during co-electrolysis and barely CO2 electrolysis was observed^[10, 24, 25]. While for mixtures with higher CO₂ concentration than that of H2O, CO2 electrolysis was possible to occur^[19, 20, 23, 26-28] and the occurrence moment was related with the amount of H2O injected or produced through RWGS reaction and the reactants conversion rate or the applied current. At a lower applied current, H₂O electrolysis dominated the performance of co-electrolysis. With the increase of applied current, CO₂ electrolysis initiated and gradually dominated. The current where CO2 electrolysis occurred and dominated was postponed if more H2O existed. In terms of the exact occurrence moment of CO₂ electrolysis, different cells may differ and the reaction mechanism needs to be further verified on large-size cell level.

•			
Cell configuration	Operating condition	Reaction mechanism	Ref.
Ni-YSZ YSZ GDC LSC-GDC 25 cm² planar cell	800 °C 45% H ₂ O+22.5% CO ₂ +10% CO; 45% H ₂ O+22.5% CO ₂ ; 45% H ₂ O+22.5% CO ₂ +10% H ₂		[10]
Nickel cermet scandia-stabilized zirconia strontium-doped manganite 10-cell stack (planar cells, 64 cm²×10)	800 °C 54.9% H ₂ O+22.6% CO ₂ +22.5% H ₂ ; 54.9% H ₂ O+22.5% H ₂ ; 100% CO ₂	$\rm H_2O$ electrolysis dominated; $\rm CO_2$ was reduced mainly through RGWS reaction.	[24]
Ni-YSZ YSZ GDC LSCF 5-cell stack (planar cells, 80 m ² ×5)	750 °C 33.3% CO ₂ +33.3% H ₂ O+33.3% H ₂		[25]
Ni-YSZ YSZ GDC LSCF-GDC 100 cm² planar cell	800°C 90% CO ₂ +10% H ₂ ; 70% CO ₂ +30% H ₂ ; 50% CO ₂ +50% H ₂	$\rm CO_2$ electrolysis occurred at a certain conditions and $\rm H_2O$ amount injected or produced from RWGS reaction and the applied current density decided the occurrence and dominance of $\rm CO_2$ electrolysis.	
Ni-YSZ YSZ LSM-YSZ 63 m² planar cell	800 °C 45% CO ₂ +45% H ₂ O+10% H ₂ ; and 70% CO ₂ +10% H ₂		
Ni-YSZ YSZ LSM-YSZ 16 m² planar cell	850 °C 25% H ₂ O+25% CO ₂ +25% CO; 45% H ₂ O+45% CO ₂ +10% H ₂ ; 50% H ₂ O+25% H ₂ ; 50% CO ₂ +25% CO	Parallel occurrence of H_2O electrolysis and CO_2 electrolysis.	[26]
Ni-YSZ YSZ GDC LSCF 60 cm² flat-tube single cell	750 °C 75% CO ₂ +25% H ₂	Current density may affect the amount of electrochemically reduced CO ₂ .	[28]

Table 1	Performance tests of	co-electro	lysis and	l correspond	ling reaction	mechanisms
---------	----------------------	------------	-----------	--------------	---------------	------------

2 Durability of co-electrolysis on large-scale single cells and stacks

2.1 Durability of co-electrolysis on large-scale single cells

For SOEC technology commercialization and large application in energy storage sector and syngas production, durability is one of the essential issues. Just like researches in solid oxide fuel cell (SOFC), the electrode materials, the structure of cells, and the operating conditions of cells were all essential for the durability of SOEC. However, the investigation about the electrode materials and the structure of cells were most conducted on button cell level and the application of classical Ni-based cathode supported cell with LSM-YSZ anode or LSCF-GDC anode together with a buffer layer of GDC in between anode and electrolyte was overwhelming on large-size cells. What was more concerned on the large-size cell level that affecting the durability of SOEC co-electrolysis was the operating conditions such as inlet composition, working mode (galvanostatic mode or potentiostatic mode), the applied current density or voltage, etc.

Most of the studies investigating the durability of co-electrolysis were conducted in galvanostatic mode. Actually, the cell could be also operated in potentiostatic mode. Working at a constant voltage was uniquely significant for SOEC as it did not need external heat supply if it was operated at thermoneutral voltage in which the heat demand of endothermic splitting reaction can be exactly met by the Joule heat. The degradation comparison of large-size cells operating in different modes was illustrated in Ref. [31]. It was found that similar degradation rates of 2%/kh in two modes were found during the last 800 h operation and working in potentiostatic mode was beneficial in a way as some over-potential related degradation can be suppressed. However, a changing resulting current density may lead to a variation in syngas production rate and syngas composition. Thus, in the perspective of acquisition of stable syngas production, operating SOEC in galvanostatic mode was better to be adopted. And, it was not surprising that the durability of SOEC was highly dependent on the working current^[32, 33] and the durability of SOEC co-electrolysis operated at relative lower current (≤ 0.5 A·cm⁻²) on large-size cells was already demonstrated. Stable performance and low degradation and even no degradation was observed during hundreds and even thousands of hours' operation^[34-37]. However, SOEC only merited in perspective of engineering significance when operating at high current (> 0.5 A·cm⁻²) because of the need of massive syngas production and lowering cost. Therefore, only SOEC co-electrolysis working at high current was discussed in this paper.

Literature reporting the results of durability tests based on largesize cells was very limited, most of which was reported by the researchers from Technical University of Denmark (DTU). The operating conditions of these planar cells were summarized in Table 2.

In general, it was found from Table 2 that cells with anode of LSM-YSZ were operated at 800 °C or higher temperature while cells with LSCF-CGO anode were operated at 800 °C or lower temperature such as 750 °C, which may be due to the fact of lower performance and higher degradation rate of cells with LSM-YSZ anode at high current compared with that with LSCF-CGO anode^[38]. The degradation rate was reported to be on the order of hundreds of mV per thousand hours^[32, 33, 38-41]. A lowest degradation rate of only 12 mV (0.9%)/kh was reported during 2700 h operating at 1 A·cm⁻² (reactant conversion rate of 31%) at 800 °C with a mixture of 45% CO₂+45% H₂O+10% H₂ injected^[42]. Other studies also reported tens of mV loss per thousand hours and a degradation rate less than 10%/kh during thousands of hours of operation[31,43]. The main degradation mechanisms such as adsorption of impurities^[32], delamination between cathode and electrolyte^[39], formation of carbon nanotubes^[39], reduction of YSZ in cathode^[39, 42], depletion of Ni percolation, contact loss between Ni and YSZ^[41] etc., were reported.

Except from that, it can be seen from Table 2 that most of the durability tests of co-electrolysis at high current were conducted with an inlet mixture of equal concentration of H_2O and CO_2 (45%)

Year	Cell configuration	Operating conditions	Durability test	Degradation rate	Ref.	
			0.25 A·cm ⁻² for 382 h	0.005-0.008 mV/h		
2011	Ni-YSZ YSZ LSM-YSZ	850 °C	0.5 A·cm ⁻² for 206 h		[32]	
	16 CIII-	45% CO ₂ +45% H ₂ O+10% H ₂	1 A·cm ⁻² for 212 h	on the order of 0.1 mV/h		
	NI: VCZIVCZII CM VCZ	850 °C	1 A·cm ⁻² for 932 h	0.216-0.422 mV/h		
2012	16 cm^2	45% CO ₂ +45% H ₂ O+10% H ₂	1 A·cm ⁻² for 60 h and	0.633 1.3 mV/b	[33]	
	· · · ·	Conversion rate 60%	1.5 A·cm ⁻² for next 932 h	0.055-1.5 1117/11		
			1.5 A·cm ⁻² for ~700 h	~0.2 mV/h		
		850 °C	2 A·cm ⁻² for ~300 h	$0.4 \mathrm{mV/h}$		
2013	Ni-YSZ YSZ LSM-YSZ 16 cm ²	45% CO ₂ +45% H ₂ O+10% H ₂	2 A·cm ⁻² for ~700 h	~0.4 111 / 11	[39]	
		Conversion rate $\leq 66.8\%$	2 A·cm ⁻² for ~50 h			
			2.25 A⋅cm ⁻² for < 50 h	5 mV/h		
	Ni-YSZ YSZ LSM-YSZ	800 °C	1.5 A·cm ⁻² for ~300 h	500–1500 mV /kh		
2013	16 cm ² Ni-YSZIYSZICGOILSCE-CGO	45% CO ₂ +45% H ₂ O+10% H ₂			[38]	
	16 cm ²	16 cm ² Conversion rate 62%		300–600 mV /kh		
	Ni-YSZ YSZ CGO LSCF-CGO	800 °C	1.5 A·cm ⁻² for 584 h	414 mV/kh		
2013	N; VCZVCZII SM VSZ	45% CO ₂ +45% H ₂ O+10% H ₂	1.5 A⋅cm ⁻² for 526 h	504 mV/kh	[40]	
	16 cm^2	Conversion rate 60%–62%	1 A.cm ⁻² for 1256 h	122 mV/kh		
		800 °C		122 111 () ((11		
2014	Ni-YSZ YSZ CGO LSC-CGO	45% CO ₂ +45%H ₂ O+10% H ₂	1 A·cm ⁻² for 2700 h	12 mV (0.9%)/kh	[42]	
	10 cm	Conversion rate 31%				
2016	2016 Ni-YSZ YSZ LSM-YSZ	45% CO ₂ +45% H ₂ O+10% H ₂	1.5 A·cm ⁻² for 682 h	275 mV/kh	[41]	
16 cm^2		Conversion rate 45%–60%	2 A·cm ⁻² for 678 h	452 mV/kh	. ,	
2018 Ni-		750 °C	0.75 A·cm ⁻² for 1000 h	0.13 mV (10%)/kh;		
	N1-YSZ YSZ CGO LSCF-CGO 16 cm ²	$65\% \ {\rm H_2O+25\%} \ {\rm CO_2+10\%} \ {\rm H_2}$		2%/kh in terms of ASR;	[31]	
		Conversion rate: 38.5%–48.7%	1.2 V for 1000 h	2% /kh in terms of ASR;		
	Ni-YSZ YSZ CGO LSCF-CGO 16 cm²	800 °C				
			45% CO ₂ +45% H ₂ O+5% H ₂ +5% CO Conversion rate 56% 800 °C	1 A·cm ⁻² for 1030 h	337-430 mV/kh	
2021		16 cm ² 45% CO ₂ +45% H ₂ O+5% H ₂ +5% CO Conversion rate 28%; 800 °C 33% CO ₂ + 32% H ₂ O + 18% H ₂ +17% CO	1 A·cm ⁻² for 1190 h	20–140 mV/kh	[43]	
			1 A·cm ⁻² for 1063 h 64 mV/kh			
			Conversion rate 39%			

	Table 2	durability tests of SOEC	co-electrolysis at high curren	nt on large-size cells
--	---------	--------------------------	--------------------------------	------------------------

CO2+45% H2O+10% H2), in which case CO2 electrolysis would occur, while limited research was conducted at the condition of low CO₂ electrolysis occurrence probability (65% H₂O+25% CO₂+ 10% H₂)^[31]. Actually, the selection of inlet gas composition and the applied or resulting current may affect the reaction mechanism of co-electrolysis as indicated in Section 1.3. As showed in Table 2, the relative lower degradation rate was achieved apparently at high applied current density of 1 A·cm⁻², but with a conversion rate of no more than 40%^[42,43], in which the performance of co-electrolysis may be dominated by H2O electrolysis due to the low oxidant conversion rate. Operating in the interval of H₂O electrolysis dominance, CO₂ electrolysis dominance or H₂O and CO₂ parallel electrolysis dominance may affect the durability of SOEC co-electrolysis. However, this kind of effect could not be fully extracted from the currently reported literature. Furthermore, it should be mentioned that one of the selling points of SOEC co-electrolysis was the achievable tunable syngas ratio of H₂/CO in one reactor^[44]. From the perspective of carbon neutrality, high CO₂ conversion rate was required. Based on these two demands, the durability of co-electrolysis with higher CO₂ concentration in the inlet, higher CO₂ conversion rate and tunable H₂/CO ratio should be fully demonstrated.

During the durability tests, the phenomenon of fast and severe degradation during the initial hundreds of hours' (≤ 350 h) operation was repeatedly reported at small or high current density, on LSM-YSZ or LSCF oxygen electrode and galvanostatic or potentiostatic mode^[31, 35, 37, 39, 41, 42, 45]. An example was showed in Figure 4 from Ref. [31]. It was clearly showed that the initial degradation was decisive to the performance of cells after long-term operation. The degradation mechanism and the mitigation method should be further explored to improve the lifetime of cells.

2.2 Durability of co-electrolysis on stacks

The SOEC stack is the core component of an SOEC system and its lifetime is decisive on the durability of a system. Studies concerning the durability tests on stack level were limited and summarized in Table 3.

What should be mentioned was that the durability of stack was hard to characterized as the performance of the cell fluctuated due to the apparent reactivation or degradation induced by the temperature drift, contact problem, unstable gas supply, etc.^[17, 46, 47]. The degradation rates reported on stacks were comparable and even lower than that reported on single cells. The problems such as contact problem of the bottom unit^[17, 46, 47], depletion of Ni at the

Fig. 4 Current density and cell voltage evolution as function of time during the (a) galvanostatic operation on a 16 cm² planar cell, (b) potentiostatic testing on another 16 cm² planar cell with 65% H₂O+25% CO₂+10% H₂ supplied to the fuel electrode at 750 °C. Reprinted with permission from Ref. [31], © 2018 Author(s).

Table 3	Durability	v tests of	co-electroly	ysis on	stacks
---------	------------	------------	--------------	---------	--------

Year	r Stack configuration		Operating conditions	Durability test	Degradation rate	Ref.
2011	10-cell stack (92.2 cm²×10) Ni-YSZ YSZ LSM-YSZ		850 °C 45% CO ₂ +45% H ₂ O+10% H ₂ Conversion rate 60%	0.5 A cm^{-2} for the first 800 h 0.75 A cm^{-2} for another 350 h	9 mV/kh –100 mV/kh	[46]
2013	10-cell stack with three types of cells (92.2 cm ² ×10)	A: Ni-YSZ YSZ LSM-YSZ B: Ni-YSZ YSZ LSM-YSZ C: Ni-YSZ YSZ CGO LSCF-CGO	800 °C 45% CO ₂ +45%H ₂ O+10% H ₂ conversion rate 60%	0.5 A cm ⁻² for 70 h and then 0.75 A cm ⁻² for 1000 h	quite noisy picture; voltage fluctuation 200-400 mV; Activation after durability test Degraded after durability test	[17]
2016	6 8-cell stack (87.7 cm ² ×8) Ni-YSZ YSZ CGO LSCF-CGO		45% CO ₂ +45%H ₂ O+10% H ₂ conversion rate 39%	700 °C, 0.25 A cm ⁻² for 120 h 750 °C, 0.25 A cm ⁻² for 2200 h	1.3 V→1.6 V; severe degradation large activation	[47]
				750 °C, 0.5 A cm $^{-2}$ for 3700 h	17 mV (1.4%)/kh	
2019	9 4-cell stack (80 cm²×4) Ni-YSZ YSZ CGO LSCF		800 °C 55% H ₂ O+35% CO ₂ +10% H ₂ and 60% H ₂ O+30% CO ₂ +10% H ₂ Conversion rate of 70%	$\geq 0.5~A~cm^{-2}$ for around 1700 h	22 mV (~2%)/kh	[48]
2020	0 2-cell stack (100 cm ² ×2) Ni-YSZ YSZ CGO LSCF		800 °C 55% H ₂ O+35% CO ₂ +10% H ₂ Conversion rate of 59%	0.5 A cm ⁻² started at 1550 h and lasted for 1250 h	40–50 mV/kh	[49]
2021	4-cell stack (80 cm ² ×4) Ni-YSZ YSZ CGO LSCF		800 °C 60% H ₂ O+30% CO ₂ +10% H ₂ Conversion rate \geq 70%	0.7 A cm ⁻² for around 800 h	Large degradation rate.	[50]

interface of electrolyte and cathode and possible poisoning of cathode were reported^[48-50]. The feasibility of SOEC on stack level was fully demonstrated.

Similar to the investigation on single cells, mixture with $p_{\rm H_2O} \ge p_{\rm CO_2}$ was most adopted while the applied current was limited to be equal or less than 0.75 A-cm⁻². Even though the applied current seemed to be lower than the applied current reported in Section 2.1 on single cells, the achieved oxidant conversion rate of 60% and even 70% was high enough and comparable with that on single cells. The reaction mechanism of these stack units whether they were operated in H₂O electrolysis dominated interval or CO₂ electrolysis dominated interval or H₂O and CO₂ electrolysis dominated interval at these conditions was hard to distinguish. However, it was indicated that there may be a reaction mechanism change from water splitting to direct CO₂ electrolysis during co-electrolysis of 60% H₂O+30% CO₂+10% H₂ when the conversion rate was

higher than 60%[48, 50]. Furthermore, a clear dependency of the degradation rate of co-electrolysis on the conversion rate was observed in Ref. [50]. The degradation rate reduced significantly when the conversion rate was reduced from 70% to 60% but did not change as much with further reduction in conversion rate. However, it was hard to determine whether this kind of degradation was due to the shortage of convertible oxidant shortage due to high conversion rate or the reaction mechanism change. Due to the need of massive conversion of CO₂, more future tests should be conducted on stack level with higher inlet CO₂ concentration and at higher applied current and the relation between degradation rate and reaction mechanism of co-electrolysis should be figured out. Besides, it was worth noting that the fast and severe degradation during initial operation was also observed when single cells were integrated into a stack^[46]. The relevant mitigation strategies should be also further investigated.

Fig. 5 Schematic illustration of the two operation scenarios from Ref. [43], where Cell P was operated to simulate the parallel flow and Cells SU and SD were operated to simulate series flow upstream (SU) and downstream (SD), respectively. Note: -1 A·cm⁻² here means operating in SOEC mode at 1 A·cm⁻². Reprinted with permission from Ref. [43], © 2021 Author(s).

Different from single cells, stacks encountered the issue of integration, including the integration between single cells and connection of multiple stacks. The reported bottom cell contact problem emphasized the significance of the demand to improve the design of the stack. Meanwhile, the connection of multiple stacks in terms of gas flow was investigated and mimicked in Ref. [43] (summarized in Table 2). Two cells (Cell SU and Cell SD) simulated the upstream and downstream stack in a serial gas-flow arrangement respectively while a third cell (Cell P) was applied to mimic the behavior of stacks with parallel gas flow arrangement as showed in Figure 5 from Ref. [43].

All of the three cells were operated at 1 A-cm⁻² and the overall conversion rate of two arrangement was equal as 56%. The degradation rate for the cell P was 337 mV/kh while that of Cell SU and Cell SD showed a much lower degradation rate of 140 mV/kh. The great unevenness of the current density distribution and thus great over-potential gradient along the gas flow direction resulted in a higher overpotential for Cell P at the inlet and finally a severer degradation compared with Cell SU and Cell SD. It was found that the serial gas-flow arrangement was preferred as stacks with this kind of arrangement showed reduced degradation and lower power consumption.

2.3 Dynamic operation of SOEC co-electrolysis

The most envisaged application scenario of SOEC system is to combine with renewable energy and use the excess electricity of renewable energy to produce syngas. The compatibility of SOEC system with the intermittent renewable energy is a critical issue. The feasibility of dynamic operation of SOEC H₂O electrolysis was already demonstrated on single cells and stacks^[51–53]. Some other studies also tried to demonstrate the feasibility of SOEC coelectrolysis system integration with fluctuating power supply. In 2019, researches from Forschungszentrum Jülich^[54] reported the response of a stack numbered F1004-95 to the grid with varying loading profile. The load profile was developed from a power supply scenario for year 2050 for residual application. Different demand at different moment of the day required an output current density showed in Figure 6(a) and dynamic gas supply as showed in Figure 6(b) for over 1300 h^[50]. Stable syngas production rate and H₂/CO ratio around 2 were acquired during the dynamic operation and only a short-term disturbance of H₂/CO ratio and minor stack overshoots were observed during transitions. The disturbance lasted for a short time and quickly got stabilized. The feeding gas adjustment and re-stabilization involved in a 25% power switchover can be done within 2 minutes. The capability of SOEC co-electrolysis to follow the grid-related requirement profiles of secondary control power and minute reserves was fully demonstrated. Earlier in 2020, researchers from DTU^[55] tested the durability of a 6-cell stack with dynamic load using a 24 h wind profile from Bornholm in Denmark for 1000 h as showed in Figures 6(d) and 6(e). Each unit showed a structure of Ni-YSZ|YSZ|CGO|LSC-CGO and an active area of 80 cm². During the dynamic test, the constant flow of 65% H₂O+25% CO₂+10% H₂ was supplied and the maximum loading current was no more than 0.5 A·cm⁻². A syngas ratio H₂/CO of 3.7 was acquired and an accumulated syngas of 258 m3 at 25 °C was achieved. The overall degradation rate was only around 0.8%/1000 h. Besides, in 2022, Wu et al.[28] mimicked the response of co-electrolysis (75% CO2+25% H2) towards intermittent renewable energy by imposing a pulsed current on a flattube single cell of 60 cm² with structure of Ni-YSZ YSZ|GDC|LSCF-GDC. 100 cycles with each cycle lasting for 8 h and pulsed current varying from 0.1 A·cm⁻² to 0.3 A·cm⁻² were performed and a degradation rate of 0.041% per cycle was reported when a higher current density of 0.3 A·cm⁻² was applied. Meanwhile, a lifetime of 500 cycles was estimated. These results preliminarily demonstrated the great compatibility of SOEC coelectrolysis with fluctuating power supply from renewable energy and the great application potential in the field of energy storage and negative emission.

varying from 0.33 A·cm⁻² to 0.71 A·cm⁻² and no degradation was

observed after a 40-cycle accelerated test. Later in 2021, they tested

two 4-cell stacks under load cycles with static gas supply as

What should be noted was that the choosing of operating con-

Fig. 6 Daily averaged layer voltages (top), relative power (center), current density, and stack temperature (bottom) for (**a**) stack A with static gas supply and (**b**) stack B with dynamic gas supply^[S0]; (**c**) Voltage evolution of a 6-cell stack tested under dynamic load conditions^[S5]; (**d**) a zoom image into 50 h of the 6-cell stack from DTU for better visibility of the response of each unit^[S5]. Reprinted with permission from Ref. [55], © 2022 Elsevier.

ditions should be well thought out. During the realistic dynamic operation, the production rate and composition of syngas would be affected when only current density was changed and gas supply was constant. Also, the maximum applied current or the highest conversion rate should be also considered as it may cause great degradation on the stack. Besides, when the stack was operated under dynamic gas supply, the quick adjustment of feeding gas especially the supply of steam should give a response as quick as possible, which raised a higher demand on the equipment. In summary, the operating conditions of a stack or system should be optimized considering the realistic requirements such as obtaining a stable syngas yield and ratio as well as less degraded stack performance and the limits of relevant equipment.

3 Summary and outlook

SOEC was a promising technology in the field of energy storage and negative carbon emission, but there is still a long way to go in terms of its future massive application and commercialization. The coupling of RWGS reaction and the electrochemical reactions make the reaction mechanism of co-electrolysis complicated. It was found that explorations on button cells could not reflect the reaction mechanism on large-size cell as it could not mimic the gas phase composition and current density gradient along the flow direction due to a low reactant conversion rate and an electrode surface-perpendicular gas supply path. On large-size cells, H₂O electrolysis always dominated the performance of co-electrolysis and CO₂ electrolysis occurred and even dominated only in the case of higher CO₂ concentration than H₂O in the inlet and with high conversion rate (high applied current). Durability was also one of the essential issues limiting the commercialization of SOEC co-electrolysis. The durability of co-electrolysis at high applied current (> 0.5 A·cm⁻²) was summarized and analyzed. The selection of operating conditions and the corresponding reaction mechanism at these operating conditions may play a role in the durability of single cells and stacks. Besides, the phenomenon of fast and severe degradation was emphasized on single cells and stack units. Finally, the feasibility of dynamic operation of SOEC co-electrolysis and its application potential in the field of energy storage and negative carbon emission was illustrated.

Except for that, some issues needed to be considered and mitigated seriously.

(1) Most of the reaction mechanism studies were conducted on

button cells and the reaction mechanism of co-electrolysis on large-size cells should be further verified.

- (2) The relation between the reaction mechanism behind the chosen operating conditions and the durability of single cells and stacks should be figured out.
- (3) The degradation mechanism and the mitigation of fast initial degradation should be explored.
- (4) Further researches on stack design and operating strategy under dynamic load and towards sudden problems should be developed.

Acknowledgement

This work is supported by the National Natural Science Foundation of China (No. 5201101243), Project of State Key Laboratory of Power System and Generation Equipment (No. SKLD22M06), and the Institute for Guo Qiang (No. 2020GQG1003).

Article history

Received: 16 February 2023; Revised: 14 March 2023; Accepted: 24 March 2023

Additional information

© 2023 The Author(s). This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/).

Declaration of competing interest

The authors have no competing interests to declare that are relevant to the content of this article.

References

- Kamkeng, A. D. N., Wang, M., Hu, J., Du, W., Qian, F. (2021). Transformation technologies for CO₂ utilisation: Current status, challenges and future prospects. *Chemical Engineering Journal*, 409: 128138.
- [2] Graves, C., Ebbesen, S. D., Mogensen, M., Lackner, K. S. (2011). Sustainable hydrocarbon fuels by recycling CO₂ and H₂O with renewable or nuclear energy. *Renewable and Sustainable Energy Reviews*, 15: 1–23.
- [3] Yaashikaa, P. R., Senthil Kumar, P., Varjani, S. J., Saravanan, A. (2019). A review on photochemical, biochemical and electrochemical transformation of CO₂ into value-added products. *Journal of CO2 Utilization*, 33: 131–147.
- [4] Lu, Q., Jiao, F. (2016). Electrochemical CO₂ reduction: Electrocatalyst, reaction mechanism, and process engineering. *Nano Energy*, 29: 439–456.
- [5] Jia, S., Ma, X., Sun, X., Han, B. (2022). Electrochemical transformation of CO₂ to value-added chemicals and fuels. *CCS Chemistry*, 4: 3213–3229.
- [6] Zhu, Q. (2019). Developments on CO₂-utilization technologies. *Clean Energy*, 3: 85–100.
- [7] Küngas, R. (2020). Review-electrochemical CO₂ reduction for CO production: Comparison of low-and high-temperature electrolysis technologies. *Journal of The Electrochemical Society*, 167: 044508.
- [8] Sapountzi, F., Gracia, J., Weststrate, C. J., Fredriksson, H., Niemantsverdriet, J. (2017). Electrocatalysts for the generation of hydrogen, oxygen and synthesis gas. *Progress in Energy and Combustion Science*, 58: 1–35.
- [9] Wei, B., Hao, J., Ge, B., Luo, W., Chen, Y., Xiong, Y., Li, L., Shi, W. (2022). Highly efficient electrochemical carbon dioxide reduction to syngas with tunable ratios over pyridinic- nitrogen rich ultrathin carbon nanosheets. *Journal of Colloid and Interface Science*, 608:

2650-2659.

- [10] Kim, S. W., Kim, H., Yoon, K. J., Lee, J. H., Kim, B. K., Choi, W., Lee, J. H., Hong, J. (2015). Reactions and mass transport in high temperature co-electrolysis of steam/CO₂ mixtures for syngas production. *Journal of Power Sources*, 280: 630–639.
- [11] Stoots Carl, M., O'Brien James, E., Stephen, H. J., Hartvigsen Joseph, J. (2009). Syngas production via high-temperature coelectrolysis of steam and carbon dioxide. *Journal of Fuel Cell Science* and Technology, 6: 011014.
- [12] Ebbesen, S. D., Knibbe, R., Mogensen, M. (2012). Co-electrolysis of steam and carbon dioxide in solid oxide cells. *Journal of The Elec*trochemical Society, 159: F482–F489.
- [13] Dittrich, L. (2021). Tailoring of the synthesis gas Composition during high-temperature co-electrolysis. PhD Thesis. RWTH Aachen University, Germany.
- [14] Hua, Y., Wang, J., Min, T., Gao, Z. (2022). Electrochemical CO₂ conversion towards syngas: Recent catalysts and improving strategies for ratio-tunable syngas. *Journal of Power Sources*, 535: 231453.
- [15] Foit, S. R., Dittrich, L., Vibhu, V., Vinke, I. C., Eichel, R. A., de Haart, L. G. J. (2017). Co-electrolysis, Quo Vadis. *ECS Transactions*, 78: 3139.
- [16] Sun, X., Chen, M., Liu, Y.L., Hjalmarsson, P., Ebbesen, S., Jensen, S., Mogensen, M., Hendriksen, P. (2012). Performance and durability of solid oxide electrolysis cells for syngas production. *Journal of The Electrochemical Society*, 160: F1074–F1080.
- [17] Chen, M., Høgh, J., Nielsen, J., Bentzen, J., Ebbesen, S., Hendriksen, P. (2013). High temperature co - electrolysis of steam and CO₂ in an SOC stack: Performance and durability. *Fuel Cells*, 13: 638–645.
- [18] Song, Y., Zhou, Z., Zhang, X., Zhou, Y., Gong, H., Lv, H., Liu, Q., Wang, G., Bao, X. (2018). Pure CO₂ electrolysis over an Ni/YSZ cathode in a solid oxide electrolysis cell. *Journal of Materials Chemistry A*, 6: 13661–13667.
- [19] Wolf Stephanie, E., Lucy, D., Markus, N., Tobias, D., Vinke Izaak, C., Eichel Rüdiger-, A., (Bert) de Haart, L. G. J. (2022). Boundary investigation of high-temperature co-electrolysis towards direct CO₂ electrolysis. *Journal of the Electrochemical Society*, 169: 034531.
- [20] Ioannidou, E., Chavani, M., Neophytides, S. G., Niakolas, D. K. (2021). Effect of the PH₂O/PCO₂ and PH2 on the intrinsic electrocatalytic interactions and the CO production pathway on Ni/GDC during solid oxide H₂O/CO₂ co-electrolysis. *Journal of Catalysis*, 404: 174–186.
- [21] Li, W., Wang, H., Shi, Y., Cai, N. (2013). Performance and methane production characteristics of H₂O–CO₂ co-electrolysis in solid oxide electrolysis cells. *International Journal of Hydrogen Energy*, 38: 11104–11109.
- [22] Liang, J., Han, M. (2022). Different performance and mechanisms of CO₂ electrolysis with CO and H₂ as protective gases in solid oxide electrolysis cell. *International Journal of Hydrogen Energy*, 47: 18606–18618.
- [23] Liang, J., Wang, Y., Zhu, J., Han, M., Sun, K., Sun, Z. (2023). Investigation on the reaction mechanism of solid oxide co-electrolysis with different inlet mixtures based on the comparison of CO₂ electrolysis and H₂O electrolysis. *Energy Conversion and Management*, 277: 116621.
- [24] Stoots, C., Herring, J., Hartvigsen, J. (2008). Recent progress At the Idaho national laboratory in high temperature electrolysis for hydrogen and syngas production. In: Proceedings of the ASME 2008 International Mechanical Engineering Congress and Exposition, Boston, MA, USA.
- [25] Thaler, F., Fang, Q., de Haart, U., De Haart, L. G. J. B., Peters, R., Blum, L. (2021). Performance and stability of solid oxide cell stacks in CO₂-electrolysis mode. *ECS Transactions*, 103: 363–374.
- [26] Ebbesen, S. D., Graves, C., Mogensen, M. (2009). Production of synthetic fuels by co-electrolysis of steam and carbon dioxide. *International Journal of Green Energy*, 6: 646–660.
- [27] Li, Q., Zheng, Y., Sun, Y., Li, T., Xu, C., Wang, W., Chan, S. H. (2019). Understanding the occurrence of the individual CO₂ electrolysis during H₂O-CO₂ co-electrolysis in classic planar Ni-YSZ/YSZ/ LSM-YSZ solid oxide cells. *Electrochimica Acta*, 318: 440–448.

- [29] Schiller, G., Bessler, W. G., Friedrich, K. A., Gewies, S., Willich, C. (2009). Spatially resolved electrochemical performance in a segmented planar SOFC. *ECS Transactions*, 17: 79–87.
- [30] Ni, M. (2012). D thermal modeling of a solid oxide electrolyzer cell (SOEC) for syngas production by H₂O/CO₂ co-electrolysis. *International Journal of Hydrogen Energy*, 37: 6389–6399.
- [31] Rao, M., Sun, X., Hagen, A. (2018). A comparative study of durability of solid oxide electrolysis cells tested for co-electrolysis under galvanostatic and potentiostatic conditions. *Journal of the Electrochemical Society*, 165: F748–F755.
- [32] Graves, C., Ebbesen, S. D., Mogensen, M. (2011). Co-electrolysis of CO₂ and H₂O in solid oxide cells: Performance and durability. *Solid State Ionics*, 192: 398–403.
- [33] Sun, X., Chen, M., Hjalmarsson, P., Ebbesen, S. D., Jensen, S. H., Mogensen, M., Hendriksen, P. V. (2012). Performance and durability of solid oxide electrolysis cells for syngas production. *ECS Transactions*, 41: 77–85.
- [34] Jeong, H. Y., Kim, S. W., Bae, Y., Yoon, K. J., Lee, J. H., Hong, J. (2019). Effect of Fe infiltration to Ni/YSZ solid-oxide-cell fuel electrode on steam/CO₂ co-electrolysis. *International Journal of Energy Research*, 43: 4949–4958.
- [35] Xi, C., Sang, J., Wu, A., Yang, J., Qi, X., Guan, W., Wang, J., Singhal, S. C. (2022). Electrochemical performance and durability of flattube solid oxide electrolysis cells for H₂O/CO₂ co-electrolysis. *International Journal of Hydrogen Energy*, 47: 10166–10174.
- [36] Lu, L., Liu, W., Wang, J., Wang, Y., Xia, C., Zhou, X. D., Chen, M., Guan, W. (2020). Long-term stability of carbon dioxide electrolysis in a large-scale flat-tube solid oxide electrolysis cell based on doublesided air electrodes. *Applied Energy*, 259: 114130.
- [37] Anelli, S., Hernández, E., Bernadet, L., Sun, X., Hagen, A., Baiutti, F., Torrell, M., Tarancón, A. (2020). Co-electrolysis of steam and carbon dioxide in large area solid oxide cells based on infiltrated mesoporous oxygen electrodes. *Journal of Power Sources*, 478: 228774.
- [38] Hjalmarsson, P., Sun, X., Liu, Y.L., Chen, M. (2013). Influence of the oxygen electrode and inter-diffusion barrier on the degradation of solid oxide electrolysis cells. *Journal of Power Sources*, 223: 349–357.
- [39] Tao, Y., Ebbesen, S., Mogensen, M. (2013). Degradation of solid oxide cells during co-electrolysis of H₂O and CO₂: Carbon deposition under high current densities. *ECS Transactions*, 50: 139.
- [40] Chen, M., Liu, Y. L., Bentzen, J., Zhang, W., Sun, X., Hauch, A., Tao, Y., Bowen, J., Hendriksen, P. (2013). Microstructural degradation of Ni/YSZ electrodes in solid oxide electrolysis cells under high current. *Journal of The Electrochemical Society*, 160: F883–F891.
- [41] Tao, Y., Ebbesen, S. D., Mogensen, M. B. (2016). Degradation of solid oxide cells during co-electrolysis of steam and carbon dioxide at high current densities. *Journal of Power Sources*, 328: 452–462.
- [42] Hjalmarsson, P., Sun, X., Liu, Y.L., Chen, M. (2014). Durability of high performance Ni–yttria stabilized zirconia supported solid oxide electrolysis cells at high current density. *Journal of Power Sources*, 262: 316–322.
- [43] Sun, X., Liu, Y., Hendriksen, P., Chen, M. (2021). An operation strategy for mitigating the degradation of solid oxide electrolysis cells for syngas production. *Journal of Power Sources*, 506: 230136.
- [44] Fu, Q., Mabilat, C., Zahid, M., Brisse, A., Gautier, L. (2010). Syngas production via high-temperature steam/CO₂ co-electrolysis: An economic assessment. *Energy and Environmental Science*, 3: 1382–1397.
- [45] Ebbesen, S., Graves, C., Hauch, A., Jensen, S., Mogensen, M. (2010). Poisoning of solid oxide electrolysis cells by impurities. *Journal of The Electrochemical Society*, 157: B1419.
- [46] Ebbesen, S., Høgh, J., Nielsen, K. A., Nielsen, J., Mogensen, M. (2011). Durable SOC stacks for production of hydrogen and synthesis gas by high temperature electrolysis. *International Journal of Hydrogen Energy*, 36: 7363–7373.

- [47] Agersted, K., Chen, M., Blennow, P., Küngas, R., Hendriksen, P. (2016). Long-term operation of a solid oxide cell stack for coelectrolysis of steam and CO₂. In: Proceedings of the 12th European SOFC & SOE Forum, Lucerne, Switzerland.
- [48] Schäfer, D., Fang, Q., Blum, L., &Stolten, D. (2019). Syngas production performance and degradation analysis of a solid oxide electrolyzer stack. *Journal of Power Sources*, 433: 126666.
- [49] Theuer, T., Schäfer, D., Dittrich, L., Nohl, M., Foit, S., Blum, L., Eichel, R. A., de Haart, L. G. J. (2020). Sustainable syngas production by high-temperature co-electrolysis. *Chemie-Ingenieur-Technik*, 92: 40–44.
- [50] Schäfer, D., Janßen, T., Fang, Q., Merten, F., Blum, L. (2021). System-Supporting Operation of Solid-Oxide Electrolysis Stacks. *Energies*, 14: 544.
- [51] Posdziech, O., Schwarze, K., Brabandt, J. (2019). Efficient hydrogen production for industry and electricity storage via high-temperature

electrolysis. International Journal of Hydrogen Energy, 44: 19089-19101.

- [52] Schefold, J., Brisse, A., Surrey, A., & Walter, C. (2020). 80,000 current on/off cycles in a one year long steam electrolysis test with a solid oxide cell. *International Journal of Hydrogen Energy*, 45: 5143–5154.
- [53] Mogensen, M. B., Chen, M., Frandsen, H. L., Graves, C., Hansen, J. B., Hansen, K. V., Hauch, A., Jacobsen, T., Jensen, S. H., Skafte, T. L., Sun, X. (2019). Reversible solid-oxide cells for clean and sustainable energy. *Clean Energy*, 3: 175–201.
- [54] Blum, L., Fang, Q., de Haart, L. D., Malzbender, J., Margaritis, N., Menzler, N., Peters, R. (2019). Forschungszentrum jülich–progress in SOC development. *ECS Transactions*, 91: 2443–2453.
- [55] Rao, M., Sun, X., Hagen, A. (2020). Durability of solid oxide electrolysis stack under dynamic load cycling for syngas production. *Journal of Power Sources*, 451: 227781.