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ABSTRACT
Power system dispatch is a general concept with a wide range of applications. It is a special category of optimization problems that
determine the operation pattern of the power system, resulting in a huge influence on the power system security, efficiency, and
economics. In this paper, the power system dispatch problem is revisited from the basis. This paper provides a categorization of
the dispatch problem, especially with an emphasis on industrial applications. Then, this paper presents a detailed review of the dispatch
models. The common formulations of the dispatch problem are provided. Finally, this paper discusses the solutions of the dispatch
problem and lists the major challenges.
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Electric  power  is  one  of  the  most  important  energy  sources
for human. As shown in Figure 1, in China, the proportion
of the energy that is consumed via electric power is contin-

uously increasing recently and it  is  estimated that the proportion
will reach 31.2% in 2025. Meanwhile, because of the lack of cost-
efficient  large-scale  storage,  electric  power  is  a  specific  form  of
energy  that  requires  the  instant  balance  between production and
consumption[1]. For a single user of electric power, the consumption
behavior is highly uncertain. However, the aggregation of enormous
users  will  exhibit  a  predictable  consumption  pattern,  making  it
possible for the power production to trace the consumption[2]. To
achieve  this,  every  country  in  the  world  has  built  meshed  power
transmission  network  to  connect  a  variety  of  power  generations
and  consumers.  Distribution  network  extends  the  power  in  the
transmission  network  from  a  substation  for  the  delivery  to  end
users.
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Fig. 1    Proportion trend of the energy that is consumed via electric power.
 

In  a  provincial  power  transmission  network  in  China,  the
power consumptions range from 1.3×103 MW to 8.94×104 MW. It
is  a  difficult  job  worldwide  to  provide  a  desired  scheduling  of
power generations to instantly meet the power demand. By saying
“desired”, we refer to the target of power system operation, com-
monly including lower costs, lower carbon emission, lower network
losses,  higher  security  redundancy,  and  so  on[3, 4].  Meanwhile,  the
delivery of power generations to the consumers needs to consider

various  constraints,  including  the  power  balance  constraints,
transmission security constraints, generation operation constraints,
and so on[5, 6]. With the above essentials in mind, system operators
can  finally  make  the  final  decision  of  the  scheduling  for  each
power producer and consumer.

It can be observed that the power balance procedure described
above is a classic decision-making problem: decision variables are
the power generation, demand consumption, etc.;  constraints are
the  requirements  of  power  system  secure  operation;  objective  is
the efficient and economic power delivery. Such a decision-making
problem can be generally termed as power system dispatch. It is a
very  traditional  problem  in  power  system,  which  can  be  traced
back  to  the  1960s  for  the  first  proposal  of  optimal  power  flow[7].
During the past decades, we have observed a great variety of sub-
problems  originating  from  the  basic  dispatch  concept,  including
reactive  dispatch problem[8, 9],  unit  commitment problem[10, 11], eco-
nomic  dispatch  problem[12, 13], security-constrained  economic  dis-
patch  problem[14, 15],  market  clearing  problem[16, 17], storage  opti-
mization  problem[18, 19],  stochastic  optimization  problem[20–22],  etc.
(see Figure  2).  Each of  the  sub-category  emphasizes  on a  certain
perspective, and results in different research focuses.
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Fig. 2    Extension of optimal power flow problem.
 

Meanwhile,  with  the  development  of  academic  methodologies
and computation tools, the power industries are also continuously 
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engaging more advanced dispatch tools[23, 24].  The basic  trend is  to
replace the  human-decision  process  in  a  various  application  sce-
narios of power system dispatch with optimization software.  The
power  industries  have  witnessed  a  great  cost-saving  effect  by
doing so [25]. More powerful dispatch tools that can really solve the
practical  problem  always  attracts  the  attention  from  industries.
However,  we  observe  that  there  is  still  a  clear  gap  between  the
ongoing  academic  research  and  the  industrial  requirements[26, 27].
There  are  actually  very  few  studies  that  exactly  respond  to  the
practical industrial requirement and provide a promising compu-
tational performance for practical applications.

The  whole  family  of  power  system  dispatch  problem  still
remains one of the hottest topics in power system, but there lacks
a  full  review  of  the  dispatch  problem,  especially  linking  to  the
practical industrial requirements. To fill this gap, this paper provides
a  comprehensive  revisit  to  the  dispatch  problem.  We  categorize
the  current  dispatch  studies  and  focus  on  those  that  are  closely
related  to  practical  requirements.  We present  a  map of  the  basic
dispatch models and their properties. The future trends of power
system dispatch development and its challenges are discussed. We
are not aiming to provide a detailed review that covers every type
of  related  research,  which  is  nearly  impossible.  By  contrary,  we
would like to grasp the key feature of  the representative dispatch
problems and provide our understandings.

1    General categorization  of  power  system  dis-
patch
Basically, power system dispatch determines the optimal operation
pattern  of  power  grid  to  meet  the  power  demand,  which  is  a
rather broad concept. Take the situation in China as an example,
the  power  system  dispatch  framework  considering  the  market
environment  is  shown in Figure  3,  which  is  a  common trend of
power  system  dispatch.  In  general,  the  energy  and  demand-side
resources  need  to  submit  their  bids  (including  the  prices  and
operation  limits),  based  on  which  the  power  system  dispatch
model  will  be  established.  After  that,  the  dispatch  model  will  be
solved  to  obtain  the  optimal  operation  pattern  for  energy  and
demand-side resources.
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Fig. 3    Framework of power system dispatch.
 

Here, we provide a general categorization of power system dis-

patch  problem  from  both  the  academic  research  and  industrial
application  point  of  view.  Specially,  we  focus  on  the  short-term
power  system  dispatch  problem,  namely  the  day-ahead[28, 29] and
real-time dispatch[30, 31].

1.1    Categorization of dispatch problem in the field of academic
research

Optimal power flow (OPF) problem

Power system dispatch is a special case of the operations research
problem under  the  requirement  of  power  system operation.  The
typical objective function is the minimization of operation costs or
the  maximization  of  social  welfare.  These  two  objectives  are
equivalent when the demand side response is not considered. The
equality  constraints  that  reflect  the  physical  nature  of  the  power
system  include  the  power  balance  constraint  and  power  flow
equations that describe the relationship between power injections,
power  flow,  voltage  angles,  and  voltage  magnitudes.  Inequality
constraints  include  power  flow  limits,  generation  output  limits,
and  voltage  angle/magnitude  limits.  Power  flow  equations  are
derived based on the Kirchhoff’s laws, which are nonlinear equa-
tions.  Other  constraints  are  basically  linear.  The  above  objective
function together with the constraints forms a basic power system
dispatch problem, namely the OPF problem. Apparently, the OPF
problem  is  a  nonlinear  programming  (NLP)  problem.  It  can  be
traced back to the 1960s since Carpenter first proposed this con-
cept[32].

Direct current optimal power flow (DC OPF) problem

The algorithm for the NLP problems cannot guarantee convergence
and  occasionally  faces  computational  robustness  failure  in  large-
scale  power  systems.  Hence,  engineers  propose  to  transform  the
nonlinear OPF model into a linear one. The key is the proper lin-
earization  of  the  nonlinear  power  flow  equations[33, 34].  Engineers
have  observed  the  quasi-linear  relationship  between  the  active
power and voltage angle, especially in high-voltage power network.
Also,  the  voltage  magnitude  is  close  to  1.0  p.u.  and  the  reactive
power  flow  on  branches  is  much  smaller  than  the  active  power
flow. Hence, power engineers propose to use a linear power flow
equation that describes the relationship between active power and
voltage angle  and ignores  the  reactive  power  and voltage  magni-
tude.  This  equation  is  called  the  DC  power  flow  equation[35].  By
replacing the nonlinear power flow equation in OPF with the DC
power  flow  equation,  we  can  obtain  a  linear  programming  (LP)
model called the DC OPF.  Taking advantage of  the  LP formula-
tion,  it  has  desired  computational  performance  and  is  widely
accepted by power industries around the world.

Security-constraint economic dispatch (SCED) problem

The OPF problem is  normally  considered as  a  single-period dis-
patch problem, which means that it only considers a certain snap-
shot.  Actually,  the  power  balance  is  a  time-continuous  task.  The
power balance of different time steps is tightly coupled because the
adjustment  of  generations  between  time  steps  is  coupled  by  the
ramping capability[36]. Hence, the SCED problem considers a multi-
period  OPF  coupled  by  the  ramping  constraints  of  generators.
Also, the  SCED  problem  considers  a  special  transmission  con-
straint,  namely  the  N-1  requirement[37].  It  means  that  the  power
flow limits should still be satisfied when a branch is broken down.
This is a common procedure in power system operation to provide
redundancy.  In  this  way,  the  number  of  power  flow  limits
explodes because we have to consider the limits in each contingency
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scenario. This modeling complexity leads to a larger computational
burden.  Also,  it  should  be  noted  that  the  SCED  model  also  has
two major modeling methods, mainly distinguished by the branch
flow modeling in contingency. If the generator is allowed to adjust
under  contingency,  it  is  called  the  corrective  control  modeling;
otherwise, it is called the preventive control modeling[38].

Security constraint unit commitment (SCUC) problem

For either OPF problem or SCED problem, it usually only considers
continuous decision  variables,  mainly  include  the  generator  out-
puts. In fact, the practical power system operation needs to make
discrete  decisions,  such  as  the  on/off  status  of  generators[39].  For
thermal  generators,  there  is  normally  a  minimum output  level[40].
Hence, the operation range is discontinuous, i.e., either 0 or [min-
imum  output,  maximum  output].  Hence,  integer  variables  are
required  in  the  dispatch  problem  to  describe  this  feature.  Then,
the  optimization problem becomes  a  mixed integer  optimization
problem. In modern power systems, the SCUC problem is rather
challenging to solve. For a common SCUC problem in a Chinese
province, we can have over 100,000 integer variables and over 450,
000 constraints. The time limit is only less than an hour.

Stochastic dispatch problem

In power systems around the world, it is a general trend to integrate
a high percentage of  renewables.  As a  result,  there are increasing
fluctuations in power systems[41]. The above dispatch problems are
decision  making  problems  with  certain  operation  boundaries.
When considering uncertainties,  the boundaries become stochas-
tic. The dispatch decisions need to ensure the secure and economic
operation  of  power  systems  not  only  under  normal  operation
conditions, but also under uncertainties. The common techniques
include  the  robust  optimization[42], chance-constrained  optimiza-
tion[43], multi-scenario optimization[44], etc.

Above  dispatch  problems  are  among  the  mostly  used  basic
forms. With the evolving of power system technology, there are a
great deal of dispatch problems with new elements, such as those
considering  energy  storage[45],  frequency  security[46],  and  so  on.
However, all of these varieties come from the basic form. We will
give a basic modeling framework of the dispatch problem in Section
2, aiming to cover the key features of these problems.

1.2    Practical  application  examples  of  dispatch  problem  in
power industry
In  power  industries,  the  dispatch  problem  has  a  wide  range  of
applications.  Here  we  make  two  examples  in  terms  of  the  non-
market environment and the market environment. Especially, the
situations in China are provided as examples.

Dispatch in non-market environment

The power industry is naturally monopolistically and highly regu-
lated. Before involving electricity market reform, the power system
operation manner is determined by the system operators without
involving the competition among generators or users. The gener-
ators need to strictly follow the dispatch decisions according to the
regulation rules. In China, it experiences several stages. Tradition-
ally, the power system has a similar operation pattern from day-to-
day.  Not  many  changes  in  the  dispatch  are  required  to  keep  the
power balance. Hence, experienced system operators can provide
the  scheduling  of  the  power  system  without  the  need  for  help
from  dispatch  optimization[47].  As  the  power  system  becomes
larger and environmental issues arise, it becomes more challenging
to balance the power, and also, multiple operation objectives arise,

such  as  the  minimization  of  coal  consumption.  In  this  case,  it
becomes  harder  for  system  operators  to  manually  determine  the
dispatch  decision.  Power  industries  turn  to  the  help  of  decision
software  to  automatically  determine  the  most  desired  operation
condition.

The short-term dispatch problem is normally divided into two
stages: the day-ahead stage and the intra-day stage (also called the
real-time stage). In the day-ahead stage, a SCUC problem is solved
to  determine  the  operation  status  of  generators,  including  the
commitment status and power outputs. There are a lot of practical
operation  constraints  that  need  to  consider,  including  but  not
limited to generator operation constraints, power plant operation
constraints,  hydro  vibration  constraints,  power  flow  constraints
on  transmission  lines  and  a  certain  groups  of  transmission  lines
that  reflect  the  transient  security  requirements,  and  power  flow
security in contingencies. Noted that it is nearly impossible to find
a  feasible  solution  that  meets  all  the  requirements.  Hence,  it  is  a
common  practice  to  add  relaxations  for  the  constraints  and  set
different levels of penalty factors as a punishment for the constraint
violations[48, 49]. Because of the large value of punishment, the coef-
ficients  matrices  have  a  wide  range  of  values,  causing  practically
numerical  issues  and  challenges[50].  Also,  although the  number  of
constraints  is  large,  the  percentage  of  those  that  active  for  the
optimal solution is relatively small[51].  Hence, many provinces will
first solve an unconstrained SCUC model and iteratively add vio-
lated constraints. This process will be limited by the total number
of iteration times. For the power industries in China, we normally
consider  a  15-minute  dispatch  interval  in  the  day-ahead  SCUC
dispatch.

Then,  with  the  determined  day-ahead  dispatch,  the  intra-day
dispatch adjusts the generator outputs for updated load forecast or
other changes of operation conditions. The optimization problem
becomes easier because the integer variables representing generator
outputs are fixed and an LP optimization of SCED is solved. Nor-
mally,  in  additional  to  the  constraints  in  day-ahead dispatch,  the
ideal  point approaching constraints  is  added in the SCED model
to find the solution nearest to the day-ahead solution. Depending
on the operation requirements, provincial power systems in China
commonly  roll  the  dispatch  window  of  one  hour  or  two  hours
with a 15-miunate resolution in the intra-day dispatch.

The  dispatch  optimization  releases  the  work  load  of  system
operators  and  helps  to  improve  the  operation  efficiency  of  the
power grid. However, manual adjustment is still required because
of  the  following  reasons.  Firstly,  the  dispatch  problem  is  built
based on the simplified DC power flow equations[52].  Changes are
required  to  fill  the  gap  toward  the  practical  operation  systems.
Secondly,  the  boundary  of  optimization  sometimes  cannot  fully
reflect the true operation limits of the power system. For example,
the power system operation needs to consider transient security[53].
Such  requirements  are  reflected  in  the  proxy  constraints  of  the
transmission limits on a certain group of constraints, but sure has
accuracy  loss.  Thirdly,  the  optimization  may  face  computational
challenge,  including  infeasibility,  suboptimality,  and  so  on[54].
Human interference is required on this circumstance.

Dispatch in market environment

With  the  electricity  market  reform,  now  the  power  systems  in
many  countries  are  operating  under  a  market  environment.  In
electricity  markets,  the  market  participants,  including  generators
and demands, need to submit their bids, including the production
costs  /consumption  payment  and  operation  limits.  A  dispatch
model will be formulated based on the submitted information and
be  solved  to  determine  the  dispatch  solution.  Such  a  process  is
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called market clearing.
The market clearing process can also be separated into the day-

ahead  stage  and  the  intra-day  stage.  The  basic  procedure  is  very
similar to that in the non-market environment. One major differ-
ence is that in the day-ahead stage, a SCED model will  be solved
with the fixed integer variables obtained from SCUC to determine
the electricity prices[55, 56]. Although the dispatch models are similar,
the market environment poses a much higher requirement for the
dispatch solutions. The first reason is that the market is organized
following a strict rule of the time for market clearing. Hence, the
dispatch model needs to be solved to the preset convergence gap
within a certain time[57]. In modern power systems, this requirement
still cannot be fully realized in all situations. The second reason is
that under the market environment, the market clearing results, i.
e.,  the dispatch solution,  need to be strictly obeyed.  If  the system
operators manually adjust the dispatch solution due to operational
concerns,  it  will  bring  economic  loss  and  affect  the  total  social
welfare[58].

From  the  above  discussions  on  the  example  of  power  system
dispatch in  practical  systems,  it  can  be  seen  that  the  proper  for-
mulation and solving of the dispatch problem is important for the
economic and secure operation of the power systems. The following
content  will  further  introduce  the  basic  mathematical  models  of
the dispatch problem and their solutions.

2    Model of power system dispatch
Although  various  types  of  power  system  dispatch  models  have
been proposed with respective  purposes  and concerns,  they have
some general features. This section first presents the basic formu-
lation of a power system dispatch problem in literature, concluding
the common elements that are usually considered in a power system
dispatch model. Then, this section discusses the varieties of power
system  dispatch  models  from  several  aspects.  Finally,  we  give  a
multi-dimensional categorization of power system dispatch mod-
els.

2.1    Basic formulation of power system dispatch
The power system dispatch problem is usually formulated as opti-
mization-based models,  with  respective  variables,  objective  func-
tions,  and  constraints.  Generally,  power  system  dispatch  models
can be abstracted as the following form:

min/max c(x)
s.t. f(x)⩽ 0
g(x) = 0
x ∈ Ω

f(x)
g(x) Ω

Ω

Here, x denotes the variables of the optimization problem. 
and  are the public or system-wise constraints.  denotes the
feasible operation region of x, which is determined by the charac-
teristics  of  dispatch  objects.  can  also  be  referred  as  private  or
object-wise constraints.

Therefore,  a  power  system  dispatch  model  is  to  minimize  or
maximize a given objective function with a set of public and private
constraints.  The  following  parts  discuss  the  variables,  objective
functions and constraints and give examples.

2.1.1    Variable

In an optimization-based power system dispatch model, variables
can be usually categorized as decision variables and state variables.
Decision variables correspond to the actions of the power system
dispatch,  while  state  variables  represent  the  states  of  dispatch
objects or power systems. For example, for a conventional generator

in power systems, the active power generation and reactive power
generation are decision variables, while the on/off status are object-
level state variables. At the system-level, state variable examples are
nodal voltage amplitude, nodal phase angle, active/reactive power
on transmission lines, etc.

Moreover,  the  variables  can  be  either  continuous  or  discrete.
Again,  taking  a  conventional  generator  in  power  systems  as  an
example, the active power generation and reactive power generation
are  continuous  variables,  while  the  on/off  status  are  usually
expressed as binary variables. Once discrete variables are introduced
into  the  studied  optimization  model,  it  would  become  a  mixed
integer programming (MIP), where solving difficulty rises signifi-
cantly.

2.1.2    Objective function

The  objective  function  of  a  power  system  dispatch  model  is
designed towards a given dispatch target. In general, the dispatch
targets of power system dispatch include minimizing the operation
cost[59], maximizing the social profits[60], maximizing the generation
company  profits[61],  minimizing  the  transmission  loss[62], environ-
mental  concerns[63],  etc.  Moreover,  the  dispatch targets  can also  a
combination of several single goals[64].

Taking the operation cost  minimization as  an example,  which
is  usually  applied  to  economic  dispatch  problems,  the  objective
function represents the sum of operation cost of all generators of
the given periods[65].

Obj=
T

∑
t=1

G

∑
g=1

Cg(pg,t)

T G
Pg,t g

t Cg(pg,t) g
t

In  the  objective  function,  there  are  decision  periods  and 
generators.  is  the  active  power  generated  by  generator  in
period .  is  the  power  generation  cost  of  generator  in
period .  Different  types  of  generation  cost  functions  have  been
studied.  However,  the  most  typical  generation  cost  function  for
conventional thermal generators is quadratic[66].

Cg(pg,t) = ag +bg ·pg,t+ cg ·pg,t
2

ag bg cgwhere , ,  and  are  coefficients  determined  by  the  generator
characteristics.  This  function  means  that  when  a  conventional
thermal  generator  is  scheduled,  the  fuel  consumption  cost  is
quadratic  to  the  active  power  it  generates.  Moreover,  some
researches  use  piece-wise  linear  method  to  approximate  the  cost
function so that the model can be easier to be solved[67].  Based on
this  quadratic  function,  some literature  considers  the  valve  point
loading  effects[68–70].  As  a  result,  the  generation  cost  function
becomes non-smooth.

Cg(pg,t) = ag +bg ·pg,t+ cg ·pg,t
2 + |eg sin(fg(pg,min −pg))|

where eg and fg are coefficients determined by the generator charact
−eristics.

Other  types  of  generation cost  functions  such as  linear  ones[71]

are also applied to the power system dispatch problem.
Further, for the operation cost minimization, some other factors

can be considered besides the operation cost of generators. When
the  turn-on/turn-off  operation  of  generators  is  considered,  the
corresponding cost should be incorporated[72]; if the load shedding
is considered, then the loss of load cost ought to be added to the
cost[73]; if the renewable energy curtailment is considered, then the
curtailment  penalty  can  be  modeled[74];  if  the  carbon  emission  is
considered,  the  corresponding emission cost  can be  added[3];  and
so on.
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2.1.3    Constraint

As  discussed  before,  the  constraints  of  power  system  dispatch
models  can  be  categorized  into  public  and  private  constraints.
Public  constraints  describe  the  physical  laws  and  operation
requirements  of  the  power  system;  while  private  constraints
describe the  operation  characteristics  of  the  objects  that  are  dis-
patched.

Public constraint

The most  important  public  constraints  are  the power flow equa-
tions,  which  are  the  basis  of  power  system  steady-state  analysis
and  optimization.  Generally,  the  original  power  flow  equations
(known as alternating current (AC) power flow) are

Pi =
N

∑
j=1

GijViVj cosθij+
N

∑
j=1

BijViVj sinθij

Qi =−
N

∑
j=1

BijViVj cosθij +
N

∑
j=1

GijViVj sinθij

Pi Qi

i N Vi

i θij

i j Gij Bij

where  and  are  the  active  and  reactive  power  injection  of
node , assuming that there are  nodes in the studied system; 
is the voltage amplitude of node ;  is the voltage angle difference
between node and node ;  and  are components of the con-
ductance matrix  and  the  susceptance  matrix,  respectively.  More-
over, in order to constraint the active and reactive power of trans-
mission lines, the branch flows can be calculated as follows[75]:

Pij = gij(Vi
2−ViVj cosθij)−bijViVj sinθij

Qij =−bij(Vi
2 −ViVj cosθij)− gijViVj sinθij

Pij Qij

ij i gij bij

ij

where  and  are the active power and reactive power with line
 (from node ’s side);  and  are the conductance and the sus-

ceptance  of  line .  Then,  the  nodal  balance  equations  can  be
established according to the Kirchhoff’s current law.

∑
g∈Gi

pg −Pd
i = ∑

ij∈Ki

Pij + giiv2i

∑
g∈Gi

qg −Qd
i = ∑

ij∈Ki

Qij + (−bii)v2i

pg qg

g Gi i Ki

i Pd
i Qd

i

i

where  and  are  the  active  and  reactive  power  generation  of
generator ;  is the generator set that connected to node ;  is
the  line  set  that  connected  to  node ;  and  are  the  load
demand of node . Moreover, some power system dispatch models
allow energy not served and load shedding, so the corresponding
terms are added to the nodal balance equations[74, 76, 77].

Then,  the  transmission  power  on  every  transmission  line
should not exceed the rated power.

(Pij)
2 +(Qij)

2 ⩽ (fmax
ij )2

ij

However,  the  nonlinearity  of  power  flow equations  makes  the
dispatch model hard to solve.  Various types of  methods are pro-
posed.  The  most  well-known  one  is  the  DC  power  flow.  By  a
sequence  of  assumptions  and  approximations,  the  active  power
and voltage angle difference of line  is expressed as follows[66]:

Pij =
θij

xij

xij ijwhere  is the reactance of line . In the DC power flow model,
reactive power and transmission loss are ignored, and the voltage
amplitude  of  each  node  is  assumed  to  be  1.  This  approximated
power  flow model  is  reasonably  accurate  for  power  transmission
systems[35],  and  has  been  widely  used  in  power  system  dispatch

models. Since the reactive power is ignored, the power transmission
limits become

−Pmax
ij ⩽ Pij ⩽ Pmax

ij

Although the DC power flow performs well in a lot of models,
its drawbacks are obvious. When the reactive power, transmission
loss, and voltage amplitude need to be considered, the DC power
flow does not suit the requirement. Many researches focus on how
to  build  power  flow  models  considering  the  above  issues  while
maintaining accuracy and solvability.

● Convex relaxation methods: semidefinite programming (SDP)
relaxation[78, 79],  quadratic programming (QP) relaxation[80],  second-
order cone programming (SOCP) relaxation[81–83], etc.

P,Q V,θ

● Linearization methods: some literature starts from the original
power flow equation, using approximations, hypothesizes, variable
substitutions,  and  other  skills  to  obtain  a  linearized  power  flow
model[33, 34, 84, 85].  Some literature  studies  data-driven  methods,  using
regression  techniques  to  directly  obtain  the  mappings  between

 and [86–88].
Also,  the  power  balance  requirement  should  be  considered.  A

typical way to constrain the active power balance in power system
dispatch models is shown as follows[59]:

G

∑
g=1

pg =
N

∑
i=1

Pd
i +Ploss

Plosswhere  denotes  the  active  power transmission loss  within the
power systems. The amount of loss can be estimated[66] and allocated
to different nodes[89].  In some old power system dispatch models,
the power flow equations are not included because of computational
limitations[70, 90, 91].  However,  with  the  development  of  computer
hardware  and  optimization  algorithms,  modern  power  system
dispatch models take the power flow equations into consideration
to make sure the dispatch results do not violate the power trans-
mission limits.

Besides the power flow, there are other public constraints that a
power system dispatch model usually considers. Spinning reserve
plays  an  important  role  in  the  power  system  dispatch  decision
making to deal with the future uncertainties in real-time operation.
Generally,  the  spinning  reserve  constraints  can  be  formulated  as
follows:

G

∑
g=1

rg,t ⩾ Rt

rg,t
t Rt t
where  is the spinning reserve provided by generator g in period
,  and  is  the  system  reserve  requirement  in  period .  The

amount  of  spinning  reserve  the  power  system  needed  has  also
been  studied[65, 92, 93],  which  is  related  to  the  load  demand  level,
renewable  energy  outputs,  capacity  of  the  scheduled  generators,
etc.  Also,  some  literature  models  the  up  and  down  spinning
reserve separately in high-renewable-penetrated power systems[74].

G

∑
g=1

rup
g,t ⩾ Rup

t

G

∑
g=1

rdown
g,t ⩾ Rdown

t

rup
g,t rdown

g,t

t Rup
t Rdown

t

where  and  are the up and down reserve provided by gen-
erator g in  period ;  and  are  the  system  up  and  down
reserve requirement, respectively.

If  the  nodal  voltage  is  considered  in  the  power  flow,  then  the
corresponding limits are needed:
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Vmin
i ⩽ Vi,t ⩽ Vmax

i

θmin
ij ⩽ θij,t ⩽ θmax

ij

Vi,t i t θij,t

i j t
where  is the voltage amplitude of node  in period ;  is the
voltage angle difference between node and node  in period .

Private constraint
Private constraints are used to model the operation characteristics
and operation limits of dispatch objects. In power system dispatch,
the  basic  dispatch  objects  are  different  types  of  generators.  Here
conventional  thermal  generators,  renewable  power  plants,  and
energy storage are discussed.

For  conventional  thermal  generators,  the  power  outputs  and
on/off  statuses  are  the  main  concerns.  The  turn-on  and  turn-off
actions and the corresponding minimum up and minimum down
duration  requirements  have  several  ways  to  express.  Here  the
form used in Ref. [74] is given.

xg,t−1 −xg,t+ug,t ⩾ 0
xg,t−xg,t−1+ vg,t ⩾ 0

(xg,t −xg,t−1) · ton
g +

t−1

∑
τ=t−tong −1

xg,τ ⩾ 0

(xg,t−1−xg,t) · toff
g +

t−1

∑
τ=t−toffg −1

(1−xg,τ)⩾ 0

xg,t g t ug,t

g t vg,t
g t ton

g toff
g

xg,t ug,t vg,t

where  represents the status of generator  in period ;  rep-
resents the turn-on action of generator  in period ;  represents
the  turn-off  action of  generator  in  period ;  and  are  the
minimum  up  and  minimum  down  duration,  respectively.  Here,

, ,  are  all  binary  variables.  When  dispatching  the  active
power of generators, the power limits are formed as follows:

pg,t + rg,t ⩽ pmax
g ·xg,t

pg,t − rg,t ⩾ pmin
g ·xg,t

0⩽ rg,t ⩽ rmax
g

pmax
g pmin

g

g rmax
g g

where  and  are the maximum and minimum active power
output of generator ;  is the maximum reserve of generator .
Moreover,  in  a  multi-period  dispatch,  the  ramp  rate  constraints
should be considered between two adjacent periods.

pg,t−pg,t−1+xg,t · (pmax
g −pmin

g ) +xg,t−1 · (pmin
g −Δpup

g )⩽ pmax
g

pg,t−1−pg,t +xg,t−1 · (pmax
g −pmin

g ) +xg,t · (pmin
g −Δpdown

g )⩽ pmax
g

Δpup
g Δpdown

g

g
where  and  are the ramp-up and ramp-down limits of
generator . Because  the  on/off  statuses  are  considered,  the  con-
straints  are complicated.  If  the on/off  statuses  are not  considered
in the dispatch, the power and ramp limits become intuitive.

pg,t+ rg,t ⩽ pmax
g

pg,t− rg,t ⩾ pmin
g

−Δpdown
g ⩽ pg,t−pg,t−1 ⩽ Δpup

g

For  renewable  power  plants,  when  dispatching  their  active
power outputs, the constraints are usually set as follows:

0⩽ pr,t ⩽ pmax
r,t

pr,t r
t pmax

r,t r
t

where  is the active power output of renewable power plant  in
period ;  is the forecast output of renewable power plant  in
period ,  which  are  estimated  at  the  dispatch  decision  making
moment.

For energy storage, although there are different kinds of storage
facilities  deployed  in  power  system,  the  power  system  dispatch
model can consider energy storage in a unified manner[94]:

es,t = (1−αs)es,t−1 +ηc
s ·p

c
s,t−

pd
s,t

ηd
s

es,t s t
αs pc

s,t pd
s,t

ηc
s ηd

s

where  denotes the energy stored in energy storage  in period ;
 is the energy depreciation factor;  and  are the charge and

discharge power;  and  are the charge and discharge efficiency.
Then, the  energy,  charge  power,  and  discharge  power  are  con-
strained as follows:

emin
s ⩽ es,t ⩽ emax

s

0⩽ pc
s,t ⩽ pc,max

s

0⩽ pd
s,t ⩽ pd,max

s

pc
s,t⊥pd

s,t

This  model  can be  called  the “tank model” and it  is  the  most
representative one for energy storage.  However,  it  is  worth men-
tioning that although the tank model is  commonly used and has
wide applicability,  it  is  still  a  rough model.  A lot  of  literature has
been  studied  to  formulate  refined  models  for  different  kinds  of
energy storage facilities. Regardless of their details, energy storage
models should have state variables to represent the state of charge,
action  variables  to  represent  the  charge/discharge  actions,  and
state  transition  equations  to  describe  the  energy  conservation.
Therefore, time coupling is inevitable for energy storage models.

2.1.4    Model example

We give two basic but quite typical power system dispatch models
here, which are known as economic dispatch (ED) and unit com-
mitment  (UC).  Here,  the  models  only  consider  optimizing  the
active  power  and  the  dispatch  objects  are  conventional  thermal
generators for simplicity.

The ED model is given as follows:

Obj=
T

∑
t=1

G

∑
g=1

Cg(pg,t)

Subject to:
● System power balance:

G

∑
g=1

pg,t =
N

∑
i=1

Pd
i,t +Ploss,t

● Power flow equations:

Pf,t = Tf−i ·

(
∑
g∈Gi

pg−Pd
i −Di ·Ploss,t

)

Di Tf−iHere,  is  the  loss  distribution  factor  and  is  the  power
transfer  distribution  factor  (PTDF).  The  PTDF  can  be  deduced
from the DC power flow equation[35].

● Power transmission limits:

−Pmax
f ⩽ Pf,t ⩽ Pmax

f
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● System reserve requirement:
G

∑
g=1

rg,t ⩾ Rt

● Generator operation limits:

pg,t+ rg,t ⩽ pmax
g

pg,t− rg,t ⩾ pmin
g

−Δpdown
g ⩽ pg,t−pg,t−1 ⩽ Δpup

g

0⩽ rr,t ⩽ rmax
r,t

Compared with the ED model, the UC model takes the on/off
actions of generators into consideration Therefore, a typical form
of UC can be formulated as follows:

Obj=
T

∑
t=1

G

∑
g=1

(Cg(pg,t)+ cug ·ug,t + cvg · vg,t)

cug cvg gwhere  and  are  the  turn  on/off  cost  of  generator , respec-
tively.

Subject to:
● System power balance:

G

∑
g=1

pg,t =
N

∑
i=1

Pd
i,t +Ploss,t

● Power flow equations:

Pf,t = Tf−i · (∑
g∈Gi

pg −Pd
i −Di ·Ploss,t)

● Power transmission limits:

−Pmax
f ⩽ Pf,t ⩽ Pmax

f

● System reserve requirement:
G

∑
g=1

rg,t ⩾ Rt

● Generator operation limits:

xg,t−1 −xg,t+ug,t ⩾ 0
xg,t−xg,t−1+ vg,t ⩾ 0

(xg,t −xg,t−1) · ton
g +

t−1

∑
τ=t−tong −1

xg,τ ⩾ 0

(xg,t−1−xg,t) · toff
g +

t−1

∑
τ=t−toffg −1

(1−xg,τ)⩾ 0

pg,t + rg,t ⩽ pmax
g ·xg,t

pg,t − rg,t ⩾ pmin
g ·xg,t

0⩽ rg,t ⩽ rmax
g

pg,t−pg,t−1 +xg,t · (pmax
g −pmin

g ) +

xg,t−1 · (pmin
g −Δpup

g )⩽ pmax
g

pg,t−1−pg,t+xg,t−1 · (pmax
g −pmin

g ) +xg,t · (pmin
g −Δpdown

g )⩽ pmax
g

The UC model is usually used to determine the on/off statuses
of generators and schedule their outputs in a day-ahead or longer
horizon decision making.

2.2    Varieties of power system dispatch
Based on the basic power system dispatch models, we discuss the
varieties  of  power  system  dispatch  from  different  perspectives,
including the dispatch objects, dispatch scopes, security concerns,
and uncertainties.

2.2.1    New dispatch object

Traditional power system operators dispatch conventional gener-
ators to meet the power demands within the power system with a
specific target under a series of constraints. Over the decades, new
technologies  have  developed,  and  environmental  concerns  have
risen.  Thus,  the  dispatch  objects  in  modern  power  systems  have
greatly enriched. Besides wind power plants[95, 96], photovoltaic (PV)
plants[97, 98],  and  pumped  hydro  energy  storage[99, 100],  there  are  still
several  heated  topics  in  recent  years.  The  power  system dispatch
models should  take  these  objects  into  consideration  correspond-
ingly, as shown in Figure 4.
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Fig. 4    Power system dispatch objects.
 

Battery energy storage station (BESS)

Energy storage does not generate electricity power, but it can pro-
vide flexibility  to  power  systems  and  enhance  power  system dis-
patchability[101] Because  of  the  technology  improvement  and  cost
reduction, BESSs are regarded as a promising type of energy storage
for  power  system  applications[102].  In  the  year  of  2022,  China  has
installed  over  6  GW  of  battery  energy  storage,  and  much  more
projects  are  scheduled.  Correspondingly,  incorporating  battery
energy storage into power system dispatch models is necessary.

High voltage DC (HVDC) transmission

Compared  with  AC,  DC  systems  have  their  own  advantages  in
long-distance  power  transmission.  For  example,  they  could  have
fewer  stability  problems,  greater  power  transmission  efficiency,
and  could  be  easy  to  fulfill  asynchronous  connections.  A  lot  of
HVDC  projects  have  been  constructed  worldwide[103].  Therefore,
AC-DC hybrid power systems would be the future trend[104]. Liter-
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ature has  discussed the power system dispatch methods with the
modeling of HVDC transmission lines[75, 105, 106].

Demand response (DR) and virtual power plant (VPP)

The demand-side resources are able to provide flexibility to power
systems in smart grids. Therefore, the coordination of power gen-
eration,  transmission,  and  consumption  is  realized.  A  famous
method  to  aggregate  the  demand-side  resources  and  utilize  their
flexibility to support power systems is DR programs [107–110]. More-
over,  the  concept  of  VPP  is  proposed  to  systematically  organize
the distributed energy resources (DER), distributed energy storage,
and  load  resources  to  simulate  the  external  characteristics  of
power plants[111–113].  In future power system dispatch, the demand-
side resources would be no-longer treated as a fixed load demand,
considering  the  impact  of  their  behaviors  in  dispatch  models  is
essential[114, 115].

Central solar plant (CSP)

CSPs  transform  solar  irradiation  to  heat  power  in  the  day-time,
store  the  heat  within  the  equipped  thermal  energy  storage,  and
generate electricity using the heat power when needed. Compared
with PVs, CSPs have more operational flexibility and can generate
electricity  even  if  there  is  no  or  little  solar  irradiation.  Therefore,
CSPs also  have  the  potential  to  be  widely  deployed for  the  high-
renewable-penetrated power systems[116]. The operation of CSPs in
power system dispatch has been already studied[117, 118].

Carbon capture and storage plant (CCSP)

Because  of  global  warming,  carbon  emissions  have  attracted
increasing attention from all over the world. By using carbon cap-
ture technology, most carbon dioxide emissions in the vented flue
gas of thermal power plants are separated, transported, and stored
in safe sites[119].  CCSPs have been regarded as one of the potential
pathways  toward a  low-carbon society[120].  Hence,  CCSPs are  also
potential  new  dispatch  objects  that  the  power  system  dispatch
should consider[121].

2.2.2    Broaden dispatch scope

Traditional power system dispatch mainly focuses on the electricity
sector  itself.  However,  coupling  with  other  energy  sectors  is  the
future trend. By building the energy Internet based on electrifica-
tion, we can achieve an energy consumption roadmap with higher
efficiency, more  intelligence,  and  lower  carbon  emission.  Corre-
spondingly, the dispatch scopes are broadened.

Multi-energy system (MES)

MESs coordinate the generation, transmission, conversion, storage,
and  consumption  of  energy  across  different  energy  sectors[122].
Electricity, heat, cooling, gas, and other energy forms are coupled
together under the concept of MESs. Compared with the separate
energy  sectors,  there  are  four  main  advantages  of  MESs[123]:  (1)
increasing the ability  to  accommodate renewable  energy through
the flexibility of energy conversion and storage; (2) improving the
efficiency of the entire energy system by utilizing energy in a cas-
cading  manner,  including  renewable  energy;  (3)  promoting  the
system-wide optimal  deployment  of  both  centralized  and  decen-
tralized energy resources by market interactions and (4) enhancing
the energy  supply  reliability  and  resilience  through  the  comple-
mentation of diverse energy infrastructures.

According to the scale of MESs, the study of MESs can be cate-
gorized into the district level energy network and the cross-region
level energy network. The district level MESs mainly focus on the

energy conversion and consumption, and are usually modeled as
energy hubs (EHs)[124]. The modeling of EHs has been widely studied
by literature[125–127]. Although the configuration of EHs varies, stan-
dardized modeling methods[128] have  been proposed that  apply  to
different types of EHs. The cross-region level MESs mainly focus
on the long-distance energy transmission. For power transmission
networks,  power  flow  equations  are  used  to  describe  the  steady-
state characteristics. For heat and gas networks, the time constants
are much longer than that of electricity networks, so their dynamics
cannot  be  ignored  in  dispatch.  Inspired  by  the  electric  circuit
analysis,  the  generalized  electric  circuit  theories  are  proposed  for
heat networks[129] and gas networks[130], enabling to model different
types of energy networks altogether.

Two typical  multi-energy system operation situations are elec-
tricity-heat  integrated  dispatch[131] and  electricity-gas  integrated
dispatch[132]. The coupling of different energy sectors provides sig-
nificant benefits, but the power system dispatch models should be
extended.

Electricity-transportation coordination

The transportation systems are now in a transition toward electri-
fication[133]. In the future, the aggregated charging power of electric
vehicles  (EVs)  will  become  a  significant  part  of  load  demand  in
power  systems.  Moreover,  the  vehicle  to  grid  (V2G)  technology
can provide extra operational flexibility for power systems to get a
larger  dispatch  feasible  region  and  integrate  more  renewable
energy[134].

Thus, the  power  system  dispatch  will  be  extended  to  an  elec-
tricity-transportation  coordination  framework.  In  related  works,
EV  charging  is  usually  treated  as  flexible  loads  and  generalized
energy storage[135].  The scheduling of  EV charging and using EVs
to  provide  ancillary  services  have  been  comprehensively
studied[136−138].  In the highly electrified future,  network models  will
be used to describe the dynamics of transportation systems[139].  In
addition,  electrified  railways[140] and other  transportation  infras-
tructures  provide more potential  aspects  of  electricity-transporta-
tion coordination.

2.2.3    Security concern

Power  system  dispatch  used  to  follow  the  decision-making  and
security-check  procedure.  In  other  words,  the  dispatch  decisions
are  firstly  obtained  according  to  the  optimization  models,  and
then,  the  decisions  are  examined  with  some  security  analysis  to
verify that the dispatch operations are safe. If the security concerns
are violated, modifications would be made and re-optimization is
needed until the security analysis passes.

In  high-renewable-penetrated  power  systems,  the  operation
modes are diversified[141]. Moreover, with the increase of renewable
energy  and  power  electronic-based  devices,  the  power  system
dynamic characteristics have profoundly changed[142, 143].  Therefore,
the  traditional  decision-making  and  security-check  procedure  is
challenged. Considering  security  concerns  in  power  system  dis-
patch models are in fashion, as shown in Figure 5.
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Fig. 5    Power system dispatch with security concerns.
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Generally, security concerns are incorporated into power system
dispatch by modeling the security regions or embedding security
rules. The region-based methods first deduce the operation region
of power systems where the system can operation safely and avoid
violating  security  concerns[144, 145].  The  rule-based  methods  use
explicit constraints or rules to describe the requirements of power
system operation security. By adding these constraints or rules to
power system dispatch models, the obtained solutions are guaran-
teed  to  be  safe.  The  constraints  or  rules  can  be  analytically
deduced[146] or obtained by data-driven methods[147].

The following contents enumerate several critical security con-
cerns that are considered in power system dispatch models.

N-1 security

N-1  security  is  one  of  the  most  common  security  concerns  of
power system dispatch models, and it is already applied to a lot of
power grids in industry. The N-1 security requires that the power
flows of all transmission lines in the studied system will not exceed
their corresponding transmission limits even if a power transmis-
sion line is out of service. Therefore, the dispatch decisions should
not  only  be  subject  to  the  power  transmission  constraints  under
normal scenarios, but also subject to the constraints under all N-1
scenarios.

As  discussed  in  Section  1,  dispatch  models  with  N-1  security
are  called  security-constrained  dispatch  models,  such  as  SCED
and SCUC. To ensure the N-1 requirement, the power flow equa-
tions  under  normal  and  N-1  constraints  are  all  included  in  the
studied dispatch model. If the model uses DC power flow and the
PTDF is used to map active power injections to branch flows, then
the PTDF matrices under normal and N-1 are considered. Conse-
quently,  the number of  constraints  of  the power system dispatch
model increases  significantly.  In  large-scale  power  systems,  con-
sidering N-1 security would make the solving more challenging.

Frequency security

The AC power system requires the frequency maintains within a
small interval around the standard frequency (50 Hz or 60 Hz) in
operation.  However,  the  system frequency might  drop below the
tolerable range after some contingencies, such as the trip of a gen-
erator,  which  might  cause  serious  accidents  in  power  systems.
Moreover, for the future high-renewable-penetrated power system,
the system inertia will further decrease. As a result, the frequency
security  will  be  more  urgent.  Thus,  studying  the  power  system
dispatch  with  the  consideration  of  frequency  security  is  nece-
ssary[148, 149].

Rather than considering the whole frequency dynamics, power
system frequency security mainly focuses on three indices, namely,
frequency nadir, maximum rate of change of frequency (RoCoF),
and  quasi-steady  frequency.  Quantifying  the  accurate  frequency
nadir needs to solve the corresponding ordinary differential equa-
tions,  which  is  not  easy  to  incorporate  into  dispatch  models.
Hence,  methods  such  as  low-nonlinearity  approximation[150, 151],
piece-wise linearization[148, 152], and machine learning[153] are proposed
to  consider  frequency  nadir  concerns  in  power  system  dispatch
models.

Voltage stability

In  power  system  analysis,  voltage  stability  is  roughly  categorized
into  static  voltage  stability  and  transient  voltage  stability.  Static
voltage  stability  towards  the  small  disturbance,  which  measures
whether the power system stays in an unstable equilibrium point.
Here, unstable equilibrium points refer to the status where a small

disturbance will  cause a collapse of the voltage on any bus in the
system[154].  Traditionally,  static  voltage  stability  is  guaranteed  by
constraints over the power flow and voltage drop of transmission
lines. Transient voltage stability is used to represent the ability of a
power system to restore stable voltage states after a fault. A classic
metric  is  the  transient  voltage  drop  acceptability.  However,  with
the  increase  of  renewable  energy  power  plants,  power  electronic
devices  bring  new  voltage  stability  mechanisms  to  power
systems[155].

The  voltage  stability  concerns  have  been  considered  in  power
system  dispatch  models.  A  typical  two-step  framework  is  used:
first,  build  the  voltage  stability  constraints;  second,  embed  the
constraints into dispatch models. In this way, the dispatch results
are secure with respect to voltage concerns. Methods such as sen-
sitivity  analysis[156, 157] and  machine  learning[158] tools  are  used  to
build  embedding-friendly  constraints.  Moreover,  because  the
power  system  voltage  is  highly  coupled  with  reactive  power,  the
typical DC power flow model is insufficient.

Angle stability

The angle stability refers to the ability of synchronous generators
of  an  interconnected  power  system  to  remain  synchronism  after
small or large disturbances[159]. Reference [160] points out that two
kinds of angle instability situations are most likely to happen for a
high-renewable-penetrated power system: non-oscillatory transient
instability  and  small  disturbance  oscillatory  instability.  Here,  the
non-oscillatory transient instability refers to situations when some
synchronous generators exhibit large rotor angle shifts after a large
disturbance and lose synchronism in the transient dynamics. The
small  disturbance  oscillatory  instability  occurs  in  power  systems
due to the lack of negative damping. The integration of inverter-
interfaced renewable energy has made the analysis and prevention
control of angle stability more challenging.

The transient power system angle dynamics is usually modeled
as a large set of differential-algebraic equations, which are difficult
to  be  incorporated  into  power  system  dispatch  models.  Thus,
constructing  constraints  over  decision  variables  to  prevent  angle
stability problems is a practical way. Constraints can be established
through  decision  trees[161] and  trajectory-based  sensitivity  calcula-
tion[162].

Other security issues

Besides  the  above-mentioned  security  concerns,  there  are  still
other  perspectives  that  are  worth  mentioning.  Reference  [159]
provides a review of the definition and classification of power sys-
tem  stability,  so  stability  issues  beyond  frequency,  voltage,  and
angle  are  also  important  for  power  systems.  Moreover,  inverter-
interfaced renewable energy resources would arise problems with
the short circuit current of power systems. The short circuit current
constraints have been established and incorporated into UC models
[146]. The dynamic rating is another security concern for power sys-
tems. Unlike regarding the power transmission limits as fixed val-
ues, the concept of dynamic rating considers the power transmis-
sion abilities of  lines as variable parameters associated with other
factors[163], such as temperature. As a result, power system dispatch
models with dynamic ratings make the dispatch results not violate
transmission limits with environmental changes.

2.2.4    Considering uncertainty

The  stochastic  nature  of  renewable  energy  and  demand-side
resources brings  uncertainties  and  intermittences  to  power  sys-
tems. On the power system dispatch stage, it is impossible to predict
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the future renewable energy outputs and load demands. Although
scheduling reserves is an effective way to handle future uncertain-
ties,  deterministic  dispatch  models  have  difficulties  in  balancing
the conservativeness and efficiency. In high-renewable-penetrated
power systems, the uncertainties increase significantly, so modeling
uncertainties accurately in power system dispatch becomes essen-
tial.

Stochastic optimization

In  stochastic  optimization  models,  the  uncertainties  are  usually
modeled as scenarios[164]. Each scenario represents a possible real-
ization of the future uncertainty sources. Then, the dispatch deci-
sions  are  obtained  based  on  the  generated  scenarios.  In  general,
the stochastic power system dispatch models can be abstracted as
follows:

min
x∈χ

Eξf(x, ξ),

x χ
ξ f(x, ξ)

where  denotes  the  dispatch  decision  variables,  is  the  feasible
operation  region,  is  the  uncertainty  sources,  is the  opti-
mization  target.  Correspondingly,  by  deploying  scenario-based
methods, the dispatch models can be transferred to

min
x∈χ

∑
ξi

πi · f(x, ξi),

ξi i
ξ πi ξi

where  is the -th potential realization scenario of the uncertainty
sources ,  is  the  probability  of .  If  the  scenarios  accurately
capture the characteristics of the uncertainty sources, the dispatch
results are optimal with respect to uncertainties. Scenario generation
methods  are  widely  discussed  in  literature[165–167].  Moreover,  the
number of scenarios would influence the solving efficiency of dis-
patch  models,  so  corresponding  representative  scenario  selection
and scenario reduction approaches are also studied[168, 169].

A typical stochastic optimization model in power systems is the
stochastic  UC  (SUC).  The  decision-making  procedure  of  a  UC
problem can be regarded as two stages. In the first stage, the on/off
statuses of  generators  are  decided  considering  the  future  uncer-
tainties.  This  stage  is  usually  referred  to  as  here-and-now.  In  the
second stage, when the uncertainties are realized, the power outputs
of  generators  are  determined.  Because  these  decisions  are  made
after  the  realization of  uncertainties,  they  are  referred to  as  wait-
and-see  decisions.  Therefore,  the  two-stage  UC  models  are
abstracted as follows:

min
x∈χ,y∈γx

c(x)+Eξ(f(x,y, ξ)),

x χ
x y γx

y x c(x) f(x,y, ξ)

where  is  the  here-and-now  decision  variables,  is  the  feasible
operation region of ;  is the wait-and-see decision variables,  is
the feasible  operation region of  with given ;  and 
are the  cost  functions  of  the  first  and  the  second  stage,  respec-
tively.

Chance constraint

In addition, some dispatch models incorporate chance constraints.
Chance  constraints  refer  to  the  probabilistic  constraints  that
should  hold  with  a  certain  level  of  confidence  or  probability.  A
general formulation of chance constraints is

P(g(x)⩽ 0)⩾ 1− ε,

g(x)⩽ 0 P(·)
1− ε ε

ε = 0.05
g(x)⩽ 0

where  denotes the original constraints,  is the proba-
bility,  is  the  confidence  level  with  a  small .  This  kind  of
modeling allows the constraints to be violated with a tiny proba-
bility.  For  example,  if ,  then  the  probability  of  violating
the constraints  should be no more than 5%.

Based on the concept of chance constraints, models with value-
at-risk  (VaR)[170, 171]and  conditional  value-at-risk  (CVaR)[172, 173]

methods are studied in power system dispatch.

Robust optimization

Different  from  stochastic  optimization  which  focuses  on  the
expected values, robust models optimize the dispatch results in the
worst case. Robust optimization models do not need the probability
distributions of uncertainties; instead, they only need the range of
uncertainties.  In  other  words,  the  uncertainties  are  modeled  as  a
set.  Then,  the  robust  model  selects  the  worst-case  scenario  from
the uncertainty set and optimizes the decision variables based on
the worst-case scenario. A general form of a robust power system
dispatch model can be expressed as follows:

min
x∈χ

max
ξ∈ψ

f(x, ξ),

x χ
ξ ψ

f(x, ξ)

where  denotes  the  dispatch  decision  variables,  is  the  feasible
operation region,  is the uncertainty sources,  is the uncertainty
set,  and  is  the  optimization target.  This  min-max problem
cannot  be  solved  directly,  and  mathematical  transformations  are
needed.

Similar to the SUC, the two-stage robust UC (RUC) can be for-
mulated as follows:

min
x∈χ

c(x)+max
ξ∈ψ

min
y∈γx

f(x,y, ξ))

In the first  stage,  the here-and-now decisions are  made before
the  realization  of  uncertainties.  Then,  in  the  second  stage,  the
worst-case  scenario  realizes,  and  the  wait-and-see  decisions  are
made to  minimize  the  optimization  target  in  the  worst-case  sce-
nario.

The common used methods to build the uncertainty sets in the
robust dispatch models include box intervals[174], polyhedral sets[175],
ellipsoidal sets[176], and discrete sets[177].

Other uncertainties modeling

Besides the classical stochastic and robust models, some advanced
methods are deployed to capture the uncertainties in power system
dispatch in recent studies.

Note that the robust models could be over-conservative because
the  probability  of  the  worst-case  scenario  is  usually  very  small,
adaptive robust models are proposed for power system dispatch[175,

178, 179]. In adaptive robust models, the robustness of dispatch results
can be modified according to the risk preference of power system
operators.

Distributionally robust is another hot spot that has been widely
discussed. The key idea is to model the uncertainties in power sys-
tem dispatch using ambiguous distributions[180–183]. The ambiguous
distributions are constrained by probability statistics or distance to
empirical distributions. Then, the dispatch decisions are optimized
under the worst possible distribution.

Uncertainty sources in power systems vary, so dealing with dif-
ferent  uncertainty  sources  with  different  modeling  is  applicable.
Therefore,  combined  stochastic-robust  models  are  proposed  for
power system dispatch[184–186].

2.3    Categorization of dispatch models
In  this  paper,  we  categorize  the  power  system  dispatch  models
from six dimensions, as shown in Figure 6.

● Optimization  targets: as  discussed  in  Section  2.1.2,  most
power  system  dispatch  models  are  established  to  improve  the
power system efficiency and economy, so the corresponding opti-
mization targets are to minimize the total operation cost or maxi-
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mize  the  social  welfare.  Also,  other  optimization  targets,  such  as
minimizing power  transmission  loss,  and  reducing  carbon  emis-
sions, are studied in some models.

● Power Flow: the basic form of power flow in dispatch models
is  AC flow.  Because  of  the  nonlinearity  and the  nonconvexity  of
the  original  AC  flow,  simplifications  and  approximations  are
made to obtain DC flow and other linearized models. Also, there
are still some models that do not have power flow equations.

● Dispatch  Periods: power  system  dispatch  models  without
time-coupling characteristics are single-period models, such as the
OPFs.  On  the  contrary,  multi-period  models  consider  time-cou-
pling, such as the EDs and the UCs.

● Decision Stages: in some power system dispatch models, the
dispatch  results  are  determined  at  one  stage,  regardless  of  the
number  of  dispatch  periods.  Some  models  separate  the  decision
into here-and-now and wait-and-see to get two-stage optimization,
such as SUCs and RUCs. Others model the decision-making pro-
cesses as  multi-stages.  The  typical  examples  are  dynamic  pro-
gramming (DP) models.

● Model Types: the mathematical formations of power system
dispatch models are vital  to determine the corresponding solving
algorithms. Common types include LP, mixed-integer LP (MILP),
NLP, mixed-integer NLP (MINLP), and DP.

● Uncertainties Modeling: some power system dispatch models
do not consider uncertainties and use deterministic optimization;
others  incorporate  uncertainties  into  decision-making  through
different kinds  of  models,  such  as  probability  distributions,  sce-
narios, uncertainty sets, ambiguous distributions, quantiles, etc.

2.4    Data-driven dispatch modeling method
Data-driven approaches have been widely discussed in power sys-
tem  research.  In  recent  years,  a  lot  of  literature  has  studied  the
application  of  data-driven  methods  in  different  topics  and  has
proved that data-driven models outperform conventional models
in some power system analysis scenarios. Power system dispatch is
not an exception.

P,Q V,θ

Plenty  of  research  has  studied  to  construct  the  optimization
targets  or  constraints  of  the  power  system  dispatch  models  in  a
data-driven manner. To deal with the nonlinearity of power flow
constraints,  some  researchers  study  the  statistical  mapping
between  and  using regression techniques[86–88]. Then, they
replace  the  physical-based  power  flow  equations  with  the  data-
based  mappings  in  power  system  dispatch  models.  Another
example  is  the  stability  constraints.  The  stability  analysis  usually
needs to study the power system dynamics, while the power system
dispatch  models  focus  on  the  steady-state  operation.  To  fill  the
gap between the dynamics analysis and steady-state models, data-
driven  methods,  such  as  decision  trees  and  support  vector
machines[160], are proposed to build stability constraints that can be
embedded into dispatch models.

Moreover,  other  advanced  digital  techniques  are  potentially
beneficial to power system dispatch. The digital twin is one of the
future trends of power system analysis. It can help power systems
to  enhance  perception,  cognition,  intelligence,  and  control[187].
Correspondingly, with the development of digital twin and power
system simulation technologies, the power system dispatch model
can  obtain  more  accurate  parameters  and  give  more  applicable
dispatch  decisions.  Artificial  intelligence  (AI)  assisted  decision-
making  approaches  are  also  a  heated  topic.  These  approaches
usually  establish  the  power  system  dispatch  problem  under  the
reinforcement  learning  framework[188].  A  lot  of  reinforcement
learning techniques have been studied within the scope of power

system  dispatch,  and  satisfying  results  have  been  reported  in  the
literature.  However,  current  reinforcement  learning  methods  are
mostly using black box models. Similar to other AI decision-making
research fields, such as autonomous driving, the interpretability of
models is the biggest challenge in practical applications.

2.5    Discussion of modeling challenges
Recently,  the  rapid  development  of  renewables  has  posed  great
challenges for  power  system  dispatch  modeling.  Traditional  dis-
patch models with lots of simplifications cannot adapt to the new
form  of  the  power  system.  Specifically,  the  following  modeling
challenges of power system dispatch are discussed.

Power flow modeling

Currently, the linear DC power flow model that ignores the reactive
power and voltage magnitude is widely applied in practical power
industries  to  guarantee  the  computational  efficiencies  of  power
system  dispatch.  However,  in  high-renewable-penetrated  power
systems,  the  uncertainties  and  fluctuations  of  power  systems
greatly increase, which imposes the urgent requirement for flexible
resources.  Correspondingly,  the  requirement  for  the  modeling
accuracy of the active and reactive power is increasing. Meanwhile,
renewables are integrated into power systems through power elec-
tronic devices, with which the coupling of the active and reactive
power of power systems becomes stronger[189]. Hence, it is necessary
to incorporate the reactive power and voltage magnitude into the
linearized power flow model. Researchers have proposed different
types of linearized power flow models to achieve the above target[33,

34, 190].  However,  the  power  flow  modeling  accuracy  in  practical
power systems with large-scale and complex constraints still needs
to be improved[191].

Operating boundary modeling for uncertainties

In  high-renewable-penetrated  power  systems,  the  power  system
dispatch model needs to be improved to handle the uncertainties
caused by renewables. Despite that stochastic dispatch problems (e.
g.,  robust  optimization,  chance-constrained  optimization,  and
multi-scenario  optimization)  have  been  widely  studied  in
academia, the deterministic dispatch model is still used in practical
power industries due to the concern of the computational efficiency
[192]. In current deterministic dispatch models, the propoer operating
boundary (e.g., operating reserve, regulation reserve, etc.) is set to
prepare enough redundancy to ensure that the power system can
handle the uncertainties in real-time operation. The key issue lies
in the accurate modeling of the operating boundary. In the power
industry, the operating boundary is set mainly based on the oper-
ating experience and the statistics of the historical operating data.
The  impact  of  renewables  cannot  be  fully  reflected.  To  improve
this, data-driven methods with the forecast information of renew-
ables have been studied in academia[193–195]. However, the inevitable
approximation error of  data-driven methods restricts  their  appli-
cation.  How to handle the approximation error and improve the
reliability of data-driven methods still needs to be studied.

Security constraint modeling

The integration of renewables and power electronic devices brings
a great change in power system dynamic characteristics.  The tra-
ditional  decision-making  and  security-check  procedure  cannot
efficiently  handle  the  aforementioned  change.  To  improve  this,
incorporating security  constraints  (e.g.,  frequency  stability  con-
straint,  voltage  stability  constraint,  and  angle  stability  constraint)
into the power system dispatch model,  which aims to obtain the
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operation pattern that  can ensure the power system stability,  has
been widely studied. However,  power system dynamic character-
istics  are  extremely  complex.  The  security  constraint  modeling
that  can  be  easily  embedded  into  the  power  system  dispatch
model  while  accurately  reflecting  dynamic  characteristics  is  a
major challenge in this field. For instance, take the frequency sta-
bility constraint as an example, the frequency nadir constraint has
drawn wide attention. However, the frequency nadir constraint is
highly  nonlinear[196] and  unanalytical.  Existing  methods  typically
derive  a  nonlinear  analytical  expression  for  the  frequency  nadir
under  the  assumption  of  a  simplified  governor  model.  This
expression is further simplified using techniques such as piecewise
linearization methods[148] or data-driven methods[197]. These simpli-
fied methods treat the primary frequency regulation of renewables
as  equivalent  to  a  simple  governor,  their  detailed  frequency
response  behavior  and  control  strategy  are  ignored.  As  a  result,
these  simplified  models  may  not  accurately  capture  the  system's
frequency  response  behavior  under  high-renewable-penetrated
power  systems[198].  Moreover,  detailed  modeling  of  renewables  is
difficult  to  be  solved  analytically  in  the  time  domain,  rendering
existing  methods  inapplicable.  Therefore,  how  to  achieve  the
effective security constraint modeling still needs to be studied.

3    Solving solutions of power system dispatch
Given a variety of power system dispatch models, solution methods
are required to provide a high-quality solution within the required
time.  This  section  will  discuss  the  common  solutions  of  power
system dispatch. Note that there are numerous solving algorithms
and methodologies, however, only a few are currently running in
practical  power industries.  In this  paper,  we majorly  provide our
comments from the industrial application point of view.

3.1    Common solutions of power system dispatch
According to Section 2, the formulation of the power system dis-
patch  model  can  be  generally  divided  into  forms  including  LP,

NLP,  MILP,  MINLP,  and  DP.  Rather  complete  reviews  can  be
found in Refs. [199−201]. In power industries, the computational
requirements  for  power  system  dispatch  solutions  are  much
higher than the academic research, which are discussed as follows.

Firstly,  the  solutions  need to  be  computationally  efficient.  The
power  system  dispatch  needs  to  be  timely  solved.  With  the
increasing need to execute the resource allocation in a wider range
with  higher  time  resolution,  the  scale  of  the  dispatch  problem  is
increasing.  For  example,  China  is  preparing  to  execute  the
regional and even national electricity market. To achieve this, the
scale of the market clearing model will greatly increase compared
with  the  dispatch  problem  in  a  single  province,  causing  higher
challenges.

Secondly,  the  solutions  need  to  be  robust.  In  practical  power
system  dispatch  problems,  there  are  many  numerical  problems
that may not be faced in the standard test systems usually used in
academic  studies.  For  example,  there  may  be  unusual  settings  of
the  line  parameters  caused  by  the  equivalent  modeling  of  lower
level  systems  or  interconnection  branches;  the  penalty  factors  to
punish  the  constraint  relaxations  are  several  magnitudes  higher
than the common parameters, causing the numerical problems in
matrix  calculation.  Such  problems  are  seldom  discussed  in  the
research of the majority of algorithms, but are important in prac-
tice.

Thirdly, the solutions are  preferred to have convergence guar-
antee. In practical applications, the dispatch solution is a must to
proceed the followed operation procedure. For example, the market
clearing results are needed to publish according to the given rule.
If  the  solution  cannot  converge,  human  interference  is  required,
which will harm the efficiency and economics of the power system
operation.

Hence, in power industries, most of the dispatch problems will
be simplified or transformed into the LP or MILP form because of
the desired computational efficiency, robustness, and convergence
properties  of  LP-based  decision-making  algorithms.  Here,  we
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mainly discuss the algorithms of LP and MILP dispatch problems.
For the LP problem, such as the typical ED and SCED problem,

the algorithms are quite mature. The basic algorithms include the
primal-dual  method[202],  interior  point  method[203],  simplex
method[204],  dual simplex method[205], etc. The state-of-the-art algo-
rithms have been proved to be polynomial-hard with convergence
guarantee.  Current  solvers,  including  CPLEX,  Gurobi,  IPOPT,
and so on, can efficiently provide the solutions of the LP problem.
As a result,  current power industries and academia normally pay
attention  to  the  modeling  technique  and  leave  the  burden  of  LP
solving to the solvers.

The power system dispatch problems formulated as  the MILP
form  are  the  most  computationally  challenging  ones  in  practice,
which has attracted attentions for acceleration for a long time. The
MILP optimization is theoretically non-deterministic npolynomial-
time hardness (NP hard). In essence, it needs to strategically enu-
merate the combination of integer variables. Currently, the main-
stream  algorithm  is  called  branch-and-cut  method,  which  is  a
combination  of  branch-and-bound  (B&B)  method  and  cutting
plane method. It will produce a search tree. Each node on the tree
represents  a  certain  combination  of  integer  variables.  The
branches produced from this node represent the selection of 0 or
1  of  the  undetermined  integer  variables.  On  each  node,  several
relaxation  LP  problems  need  to  be  solved.  A  common  MILP
problem in power systems can contain hundreds of thousands of
nodes. Hence, the computational burden of MILP is much higher
than the LP-based problems.

One  of  the  most  focused  MILP  dispatch  problems  is  the  UC
problem,  which  is  frequently  solved  on  a  daily  base  in  modern
power systems.  To handle  the difficulty  caused by the large-scale
of the optimization problem, power engineers propose to decom-
pose  the  UC  problem  into  several  subproblems  and  iteratively
coordinate  the  computational  tasks  of  subproblems.  Recently,
commercial  solvers,  led  by  CPLEX  and  Gurobi,  have  been  fast
developing. It has been adopted by many power system operators
to  directly  input  the  MILP  model  to  the  solver  and  obtain  the
results. The basic algorithm of these solvers is still the branch-and-
cut method. However, it involves many other techniques like pre-
solving,  parallel  computing,  branching  or  nodding  strategies,
which  distinguish  the  computational  performance  among  the
solvers.  With  the  increasing  scale  of  the  MILP  problem,  some
power  engineers  are  proposing  to  combine  the  decomposition
idea with the powerful MILP solver[27]. In China, there is an evolving
trend to develop domestic solvers, like the COPT and mindOPT.
The  performance  comparison  in  practical  systems  needs  to  be
further demonstrated.

3.2    Discussion of computational challenges
Along the whole evolution of the power system, the efficient opti-
mization of dispatch problem is always an important and difficult
task.  Constant  efforts  to  improve the  dispatch decision efficiency
and accuracy are made by both power engineers and mathemati-
cians. Specifically, we would like to discuss the following compu-
tational challenges in current power dispatch problems.

We first discuss the challenge brought by modeling complexity.
The physical property of the power grid has been significantly dif-
ferent from the traditional dispatch problem. Hence, the dispatch
model needs  to  be  updated,  along  with  the  computational  chal-
lenges.

From  the  generation  side,  the  percentage  of  renewables  is
increasing, causing a need to model the uncertainties more accu-
rately.  Currently,  the  uncertainties  are  considered  in  the  power

industries  by the capacity reserve.  The level  of  capacity reserve is
usually determined in an ad-hoc manner. In a power system with
an extremely high percentage of renewables, such a manner either
causes  security  issues  or  results  in  unnecessary  redundancy.  The
dispatch  modeling  with  uncertainties  proposed  in  Section  2
becomes a solution, but also brings a significant increase in com-
putational burden. Another thought is to keep the current dispatch
model  formulation,  but  express  the  operation  boundary,  like  the
capacity reserve,  as an explicit  function of the renewables.  In this
way, the reserve can be more accurate and timely change with the
operation condition. Also, it provides the opportunity to trace the
costs of renewable fluctuation by considering its influence on the
operation  boundary.  Obviously,  such  a  treatment  also  increases
the scale of the dispatch model, calling for more powerful solving
algorithms. Besides,  the  more  accurate  modeling  of  the  genera-
tions,  including  the  valve  point  effect  of  thermal  generators,  will
also increase the modeling complexity. With more powerful com-
putation tools, more detailed generation models can be considered,
leading to economic and secure benefits.

From the grid side, many countries currently have a hybrid AC
and DC power grid with a much higher percentage of  electronic
devices. These characteristics challenge the applicability of the DC
power flow model, which is the foundation of most of the LP and
MILP-based  dispatch  problems.  The  detailed  modeling  of  the
power flow features will increase the modeling scale and introduce
nonlinearity, all leading to computational challenges.

From the demand side, modern power systems need the flexi-
bility  of  the  power  demand  to  handle  the  fluctuations,  which  is
usually assumed as a constant in the traditional dispatch. For the
resources on the demand side, the adjustability of a single resource
is  normally  not  comparable  with  the  generators,  while  the  total
amount  of  resources,  like  a  building  or  a  house,  is  much  larger
than  the  generation  side.  Hence,  the  modeling  scale  will  be
exploded if  all  the resources  are  modeled in detail  as  the genera-
tors.  A popular  way is  to  aggregate  the  demand side  and form a
resource with the flexibility visible to the system operator, such as
the  virtual  plant.  Nevertheless,  the  dispatch  problem  is  much
larger when considering the demand side, causing computational
challenges.

Last but not the least, the inclusion of storage also increases the
modeling complexity, resulting in significant computational chal-
lenges. The modeling of storage normally includes nonlinear ele-
ments, which can be partly handled by involving integer variables.
If  the degradation of  the storage is  considered,  the model  will  be
more complex, bringing computational challenges.

Except  for  the  modeling  perspective,  the  scale  of  the  dispatch
model  also  brings  great  computational  challenges.  Traditionally,
the  regional  power  balance,  such  as  the  provincial  power  system
in  China,  can  be  made  with  a  rather  fixed  power  exchange  with
other regions. However, modern power systems face tighter oper-
ation space, resulting in an urgent need of the dispatch optimization
across the regions. More resources are included, and naturally, the
scale of the dispatch model increases. In China, two main regional
power networks are proposing to construct a dispatch optimization
model across the region, but are currently facing distinct compu-
tational challenges.

In essence, the current technologies cannot solve the enormously
large dispatch  model  that  considers  all  the  details  in  power  sys-
tems.  The  development  of  advanced  dispatch  solutions  is  always
of  interests  and  can  potentially  bring  huge  benefits  to  the  power
system.
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3.3    Future trends of solving solutions
To  solve  the  large-scale  and  complex  dispatch  problems,  many
efforts have been made from the academia and industries. Firstly,
if we treat the dispatch problem as a special kind of optimization
problem, the advancement in general-purpose solving algorithms
will  always  bring  benefits  to  the  dispatch  problem.  For  example,
Gurobi  has  witnessed  over  75  times  acceleration  for  the  same
problem  from  the  initial  version  to  the  latest  version  over  the
decades[206].  These  improvements  in  efficiency  also  motivate  the
power  industries  to  use  the  MILP  solvers  for  the  large-scale  UC
problem. Hence, a major improvement of solution methodologies
for power system dispatch problems comes from the mathemati-
cians.

On  the  other  hand,  the  power  system  dispatch  is  gradually
becoming one of the most challenging decision-making problems
because  of  the  issues  mentioned  above.  Treating  the  dispatch
problem as  a  common mathematical  problem may not  meet  the
solving  requirement,  even  with  the  fast  development  of  solving
tools.  One  promising  way  is  deeply  combining  the  domain
knowledge of power system dispatch and advances in mathemat-
ics. The basic idea is to utilize the special structure and numerical
properties of the power system dispatch problem to accelerate the
solving  process.  There  are  majorly  two  categories  of  methods  to
achieve this, which will be introduced as follows.

One approach is decomposition. The basic idea is to decompose
the solving problem into several solving tasks to reduce the com-
putational  burden.  Classic  decomposition  method  includes  the
Lagrangian decomposition[207] and Benders decomposition[208].  The
decomposition  should  be  executed  based  on  the  structure  of  the
problem.  The  power  system  dispatch  problem  has  distinct
numerical  properties.  For  example,  the  dispatch  constraints  in
each  time  step  are  coupled  only  by  the  ramp  capabilities,  and
hence,  many  methods  are  proposed  to  decompose  the  dispatch
model according to different time horizons[209]. Also, for a regional
power network, the dispatch problem of different regions is coupled
by the power transfer on the tie lines. There are methods proposed
to decompose the dispatch problem of the whole region to several
subregions  and  coordinate  the  dispatch  of  subregions  by  tie-line
power optimization[210].

Another approach is to improve the decision-making algorithm
of the dispatch problems using the power-domain knowledge. As
discussed above, the power system dispatch problem is challenging
in the MILP form. Current dispatch solutions normally formulate
the dispatch problems and then solve them using general-purpose
solvers.  However,  the  power  domain  knowledge  may  help  to
improve the efficiency. For example,  Refs.  [211, 212] have shown
that the power-domain knowledge can help to accelerate the solving
process of the MILP solver at a considerable scale. However, current
research on this field still needs further investigations. The collab-
oration between the mathematicians and power engineers will be
highly appreciated. The U.S. is funding a project called High-Per-
formance  Power  Grid  Optimization  (HIPPO)  to  achieve  this
task[213]. China also organized National Key R&D Program Projects
with similar  purposes.  Still,  there  is  a  long way to  go to  improve
the efficiency of the power system dispatch problem.

4    Conclusion
In  this  paper,  the  common  concept  of  power  system  dispatch  is
revisited. The categorization of the power system dispatch problem
is provided,  especially  with  the  emphasis  on  the  industrial  appli-
cations. Then,  the  common dispatch  models  are  given  and  cate-

gorized,  providing  guidance  for  the  models  of  specific  problems.
Finally,  this  paper discusses  the solution of  the dispatch problem
and provides the challenges faced by the current industries. Hope
this  paper  can  help  the  researchers  and  engineers  in  this  field  to
get the basic concept of the power system dispatch and learn the
current challenges.
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