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ABSTRACT
Quantum power flow (QPF) offers an inspiring direction for overcoming the computation challenge of power flow through quantum
computing. However, the practical implementation of existing QPF algorithms in today’s noisy-intermediate-scale quantum (NISQ)
era remains limited because of their sensitivity to noise. This paper establishes an NISQ-QPF algorithm that enables power flow
computation on noisy quantum devices. The main contributions include: (1) a variational quantum circuit (VQC)-based alternating
current  (AC)  power  flow  formulation,  which  enables  QPF using  short-depth  quantum circuits;  (2)  NISQ-compatible  QPF solvers
based  on  the  variational  quantum linear  solver  (VQLS)  and  modified  fast  decoupled  power  flow;  and  (3)  an  error-resilient  QPF
scheme to relieve the QPF iteration deviations caused by noise; (3) a practical NISQ-QPF framework for implementable and reliable
power flow analysis on noisy quantum machines. Extensive simulation tests validate the accuracy and generality of NISQ-QPF for
solving practical power flow on IBM’s real, noisy quantum computers.
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ate-scale quantum device.

 

Power  flow  is  an  indispensable  foundation  for  nearly  all
modern power system analytics, e.g., stochastic power flow,
optimal  power  flow,  security  screening,  transient  stability,

and reliability assessment[1−3]. It provides static states of power sys-
tems via solving the nodal  voltage equations composed of  power
generation,  load,  and  grid  configuration[4].  The  mainstream  of
alternating current (AC) power flow algorithms consists of the fast-
decoupled  method,  the  Newton–Raphson  algorithm,  the
Gauss–Seidel algorithm, etc.[5] However, under the deep penetration
of  renewables,  an  enormous  amount  of  power  flow  analyses  are
needed to  quantify  the  impact  of  uncertainties[6]. Power  flow cal-
culation remains intractable because the complexities of almost all
the  classical  power  flow  algorithms  scale  polynomially  with  the
system size.

The fast evolution in quantum computing provides a promising
direction  for  developing  scalable  power  flow  analytics[7−9].  Unlike
classical methods,  quantum computing enables using logarithmi-
cally-scaled  number  of  qubits  to  solve  linear  equations  in  power
flow  analysis[10].  A  Harrow–Hassidim–Lloyd (HHL)-based  quan-
tum power flow (QPF) is devised to underpin the AC power flow
issue through quantum computing[11]. Although the proof-of-con-
cept  is  successful,  the  scalability  of  the  method  remains  limited.
The  main  obstacle  is  that  HHL  generates  high-depth  quantum
circuits  even  for  small-scale  power  flow  problems,  which  can  be
significantly  crippled  by  noise.  Today,  noisy-intermediate-scale
quantum (NISQ) devices  remain to be mainstream, whose capa-
bility is restricted by the limited number of qubits and considerable
noises[12].  Noise-tolerant quantum devices may not be available in
the  near  future  due  to  the  significant  error  correction  overhead
and  the  short  coherence  time[13−15].  Therefore,  QPF  methods  that
are applicable to NISQ devices are in high need.

To  bridge  the  gap,  this  paper  devises  a  NISQ-QPF  algorithm
that allows for practical and noise-resilient power flow analysis on
NISQ devices. Our contributions are as follows:

● A variational quantum circuit (VQC)-based QPF formulation
is established to enable QPF analysis using shallow-depth quantum
circuits.

● A  variational  quantum  linear  solver  (VQLS)-QPF  solver  is
devised  incorporating  power  flow  information  embedding  and
quantum  circuit  optimization,  which  enables  resilient  quantum
power flow iterations under noisy environments.

● VQLS-compatible  QPF  algorithm  is  devised  by  modifying
the fast  decoupled load flow (FDLF),  which tackles  the quantum
measurement issues of the general VQLS.

● A practical NISQ-QPF framework is constructed for reliable
QPF implementation on real quantum computers.

The remainder  of  this  paper  is  organized as  follows:  Section 1
establishes the variational quantum power flow formulation. Sec-
tion 2 develops the variational quantum power flow solver. Section
3 devises the NISQ-compatible QPF algorithm. Section 4 presents
extensive case studies on real  IBM quantum devices,  followed by
the conclusion in Section 5.

1    Variational quantum power flow formulation
An  indispensable  computation  burden  of  nonlinear  power  flow
algorithms is to solve a set of linear equations iteratively, where the
required  computational  resource  scales  polynomially  with  the
power system scale. This section establishes a variational QPF for-
mulation,  which  inherits  the  exponential  scalability  of  quantum
computing and enables the utilization of shallow-depth quantum
circuits in QPF calculation.

1.1    Classical fast decoupled load flow formulation
FDLF  is  a  widely  used  derivative-based  iterative  power  flow
method for steady-state analysis of power systems. Fixed Jacobian
matrices  are  iteratively  used  to  solve  the  nonlinear  power  flow
equations based on the strong coupling between voltage magnitudes 
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 and reactive  power  and between voltage angles  to  active
power [16].  According  to  the  operation  characteristics  of  power
generation and consumption, the types of buses generally consist
of (1) slack bus which supports the power balance of the system;
(2) PV bus whose active power and voltage magnitude are fixed;
and (3) PQ buses whose active/reactive power are fixed.

N Npv

Npq

Given an -bus power system with one slack bus,  PV buses,
and  PQ buses, the FDLF models are formulated as[16]

V−1ΔP= B′VΔθ (1)
V−1ΔQ= B′′ΔV (2)

B′
∈ R(N−1)×(N−1) B′′

∈ RNpq×Npq

ΔV ∈ RNpq×1

Δθ ∈ R(N−1)×1

ΔP ∈ R(N−1)×1 ΔQ ∈ RNpq×1

where  and  are  coefficient  matrices
derived  from  the  admittance  matrix;  and

 are the differences of voltage magnitudes and angles,
respectively;  and  denote  the  active/
reactive power mismatches, which is updated as

ΔS= [ΔP,ΔQ]T = S−Y(θ) ·V◦V (3)

1.2    VQC-based QPF formulation

|Δθ⟩ |VΔθ⟩
|·⟩

The main idea of NISQ-QPF is to establish two separate VQCs to
respectively prepare  and  according to Eqs. (1) and (2)
(here  denotes the corresponding quantum state of the original
vector1).

Uq(wq)

wq |ΔV⟩ |ΔV⟩= Uq(wq) |0⟩
Uq(wq) |ΔV⟩

B′′
|ΔV⟩

V−1ΔQ

Taking Eq. (2) as an example, we explain the formulation of the
fast  decoupled,  VQC-based  QPF.  A  VQC  specified  by  a
set of classical parameters  generates  as .
In order to optimize a qualified  so that  provides the
solution  of  Eq.  (2),  it  is  required  that  (i.e.,  the  left-hand
side of Eq. (2)) is proportional to the normalized quantum state of

 (i.e.,  the  right-hand  side  of  Eq.  (2)).  Mathematically,  the
following formulation is established:

|Ψq⟩=
B′′|ΔV⟩√⟨

ΔV
∣∣B′′TB′′∣∣ΔV⟩ =

∣∣V−1ΔQ
⟩

(4)

|Ψq⟩ V−1ΔQwhere  denotes the normalized quantum state of .
|VΔθ⟩For  Eq.  (1),  the  preparation  of  can  be  devised  as  the

same format of Eq. (4).

|Ψp⟩=
B′|VΔθ⟩√⟨

VΔθ
∣∣∣B′TB′

∣∣∣VΔθ⟩ =
∣∣V−1ΔP

⟩
(5)

|VΔθ⟩= Up(wp) |0⟩ Up

wp

where  is yielded from another VQC  spec-
ified by parameters .

2    Variational quantum power flow solver
This  section  develops  a  VQLS-based  QPF  solver  for  power  flow
iterations by optimizing the VQCs.

V−1ΔP V−1ΔQ B′ B′′

|ΔV⟩ |VΔθ⟩

Figure  1 illustrates  the  architecture  of  the  VQLS-based  QPF
algorithm, where a hybrid quantum/classical framework is utilized.
The overall idea of this algorithm is the updated power injections

 and  in addition to  and  as inputs are sent to
VQLS solver. The VQLS-based circuit is then established to obtain
the  quantum  states  and .  This  procedure  of  VQLS
mainly consists of three subroutines namely power flow informa-
tion  updating,  VQLS  input  preparation,  and  VQC  optimization.
Detailed procedures of VQLS are as follows:

2.1    Power flow information updating

V−1ΔP V−1ΔQ
According  to  Eqs.  (1)–(3),  the  power  injections  and  voltages  are
updated  to  obtain  and  in  the  CPU,  which  only
involves trivial matrix-vector multiplication.

2.2    VQLS input preparation

V−1ΔP V−1ΔQ B′ B′′

B′ B′′

B′′

The quantum processor unit (QPU) reads the power flow vectors
(  and )  and  power  flow  matrices  (  and )  as
inputs for the VQLS algorithm to perform linear equation solving
in each power flow iteration. Correspondingly, the classical matri-
ces/vectors should be translated into the quantum formulation. To
achieve this goal,  and  are decomposed into a linear combi-
nation of basic Pauli gates[17]. Take  as an example:

B′′
=

4n

∑
l=1

1
2n
Tr(σ lB

′′
)
(⊗n

k=1
σ l(k)

)
(6)

n σ l(k)

k {σI, σx, σy, σz} σI =

[
1 0
0 1

]
σx =

[
0 1
1 0

]
σy =

[
0 −i
i 0

]
σz =

[
1 0
0 −1

]
|V−1ΔQ⟩

|V−1ΔP⟩

where  denotes the qubit number; the basic Pauli gate  on the

-th  qubit  includes ; , ,

 and  denote  the  zeroth,  Pauli-X,

Pauli-Y, and Pauli-Z mathematical matrices, respectively. 
and  are decomposed into a basis vector-based formulation
so that they can be effectively prepared in the Hilbert space[18, 19].

2.3    VQC optimization for QPF

|Ψp⟩
|Ψq⟩ |V−1ΔP⟩ |V−1ΔQ⟩

We  establish  QPF  cost  functions  to  quantify  the  difference
between  the  normalized  states  in  Eqs.  (4)  and  (5)  (i.e.,  and

) and power flow vectors (i.e.,  and ):

Cp = 1−
∣∣⟨V−1ΔP |Ψp

⟩∣∣2 ,Cq = 1−
∣∣⟨V−1ΔQ | Ψq

⟩∣∣2 (7)

Cp Cq

Cq

Values of  and  can be estimated by performing a series of
Hadamard tests, which is a standard quantum computation tech-
nique[20, 21]. For , specifically, it can be expressed as

Cq = 1−
∣∣⟨V−1ΔQ |Ψq

⟩∣∣2 =
1−

∑
l,l′
rlr∗l′

⟨
U†(w)"σ†

l′UjWU†
j "σlU(w)

∣∣∣0
∑
l,l′
rlr∗l′

⟨
U†(w)"σ†

l′"σlU(w)
∣∣∣0 (8)

rl =
1
2n
Tr(σ lB

′′
) W

Up(wp) Uq(wq)

where  are the decomposition coefficients;  is a
coefficient  integrating  Pauli-Z gate[20].  Then,  Eq.  (7)  is  minimized
to optimize the parameters of  the VQCs  and [22, 23].
The subplot in Figure 1 illustrates the VQC architecture designed
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Fig. 1    QPF architecture.

 

ΔV |ΔV⟩= ∑
j
νj|j⟩ νj = ΔVj/

√
∑
j
(ΔVj)2 ΔVj

ΔV |j⟩

1Taking  as an example, , where ; 
denotes the j-th element of ;  is the j-th quantum basis.
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for QPF, which is comprised of an initial state encoding layer and
several entangling layers[19]. In detail, a set of Ry quantum gates are
installed on each qubit for initial state encoding. An entanglement
layer  is  introduced  after  the  Ry  gates  to  realize  the  quantum
entanglement between adjacent quantum qubits. The entanglement
layer can be repeated to achieve the VQC for QPF.

|ΔV⟩ |VΔ"θ⟩

Once  the  optimization  achieves  convergence,  the  maximum
overlap can be reached for Eqs. (4) and (5). Then, the possibility of
the  quantum  state  and  can  be  measured  from  the
optimized VQCs.

The superiority of the fast-decoupled, VQLS-based QPF lies in
three points:

● It embeds power flow equations into the Hilbert space, which
only  uses  logarithmically-scaled  computational  resources  (i.e.,
number of qubits) to address power flow issues.

● It  employs  quantum  circuits  with  shallow-depth  structures,
which are  less  crippled by noise  and,  therefore,  more compatible
with today’s real quantum machines.

● It inherits the fixed Jacobian matrix from FDLF so that VQLS
only  needs  to  be  called  at  the  beginning  of  the  QPF  algorithm
(rather than at each iteration), which significantly saves the efforts
for quantum circuit optimization.

3    NISQ compatible quantum power flow
This  section  first  devises  a  modified  FDLF-based  QPF  solver  to
address  the  practical  measurement  challenges  on  real  quantum
machines.

Next, a practical NISQ-QPF framework is established for reliable
power  flow  analysis.  Finally,  practical  considerations  on  circuit
design and implementation settings are discussed.

3.1    Practical NISQ-QPF algorithm

|ΔV⟩ |VΔθ⟩

ΔVj
2 (VjΔθj)

2

ΔVj VjΔθj ∀j
ΔVj VjΔθj

The  aforementioned  VQLS-based  QPF  solver  enables  obtaining
the quantum states of  and  theoretically. However, the
measurement on real quantum machines can only provide proba-
bilities  on  the  quantum basis,  i.e.,  and  rather  than

 and  ( ).  The  main  bottleneck  lies  in  the  unknown
signs of  and .  Here,  we devise practical  active/reactive-
power-related  QPF  solvers  via  modifying  FDLF  to  tackle  this
challenge.

3.1.1    Active-power-related QPF solver∣∣V−1ΔP
⟩

|V−1ΔP⟩= ∑
j
νj|j⟩

|VΔθ⟩

|VΔθ⟩j ∀j

Rewrite  in  its  basis  states  as . Corre-
spondingly,  the  active  power  flow  solution  can  also  be
described  as  the  linear  combination  of  a  set  of  basis  solutions

 ( ).

−B′
|VΔθ⟩j = |j⟩ (9)

|VΔθ⟩= ∑
j
−νj |VΔθ⟩j (10)

B′In the FDLF formulation,  is constructed by the reciprocal of
branch susceptance[16].

B′

(g,g) =
N

∑
s=1,s̸=g

− 1
x(g,s)

, B′

(g,m) =
1

x(g,m)

(11)

x(g,s) (g,m)

B′

j |VΔθ⟩j

where  denotes the susceptance of branch . Equation (11)
shows  is  a  diagonally  dominant  matrix.  Therefore,  it  can  be
proved  that  for  an  arbitrary ,  every  element  of  is  non-
negative.

N |VΔθ⟩j =
[V1Δθ1,V2Δθ2, . . . ,VgΔθg,VN−1ΔθN−1]

T

VgΔθg VΔθ
VgΔθg ⩾ 0

Proof.  Assume  bus  is  the  slack  bus.  Denote 
.  Without  loss  of  generality,

denote  as  the  smallest  element  in ,  we  prove
 by contradiction.
VgΔθg < 0Assume . The g-th dimension of Eq. (9) can be calcu-

lated as

jg =
N−1

∑
s=1,s ̸=g

1
x(g,s)

(VgΔθg −VsΔθs)+
1

x(g,N)
VgΔθg (12)

jg ∈ {0, 1} of |j⟩where  denotes the g-th dimension .
VgΔθg VgΔθg ⩽ VsΔθs s

VgΔθg < 0
Since  is  the  smallest,  for  arbitrary .

Meanwhile, since , Eq. (12) yields the following conclu-
sion:

jg ⩽
N−1

∑
s=1,s̸=g

1
x(g,s)

(VgΔθg −VgΔθg)+
1

x(g,N)
VgΔθg =

1
x(g,N)

VgΔθg < 0

(13)

jg ∈ {0, 1}
VgΔθg < 0 VgΔθg

Formula  (13)  is  in  contradiction  to  the  fact  that .
Therefore, the assumption  does not hold and  is
proved as non-negative.

|VΔθ⟩j
Consequently, once a VQC is optimized for Eq. (9), the quantum

state  (rather than merely the possibility) can be estimated
as

|VΔθ⟩j = Upj(w∗
pj) |0⟩=

2n

∑
k=1

√
pk |k⟩ (14)

pk kwhere  denotes the possibility of the -th basis state, which can
be directly measured from real quantum computers.

3.1.2    Reactive-power-related QPF solver

B′′

B′ B′′

|ΔV⟩j

In  the  FDLF  formulation,  is  constructed  from  the  imaginary
part of the branch and ground admittance. Different from , 
does  not  hold  the  diagonal  dominance  characteristic,  which
therefore  hinders  the  non-negative  measurement  of  the  basis
solution .

Q−VInspired by the instant updating process[24, 25], a modified 
iteration is devised to tackle the challenge:

V−1ΔQ= B̃
′′

ΔV+ B̃
′′

0ΔVp (15)

ΔVp

B′′

B̃
′′

B̃
′′

0

B̃
′′

B̃
′′

0

where  denotes  the  differences  of  voltage  magnitude  at  the
previous  iteration.  Here,  we  decompose  into a  branch admit-
tance related  and a ground admittance related . The detailed
elements of  and  include:

B̃′′

(g,g) = Im(
N

∑
s=1,s ̸=g

y(g,s)), B̃
′′

(g,m) = Im(−y(g,m)) (16)

B̃′′

0(g,g) = Im(y(g,0)), B̃
′′

0(g,m) = 0 (17)

y(g,m) y(g,0) (g,m)where  and  denotes  admittance  values  of  branch 
and ground, respectively, and Im(·) denotes the imaginary part.

B̃
′′

Q−V
In  Eq.  (16),  the  branch  admittance  related  is  a  diagonally

dominant matrix that  offers  a  potential  to make  iteration
compatible to the VQLS-based QPF solver.  Rewrite Eq. (15) as a
quantum linear formulation format,

|V−1ΔQ− B̃
′′

0ΔVp⟩= B̃
′′

|ΔV⟩ (18)

|V−1ΔQ− B̃
′′

0ΔVp⟩

|V−1ΔQ− B̃
′′

0ΔVp⟩= ∑
j
νj|j⟩ Q−

where  can  be  expressed  in  its  basis  states  as

.  Detailed  proof  of  the  modified 

Noise-resilient quantum power flow ARTICLE

 

iEnergy | VOL 2 | March 2023 | 63–70 65



V  iteration shares the same way to Eq. (12) and Formula (13).
Q−V

B̃
′′

|ΔV⟩

The modified  iteration retains both the contribution of
the ground part and the diagonal dominance characteristic of ,
which therefore enables non-negative measurement of  from
Eq. (18).

3.1.3    Augmented QPF solver

P−θ
Q−V

Today’s  quantum  computers  remain  limited  qubits  for  solving
linear equations. This motivates us to explore the qubit-economic
method  which  enables  fewer  quantum  resources  to  solve 
and  iteration at the same time.

VΔθ ΔVDifferent  from the  separate  calculations  for  and ,  an
augmented QPF solver is devised to explore the quantum calcula-
tion simultaneously by quantum superposition as[

B′ 0
0 B̃

′′

][
VΔθ
ΔV

]
=

[
V−1ΔP

V−1ΔQ− B̃
′′

0ΔVp

]
(19)

Npq +N− 1 ⌈logNpq
2 ⌉+ ⌈logN−1

2 ⌉
⌈logNpq+N−1

2 ⌉

Compared  with  the  classical  method  in  the  Euclidean  space
scaled by ,  and  qubit QPF, the aug-
mented QPF algorithm in Hilbert space only requires 
qubits.

3.2    Practical NISQ-QPF framework
A  practical  NISQ-QPF  framework  is  developed  for  solving  the
measurement and noise issues on real quantum computers. Algo-
rithm  1  summarizes  the  framework  and  details  the  pseudo-code
of QPF.

3.2.1    Initialization

B′

B̃
′′

B̃
′′

0

Power flow information including branch admittance matrices ,
, , and power data P, Q, θ, V are initialized.

3.2.2    VQLS preparation/optimization

|ΔV⟩ |VΔθ⟩ P−θ Q−V

|VΔθ⟩
|ΔV⟩ θ V

ΔS

Decompose branch admittance matrices and prepare VQC circuits
for  obtaining  and  in  and  iteration.
Then, a classical optimizer (i.e., Adam[26], gradient decent[27]) is uti-
lized  to  optimize  the  parameters  of  the  VQC  circuits.  When  the
optimization process is finished, the VQC circuit can be executed
on a real  quantum machine.  Once quantum states of  and

 are measured, the corresponding power flow variables , 
and  can be updated for the next iteration.

3.2.3    Noise error compensation

ξq(0) ξp(0)
V θ

ΔV(k) Δθ(k)

ΔV(k)

Δθ(k) V θ

After  the  measurement,  check the  deviations  and .  If  the
deviations are less than the tolerance,  and  are updated. Oth-
erwise, we perform an iterative error correction of  and 
to relieve the deviations and access the accurate values. Once 
and  reach convergence,  and  are updated.

ΔP ΔQ
ε

The QPF iterations continue until the mismatches  and 
reach a convergence tolerance of .

3.3    Remarks
Today’s NISQ computers are considerably disturbed by noise. To
enhance  the  performance  of  the  devised  VQLS-QPF  solvers,
proper  circuit  design  and  operation  settings  on  quantum
machines are highly required. Here, the following practical factors
are emphasized:

Number  of  shots.  Sufficient  quantum  shots  are  required  for
generating  accurate  measurements  when  solving  QPF  on  real
quantum devices.

Quantum  circuit  structure.  The  real  quantum  device  usually

only contains several basis gates and provides limited connectivity.
If the designed VQC requires nonexistent quantum gates or con-
nection  between  unconnected  qubits,  it  will  be  compiled  to  an
equivalent quantum  circuit  compatible  with  the  hardware  avail-
ability. Such a compiling process unavoidably increases the depth
of the quantum circuit, which may deteriorate the performance of
QPF. For instance, if the Pauli-Z gate doesn’t exist on real quantum
devices,  the  Hardmard  gate  and  Pauli-X gate  are  compiled
together  to  realize  the  function  of  the  nonexistent  Pauli-Z gate,
which would increase the depth of the quantum circuit.

4    Numerical test
This  section validates  the  effectiveness  and accuracy  of  QPF in  a
series  of  standard  IEEE test  systems.  QPF is  implemented  on an
IBM  quantum  simulator  (IBMQ_qasm_simulator)  with  Qiskit
(0.16.0)[28] and a practical quantum machine (IBMQ_hanoi).

4.1    Validity of NISQ-QPF on the quantum simulator
This subsection validates the effectiveness of QPF in a typical five-
bus  test  system  (see Figure  2)  on  an  IBM  quantum  simulator.
Specifically, bus 5 is a slack bus, bus 1 equipped with a generator,
and buses 2, 3, 4 with loads are PQ buses.
 
 

1 4

5:Slack
   bus

2 3 Initialization:
V1=1Ð0, V2=1Ð0
V3=1Ð0, V4=1Ð0
V5=1.06Ð0
S1=0.8+0.8j
S2=−0.45−0.15j
S2=−0.4−0.05j
S2=−0.6−0.1j

Fig. 2    Five-bus system for QPF tests.

4.1.1    Validation of the NISQ-QPF process

We  first  exemplify  the  QPF  results  on  a  five-bus  test  system.  2

 

 

Algorithm 1. Practical QPF algorithm
Initialize: θ, V, B', B'', B0'', P, Q, ;
while ΔP ≥  or ΔQ ≥   do
      Update: ΔP, ΔQ Eq. (3);
      if 1st iteration then
           Decompose: B', B'' Þ B', B'';
           Prepare QPF circuit and  Eq. (7)
           Optimize QPF circuit;
      end
      Execute: |V −1ΔPñ ® |V Δθñ;
      Execute: |V −1ΔQ − B0''ΔVpñ ® |ΔV ñ;
      Check ξp(0), ξq(0);
      repeat
            if 1st iteration then
                   Input: Δθ Þ Δθ(0), ΔV Þ ΔV(0)

            end
            Iteratively correct ξp(k), Δθ(k+1) and ξq(k),
            ΔV(k+1) until convergence
      until Δθ(k+1) and ΔV(k+1) remain constant;
      Update: θ, V;
end
Result: θ, V and the branch power flow.
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Q−V

qubits  are employed to obtain 4 unknown bus voltages. Figure 3
illustrates the  optimized  QPF  quantum  circuit  and  the  measure-
ment results for  iteration under one basis state.
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Fig. 3    Demonstration  of  the  QPF  process  in  a  five-bus  test  system.  (a)
Designed  QPF  circuit;  (b)  Optimization  process  of  the  cost  function  for  a
basis state ; (c) Measurement of quantum state.
 

● The  compiled,  optimized  QPF  circuit  is  presented  in
Figure 3(a). It is obvious that the circuit is of shallow depth, which
is executable on today’s NISQ devices.

● Figure 3(b) provides the evolution of the cost function.
Along the optimization process, the cost function is minimized,

which indicates the quantum solution is getting closer to the real
solution.

● When the cost  function achieves convergence,  the quantum
states  can  be  measured  from  the  optimized  circuit. Figure  3(c)
illustrates the perfect match between the measured quantum solu-
tions  and  the  classical  power  flow  solutions,  which  validates  the
accuracy of the VQLS-based QPF solver.

4.1.2    Comparison with classical results

QPF’s  correctness  and  convergence  are  validated  by  comparing
QPF results  against  those from classical  power flow methods(i.e.,
FDLF and Newton power flow (NTPF)).

● Table 1 presents the voltage profiles  of  buses 2 and 3 under
different  power  flow  methods.  It  illustrates  the  QPF  results  are
identical to the classical results, which validates the correctness of
QPF.

−1− 1j −1.6− 1j

● We further  study  the  performance  of  QPF under  a  stressed
condition,  where  the  loads  on  buses  3  and  4  are  significantly
increased  to  p.u.  and  p.u. Figure  4 presents  the
simulation result. It can be observed that the power flow solution
of  QPF is  still  identical  to  that  of  the  classical  method.  Although
the  iteration  number  increases  to  40  because  the  system  is
approaching  the  noise  point,  QPF  still  presents  satisfactory  and
comparable convergence performance against classical power flow
methods,  i.e.,  the  iteration  number  of  QPF is  nearly  the  same as
that of the classical methods.

4.1.3    Comparison with HHL-QPF

The devised QPF method is more compatible than HHL-QPF [11]

on today’s  real,  noisy quantum devices.  For example,  in the five-
bus test system, the depth of the compiled circuit optimized from
the devised NISQ-QPF algorithm is 15, which is smaller than that
of the HHL-QPF method (i.e., 14,811) on the same quantum basis.
This indicates the NISQ-QPF method can significantly relieve the
impact of noisy quantum environments.

4.2    NISQ-QPF test on noisy quantum machine

9.72× 10−3 1.31× 10−2

This  subsection  further  verifies  the  performance  of  NISQ-QPF
using the nine-bus test system[29] in Figure 5 on a real IBM quantum
hardware IBMQ_hanoi. IBMQ_hanoi is  a  27-qubit,  64-quantum
volume  quantum  computer,  whose  median  CNOT  error  is

 and  median  readout  error  is  (see Figure  6
for  its  configuration).  The  number  of  quantum  shots  is  set  as
8192.
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Fig. 5    9-bus system architecture.
 

 

Table 1    Voltage profiles with different methods (p.u.).

Algorithm Iter V1 V2 θ1 θ2
1 1.0921 1.0708 −0.0041 −0.0580

2 1.0821 1.0419 −0.0304 −0.0738

3 1.0734 1.0357 −0.0286 −0.0675

QPF 4 1.0750 1.0390 −0.0264 −0.0663

5 1.0756 1.0394 −0.0268 −0.0670

6 1.0755 1.0392 −0.0268 −0.0670

7 1.0755 1.0392 −0.0268 −0.0670

1 1.0912 1.0686 −0.0032 −0.0603

2 1.0822 1.0398 −0.0305 −0.0732

3 1.0733 1.0360 −0.0287 −0.0667

FDLF 4 1.0750 1.0395 −0.0262 −0.0663

5 1.0757 1.0394 −0.0266 −0.0670

6 1.0755 1.0391 −0.0268 −0.0670

7 1.0755 1.0392 −0.0268 −0.0670

1 1.0859 1.0479 −0.0282 −0.0722

NTPF 2 1.0757 1.0393 −0.0268 −0.0670

3 1.0755 1.0392 −0.0268 −0.0670
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Fig. 6    IBMQ-hanoi configuration.
 

4.2.1    Performance of NISQ-QPF on IBMQ_hanoi

Figure 7 presents the optimized QPF circuit  for a single iteration
in the power flow calculation of the nine-bus test system. Detailed
quantum gates are shown in Appendix A. It can be observed that

the NISQ-QPF leads to a shallow circuit depth and fewer CNOT
gates.  While  NISQ-QPF  only  employs  4  CNOT  gates  in  a  24-
depth  circuit,  HHL-QPF  requires  a  15,795-depth  circuit  and
54,004 CNOT gates for the same system. Therefore, NISQ-QPF is
more  scalable  than  HHL-QPF.  More  importantly,  the  shallow-
depth  quantum  circuit  is  significantly  more  noise-resilient.  As
shown in Figure 7, there only exist slight differences between the
measurements from the real quantum hardware and the classical
solutions, which indicates NISQ-QPF maintains high performance
even on today’s noisy machines.

Meanwhile, Table 2 presents the voltage profiles under different
methods.  It  can be observed that  QPF results  obtained from real
quantum hardware are identical to those from the classical meth-
ods.  Therefore,  although  noises  perturb  the  quantum  solutions,
QPF  remains  to  achieve  convergence  and  provide  high-fidelity
power flow solutions.
 

Table 2    Voltage profiles of the 9-bus system with different methods.

Bus Vquantum Vclassical θquantum θclassical

1 1.0400 1.0400 0.0000 0.0000

2 1.0250 1.0250 0.0814 0.0814

3 1.0250 1.0250 0.1620 0.1620

4 1.0324 1.0324 0.0343 0.0343

5 1.0127 1.0127 −0.0644 −0.0644

6 1.0159 1.0159 0.0127 0.0127

7 0.9956 0.9956 −0.0696 −0.0696

8 1.0258 1.0258 −0.0387 −0.0387

9 1.0258 1.0258 0.0649 0.0649

Er(%) 0.0025 0.0019
 

4.2.2    Extension to stochastic QPF analysis

The devised QPF method is extended to the stochastic power flow
analysis.  Assuming that  power injections at  buses  5  and 6 follow
correlated Gaussian  probability  distributions  (correlation  coeffi-
cient:  0.75),  5000  samples  are  generated  stochastically. Figure  8
shows the correlation distributions and probability distributions of
voltage  magnitudes  at  buses  5  and  6  obtained  from  the  NISQ-
QPF.  Therefore,  NISQ-QPF  also  provides  a  promising  tool  for
stochastic power flow analysis.

4.3    Scalability analysis of NISQ-QPF
This  subsection  explores  the  performance  of  the  NISQ-QPF
method in different scaled practical  systems. The scale of the test
system  is  increased  from  5  to  9,  30,  and  118  bus  systems  in
Figure 9, respectively.

Vq θq Vc

θc

Table 3 presents partial  voltage profiles obtained from the real
quantum computer, in which  and  are QPF voltages,  and

 are  FDLF  voltages. Table  4 quantifies  QPF’s iteration  perfor-
mance  and  accuracy  compared  with  the  classical  method.  Some
insights can be observed as follows：

● Table 3 illustrates the generality of QPF in the application of

practical power systems. For example, the 9-bus test case includes
the majority  of  power  components  such  as  the  branch,  trans-
former, ground admittance, etc.
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Fig. 9    118-bus system architecture.
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● The scalability of QPF is validated via different scales of test
systems. For example, as shown in Table 3, the voltage magnitude
(i.e., 1.0170 p.u.) and angle (0.4897 p.u.) of bus 100 via QPF in the
118-bus  system  are  identical  to  those  of  the  classical  method.
Meanwhile,  the  accuracy  is  further  verified  by  comparing  the
mean absolute error (MAE) and root-mean-square error (RMSE)
in Table 4. For example, the MAE and RMSE of voltage angles in
the  118-bus  system  are  2.31×10−8 p.u.  and  5.34×10−8 p.u.,  which
satisfy the accuracy requirements.
  
Table 4    QPF convergence/accuracy in different systems.

System Accuracy
Iter MAE RMSE

QPF Classical (10−6 p.u.) (10−6 p.u.)

5-bus
P−θ 3 3 0 0

Q−V 3 3 0 0

9-bus
P−θ 4 4 0 0

Q−V 3 3 0 0

30-bus
P−θ 7 6 0 0

Q−V 6 6 0 0

118-bus
P−θ 4 3 0.0231 0.0534
Q−V 3 3 1.0747 1.3954

 

Q−V
● Table 4 validates the satisfying iteration performance of QPF.

For example, the  iteration number of QPF in the 118-bus
system is 3, which is the same as that of the classical one.

It  is  not  that  today’s  quantum  computers  still  have  limited
capability  for  solving  the  quantum  power  flow,  for  example,  the
accessible  maximum  qubits  of  IBM  quantum  devices IBMQ_
washington are 127 which is one of the obstacles to extending the
scalability of quantum computing. Meanwhile, the ideal noise-free
quantum computers  are  not  available  yet  within  near  decades  to

support the  high-volume  quantum  depth  circuit.  The  main  bot-
tlenecks  lie  in  large  error  correction  overhead,  limited  topology
connections  among  quantum  qubits,  and  short  coherence  time.
Quantum computers are required to calculate power flow repeat-
edly  for  highly  accurate  solutions  which  leads  to  expensive  time
consumption.  The good news is  that  enhanced quantum devices
with  more  accuracy  and  qubits  will  be  developed  in  the  near
future  such  as  the 1000-plus-qubit  quantum  computer[30].  The
swift development of quantum computers offers promising direc-
tion to support the quantum algorithm in near future.

5    Conclusion
This paper devises a NISQ-compatible QPF algorithm. Compared
with  our  previous  HHL-QPF  method,  the  devised  QPF  method
enables  practical  and  scalable  power  flow analysis  using  shallow-
depth quantum circuits  on real  quantum machines.  Case  studies
validate the accuracy and generality of QPF on a quantum simulator
and a real IBM quantum machine IBMQ_hanoi. NISQ-QPF lays a
solid  foundation  for  power  system  static  analytics  and  energy
management through quantum computing in today’s NISQ era.

Appendix

A    Quantum gates in the paper
√
XIn the QPF quantum circuit,  (or SX) is the squared X gate[31],

which can be expressed as
√
X=

1
2

[
1+ i 1− i
1− i 1+ i

]
RZ  denotes  the  single-qubit  rotation  gate  about  the Z-axe,  which
can be formulated as

RZ(θ) =
[

e−iθ/2 0
0 eiθ/2

]
CNOT (or  CX)  denotes  the  controlled  NOT  gate,  whose  repre-
sentation is

CNOT =

1 0 0 0
0 1 0 0
0 0 0 1
0 0 1 0
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Table 3    Partial QPF voltage profiles in different systems.

System Bus Vq Vc θq θc

1 1.0755 1.0755 −0.0268 −0.0268

2 1.0391 1.0391 −0.0669 −0.0669

5-bus 3 1.0396 1.0396 −0.0713 −0.0713

4 1.0393 1.0393 −0.0823 −0.0823

5 1.0127 1.0127 −0.0644 −0.0644

6 1.0324 1.0324 0.0343 0.0343

7 1.0159 1.0159 0.0127 0.0127

9-bus 8 1.0258 1.0258 0.0649 0.0649

20 0.9692 0.9692 −0.0676 −0.0676

21 0.9934 0.9934 −0.0609 −0.0609

22 1.0000 1.0000 −0.0592 −0.0592

23 1.0000 1.0000 −0.0277 −0.0277

30-bus
24 0.9886 0.9886 −0.0459 −0.0459

25 0.9902 0.9902 −0.0295 −0.0295

100 1.0170 1.0170 0.4897 0.4897

101 0.9914 0.9914 0.5174 0.5174

102 0.9891 0.9891 0.5649 0.5649

118-bus
103 1.0100 1.0100 0.4244 0.4244

104 0.9710 0.9710 0.3796 0.3796

105 0.9650 0.9650 0.3603 0.3603
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