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Abstract—Big data are emerging paradigm that can be applied 
to huge volume of valuable data, which are often generated or 

collected at a fast velocity from a wide variety of rich data sources. 
These data can be of a wide variety of formats and/or type; they 
can be at different levels of veracity. Embedded in these data is 
implicit, previously unknown and useful information and 

knowledge that can be discovered by data science. Healthcare and 
medical data such as epidemiological data for disease like 
coronavirus disease 2019 (COVID-19) are examples of big data. 
Analyzing and mining these data led to discovery of knowledge 

and information about the disease, which in turn help people to get 
better understanding of the disease so that they could take parts 
in preventing or slowing down the spread of the disease, and/or 

protecting themselves from the disease. Hence, in this paper, we 
present a data science engine to analyze and mine COVID-19 data. 

As COVID-19 cases may not evenly distributed among spatial 
locations and/or evenly distributed throughout the entire period of 
pandemic, our engine conducts spatial-temporal data science to 
reveal important information and knowledge about 

epidemiological characteristics of the disease across different 
spatial locations and its temporal trends. Evaluation on real-life 
COVID-19 data demonstrates the effectiveness of our engine in 
conducting spatial-temporal data science of COVID-19 data. 

Keywords—data science, coronavirus disease, COVID-19, big 

data, data mining, data analytics, data visualization, big data 

applications, epidemiological data 

I. INTRODUCTION AND RELATED WORKS 

Big data [1-3] are emerging paradigm that can be applied to 
data whose volume is so huge that is beyond the ability of 
commonly used software tools to capture, manage and process 
the data within a tolerable elapsed time. These big data, which 
can be of various formats and/or types, are often generated or 
collected at a fast velocity from a wide variety of rich data 
sources. Examples of big data include: 

® audio and video such as music data [4, 5]; 

© biodiversity data [6]; 

© biomedical and healthcare data, together with disease 
reports [7-10]; 

© census data [11]; 

® meteorological data [12]; 

© patent records [13, 14]; 

® social media and social network data [15-18]; 
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© time series [19-22]; 

¢ transportation and urban data for smart city [23-26]; and 

© web content and web logs [27]. 

Moreover, these big data can be of a high value and at different 
levels of veracity in establishing trust in it for business decision 
making. Hence, massively parallel processing databases, 
scalable storage systems, cloud computing platforms, and/or 
high-performance computing techniques (e.g., MapReduce, 
edge computing, fog computing, dew computing) have 
supported the handling of big data. 

Besides big data handling, big data science [28, 29] is also 
in demand for discovering implicit, previously unknown and 
useful information and knowledge embedded in the big data. In 
general, data science makes good use of data analytics [30-32], 
high-performance computing [33-35], visual analytics 
techniques [36, 37], and/or data mining and machine learning. 
Analyzing and mining these big data can be for social good. For 
instance, analyzing and mining the healthcare data and disease 
reports helps people to get a better understanding of diseases. 

Over the past century, there have been some notable diseases 
including 1918 “Spanish flu” pandemic (1918-1920), 1957- 
1958 “Asian flu” pandemic, 1968 “Hong Kong flu” pandemic 
(1968-1970), 2009 “Swine flu” pandemic (2009-2010), and 
coronavirus disease 2019 (COVID-19). The latter broke out in 
2019, became pandemic in 2020, and is still prevailing in 2021. 

Since the COVID-19 pandemic, researchers from different 
disciplines have explored various aspects of COVID-19. For 
instance, there have been studies on: 

® managing risks and crises faced by individuals and 
businesses (including employers and employees) due to 
the COVID-19 outbreak [38]; 

e analyzing the social and economic impacts of COVID- 
19 [39]; 

¢ building mathematical and statistical models—such as 
the susceptible-infectious-recovered (SIR) 
compartmental infectious disease model _ in 
epidemiology—to predict the spread of COVID-19 [40]; 

e developing data science solutions to analyze and mine 
COVID-19 data (e.g., epidemiological data) [41, 42];
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® conducting systematic reviews on literature about 
medical and health science research on COVID-19 [43, 
44]; 

® focusing on clinical and treatment information [45]; 

e developing vaccines [46] such as (a) messenger 
ribonucleic acid (mRNA) vaccines (e.g., Moderna, 
Pfizer-BioNTech), (b) adenovirus vector vaccines (e.g., 
AstraZeneca, Janssen), (c) inactivated virus vaccines 
(e.g., CoronaVac, Covaxin, CoviVac) and (d) subunit 
vaccines. 

Although COVID-19 vaccines have been developed, the 
vaccination process may take time. In the meantime, new 
COVID-19 cases are continuing to be reported. As a concrete 
example, there have been 426,453 new daily cases and 
6,601 new daily deaths reported worldwide on July 10, 2021. Of 
which, 31,625 new daily cases and 527 new daily deaths were 
reported from North America (where 4.73% of total world 
population inhabited). These account for 7.42% and 7.98% of 
worldwide new cases and deaths, respectively. On the same day, 
317 new cases and 6 deaths in Canada (which respectively 
account for 1.00% and 1.14% of new daily cases and deaths in 
North America, or equivalently 0.07% and 0.09% of new daily 
cases and deaths worldwide) where 6% of North American 
population or 0.5% of the world’s total population inhabited. 

Moreover, like many other viruses, severe acute respiratory 
syndrome coronavirus 2 (SARS-CoV-2)—which causes 
COVID-19—also changes over time. Its mutations led to the 
reporting of SARS-CoV-2 variants!, which can be classified as: 

© variants of concern (VOC), which include alpha (lineage 
B.1.1.7), beta (lineages B.1.351, B.1.351.2 and 
B.1.351.3), gamma (lineages P.1, P.1.1, P.1.2, P.1.4, 

P.1.6, and P.1.7) and delta (lineages B.1.617.2, AY.1, 
AY.2, AY.3 and AY.3.1), which have first been reported 
in the UK. South Africa, Brazil and India, respectively. 
Among them, delta variants started as a VOI in April 
2021 and rapidly evolved into a VOC in May 2021; 

® variants of interest (VOI), which include eta (lineage 
B.1.525), iota (lineage B.1.526), kappa (lineage 
B.1.617.1) and lambda (lineage C.37), which have first 
been reported in multiple countries, USA, India and 
Peru, respectively; as well as 

e other designated alerts for further monitoring, which 
include 

o lineages B.1.417 and B.1.429 (latter was parts 
of the former VOI epsilon with B.1.429), 
which have first been reported in the USA; 

© B.1.466.2, which has first been reported in 
Indonesia; 

o B.1.621 and B.1.1621.1, which have first 

been reported in Colombia; and 

o B1.1.318, B.1.1.519, C.36.3, C.36.3.1, and 
R.1, where have been reported in multiple 
countries. 

Hence, there are demands for data science engines, which 
help discovery of knowledge and information about COVID-19. 
The knowledge discovery then allows people to get better 
understanding of the disease so that they could take parts in 
preventing or slowing down the spread of the disease, and/or 
protecting themselves from the disease. 

By July 10, 2021, there have been cumulatively 
186,492,674 COVID-19 cases worldwide, of which 

4,029,920 deaths (i.e., approximately 2.16% of all cases). 

For North America, there have been 40,047,453 COVID-19 

cases (i.e., 21.47% of worldwide cases), of which 
907,963 deceased (i.e., approximately 2.27% of all North 
American COVID-19 cases, or 22.54% of cumulative 

worldwide deaths). In Canada, there have been 1,427,899 

COVID-19 cases (i.e., 3.57% of North American cases, or 
0.77% of worldwide cases), of which 26,389 deceased (i.e., 

approximately 1.85% of all Canadian COVID-19 cases, 2.91% 
of cumulative North American deaths, or 0.65% of worldwide 

deaths). 

Observed that many existing works focused on reporting the 
number of confirmed cases and mortality on a daily basis. 
Moreover, these cases are not evenly distributed among different 
spatial locations and/or time interval period during the 
pandemic. Hence, there are demands for spatial-temporal data 
science, which helps reveal important information and 
knowledge about epidemiological characteristics of the disease 
across different spatial locations and its temporal trends. 

In response to the demands, we design and develop a data 
science engine that conducts spatial-temporal data science of 
textual-based COVID-19 epidemiological data. Our engine aims 
to discover common characteristics (beyond just the numbers of 
confirmed cases and mortality) among COVID-19 cases in a 
certain geographic location at a specific time interval, and 
compares them with those in other geographic locations and/or 
other time intervals. Such an engine also helps in answering 
questions like: 

@ What is the most common transmission method at a 

specific geographical location and/or during a certain 
time interval? 

© How do transmission methods change among different 
geographical locations and/or over time? 

e Similarly, what are the most common VOC, sets of 

symptoms, hospitalization status, and clinical outcomes 
at a specific geographical location and/or during a certain 
time interval? 

© How do VOC, sets of symptoms, hospitalization status, 
and clinical outcomes change among different 
geographical locations and/or over time? 

  

1 https://www. who. int/en/activities/tracking-SARS-CoV-2-variants/



Our key contributions of this paper include the design and 
development of our data science engine that conducts spatial- 
temporal data science of COVID-19 epidemiological data. 

We organize the remainder of this paper as follows. We first 
present our data science engine for spatial-temporal data in the 
next section, and then show our evaluation results on real-life 

COVID-19 data in Section III. Finally, we draw the conclusions 
in Section IV. 

II. OUR SPATIAL-TEMPORAL DATA SCIENCE ENGINE FOR 

COVID-19 DATA 

In this section, we describe our spatial-temporal data science 
engine for analyzing, mining and visualizing COVID-19 
epidemiological data to reveal interesting spatial-temporal 
characteristics the data. 

A. Data Integration 

In general, statistics and details of COVID-19 cases in 
different geographical locations are generated and collected 
from a wide variety of data sources. As such, they can be 
captured in different formats and/or types. Different 
characteristics may be captured. 

Let us consider a concrete example. As health care is a 
responsibility of provincial governments in Canada, Canadian 
COVID-19 data are gathered from different provinces. The 
provincial data are, in turn, gathered from their health 
administrative units called health authorities (which are also 
known as health regions) within the province. 

e Asan example, there are five regional health authorities 
(RHAs)—such as Winnipeg RHA—in the Canadian 
province of Manitoba. For instance, COVID-19 data are 
collected from more than 200 health service facilities 
(e.g., clinics, community health offices, health centers, 

hospitals, long-term care centers, personal care homes) 
within Winnipeg RHA. 

e As another example, there are 14 local health integration 
networks (LHINs) in the province of Ontario. For 
instance, COVID-19 data are collected from more than 

170 health service providers (including 18 hospitals) 
across Toronto Central LHIN. 

e Asa third example, there are five RHAs in the province 
of British Columba. Within Vancouver Coastal Health 
(one of the five RHAs), there are three health service 
delivery areas, which in turn are divided into 14 local 
health areas. 

These data are usually reported and updated on a daily basis. 
However, sometime, due to weekends and/or holidays, this 

information may be delayed. 

Moreover, due to different factors, availability of detailed 

characteristics of COVID cases may vary from one data source 
to another, and may vary from one level of spatial granularity to 
another. Factors include privacy concerns. For instance, to 
preserve privacy of individuals for data publishing (i.e., privacy- 
preserving data publishing), some data may be merged into a 
cluster (e.g., a spatial cluster by grouping data from close-by 

geographical locations, a temporal cluster by grouping data from 
consecutive time intervals). 

In addition to COVID-19 epidemiological data, some other 
relevant data are also integrated. These include population 
Statistics and timelines of other information (e.g., travel 
restrictions, social gathering restrictions, lockdown measures, 

reopening schedule). This information may help in the 
computation (e.g., for relative percentage). 

B. Data Preprocessing 

Once relevant data are integrated, our data science engine 
then preprocesses the integrated data. For instance, as mentioned 
earlier, given that data are integrated from different sources, 
their formats and/or types can be different. Some characteristics 
(e.g., symptoms, occupation) of COVID-19 may be available 
from some sources, but some may not. Classification of 
occupation may also vary. To address these issues, our engine 
provides users with options of: 

® focusing mostly on common characteristics, or 

® representing the absent characteristics (i.e., attribute 
values) by NULL. 

In terms of common characteristics, most COVID-19 

epidemiological data contain: 

1. geographical location 

2. date 

3. age 

4. gender 

5. hospitalization status, ranges from Boolean status (i.e., 
hospitalized or not) to different types of hospitalization 
(e.g., intensive care unit (ICU), semi-ICU, regular ward, 
not hospitalized) 

6. clinical outcome (e.g., recovered or death) 

Here, age can be grouped into age groups (e.g., 20s, 30s, 40s, ...) 
or categories (e.g., child, youth, adult, senior). Some of the data 

may include the following as well: 

7. occupation 

8. transmission methods 

9. symptoms (for symptomatic cases) 

Moreover, partially due to weekends or holidays, reporting 
of numbers may be delayed. For instance, due to closure of 
laboratories and/or government offices, the detailed data may be 
reported after the weekend or holidays. To address these issues, 
our engine provides users with options of: 

¢ using the reported date, or 

¢ taking an average of several days (e.g., a 7-day average) 
of the data. 

For privacy-preserving data publishing, spatial data can be 
grouped into clusters by merging close-by data. Similarly, 
temporal data can be grouped into clusters by merging 
consecutive time intervals.



C. Spatial-Temporal Hierarachy 

As describing in Section II-A, COVID-19 data are integrated 
from various data sources, which can be put in a hierarchical 
fashion. For instance, data can be gathered from health service 
facilities to report to RHAs, which then report to the province to 
become provincial data. These provincial data can be collected 
to form some regional data (e.g., data for the west coast, the 
prairie, etc.). Regional data can be aggregated to from national 
data. Along this direction, national data can be aggregated to 
form data for the continent and then the worldwide data. See 
Fig. 1 for spatial hierarchy. 

Worldwide Entire COVID-19 period 

            

     

    Province (or state) 

  

Fig. 1. Our spatial-temporal hierarchy 

Similarly, as describing in Section II-A, COVID-19 data are 
usually reported and updated on a daily basis. So, it is logical to 
use daily figures. They can be aggregated to form a weekly or 
monthly figures. Along this direction, weekly or monthly figures 
can be aggregated to form yearly data, and then the grand total 
for the entire COVID-19 period. See Fig.1 for temporal 
hierarchy. 

With the spatial-temporal hierarchy, we are not confined to 
discovering interesting patterns from the worldwide statistics 
over the entire COVID-19 period. We have the flexibility to 
discover interesting patterns from any combinations of 
6 granularity levels in the spatial components and 4 (or 5) 
granularity levels in the temporal components of the hierarchy 
for a total of 6x4=24 (or 6x5=30) possible combinations— 
including a (worldwide, entire COVID-19 period)-combination, 
..» @ (region, week)-combination, and a (province, week)- 
combination. 

There can be multiple instances of some combinations. Take 
a (province, week)-combination as an example. For 
10 provinces in Canada, there can be 10x(52+27) = 790 weekly 

instances covering the entire period from the beginning of 2020 
to Week 27 (July 04-10) of 2021. 

D. Spatial-Temporal Data Analytics 

With the 6 common characteristics (including geographical 
location and date), it is tempting to set up a 6-dimensional data 
cube. For some of these dimensions, the numbers of values can 

be large. For example, for geographical location, there can be 
more than 200 countries. 

An alternative way to find interesting patterns is to apply 
frequent pattern mining to some spatial-temporal combinations 
of interest. With long lists of interesting patterns, our data 
science engine lists them in descending order of frequency (e.g., 
absolute frequency or relative frequency). 

To compute relative frequency, our engine sometimes uses 
the integrated non-COVID-19 data. For example, to compute 
relative frequency of COVID-19 (e.g., the percentage of 
COVID-19 cases per 1M inhabitants in that geographical 
location), it makes good use of the population statistics. 

Moreover, our engine compares and contrasts the interesting 
patterns computed for each values for the spatial-temporal 
combinations of interest. For example, we can mine frequent 
patterns from the (Manitoba, Week 27 of 2021)-combination 
and compare them with those computed from other 
combinations like the (P, Week 27 of 2021)-combinations 
where P € {BC, Alberta, Saskatchewan, ..., Newfound} for 

spatial data analytics—i.e., spatial comparisons among cases 
from the other nine Canadian provinces. 

Similarly, we can mine frequent patterns from the 
(Manitoba, Week 27 of 2021)-combination and compare them 
with those computed from other combinations like the 
(Manitoba, W)-combinations where W e€ [Week 1 of 2020, 
Week 25 of 2021] for temporal data analytics—i.e., temporal 
comparisons among weekly cases in the Canadian province of 
Manitoba. 

In addition, our engine also applies time-series analysis to 
examine time series representing for each geographical location. 
It helps identify similarities and differences among different 
time series. 

III. EVALUATION 

To evaluate our data science engine, we applied it to 
different datasets. Common rich data sources for COVID-19 
cases include: World Health Organization (WHO) [47], 
European Centre for Disease Prevention and Control (ECDC)’, 
Johns Hopkins University (JHU) Coronavirus Resource Center’, 
Statistics Canada*, Wikipedia>, and media (e.g., Canadian 
national TV networks® ”). 

  

2 https://qap.ecdc. europa. eu/public/extensions/COVID-19/COVID-19.html 

3 https://coronavirus.jhu.edu/map.html 

4 https://www150.statcan.ge.ca/n1/pub/13-26-0003/132600032020001-eng.htm 

5 https://en.wikipedia.org/wiki/Template:COVID-19_pandemic_data/Canada_medical_cases 

6 https://www.ctvnews.ca/health/coronavirus/tracking-every-case-of-covid-19-in-canada-1.4852102, 

https://beta.ctvnews.ca/content/dam/common/exceltojson/COVID-19-Canada-New.txt 

7 https://www.ctvnews.ca/health/coronavirus/tracking-variants-of-the-novel-coronavirus-in-canada-1.5296141 

https://beta.ctvnews.ca/content/dam/common/exceltojson/COVID- Variants. txt 
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When mining the (worldwide, entire COVID-19 period)- 
combination, our data science engine discovered that there have 
been cumulatively 186,492,674 COVID-19 cases worldwide, of 

which 4,029,920 deaths (i.e., approximately 2.16% of all cases) 
as of July 10, 2021. 

Then, we mined the (continent, entire COVID-19 period)- 
combination. The mined frequent patterns in Table I reveal that: 

e Asia and Europe have the highest number of cumulative 
cases (with 57,430,886 cumulative cases in Asia and 

49,110,565 in Europe) as of July 10, 2021. In contrast, 

Oceania have had the lowest number—with 
61,221 cumulative cases. 

e Although Asia has the highest number of COVID-19 
cases, it is ranked the fourth in terms of death tolls. 

Europe, South America and North America are the top-3 
continents—with 1,114,964 deaths, 1,033,722 deaths 

and 908,001 deaths. 

© However, in terms of percentages of deaths among the 
COVID-19 cases, South America has the highest 
percentage—with ~3.05% of South American cases 
passed away. 

TABLE I. RESULTS FROM THE (CONTINENT, ENTIRE COVID-19 
PERIOD)-COMBINATION AS ON JULY 10, 2021: ABSOLUTE NUMBERS OF 

CUMULATIVE CASES & DEATHS 

  

  

  

  

  

  

            
  

cases deaths Ydeaths wrt cases 

Asia 57,430,886 820,914 1.43% 

Europe 49,110,565 1,114,964 2.27% 

N. America 40,047,453 908,001 2.27% 

S. America 33,927,048 1,033,722 3.05% 

Africa 5,914,774 151,175 2.56% 

Oceania 61,221 1,167 1.91% 

TABLE IL RESULTS FROM THE (CONTINENT, ENTIRE COVID-19 
PERIOD)-COMBINATION AS ON JULY 10, 2021: NUMBERS OF CUMULATIVE 

CASES & DEATHS PER |] MILLION POPULATION 

  

  

  

  

  

  

    

cases per 1M pop’n deaths per 1M pop’n 

S. America 78,760.95 2,399.76 

N. America 67,639.48 1,533.59 

Europe 65,596.20 1,489.24 

Asia 12,377.75 176.92 

Africa 4,412.04 112.76 

Oceania 1,434.49 27.34       
  

As population in these continents are different, our engine 
integrated COVID-19 data with population statistics to examine 
the percentage of cases and deaths per 1M inhabitants. Mining 
results in Table II reveal that: 

© Despite South America was ranked the fourth in terms of 
the absolute number of COVID-19 cases, it has the 

highest relative number: 78,760.95 cases per 1 million 
people inhabited in South America. 

e The next three continents on the list (for the number of 
cases per 1M population) are North America, Europe and 
Asia. Hence, the top-4 continents in terms of relative 
number are in reverse order of their ranking in terms of 
absolute number of cases. 
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e The ranking for deaths per 1M population is identical to 
the ranking for cases per 1M population. 

8 400 

2 ( me . eal | | | 
    

Fig. 2. A stacked column chart showing the results from the (continent, day)- 
combination: absolute numbers of new daily cases for six continents 
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Fig. 3. Line curves showing the results from the (continent, day)-combination: 

absolute numbers of new daily cases for six continents 
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Fig. 4. A line curve showing the results from the (Oceania, day)-combination: 

absolute numbers of new daily cases 

Next, we mined the (continent, day)-combination. The time 
series for each continent show that the numbers of new cases 
have not been evenly distributed throughout the COVID-19 
period. Moreover, as observed from the aforementioned mining 
results on the number of cumulative cases, we infer that the new 

cases have not been evenly distributed among the continent. 
Figs. 2-4 confirm this inference. Furthermore, we observed the 
following from the mining results shown in the two figures: 

e First reported cases started on different days in different 
continents. For instance, first 98 Asian cases were 

reported on January 23, 2020. The first North American 
cases and the first two European cases were reported a 
day later (on January 24). First four Oceanian cases were 
reported on January 26. The first African case was 
reported on February 14. South America was infected the 
latest, with its first two cases reported on February 23 
(i.e., a month after the first 98 cases reported in Asia). 

Absolute numbers of new daily cases in Oceania have 
been relatively low (e.g., < 2,000 daily cases) when 
compared with other continents. More new daily cases 
were observed in the fall & winter (in the southern



Afterwards, 

hemisphere, i.e., March-September) than summer. It also 
experienced with a few waves (e.g., peaked in March 
2020, August 2020, March-July 2021). See Fig. 4. 

There have been a few waves in Europe (e.g., started 
November 2020, January 2021, April 2021). 

There have been a peak (with 525,129 new daily cases) 
in Asia during April-May 2021. 

we analyzed a different combination. 
Specifically, we mined the (country, entire COVID-19 period)- 
combination. The mined frequent patterns about cumulative 
cases in Table III reveal that: 

USA has had the highest cumulative COVID-19 cases. It 
has been the key contributor to the North American 
cumulative cases. The 33,847,784 US cases have 

accounted for 84.52% of all cumulative North American 
cases. 

Similarly, India has had the second-highest cumulative 
COVID-19 cases. It has been the key contributor to the 
Asian cumulative cases. The 30,837,222 Indian cases 

have accounted for 53.69% of all cumulative Asian 

cases. 

Moreover, Brazil was ranked the third in terms of 

absolute numbers of cumulative COVID-19 cases. It has 

been the key contributor to the South American 
cumulative cases. The 19,069,003 Brazilian cases have 

accounted for 56.21% of all cumulative South American 

cases. 

In Europe, no single country has dominated the numbers 
of cumulative cases. For instance, France, Russia, UK 

and Italy all contributed. With about 5.8 million, 5.6 
million, 5.1 million and 4.2 million cumulative cases (in 
France, Russia, UK and Italy, respectively), they 
accounted for 11.95%, 11.58%, 10.40% and 8.69% —for 

a total of 42.63%—of all cumulative European cases. 

  

  

  

  

  

  

  

  

TABLE IIL RESULTS FROM THE (COUNTRY, ENTIRE COVID-19 PERIOD)- 
COMBINATION AS ON JULY 10, 2021: ABSOLUTE NUMBERS OF CUMULATIVE 

CASES 

cases % in continental cases 

USA 33,847,784 84.52% 

India 30,837,222 53.69% 

Brazil 19,069,003 56.21% 

France 5,870,463 11.95% 

Russia 5,688,807 11.58% 

UK 5,107,780 10.40% 

Italy 4,269,885 8.69%           

The mined frequent patterns about cumulative death tolls in 
Table IV reveal that: 

USA once again has been on the top of the list, with the 
highest cumulative COVID-19 death tolls. It has been the 
key contributor to the North American cumulative 
COVID-19 deaths. Despite that the 607,063 US deaths 
have accounted for ~1.79% of all US cumulative cases, 

they have accounted for 66.86% of all cumulative North 
American deaths. 
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Similarly, Brazil has had the second-highest cumulative 
COVID-19 death tolls. It has been the key contributor to 
the South American cumulative death tolls. Despite that 
the 532,893 Brazilian deaths have accounted for ~1.73% 
of all Brazilian cumulative cases, it have accounted for 

51.55% of all cumulative South American deaths. 

Moreover, India was ranked the third in terms of absolute 

numbers of cumulative COVID-19 death tolls. It has 

been the key contributor to the Asian cumulative deaths. 
The 408,040 Indian deaths have accounted for 49.71% of 
all cumulative Asian deaths. 

Mexico and Peru were not in the top-7 in terms of 
cumulative cases, but they had high death rates. For 
example, 234,907 Mexican deaths and 193,230 Peruvian 

deaths accounted for close to 10% (more precisely, 
9.08% and 9.30%) of their respective cumulative 
numbers of cases. Their combined death tolls between 
the two countries accounted for 44.56% of all cumulative 
South American deaths. 

Again, no single country has dominated the numbers of 
cumulative deaths in Europe. For instance, Russia, UK 

and Italy all contributed. With about 139K, 128K and 
127K cumulative deaths (in Russia, UK and Italy, 
respectively), they accounted for about 2-3% of the 
cumulative cases in their countries and about 11-12% 
each (for a total of 35.55%) of cumulative European 
death tolls. 

  

  
  
  
  
  
  
  
  

TABLE IV. RESULTS FROM THE (COUNTRY, ENTIRE COVID-19 PERIOD)- 
COMBINATION AS ON JULY 10, 2021: ABSOLUTE NUMBERS OF CUMULATIVE 

DEATHS 

deaths “deaths % in continental 

wrt cases death tolls 

USA 607,063 1.79% 66.86% 

Brazil 532,893 1.73% 51.55% 

India 408,040 1,32% 49.71% 

Mexico 234,907 9.08% 25.87% 

Peru 193,230 9.30% 18.69% 

Russia 139,896 2.46% 12.55% 

UK 128,665 2.52% 11.54% 

Italy 127,768 2.99% 11.46%             

In terms of numbers of cumulative cases per 1 million 
population, the list is quite different. The top-10 countries with 
highest cumulative cases per 1 million inhabitants have been 
Andorra, Seychelles, Montenegro, Bahrain, Czech Republic, 

San Marino, Maldives, Slovenia, Luxembourg, and Uruguay. 

The list includes a few small-sized countries. 

Next, we examined the (Canada, week)-combination. The 
time series in Figs. 6-9 show uneven distribution and temporal 
changes throughout the COVID-19 period: 

Fig. 6 shows the absolute number of Canadian COVID- 
19 cases. It also shows the third notable waves (in April 
2020, December 2020, and April 2021). 

Fig. 7 shows the results of frequent pattern mining (i.e., 
1-itemsets {domestic acquisition} for most weeks) that a 
majority of cases were transmitted through community 
exposures (i.e., domestic acquisition).



e Fig. 8 shows the results of frequent pattern mining (i.e., 
2-itemsets {domestic acquisition, no hospitalization} for 
most weeks) that a majority of cases were transmitted 
through community exposures but did not required 
hospitalization. 

e Along this direction, Fig. 9 shows the results of frequent 
pattern mining (i.e., 3-itemsets {domestic acquisition, no 
hospitalization, recovered} for most weeks) that a 
majority of cases—who were transmitted through 
community exposures but did not required 
hospitalization—were recovered. 

#COVID-19 cases 

     
f 
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Fig. 5. A column chart showing the results from the (Canada, week)- 
combination: absolute numbers of new daily cases 

#COVID-19 cases (grouped by transmission methods) 
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Fig. 6. A stacked column chart showing the results from the (Canada, week)- 
combination: numbers of new daily cases & tranmission methods 

#domestic aquisition cases (grouped by hospitalization status) 
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Fig. 7. A stacked column chart showing the results from the (Canada, week)- 
combination: #new daily cases, transmission methods & hospitalization status 

s#tdomestic aquired but not hospitalized cases (grouped by clincial outcome) 

3 i 

Fig. 8. A stacked column chart showing the results from the (Canada, week)- 
combination: #new daily cases, transmission methods, hospitalization status & 
clinical outcome 
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IV. CONCLUSIONS 

In this paper, we present a data science engine to analyze and 
mine COVID-19 data. As COVID-19 cases may not evenly 
distributed among spatial locations and/or evenly distributed 

throughout the entire period of pandemic, our engine conducts 
spatial-temporal data science to reveal important information 
and knowledge about epidemiological characteristics of the 
disease across different spatial locations and its temporal trends. 
Evaluation on real-life COVID-19 data (e.g., on continental, 
country-wide, Canada data) demonstrates the effectiveness of 
our engine in conducting spatial-temporal data science of 
COVID-19 data. As ongoing and future work, we transfer 
learned knowledge to conduct spatial-temporal data science of 
data from other domains. 
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