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Abstract—COVID-19 pandemic has a devastating impact on
human health and well-being. Numerous biological tools have
been utilised for COVID detection, but most of the tools are
costly, time-extensive and need personnel with domain expertise.
Thus, a cost-effective classifier can solve the problem where
cough audio signals showed potentiality as an screening classifier
for COVID-19 diagnosis. Recent ML approaches on cough-
based covid-19 detection need costly deep learning algorithms
or sophisticated methods to extract informative features. In this
paper, we propose a low-cost and efficient envelope approach,
called CovidEnvelope, which can classify COVID-19 positive and
negative cases from raw data by avoiding above disadvantages.
This automated approach can select correct audio signals (cough)
from background noises, generate envelope around the informa-
tive audio signal, and finally provide outcomes by computing
area enclosed by the envelope. It has been seen that reliable
data-sets are also important for achieving high performance. Our
approach proves that human verbal confirmation is not a reliable
source of information. Finally, the approach reaches highest
sensitivity, specificity, accuracy, and AUC of 0.96, 0.92, 0.94,
and 0.94 respectively to detect Covid-19 coughs. Our approach
outperformed other existing models on data pre-processing and
inference times, and achieved accuracy and specificity of 0.91
and 0.99 respectively, to distinguish COVID-19 coughs from
other coughs, resulted from respiratory diseases. The automatic
approach only takes 1.8 to 3.9 minutes to compute these perfor-
mances. Overall, our approach is fast and sensitive to diagnose
the people living with COVID-19, regardless of having COVID-
19 related symptoms or not. In this connection, the model can be
implemented easily in mobile-devices or web-based applications,
and countries with poor health facilities will be highly beneficiary
for covid diagnosis and measuring prognostication.

Index Terms—COVID-19, Envelope, Cough, Audio Signals,
Diagnosis

I. INTRODUCTION

COVID-19 is a respiratory disease caused by SARS-CoV-2
virus — a novel Coronavirus of family Coronaviridae. Coron-
aviruses of this family, especially viruses of genus Betacoro-
navirus (e.g. Middle East Respiratory Syndrome Coronavirus,
aka MERS-CoV, Severe Acute Respiratory Syndrome Coron-
avirus, aka SARS-CoV etc) are highly pathogens of respiratory
tract diseases, and their characteristics of highly variable
genetic diversity and diverse host adaptability make them
deadly and devastating around the world [1]. Current COVID-
19 pandemic and its widespread infection and mortality rate
has made SARS-Cov2 virus a hot topic for diverse research
communities. Beside developing vaccines to cure COVID-19,
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substantial effort is being made to develop tools to diagnose
COVID-19.

COVID-19 diagnoses tools can be widely divided into
two categories. Firstly, biological tools, which are involved
in viral nucleic acid-based detection (e.g. RT-PCR, LAMP
etc.) and protein-based detection (e.g. rapid antigen-based
detection and serological tests). Among the available tools,
RT-PCR based nucleic acid detection is being considered
as “gold-standard” for COVID-19 diagnosis because of its
high specificity, sensitivity, and ability to detect at initial
stage of infection [2]. Due to substantial similarity with other
sister species of coronavirus, two-targeted multiplex RT-PCR
is adopted to detect SARS-CoV2 virus, where ’first target’
broadly detects presence of any members of coronavirus,
and the ’later target’ further narrow down to SARS-CoV2.
Although this technique is rapid and highly reproducible, it is
labour-extensive, time-consuming, and need molecular biology
expertise with sophisticated laboratory facilities to do certain
steps [3]. Different modifications of RT-PCR techniques have
been proposed, like one-step Loop-mediated iso-thermal am-
plification reaction (LAMP), Microarray-based methods, bar-
coded bead assays [4], which need sophisticated instruments
and are not as sensitive as RT-PCR. On the other hand, protein-
based detection tests are simple and fast alternatives, utilises
host immune response to viral antigens. Currently, numerous
serological tests (e.g. Enzyme-linked immunosorbent assay-
ELISA, Indirect immunofluorescence- IIFT) are under de-
velopment for COVID-19 diagnosis with variable specificity.
Even though host antibodies, generated in response to viral
infection, can be useful tool for COVID-19 diagnosis, there
is a potential chance of producing similar antibodies (cross-
reactive antibody response), in response to other coronaviruses
— resulting in false positive detection [5]. Besides, antibody-
based serological tests are also prone to viral lag-period of
4 to 7 days, where they does not show any responses, and
also show poor response up to 6 days of infection, which is
alarming for public health [6].

Beside biological tests, several clinical feature-based tests
are being proposed and analysed. The initial mild symptoms
of the COVID-19 include cough, fever, fatigue, followed by
headache, dyspnea, myalgia, and gastrointestinal complica-
tions with nausea and watery diarrhoea [7], which are being
considered during these tests. Severe COVID-19 infection
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manifested by pneumonia with acute respiratory distress syn-
drome, severe cough, and infiltrates on chest image. Based
on the features, fever, cough, and dyspnea are considered as
potential indicator of suspicious COVID-19, and numerous
machine-learning (ML) algorithms are being developed as a
pre-screening diagnostic tool for COVID-19 detection.

Different ML methods have been used to diagnose various
diseases [8]-[11] and similar principle has been adopted for
diagnosing COVID-19 from chest computed tomography (CT
scan) images in [12]. On the other hand, audio signals have
been successfully utilised in diagnosis and therapies of various
diseases [13]. Cough detection from the audio signals is a
very important and promising process to detect pathology
severity of the people, infected with COVID-19. The audio-
based screening tool could be implemented in residential envi-
ronments to track individuals who are suffering from COVID-
19 as a subsystem of remote health monitoring systems.

ML has been found as a useful method to design the audio-
based screening tool to diagnose coughs [14]. Convolutional
Neural Network (CNN) and Recurrent Neural Network (RNN)
models were used to detect cough sounds by varying hyper-
parameter values manually in [15]. A real-time cough detec-
tion method was designed, by combining Gaussian Mixture
model and Universal Background model [16], that requires
four steps to complete the process: sound pre-processing,
segmentation, feature / event extraction, and cough predic-
tion. Wavelet decomposition and statistical parameters were
used to detect pneumonia cough [I2]. Logistic regression
was considered to detect tuberculosis cough from short-term
spectral features [!17]. Further, Brown et al. [18] used logistic
regression, gradient boosting trees (GBT) and support vector
machines (SVM) to distinguish COVID-19 cough sound from
large-scale crowdsourced respiratory sound dataset. Laguarta
et al. [19] considered CNN for diagnosing COVID-19 cough
from extracted features. Moreover, Fakhry et.al [20] used
deep neural networks to diagnose COVID-19 by considering
clinic records and mel-frequency cepstral coefficients and mel-
frequency spectrograms of cough audios. However, they [18],
[20] used “verbal” confirmed cough sounds, which can lead
to false-positive or negatives in COVID-19 detection. Both
of these models are computationally expensive, require heavy
data prepossessing and inference time.

Finding a reliable and well-balanced dataset is pre-requisite
to build and test ML model, but there is a scarcity of COVID-
19 cough audio dataset. Most of the existing models [20],
[21] used Coughvid, Cowsara, Sarcos and Virufy dataset,
which lack proper annotation and corresponding confirmation.
Coughvid dataset mostly contains cough audios from verbal
confirmation, and for PCR verified audios, it only contains
COVID-19 positive samples. Cowsara dataset [21] contains
236 audios, verified with PCR tests but most of them contain
either one or repeated cough audios, which substantially
decreases the audio quality. Virufy and Sarcos dataset contain
PCR-tested cough audios, but the number of audios (20 and 50
respectively) is insufficient to test ML algorithms. The most
reliable, well-balanced and publicly available dataset used in
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Figure 1. A flowchart of the CovidEnvelope Approach.

current study, was collected by the Medina Medical Group' in
Russia. we called it ”Russian dataset” from hereafter. It is a
freely available representative dataset for developing low-cost
Al tools for developing countries as they are suffering heavily
on Covid diagnosis. For example, there are only 8000 pests per
million population in Africa [22] that urge to present a more
cost-effective and reliable method to help with the Covid-19
diagnosis.

In this paper, we propose a fast and low-cost envelope
approach, which can detect COVID-19 coughs from other
coughs. our approach needs minimal time for prepossessing
and extracting features from raw cough signals. In addition, it
can distinguish COVID-19 coughs from other diseased coughs
with high performance. CovidEnvelop is a computationally
inexpensive approach, which will be useful to design real-time
cough-screening tool for diagnosing COVID-19 immediately.

II. METHODS

We developed an automated approach, namely CovidEn-
velop, which is capable of diagnosing COVID-19 from the raw
cough signals. We tested its performance on the reliable and
publicly available Russian dataset. A flowchart of our approach
is illustrated in Figure 1.

A. CovidEnvelope approach

We designed an envelope approach” for computing area of
cough sounds which take raw cough audio signals as input
and provide outcomes as COVID-19 positive or negative from
the computed resultant area (see Figure 1). Correct cough-
based audio signals were selected from the raw audio signals
and then, filtering was performed to get rid of background
noises. A “signal envelope” was generated over the filtered
audio signal, and the envelope-enclosed resultant area was
calculated. Based on the resultant area, decision was made
to identify COVID-19 positive or negative. Each step of this
automatic approach is described accordingly and a resultant
signal is illustrated in Figure 2.

Thttps://fkthecovid.ru/en
2Code Availability: https:/github.com/ZakirANU/CovidEnvelope
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Figure 2. Generating envelope from cough audio signals.

Audio signal, as depicted in Figure 2(a), was taken as input
to the algorithm. In addition to the original audio signal, the
recording may often contain additional high frequency noisy
signals. Correct audio signal was selected by comparing the
sum of variances of the recorded signals, and then filtered
using a three-point moving average filter to remove random
fluctuations between samples of the audio signal as illustrated
in Figure 2(b). An envelope of the filtered audio signal was
generated as shown in Figure 2(c), where the upper and lower
boundaries of the audio signal are shown by the red and
blue lines, respectively. The resultant signal was generated by
applying equation 1.

Ry =|U; — L; | (M

where R;, U;, and L; are the amplitudes of the resultant,
upper, and lower boundaries for the i;; sample. A sample
resultant signal is depicted in Figure 2(d). The absolute
difference between the upper and lower boundaries was taken
to produce positive amplitude enclosed by the signal envelope.
The area enclosed by the envelope was calculated by summing
up the sample amplitudes of the resultant signal by applying
equation 2.

A=%"R; @)

where 'A” and ’'n’ are the area enclosed by the envelope
and number of samples in the resultant signal, respectively.
The resultant area of the COVID-19 positive cough was often
different from the COVID-19 negative cough. To distinguish
COVID-19 positive and negative coughs, we analyzed the
resultant area with varying thresholds. An optimized threshold
of 5000 was found effective as explained in section III.

Applying the optimized threshold, COVID-19 positive cough
records were diagnosed with highest performance.

B. Testing cough dataset

There is a number of COVID-19 cough data-sets avail-
able online, namely Coughvid, Cowsara, Sarcos, Virufy and
a Russian dataset, but due to lack proper annotation and
corresponding PCR-based confirmation, we only considered
the Russian dataset to test our model. The Russian dataset
contains acoustic cough sound data of 1324 subjects, collected
during October-November 2020, where 2 sound data were
corrupted. Thus, total number of readable sound data was 1322
as mentioned in Table 1.

The dataset contains two types of records — Verbal Pos-
itives: where subjects confirmed their COVID-19 presence
verbally, Verbal Negatives: where subjects confirmed their
COVID-19 absence verbally. Further the verbal confirmations
were verified using laboratory-based PCR tests, generating
two types — Verified Positives: where the records had been
further confirmed to the presence of COVID-19 by laboratory-
based PCR tests and Verified Negatives: where the records
confirmed for the absence of COVID-19 by PCR tests. Verified
positives dataset further divisible into two specific groups —
Symptomatic: where the subjects exhibit COVID-19 specific
symptoms and Asymptomatic: where the subjects did not show
any COVID-19 specific symptoms. In this study, regardless
of COVID-19 presence or absence, we formed another type
of dataset, namely ‘Matched’: where verbal confirmation data
matched with the laboratory confirmations. This study found
819 ‘Matched’ records, where the number of 'Matched Posi-
tives’ (i.e. Verbal Positives = Verified Positives) and ‘Matched
Negatives’ (i.e. Verbal Negatives = Verified Negatives) were
381 and 438 respectively. The ‘Matched Positive’ records
are further divided into ‘MatchedSymp’ and ‘MatchedAsymp’
based on the observed COVID-19 related symptoms. There are
201 and 108 records who showed (‘MatchedSymp’) and did not
show (‘MatchedAsymp’) COVID-19 symptoms, respectively.
We further constructed another dataset, namely ”combined”, to
test the capability of our approach on distinguishing between
COVID-19 and coughs from other diseases. We combined
381 COVID-19 positive coughs from the Russian dataset
(confirmed by both verbally and PCR-testing) and 40 cough
audios from other audio dataset [23] (cough audios of patients
of dry cough, wet cough, croup, pertussis and bronchitis). The
COVID-19 coughs were assigned with positive labels and the
other coughs are assigned with negative.

C. Performance evaluation

To compare among different models, we compared our
CovidEnvelope approach with the state of art models [18],
[20]. For COVID-19 cough detection, we used Russian
dataset, including different conditions of ”Verbal”, ”Verified”,
”Matched”, "MatchedAsymp” and "MatchedSymp”. To detect
COVID cough from coughs resulted from other respiratory
tract diseases, we evaluated our approach on our combined
dataset. Results are reported based on 10 fold cross validation.



Table 1
DATA SPECIFICATIONS WITH THE NUMBER OF RECORDS IN PARENTHESES

Verified Positives (381)

Asymptomatic (180)
Symptomatic (201)

Verified Negatives (300)

Verified Negatives (438)

COVID- ..

19 cough Verbal Positives (681)
records

(1322) Verbal Negatives (641)

Unverified (203)

We use sensitivity, specificity, accuracy, kappa coefficient,
areas under ROC curve (AUC), and time to measure the perfor-
mances of our approach. They measure the proportion of each
class / whole samples been predicted as ground truth labels,
inter-rater reliability and the classifier ability on distinguishing
classes. We executed and tested our CovidEnvelope approach
performance on Intel(R) Xeon(R) CPU @ 2.30GHz, 12 GB
of RAM machine, with python3.7.

III. RESULTS AND DISCUSSION

Selecting threshold values play a vital role before com-
puting the overall performance. We considered the Matched
cough audios from the Russian dataset and computed various
evaluation matrices against three thresholds for determining
optimised threshold values as shown in Figure 3. For threshold
4,000, sensitivity (0.99) was found highest but other matrices
were found lowest compared to other two cases. For threshold
2,000, specificity (0.96) was found highest but other matrices
were found lowest compared to threshold 3,000. On the other-
hand, for threshold 3,000, accuracy, Cohen’s kappa coefficient
(k), and area under ROC curve (AUC) were found highest
compared to other two thresholds, which are 0.94, 0.88, and
0.94 respectively. Sensitivity (0.97) and specificity (0.92) are
also found reasonable for threshold 3,000. It is worthwhile
to note that the accuracy and AUC of the CovidEnvelope
approach were calculated from the sensitivity and specificity.
Thus, we selected threshold 3,000 for further analyses.
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Figure 3. Determination of the optimum threshold value.

To compare data processing and inference times across
different models, we used verified and matched contidions of
Russian dataset in our CovidEnvelope approach and two other
state of art methods [18], [20]. Our approach is significantly
faster in data preprocessing and inference time which is shown
in Figure 4. The explanation of the lags of the later two models
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Figure 4. Comparison of (a) data preprocessing time and (b) inference time.

is their sophisticated ML algorithms. Both of the models
utilise numerous parameters, which made their model costly
for deployment, portability and hinders to develop standalone
mobile softwares. On the contrary, we have reduced the model
complexity in our approach by retaining a reasonable predic-
tion accuracy. Our approach can be extended as a reliable
and portable application for any smartphones (even with poor
computation resource) for screening COVID-19 within short
time.

Table II
PERFORMANCE EVALUATION OF THE DESIGNED ALGORITHM WITH
DIFFERENT CONDITIONS.

- = o =

Conditions N [a, b]! b= £ 5 g2 | 2% |8

= D g =5 3 Q E

@ | & |< |ES | EQ | &5
Verbal 1322 [681, 641] | 0.00 | 1.00 | 0.48 | 0.00 | 0.50 | 3.9
Verified 1119 [381, 738] | 0.90 | 0.82 | 0.84 | 0.68 | 0.86 | 3.3
Matched 819 [381,438] | 0.96 | 0.92 | 0.94 | 0.88 | 0.94 |24
MatchedAsymp | 618 [180, 438] | 0.90 | 0.96 | 0.94 | 0.86 | 0.93 | 1.8
MatchedSymp | 639 [201, 438] | 0.93 | 0.93 | 0.93 | 0.84 | 093 | 1.9

INumber of records where a and b represent COVID-19 positive and
negative records

Table II shows the overall performance of our approach
on Russian dataset. We analysed five conditions as ex-
plained in Table II, namely ‘Verbal’, ‘Verified’, ‘Matched’,
‘MatchedAsymp’, and ‘MatchedSymp’. The lowest perfor-
mance (Accuracy = 0.48, AUC = 0.50) was found for ‘Verbal’
condition where the dataset consisted of verbal confirmation -
verified or unverified with PCR tests. Verbal confirmations are
not often correct, prone to miscommunications or fraudulence
among participants, and it could be a reason for the lowest
performance. The null sensitivity and kappa coefficient further
validate the above statement. When ‘Verified’ condition was
considered for the dataset, our approach performed better
(Accuracy = 0.84, AUC = 0.86) than the previous ‘Verbal’
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condition. Verified records are the reliable records, where
COVID-19 positive or negative cases were confirmed by lab-
oratory PCR-tests. Performance was improved further, when
the verbal confirmation was matched with the verified con-
dition (‘Matched’ condition). Sensitivity, specificity, accuracy,
kappa coefficient and AUC were observed 0.96, 0.92, 0.94,
0.88 and 0.94, respectively for the ‘Matched’ condition. For
matched asymptomatic (i.e. ‘MatchedAsymp’) and matched
symptomatic (‘MatchedSymp’) conditions, the CovidEnvelope
approach reaches up to accuracies of 0.94 and 0.93 respec-
tively, which is very similar to the ‘Matched’ condition. Our
approach takes only 1.8 to 3.9 minutes for diagnosing COVID-
19 cases depending on an applied condition.

A t-test was performed on computed resultant mean areas
for measuring significance tests considering each conditions
separately. The computed mean areas are illustrated in Figure 5
(a). For ‘Verbal’ condition, mean areas of COVID-19 posi-
tive cases were found significantly different (p<<0.001) than
COVID-19 negative cases. For other conditions (‘Verified’,
‘Matched’, ‘MatchedAsymp’, and ‘MatchedSymp’), mean areas
of COVID-19 positive cases were found highly significantly
different (p<<0.001) than COVID-19 negative cases. The re-
sults indicate that ‘Verbal’ confirmation is less reliable than
verified and matched conditions for designing an efficient and
automatic COVID-19 diagnosis tool.

In addition, the mean areas of asymptomatic COVID-19
positive and symptomatic COVID-19 positive cases are illus-
trated in Figure 5 (b) and the mean areas of these cases were
not statistically significantly different (p = 0.3). The results
alternatively indicate that the performance of our approach is
independent of the symptoms of COVID-19.

Moreover, CovidEnvelope has 0.91 accuracy on our com-
bined dataset. We are bias on high sensitivity instead of
specificity as Covid disease is more fatal than other respiratory
diseases. Our approach has 0.99 sensitivity and can distinguish
positive COVID-19 coughs from other diseases, which could
assist in managing limited resource during the pandemic.

The main challenge of this study was to identify trustworthy
and reliable dataset, which is available online. There are
several publicly available datasets [13], [18], which were
verbally confirmed, but can introduce false-positives and false-
negatives in our approach, we have seen anomaly in verified
and unverified dataset from present study. Till date, MIT Open
Voice dataset is the largest COVID-19 cough audio dataset,

comprising 5,320 subjects, resulted in highest sensitivity and
specificity of 0.98 and 0.94 respectively, but unavailability and
confidentiality of such type of dataset hinders us to utilise it in
our present approach [19]. Using similar datasets to validate
our approach will enhance both sensitivity and specificity of
present study.

Further, our study has shown a compact machine learning
approach, which only needs raw audio signals, do not need
to extract any features, and can be recorded easily using
available devices like cell phones. Unlike existing approaches,
it is computationally inexpensive and requires only less than
4 minutes to screen the whole COVID-19 cough audio signal.
Our approach can distinguish COVID-19 positive coughs from
COVID-19 negative cough, regardless the patients show symp-
toms or not. While current approach is similar with a linear
classifier, the future direction of this study can be to develop
more complex model, incorporating data with annotations for
covid severity.

The CovidEnvelope approach can also be utilised to study
other respiratory tract diseases in human, such as tubercu-
losis, asthma, pneumonia etc. As an extension of current
study and potential application in public health sector, real-
time low-cost software is possible to design in near future.
Such a sophisticated, end-to-end encrypted application will
need considerable amount of verified COVID-19 records to
validate our approach. While benchmarking our model with
Russian dataset, in future we will explore this CovidEnvelope
approach with other avenues including international, national,
and regional bodies.

IV. CONCLUSION

We developed a fast, low-cost, and reliable COVID-19
cough detection approach, which can diagnose COVID-19
with the highest sensitivity, specificity, accuracy and AUC of
0.96, 0.92, 0.94, and 0.94, respectively. COVID-19 positive
and negative coughs are significantly different in terms of
area enclosed by envelope and highly effective regardless of
symptomatic or asymptomatic COVID-19 patients. Further,
verbal confirmation is not a reliable source of information.
Our approach is fast, capable of processing cough audios in a
limited time and can be implement as diagnosis tool to detect
the COVID-19 coughs. Our approach achieved an accuracy
of 0.91 to distinguish COVID-19 cough from other coughs,
resulted from respiratory diseases. Our future work will focus
on collecting more reliable datasets by collaborating with rel-
evant authorities, and developing a model with high accuracy
and low computation cost and a reliable, standalone mobile
application for screening COVID-19 within short duration of
time while at home or outside. In addition to Covid diagnosis,
our model can serve in insect-pests surveillance [24] and
human mental health monitoring [25].
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