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Abstract—This paper describes a neural blind source separa-
tion (BSS) method based on amortized variational inference (AVI)
of a non-linear generative model of mixture signals. A classical
statistical approach to BSS is to fit a linear generative model that
consists of spatial and source models representing the inter-channel
covariances and power spectral densities of sources, respectively.
Although the variational autoencoder (VAE) has successfully been
used as a non-linear source model with latent features, it should
be pretrained from a sufficient amount of isolated signals. Our
method, in contrast, enables the VAE-based source model to be
trained only from mixture signals. Specifically, we introduce a neu-
ral mixture-to-feature inference model that directly infers the latent
features from the observed mixture and integrate it with a neu-
ral feature-to-mixture generative model consisting of a full-rank
spatial model and a VAE-based source model. All the models are
optimized jointly such that the likelihood for the training mixtures
is maximized in the framework of AVI. Once the inference model is
optimized, it can be used for estimating the latent features of sources
included in unseen mixture signals. The experimental results show
that the proposed method outperformed the state-of-the-art BSS
methods based on linear generative models and was comparable
to a method based on supervised learning of the VAE-based source
model.

Index Terms—Neural source separation, unsupervised training,
deep generative models, variational autoencoders.

I. INTRODUCTION

SOUND source separation is a fundamental function to
understand acoustic scenes computationally [1]–[4]. Blind
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Fig. 1. Overview of proposed unsupervised method called neural FCA.

source separation (BSS), for example, has been actively inves-
tigated to separate a multichannel mixture signal into source
signals with little prior information about the sources and micro-
phones [5]–[10]. Such a modern statistical multichannel method
is based on a generative model consisting of spatial and source
models. A standard spatial model assumes full-rank spatial
covariance matrices (SCMs) [8] of sources at each frequency
bin. This model is originally proposed for full-rank spatial co-
variance analysis (FCA) [8] to handle small source movements
and reverberation. Since SCMs are independently defined for
each frequency bin, their source indices are not aligned over
frequencies. Various source models have been proposed not
only to represent source signals precisely but also to solve the
frequency permutation ambiguity [10]–[12].

Deep spectral models have recently gained attention for
source models to have powerful expression capability for com-
plex source spectra [13]–[18]. A typical model utilizes the
decoder of a variational autoencoder (VAE) [19] as a non-linear
generative model of a source signal. The VAE is trained in
advance to represent the target source spectra. Its trained decoder
is combined with a spatial model to separate source signals by
estimating the latent feature vectors of sound sources from a
multichannel mixture. It has been reported that the multichannel
speech separation with a VAE-based source model outperformed
the conventional linear model based on non-negative matrix
factorization (NMF) [13], [14].

A main drawback of the existing deep spectral models is that
their training requires a sufficient number of isolated source
signals. Since most natural audio events are mainly captured
only in mixture signals, it is practically hard to prepare such
supervised training data. Although several kinds of sources (e.g.,
speech) have clean source corpora, the domain mismatch at
the target environments (e.g., the Lombard effect [20]) could
degrade the separation performance of the trained model.

In this paper, we propose an unsupervised method that only
requires multichannel mixture signals to train a deep spectral
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model. The proposed method called neural FCA utilizes a gen-
erative model consisting of the full-rank spatial model and the
deep spectral model. As shown in Fig. 1, this generative model
is regarded as a large decoder of a VAE and jointly trained with
an inference model (encoder) that estimates the latent source
features from a mixture signal. Once the networks are trained, the
inference model is utilized to estimate the latent source features
of an unseen mixture signal.

The main contribution of this study is to jointly train a deep
spectral model and its inference model with a unified solution to
the frequency permutation problem. Several unsupervised meth-
ods have been proposed to train a separation network by using
multichannel mixture signals and the conventional statistical
models [21]–[26]. The existing methods, however, resolve the
frequency permutation ambiguity by using external permutation
solvers [21]–[23] or the microphone array geometries [24]–[26],
which limit the separation performance and/or their applica-
bility. Our neural FCA, in contrast, resolves the permutation
ambiguity by encouraging the independence of latent source
features. We experimentally demonstrate that the training of
the VAE-based source model itself has the ability to solve the
frequency permutation even in the unsupervised condition. The
experimental results also show that our neural FCA outper-
formed existing unsupervised methods and is comparable to a
supervised VAE-based method.

II. RELATED WORK

This study is related to two research fields: deep spectral
models and unsupervised neural source separation.

A. Deep Spectral Models

The deep spectral model has been proposed to precisely
represent the power spectral density (PSD) of source signals
with a neural network [13]–[16]. In this model, the source signal
on the time-frequency domain S = {sft ∈ C}F,T

f,t=1 is assumed
to follow a complex Gaussian distribution characterized by
D-dimensional latent vectors zt ∈ RD:

sft ∼ NC (0, gθ,f (zt)) , (1)

where gθ,f : RD → R+ is a neural network with a set of param-
eters θ to associate zt and the PSD of sft. Assuming the latent
vector zt to follow a standard Gaussian distribution:

zt ∼ N (0, I) , (2)

the network gθ,f is trained as a decoder of a VAE by maximizing
the log-marginal likelihood log pθ(S) for clean source signals.
The trained model has been combined with a rank-1 spatial
model [13] or a full-rank spatial model [14] for multichannel
source separation called a multichannel VAE (MVAE). It has
also been proposed for speech enhancement in unseen noisy
environments by combining the VAE-based speech model and
an NMF-based noise model [15], [16].

B. Unsupervised Neural Source Separation

Unsupervised neural source separation has been investigated
to handle sources whose clean signals cannot be collected. One
approach is called mixture invariant training [27], which uses

the temporal independence of the source signals. While this
approach and its variants [28], [29] can work with monaural
mixture signals, the performance could deteriorate when the
source signals have a temporal correlation in a mixture (e.g.,
music recordings). Another approach is to use spatial infor-
mation in multichannel mixture signals [21]–[26], [30]. The
source signals estimated by a conventional BSS method can be
used as pseudo-supervised data. Togami et al. [23] proposed to
train a network to predict a multichannel Wiener filter (MWF)
estimated by FCA. Drude et al. [22] proposed to train a net-
work by directly maximizing a log-marginal likelihood of a
BSS model called complex angular central Gaussian mixture
model (cACGMM) [31]. Since these methods are based on the
conventional linear BSS, their performance was limited by the
BSS methods.

III. NEURAL FCA FOR UNSUPERVISED SOURCE SEPARATION

Our unsupervised method jointly trains a deep spectral model
and its inference model by utilizing an amortized variational
inference (AVI) [19]. The inference model firstly encodes the
mixture signal into latent features of individual sources, and the
encoded features are reversely decoded to the multichannel mix-
ture by using the source model and SCMs. Our method solves
the frequency permutation by assuming a prior distribution on
the latent features. The AVI enables us to efficiently estimate
the intractable posterior distribution of the latent features by the
inference model. The training objective is formulated as a sum
of a reconstruction loss to the multichannel observation and a
regularization loss to the latent variables.

A. Generative Model of Multichannel Mixture Signal

To derive our unsupervised training method, we utilize a
generative model of an M -channel mixture signal xft ∈ CM ,
which is originally proposed for the supervised MVAE [14]. In
this model, the observation xft is represented by a sum of N
source signals snft (n = 1, . . . , N ) as follows:

xft =

N∑
n=1

anfsnft, (3)

whereanf ∈ CM is the steering vector for sourcen. Each source
signal snft is characterized with frame-wise latent vectors znt ∈
RD as in Eqs. (1) and (2). By marginalizing snft, we obtain the
following likelihood function:

xft ∼ NC

(
0,

N∑
n=1

gθ,f (znt)Hnf

)
, (4)

where Hnf = anfa
H
nf ∈ SM

+ is an SCM for source n at fre-
quency f . By relaxing the rank-1 constraint on Hnf (i.e., as-
suming a full-rank SCM), this model can handle the fluctuation
of anf caused by the source movements and reverberation [8].

B. Amortized Variational Inference for Unsupervised Training

We train the source model gθ,f in an unsupervised manner by
introducing an inference model qφ(Z | X) that predicts the latent
source vectors znt from a mixture signal X. More specifically,
this model approximates the posterior pθ(Z | X,H) ∝ pθ(X |
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Z,H)p(Z) with the following Gaussian distribution q:

qφ(Z | X) =
∏
n,t,d

N (zntd ∣∣ μφ,ntd(X), σ2
φ,ntd(X)

)
, (5)

where μφ,ntd(X) ∈ R and σ2
φ,ntd(X) ∈ R+ are the outputs of

a neural network with parameters φ for the inference model.
Using a set of multichannel mixture signals, we jointly op-

timize the network parameters θ and φ, and SCMs Hnf to
maximize the following evidence lower bound (ELBO):

L = Eqφ [log pθ(X | Z,H)]−DKL [qφ(Z | X) | p(Z)] , (6)

where Eqφ [·] is the expectation by the posterior qφ(Z | X), and
DKL[q | p] is the Kullback–Leibler (KL) divergence between q
and p. By maximizing this ELBO, the decoder parameters θ and
Hnf are trained to maximize log pθ(X | H), and the encoder
parameters φ are trained to minimize DKL[qφ(Z | X) | pθ(Z |
X,H)]. Note that θ and φ are optimized for all training data,
and Hnf is updated for each training mixture.

As in the training of a VAE, the intractable expectation in the
ELBO is approximated by using a sample z∗nt ∼ qφ(znt | X)
with the reparametarization trick [19] as follows:

Eqφ [log pθ(X | Z,H)] ≈ −
∑
f,t

log |Y:ft| −
∑
f,t

xH
ftY

−1
:ftxft,

where Y:ft =
∑N

n=1 Ynft ∈ SM
+ is the sum of source images

Ynft = gθ,f (z
∗
nt)Hnf ∈ S+. The SCM Hnf is obtained by an

expectation-maximization algorithm [8], [32] as follows:

Hnf ← 1

T

T∑
t=1

1

gθ,f (z∗nt)
X̂ft, (7)

X̂ft = Ynft +Ynft

(
Y−1:ftxftx

H
ftY

−1
:ft −Y:ft

)
Ynft. (8)

Since these equations depend on Hnf itself, we initialize it with
an identity matrix and update it multiple times. In this paper, we
updated Hnf five times from the identity matrix at each update
of the networks. Since the gradients of all the above operations
can be calculated analytically, we update the two networks by
using stochastic gradient descent (SGD).

C. Frequency Permutation Alignment

We utilize the independence of latent source features for
resolving the frequency permutation ambiguity caused by the
frequency-wise likelihood of Eq. (4). When the permutation
is not correctly aligned, a source signal is split into multiple
source classes. In such a situation, latent source vectors znt
for different classes n have correlated components representing
the same source. Conversely, we can resolve the permutation
by encouraging each component of znt to be independent.
This regularization corresponds to the KL term in the ELBO
DKL[qφ(Z | X) | p(Z)], which encourages the variational pos-
terior q to be the standard Gaussian distribution. In this paper,
we utilize the cyclic annealing of the KL term [33] to surely
align the permutation as detailed in Section IV-B.

D. Source Separation With Trained Networks

Once the networks are trained, the inference model is utilized
to estimate the latent source features of unseen mixture signals

as znt ← µφ,nt(X). While fixing the network parameters θ and
φ, we then iteratively and alternately update the latent source
vectors znt with SGD and SCMs Hnf with Eq. (7) such that
Eq. (4) is maximized as in the MVAE. The separated signals are
finally obtained by an MWF.

IV. EXPERIMENTAL EVALUATION

The proposed method was evaluated by using multichannel
speech mixture signals numerically simulated. Audio samples
are available at https://ybando.jp/projects/spl2021.

A. Dataset

We utilized the spatialized WSJ0-2mix dataset [34], whose
mixture includes two speech signals randomly selected from
the WSJ0 English speech corpus. The speech sources are placed
at random locations in a simulated room having random di-
mensions. An 8-channel microphone array is assumed with
random geometry. We used its first four channels to reduce
the computational complexity. The reverberation time (RT60) of
the room was randomly chosen between 200 and 600 ms. This
dataset provides 20000, 5000, and 3000 mixtures for training,
validation, and test sets, respectively. The mixture signals are
generated at 16 kHz. As in the previous studies [22], [23],
we performed dereverberation [35] to the mixture signals. For
stabilizing the dereverberation, we added white Gaussian noise
with the signal-to-noise ratio of 30 dB to the mixture signals.

B. Experimental Condition

We designed our networks based on existing separation net-
works [4], [34]. Following [34], the inference network took as in-
put a log-power spectrogram at the first (reference) microphone
and inter-channel phase differences between the reference and
other microphones. To reduce the computational cost, the input
frames were first transformed into 256-channel vectors with
a 1×1-convolutional (1×1-conv) layer. We then stacked four
modules with each having eight dilated convolutional layers as
in [4]. Each layer was the separable depth-wise convolution with
a 512-channel depth-wise layer and parametric rectified linear
units (PReLUs). The outputs μφ,ntd(X) and σ2

φ,ntd(X) were
obtained by 1×1-conv layers, and the non-negative σ2

φ,ntd(X)
was obtained by the softplus activation. The source model gθ,f
consisted of three 1×1-conv layers with residual connections
followed by one output layer with the softplus activation. Each
layer had 256 channels and PReLUs.

The networks were trained by an Adam optimizer [36] for 200
epochs with the learning rate of 1.0× 10−3. The spectrograms
were obtained by the short-time Fourier transform with the win-
dow size of 512 samples and the hop length of 128 samples. The
training was performed by splitting the mixture spectrograms
into 500-frame clips, and the batch size was set to 128 clips. The
dimension of the latent variable D was set to 50. The number
of sources N was set to 3 assuming two target sources and one
noise signal. The weight of the KL term was changed by the
cyclic annealing in 10-epoch cycles where its maximum value
was set to 10.0 for the first 50 epochs and 1.0 thereafter. At the
test time, the latent source vectors znt were updated by an Adam
optimizer with the learning rate of 0.2. These hyperparameters
were empirically determined.

https://ybando.jp/projects/spl2021
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TABLE I
SEPARATION PERFORMANCE IN AVERAGES AND STANDARD DEVIATIONS OF SDR, PESQ, AND STOI. SUPERVISED METHODS ARE COLORED IN GRAY

Fig. 2. Excerpts of PSDs gθ,f (µφ,nt(X)) estimated by proposed method and its variants, which have differences in solving frequency permutation ambiguity.

Our neural FCA was compared with existing BSS methods,
unsupervised neural methods, and supervised MVAE. As BSS
methods, we evaluated the cACGMM [31], FCA [8], and FastM-
NMF [5]. The number of basis vectors for FastMNMF was
set to 8. Because the cACGMM and FCA cannot resolve the
frequency permutation by themselves, we utilized an external
permutation solver1. As unsupervised neural methods, we eval-
uated the pseudo supervised method [23] that approximates the
results of the FCA [8] and the direct training method [22] that
maximizes the likelihood of the cACGMM (neural cACGMM).
The network outputs of these two methods were refined to fit
the observation by the FCA and cACGMM. Their numbers of
iterations were determined to maximize the performance be-
cause too many iterations degraded the performance. We finally
evaluated an MVAE whose source model is trained on clean
speech signals. The MVAE estimated sources by maximizing
the likelihood of Eq. (4). Its latent variable znt was initialized
by the FCA, which gave better initialization than FastMNMF
in our preliminary experiment. The network architectures for
these methods were determined to be as similar as possible
to our method. We evaluated the separation performance with
source-to-distortion ratio (SDR) [37] in dB, perceptual evalua-
tion of speech quality (PESQ) [38],2 and short term objective
intelligibility (STOI) [39].

C. Experimental Results

As summarized in TABLE I, the proposed neural FCA with
200 iterations achieved the best SDR, PESQ, and STOI in all
of the unsupervised methods. We can see that only 10 iterations
were enough for neural FCA to outperform the BSS methods of
cACGMM, FCA, and FastMNMF. In addition, regardless of the
genders of the speakers, the performance of the neural FCA was

1The implementation is available on https://github.com/fgnt/pb_bss
2We excluded 446c0209_1.8488_22hc010z_-1.8488.wav for the evaluation

because its first source was almost silent and PESQ could not be measured.

comparable to that of the supervised MVAE whose latent vectors
znt were initialized by FCA. The appropriate initialization ofznt
is important since the MVAE significantly deteriorated with the
random initialization of znt. In contrast, the proposed inference
model initialized the latent vectors znt effectively. Even when
znt (and PSDs) was fixed to the initial value, the neural FCA
outperformed the BSS methods. These results show that the
proposed framework combining the deep spectral model and
inference model is effective in unsupervised training of source
separation.

Unlike the conventional unsupervised neural methods, neural
FCA itself solved the frequency permutation problem as demon-
strated in Fig. 2. Fig. 2 (b) and (c) are the PSDs estimated by
the networks trained as a deterministic autoencoder (AE). In
this condition, the inference model is trained to estimate znt in
a maximum likelihood manner without the KL term. We can
see that the bottleneck architecture (D = 50) itself has some
effects on solving the permutation. As shown in Fig. 2 (d), the
proposed method completely resolved the permutation by the
training based on the variational inference. We conclude that the
independence of the latent source vectors encourages solving the
frequency permutation ambiguity.

V. CONCLUSION

This paper presented an unsupervised method that trains a
neural source separation by using only mixture signals. Our
neural FCA jointly trains a neural source model and its inference
model by maximizing the ELBO for the training data of mul-
tichannel mixture signals. The experimental results show that
the proposed method outperformed the existing unsupervised
methods and was comparable to the supervised MVAE. Our
future work includes handling an unknown number of sound
sources to analyze real-world mixture recordings. We also plan
to utilize the source latent features obtained by our unsupervised
training for down-streaming tasks such as sound event detection
and acoustic scene classification.

https://github.com/fgnt/pb_bss
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