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WaveCRN: An Efficient Convolutional Recurrent
Neural Network for End-to-End Speech Enhancement
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Abstract—Due to the simple design pipeline, end-to-end (E2E)
neural models for speech enhancement (SE) have attracted great
interest. In order to improve the performance of the E2E model,
the local and sequential properties of speech should be efficiently
taken into account when modelling. However, in most current E2E
models for SE, these properties are either not fully considered or
are too complex to be realized. In this letter, we propose an efficient
E2E SE model, termed WaveCRN. Compared with models based on
convolutional neural networks (CNN) or long short-term memory
(LSTM), WaveCRN uses a CNN module to capture the speech
locality features and a stacked simple recurrent units (SRU) module
to model the sequential property of the locality features. Different
from conventional recurrent neural networks and LSTM, SRU can
be efficiently parallelized in calculation, with even fewer model
parameters. In order to more effectively suppress noise components
in the noisy speech, we derive a novel restricted feature masking
approach, which performs enhancement on the feature maps in the
hidden layers; this is different from the approaches that apply the
estimated ratio mask to the noisy spectral features, which is com-
monly used in speech separation methods. Experimental results on
speech denoising and compressed speech restoration tasks confirm
that with the SRU and the restricted feature map, WaveCRN
performs comparably to other state-of-the-art approaches with
notably reduced model complexity and inference time.

Index Terms—Compressed speech restoration, convolutional
recurrent neural networks, raw waveform speech enhancement,
simple recurrent unit.

I. INTRODUCTION

S PEECH related applications, such as automatic speech
recognition (ASR), voice communication, and assistive

hearing devices, play an important role in modern society. How-
ever, most of these applications are not robust when noises are
involved. Therefore, speech enhancement (SE) [1]–[8], which
aims to improve the quality and intelligibility of the original
speech signal, has been widely used in these applications.
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In recent years, deep learning algorithms have been widely
used to build SE systems. A class of SE systems carry out
enhancement on the frequency-domain acoustic features, which
is generally called spectral-mapping-based SE approaches. In
these approaches, speech signals are analyzed and reconstructed
using the short-time Fourier transform (STFT) and inverse
STFT, respectively [9]–[13]. Then, the deep learning models,
such as fully connected deep denoising auto-encoder [3], con-
volutional neural networks (CNNs) [14], and recurrent neural
networks (RNNs) and long short-term memory (LSTM) [15],
[16], are used as a transformation function to convert noisy
spectral features to clean ones. In the meanwhile, some ap-
proaches are derived by combining different types of deep learn-
ing models (e.g., CNN and RNN) to more effectively capture
the local and sequential correlations [17]–[20]. More recently, a
SE system that was built based on stacked simple recurrent units
(SRUs) [21], [22] has shown denoising performance comparable
to that of the LSTM-based SE system, while requiring much less
computational costs for training. Although the above-mentioned
approaches can already provide outstanding performance, the
enhanced speech signal cannot reach its perfection owing to
the lack of accurate phase information. To tackle this prob-
lem, some SE approaches adopt complex-ratio-masking and
complex-spectral-mapping to enhance distorted speech [23]–
[25]. In [26], the phase estimation was formulated as a clas-
sification problem and was used in a source separation task.

Another class of SE methods proposes to directly perform
enhancement on the raw waveform [27]–[31], which are
generally called waveform-mapping-based approaches. Among
the deep learning models, fully convolutional networks
(FCNs) have been widely used to directly perform waveform
mapping [28], [32]–[34]. The WaveNet model, which was
originally proposed for text-to-speech tasks, was also used in
the waveform-mapping-based SE systems [35], [36]. Compared
to a fully connected architecture, fully convolution layers retain
better local information, and thus can more accurately model the
frequency characteristics of speech waveforms. More recently,
a temporal convolutional neural network (TCNN) [29] was
proposed to accurately model temporal features and perform SE
in the time domain. In addition to the point-to-point loss (such
as l1 and l2 norms) for optimization, some waveform-mapping
based SE approaches [37], [38] utilized adversarial loss or
perceptual loss to capture high-level distinctions between
predictions and their targets.

For the above waveform-mapping-based SE approaches, an
effective characterization of sequential and local patterns is an
important consideration for the final SE performance. Although
the combination of CNN and RNN/LSTM may be a feasible
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Fig. 1. Architecture of the proposed WaveCRN model. Unlike spectral CRN,
WaveCRN integrates 1D CNN with bidirectional SRU.

solution, the computational cost and model size of RNN/LSTM
are high, which may considerably limit its applicability. In this
study, we propose an E2E waveform-mapping-based SE method
using an alternative CRN, termed WaveCRN,1 which combines
the advantages of CNN and SRU to attain improved efficiency.
As compared to spectral-mapping-based CRN [17]–[20], the
proposed WaveCRN directly estimates feature masks from un-
processed waveforms through highly parallelizable recurrent
units. Two tasks are used to test the proposed WaveCRN ap-
proach: (1) speech denoising and (2) compressed speech restora-
tion. For speech denoising, we evaluate our method using an
open-source dataset [39] and obtain high perceptual evaluation
of speech quality (PESQ) scores [40] which is comparable to the
state-of-the-art method while using a relatively simple architec-
ture and l1 loss function. For compressed speech restoration, un-
like in [41], [42] that used acoustic features, we simply pass the
speech to a sign function for compression. This task is evaluated
on the TIMIT database [43]. The proposed WaveCRN model
recovers extremely compressed speech with a notable relative
short-time objective intelligibility (STOI) [44] improvement of
75.51% (from 0.49 to 0.86).

II. METHODOLOGY

In this section, we describe the details of our WaveCRN-based
SE system. The architecture is a fully differentiable E2E neural
network that does not require pre-processing and handcrafted
features. Benefiting from the advantages of CNN and SRU,
it jointly models local and sequential information. The overall
architecture of WaveCRN is shown in Fig. 1.

A. 1D Convolutional Input Module

As mentioned in the previous section, for the spectral-
mapping-based SE approaches, speech waveforms are first con-
verted to spectral-domain by STFT. To implement waveform-
mapping SE, WaveCRN uses a 1D CNN input module to
replace the STFT processing. Benefiting from the nature of
neural networks, the CNN module is fully trainable. For each
batch, the input noisy audio X (X ∈ RN×1×L) is convolved
with a two-dimensional tensor W (W ∈ RC×K) to extract the
feature map F ∈ RN×C×T , where N,C,K, T, L are the batch
size, number of channels, kernel size, time steps, and audio
length, respectively. Notably, to reduce the sequence length for
computational efficiency, we set the convolution stride to half
the size of the kernel, so that the length of F is reduced from L
to T = 2L/K + 1.

1The implementation of WaveCRN is available at https://github.com/
aleXiehta/WaveCRN

B. Temporal Encoder

We used a bidirectional SRU (Bi-SRU) to capture the temporal
correlation of the feature maps extracted by the input module in
both directions. For each batch, the feature mapF ∈ RN×C×T is
passed to the SRU-based recurrent feature extractor. The hidden
states extracted in both directions are concatenated to form the
encoded features.

C. Restricted Feature Mask

The optimal ratio mask (ORM) has been widely used in SE
and speech separation tasks [45]. As ORM is a time-frequency
mask, it cannot be directly applied to waveform-mapping-based
SE approaches. In this study, an alternative mask restricted
feature mask (RFM) with all elements in the range of −1 to
1 is applied to mask the feature map F:

F′ = M ◦ F. (1)

where M ∈ RN×C×T , is the RFM, F′ is the masked feature
map estimated by element-wise multiplying the mask M and
the feature map F. It should be noted that the main difference
between ORM and RFM is that the former is applied to spectral
features, whereas the latter is used to transform the feature maps.

D. Waveform Generation

As described in Section II-A, the sequence length is reduced
from L (for the waveform) to T (for the feature map) due to the
stride in the convolution process. Length restoration is essential
for generating an output waveform with the same length as the
input. Given the input length, output length, stride, and padding
as Lin, Lout, S, and P , the relationship between Lin and Lout

can be formulated as:

Lout = (Lin − 1)× S − 2× P + (K − 1) + 1. (2)

Let Lin = T , S = K/2, P = K/2, we have Lout = L. That is,
the output waveform and the input waveform are guaranteed to
have the same length.

E. Model Structure Overview

As shown in Fig. 1, our model leverages the benefits of CNN
and SRU. Given the i-th noisy speech utteranceXi ∈ R1×L, i =
0, . . ., N − 1, in a batch, a 1D CNN first maps Xi into a feature
map Fi for local feature extraction. Bi-SRU then computes an
RFM Mi, which element-wisely multiplies Fi to generate a
masked feature map F′

i. Finally, a transposed 1D convolution
layer recovers the enhanced speech waveforms, Xi, from the
masked features, F′

i.
In [21], SRU has been proved to yield a performance compara-

ble to that of LSTM, but with better parallelism. The dependency
between gates in LSTM leads to slow training and inference.
In contrast, all gates in SRU depend only on the input of the
current time, and the sequential correlation is captured by adding
highway connections between recurrent layers. Therefore, the
gates in SRU are computed simultaneously. In the forward pass,
the time complexity of SRU and LSTM are O(T ·N · C) and
O(T ·N · C2), respectively. The above-mentioned advantages
make SRU appropriate to combine it with CNN. Some stud-
ies [46], [47] depict ResNet as an ensemble of relatively shallow
paths of its sub-nets. Since SRU has highway connections and
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Fig. 2. Magnitude spectrograms of noisy, clean and enhanced speech by LPS–
SRU, LPS–SRU*, WaveCBLSTM, WaveCBLSTM*, WaveCRN, and Wave-
CRN*, where models marked with * directly generate enhanced speech with-
out using RFM. Improvements of WaveCRN over other methods are high-
lighted with green (high-frequency parts) and white blocks (silence). (a) Noisy.
(b) Clean. (c) LPS-SRU*. (d) LPS-SRU. (e) WaveCBLSTM*. (f)
WaveCBLSTM. (g) WaveCRN*. (h) WaveCRN.

recurs over time, it can be regarded as an ensemble for discrete
modeling of dependency within a sub-sequence.

III. EXPERIMENTS

A. Experimental Setup

1) Speech Denoising: For the speech denoising task, an
open-source dataset [39] was used, which combines the voice
bank corpus [48] and the DEMAND corpus [49]. Similar to pre-
vious works [25], [33], [35]–[38], we downsampled the speech
data to 16 kHz for training and testing. In the voice bank corpus,
28 out of the 30 speakers were used for training, and 2 speakers
were used for testing. For the training set, the clean speech was
contaminated with 10 types of noise at 4 SNR levels (0, 5, 10, and
15 dB). For the testing set, the clean speech was contaminated
with 5 types of unseen noise at the other 4 SNR levels (2.5, 7.5,
12.5, and 17.5 dB).

2) Compressed (2-Bit) Speech Restoration: For the com-
pressed speech restoration task, we used the TIMIT corpus [43].
The original speech samples were recorded in a 16 kHz and
16-bit format. In this set of experiments, each sample was
compressed into a 2-bit format (represented by −1, 0, or +1).
In this way, we save 87.5% of the bits, thereby reducing the data
transmission and storage requirements. We believe that this com-
pression scheme is potentially applicable to real-world internet
of things (IoT) scenarios. Note that the same model architecture
was used in both denoising and restoration tasks. The +1, 0,
or −1 value of each compressed sample was first mapped to
a floating-point representation, and thus the waveform-domain
SE system could be readily applied to restore the original un-
compressed speech. Expressing the original speech as ŷ and the
compressed speech as sgn(ŷ), the optimization process becomes

argmin
θ

‖ŷ − gθ(sgn(ŷ))‖1, (3)

TABLE I
RESULTS OF THE SPEECH DENOISING TASK. A HIGHER SCORE INDICATES

BETTER PERFORMANCE. BOLD VALUES INDICATE THE BEST PERFORMANCE

FOR A SPECIFIC METRIC. MODELS MARKED WITH * DIRECTLY GENERATE

ENHANCED SPEECH WITHOUT USING RFM

where gθ denotes the SE process.
3) Model Architecture: In the input module, the number of

channels, kernel size, and stride size was set to 256, 0.006 s,
and 0.003 s, respectively. The input audio was padded to make
it divisible by the stride size. The size of the hidden state of
Bi-SRU was set to the number of channels (with 6 stacks). Next,
all the hidden states were linearly mapped to half dimension
to form a mask and element-wisely multiplied by the feature
map. Finally, in the waveform generation step, a transposed
convolutional layer was used to map the 2D feature map into
a 1D sequence, which was passed through a hyperbolic tangent
activation function to generate the predicted waveform. The l1
norm was used as the objective function for training WaveCRN.
For a fairer comparison of the model architectures, we mainly
compare WaveCRN with other SE systems also trained using
the l1 norm.

B. Experimental Results

1) Speech Denoising: For the speech denoising task, we used
five evaluation metrics from [50]: CSIG (signal distortion),
CBAK (background intrusiveness), COVL (overall quality
using the scale of the mean opinion score) and PESQ that
reveal the speech quality, and SSNR (segmental signal-to-noise
ratio). Table I presents the results. The proposed model was
compared with Wiener filtering, SEGAN, two well-known
SE models that use the same l1 loss (i.e., Wavenet and
Wave-U-Net), LPS–SRU that uses the LPS feature as input, and
WaveCBLSTM that combines CNN and BLSTM. LPS–SRU
was implemented by replacing the 1D convolutional input
module and the transposed 1D convolutional output module in
Fig. 1 with STFT and inverse STFT modules. WaveCBLSTM
was implemented by replacing the SRU in Fig. 1 with LSTM.
The combination of CNN and LSTM for processing speech
signals has been widely investigated [19], [20], [30]. In this
study, we aim to show that SRU is superior to LSTM in terms
of the denoising capability and computational efficiency, when
applied to waveform-based SE. As can be clearly seen from
Table I, WaveCRN outperforms other models in terms of all
perceptual and signal-level evaluation metrics.

We next investigated the effect of RFM. As shown in Table I,
LPS–SRU, WaveCBLSTM, and WaveCRN are better than their
counterparts without RFM (LPS–SRU*, WaveCBLSTM*, and
WaveCRN*). Notably, unlike WaveCBLSTM and WaveCRN
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TABLE II
COMPARISON OF EXECUTION TIME AND NUMBER OF PARAMETERS OF

WAVECRN AND WAVECBLSTM WITH SAME HYPER-PARAMETERS. THIS

EXPERIMENT WAS PERFORMED IN AN ENVIRONMENT SETTING THAT USED A

48-CORE CPU AT 2.20 GHZ AND A TITAN XP GPU WITH 12 GB VRAM. THE

FIRST ROW AND THE SECOND ROW SHOW THE EXECUTION TIME OF THE

FORWARD AND THE BACK-PROPAGATION PASSES FOR A 1-SECOND WAVEFORM

INPUT IN A BATCH OF 16, AND THE THIRD ROW PRESENTS

THE NUMBER OF PARAMETERS

TABLE III
RESULTS OF THE COMPRESSED SPEECH RESTORATION TASK

that use waveforms as input, LPS–SRU enhances the audio in
the spectral domain. Fig. 2 shows the magnitude spectrograms of
noisy, clean, and enhanced speech utterances. Two observations
can be drawn from the figure. First, RFM notably eliminates
noise components in the high-frequency region (green blocks)
and silence parts (white blocks). This observation is consistent
with the results in Table I: the models with RFM achieve higher
SSNR scores and speech quality. Second, as shown in Fig. 2(e),
without RFM, the high-frequency region cannot be completely
restored. Comparing Fig. 2(e) and Fig. 2(g), WaveCBLSTM*
has a cleaner estimation than WaveCRN* in the silence parts, but
the loss of the high-frequency region deteriorates the audio qual-
ity, which can be found in Table I. Compared with WaveCRN*,
WaveCBLSTM* has a higher CBAK score but lower PESQ and
SSNR scores. Next, Table II presents a comparison of the execu-
tion time and parameters of the WaveCRN and WaveCBLSTM.
Under the same hyper-parameter settings (number of layers, di-
mension of hidden states, number of channels, etc.), the training
process of WaveCRN is 15.45 ((38.1 + 59.86)/(2.07 + 4.27))
times faster than that of WaveCBLSTM, and the number of
parameters is only 51%. The forward pass is 18.41 times faster,
which means 18.41 times faster in inference.

2) Compressed Speech Restoration: For the compressed
speech restoration task, we applied WaveCRN and LPS–SRU
to transform the compressed speech to the uncompressed one.
In LPS–SRU, the SRU structure was identical to that used in
WaveCRN, but the input was the LPS, and the STFT and inverse
STFT were used for speech analysis and reconstruction, respec-
tively. The performance was evaluated in terms of the PESQ
and STOI scores. From Table III, we can see that WaveCRN
and LPS–SRU improve the PESQ score from 1.39 to 2.41 and
1.97, and the STOI score from 0.49 to 0.86 and 0.79. Both the
approaches achieve significant improvements, while WaveCRN
clearly outperforms LPS–SRU.

We can observe from Fig. 3(a) and 3(b) that the speech quality
is notably reduced in 2-bit format, especially in the silence part
and the high-frequency region. However, the spectrograms of
speech restored by WaveCRN and LPS–SRU present a clearer

Fig. 3. Magnitude spectrograms of original, compressed, and restored speech
by LPS–SRU and WaveCRN. (a) Compressed. (b) Ground Truth. (c) LPS-SRU.
(d) WaveCRN.

Fig. 4. Instantaneous frequency spectrograms of uncompressed and re-
stored speech by LPS–SRU and WaveCRN. (a) Ground Truth. (b) LPS-SRU.
(c) WaveCRN.

structure, as shown in Fig. 3(c) and 3(d). In addition, the white-
block regions show that WaveCRN can restore speech patterns
more effectively than LPS–SRU. Fig. 4 shows the instantaneous
frequency spectrograms. As expected, the LPS–SRU recovers
the waveform with the compressed phase spectrogram; hence,
WaveCRN preserves more details of the phase spectrogram
by directly using the waveform as input without losing phase
information.

IV. CONCLUSIONS

This letter proposed the WaveCRN E2E SE model. Wave-
CRN uses a bi-directional architecture to model the sequential
correlation of extracted features. The experimental results show
that WaveCRN achieves outstanding denoising capability and
computational efficiency compared with related works using l1
loss. The contributions of this study are fourfold: (a) WaveCRN
is the first work that combines SRU and CNN to perform
E2E SE; (b) a novel RFM approach was derived to directly
transform the noisy features to enhanced ones; (c) the SRU
model is relatively simple yet yield comparable performance
to other up-to-date SE models that use the same l1 loss; (d) a
new practical application (compressed speech restoration) was
designed and its performance was tested; WaveCRN obtained
promising results on this task. This study focused on comparing
the SE model architecture with the conventional l1 norm loss.
Our future work will explore adopting alternative perceptual and
adversarial losses in the WaveCRN system.



HSIEH et al.: WaveCRN: AN EFFICIENT CONVOLUTIONAL RECURRENT NEURAL NETWORK FOR END-TO-END SPEECH ENHANCEMENT 2153

REFERENCES

[1] P. C. Loizou, Speech Enhancement: Theory and Practice, 2nd ed. Boca
Raton, FL, USA: CRC Press, 2013.

[2] M. Kolbk, Z.-H. Tan, and J. Jensen, “Speech intelligibility potential of
general and specialized deep neural network based speech enhancement
systems,” IEEE/ACM Trans. Audio, Speech, Lang. Process., vol. 25, no. 1,
pp. 153–167, Jan. 2017.

[3] X. Lu, Y. Tsao, S. Matsuda, and C. Hori, “Speech enhancement based on
deep denoising autoencoder,” in Proc. Interspeech, 2013, pp. 436–440.

[4] B. Xia and C. Bao, “Wiener filtering based speech enhancement with
weighted denoising auto-encoder and noise classification,” Speech Com-
mun., vol. 60, pp. 13–29, 2014.

[5] D. Wang and J. Chen, “Supervised speech separation based on deep
learning: An overview,” IEEE/ACM Trans. Audio, Speech, Lang. Process.,
vol. 26, no. 10, pp. 1702–1726, Oct. 2018.

[6] Z. Meng, J. Li, and Y. Gong, “Adversarial feature-mapping for speech
enhancement,” in Proc. Interspeech, 2017, pp. 3259–3263.

[7] M. H. Soni, N. Shah, and H. A. Patil, “Time-frequency masking-based
speech enhancement using generative adversarial network,” in Proc.
ICASSP, 2018, pp. 5039–5043.

[8] L. Chai, J. Du, Q.-F. Liu, and C.-H. Lee, “Using generalized Gaussian
distributions to improve regression error modeling for deep learning-based
speech enhancement,” IEEE/ACM Trans. Audio, Speech, Lang. Process.,
vol. 27, no. 12, pp. 1919–1931, Dec. 2019.

[9] Y. Xu, J. Du, L.-R. Dai, and C.-H. Lee, “A regression approach to speech
enhancement based on deep neural networks,” IEEE/ACM Trans. Audio,
Speech, Lang. Process., vol. 23, no. 1, pp. 7–19, Jan. 2015.

[10] F. Xie and D. Van Compernolle, “A family of MLP based nonlinear spectral
estimators for noise reduction,” in Proc. ICASSP, 1994, pp. 53–56.

[11] S. Wang, K. Li, Z. Huang, S. M. Siniscalchi, and C.-H. Lee, “A transfer
learning and progressive stacking approach to reducing deep model sizes
with an application to speech enhancement,” in Proc. ICASSP, 2017,
pp. 5575–5579.

[12] D. Liu, P. Smaragdis, and M. Kim, “Experiments on deep learning for
speech denoising,” in Proc. Interspeech, 2014, pp. 2685–2689.

[13] L. Sun, J. Du, L.-R. Dai, and C.-H. Lee, “Multiple-target deep learning
for lSTM-RNN based speech enhancement,” in Proc. HSCMA, 2017,
pp. 136–140.

[14] S.-W. Fu, Y. Tsao, and X. Lu, “SNR-aware convolutional neural network
modeling for speech enhancement,” in Proc. Interspeech, 2016, pp. 3768–
3772.

[15] F. Weninger et al., “Speech enhancement with LSTM recurrent neural
networks and its application to noise-robust ASR,” in Proc. LVA/ICA, 2015,
pp. 91–99.

[16] A. L. Maas, Q. V. Le, T. M. O’Neil, O. Vinyals, P. Nguyen, and A. Y. Ng,
“Recurrent neural networks for noise reduction in robust ASR,” in Proc.
Interspeech, 2012, pp. 22–25.

[17] H. Zhao, S. Zarar, I. Tashev, and C.-H. Lee, “Convolutional-recurrent
neural networks for speech enhancement,” in Proc. ICASSP, 2018,
pp. 2401–2405.

[18] K. Tan and D. Wang, “Learning complex spectral mapping with gated
convolutional recurrent networks for monaural speech enhancement,”
IEEE/ACM Trans. Audio, Speech, Lang. Process., vol. 28, pp. 380–390,
2020.

[19] K. Tan and D. Wang, “A convolutional recurrent neural network for real-
time speech enhancement,” in Proc. Interspeech, 2018.

[20] K. Tan, X. Zhang, and D. Wang, “Real-time speech enhancement using
an efficient convolutional recurrent network for dual-microphone mobile
phones in close-talk scenarios,” in Proc. ICASSP, 2019, pp. 5751–5755.

[21] T. Lei, Y. Zhang, S. I. Wang, H. Dai, and Y. Artzi, “Simple recur-
rent units for highly parallelizable recurrence,” in Proc. EMNLP, 2018,
pp. 4470–4781.

[22] X. Cui, Z. Chen, and F. Yin, “Speech enhancement based on simple
recurrent unit network,” Appl. Acoust., vol. 157, 2020, Art. no. 107019.

[23] S.-W. Fu, T.-y. Hu, Y. Tsao, and X. Lu, “Complex spectrogram enhance-
ment by convolutional neural network with multi-metrics learning,” in
Proc. MLSP, 2017, pp. 1–6.

[24] D. S. Williamson and D. Wang, “Time-frequency masking in the complex
domain for speech dereverberation and denoising,” IEEE/ACM Trans.
Audio, Speech, Lang. Process., vol. 25, no. 7, pp. 1492–1501, Jul. 2017.

[25] J. Yao and A. Al-Dahle, “Coarse-to-fine optimization for speech enhance-
ment,” in Proc. Interspeech, 2019, pp. 2743–2747.

[26] N. Takahashi, P. Agrawal, N. Goswami, and Y. Mitsufuji, “PhaseNet:
Discretized phase modeling with deep neural networks for audio source
separation,” in Proc. Interspeech, 2018, pp. 2713–2717.

[27] S.-W. Fu, Y. Tsao, X. Lu, and H. Kawai, “Raw waveform-based speech
enhancement by fully convolutional networks,” in Proc. APSIPA ASC,
2017, pp. 6–12.

[28] T. N. Sainath, R. J. Weiss, A. Senior, K. W. Wilson, and O. Vinyals,
“Learning the speech front-end with raw waveform CLDNNs,” in Proc.
Interspeech, 2015, pp. 1–5.

[29] A. Pandey and D. Wang, “TCNN: Temporal convolutional neural network
for real-time speech enhancement in the time domain,” in Proc. Inter-
speech, 2019, pp. 6975–6879.

[30] J. Li, H. Zhang, X. Zhang, and C. Li, “Single channel speech enhancement
using temporal convolutional recurrent neural networks,” in Proc. APSIPA
ASC, 2019, pp. 896–900.

[31] M. Kolbæk, Z.-H. Tran, S. H. Jensen, and J. Jensen, “On loss functions
for supervised monaural time-domain speech enhancement,” IEEE/ACM
Trans. Audio, Speech, Lang. Process., vol. 28, pp. 825–838, 2020.

[32] S. Fu, T. Wang, Y. Tsao, X. Lu, and H. Kawai, “End-to-end waveform
utterance enhancement for direct evaluation metrics optimization by fully
convolutional neural networks,” IEEE/ACM Trans. Audio, Speech, Lang.
Process., vol. 26, no. 9, pp. 1570–1584, Sep. 2018.

[33] S. Pascual, A. Bonafonte, and J. Serra, “SEGAN: Speech enhancement
generative adversarial network,” in Proc. Interspeech, 2017, pp. 3642–
3646.

[34] K. Qian, Y. Zhang, S. Chang, X. Yang, D. Florêncio, and M. Hasegawa-
Johnson, “Speech enhancement using Bayesian wavenet,” in Proc. Inter-
speech, 2017, pp. 2013–2017.

[35] D. Rethage, J. Pons, and X. Serra, “A wavenet for speech denoising,” in
Proc. Interspeech, 2017, pp. 5069–5073.

[36] R. Giri, U. Isik, and A. Krishnaswamy, “Attention wave-U-Net for speech
enhancement,” in Proc. WASPAA, 2019, pp. 4049–4053.

[37] S. Pascual, J. Serra, and A. Bonafonte, “Time-domain speech enhance-
ment using generative adversarial networks,” Speech Commun., vol. 114,
pp. 10–21, 2019.

[38] F. G. Germain, Q. Chen, and V. Koltun, “Speech denoising with deep
feature losses,” in Proc. Interspeech, 2019, pp. 2723–2727.

[39] C. Valentini-Botinhao, X. Wang, S. Takaki, and J. Yamagishi, “Investi-
gating RNN-based speech enhancement methods for noise-robust text-to-
speech,” in Proc. SSW, 2016, pp. 146–152.

[40] A. W. Rix, J. G. Beerends, M. P. Hollier, and A. P. Hekstra, “Perceptual
evaluation of speech quality (PESQ)–a new method for speech quality
assessment of telephone networks and codecs,” in Proc. ICASSP, 2001,
pp. 749–752.

[41] M. Cernak, A. Lazaridis, A. Asaei, and P. N. Garner, “Composition
of deep and spiking neural networks for very low bit rate speech cod-
ing,” IEEE/ACM Trans. Audio, Speech, Lang. Process., vol. 24, no. 12,
pp. 2301–2312, Dec. 2016.

[42] L. Deng, M. L. Seltzer, D. Yu, A. Acero, A. Rahman Mohamed, and G.
E. Hinton, “Binary coding of speech spectrograms using a deep auto-
encoder,” in Proc. Interspeech, 2010, pp. 1692–1695.

[43] J. S. Garofolo, L. F. Lamel, W. M. Fisher, J. G. Fiscus, D. S. Pallett, and
N. L. Dahlgren, “DARPA TIMIT acoustic-phonetic continuous speech
corpus CD-ROM. NIST speech disc 1-1.1,” NASA STI/Recon Tech. Rep.,
vol. 93, p. 27043, 1993.

[44] C. H. Taal, R. C. Hendriks, R. Heusdens, and J. Jensen, “An algo-
rithm for intelligibility prediction of time–frequency weighted noisy
speech,” IEEE/ACM Trans. Audio, Speech, Lang. Process., vol. 19, no. 7,
pp. 2125–2136, Sep. 2011.

[45] S. Liang, W. Liu, W. Jiang, and W. Xue, “The optimal ratio time-frequency
mask for speech separation in terms of the signal-to-noise ratio,” JASA,
vol. 134, no. 5, pp. EL452–EL458, 2013.

[46] A. Veit, M. J. Wilber, and S. Belongie, “Residual networks behave
like ensembles of relatively shallow networks,” in Proc. NeurIPS, 2016,
pp. 550–558.

[47] S. De and S. L. Smith, “Batch normalization biases deep residual networks
towards shallow paths,” CoRR, vol. abs/2002.10444, 2020.

[48] C. Veaux, J. Yamagishi, and S. King, “The voice bank corpus: Design,
collection and data analysis of a large regional accent speech database,”
in Proc. O-COCOSDA/CASLRE, 2013, pp. 1–4.

[49] J. Thiemann, N. Ito, and E. Vincent, “The diverse environments multi–
channel acoustic noise database: A database of multichannel environmen-
tal noise recordings,” J. Acoust. Soc. Amer., pp. 3591–3591, 2013.

[50] Y. Hu and P. C. Loizou, “Evaluation of objective quality measures for
speech enhancement,” IEEE Trans. Audio, Speech, Lang. Process., vol. 16,
no. 1, pp. 229–238, Jan. 2008.



<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /None
  /Binding /Left
  /CalGrayProfile (Gray Gamma 2.2)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Warning
  /CompatibilityLevel 1.4
  /CompressObjects /Off
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJobTicket false
  /DefaultRenderingIntent /Default
  /DetectBlends true
  /DetectCurves 0.0000
  /ColorConversionStrategy /sRGB
  /DoThumbnails true
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 1048576
  /LockDistillerParams true
  /MaxSubsetPct 100
  /Optimize true
  /OPM 0
  /ParseDSCComments false
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveDICMYKValues true
  /PreserveEPSInfo false
  /PreserveFlatness true
  /PreserveHalftoneInfo true
  /PreserveOPIComments false
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts true
  /TransferFunctionInfo /Remove
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
    /Algerian
    /Arial-Black
    /Arial-BlackItalic
    /Arial-BoldItalicMT
    /Arial-BoldMT
    /Arial-ItalicMT
    /ArialMT
    /ArialNarrow
    /ArialNarrow-Bold
    /ArialNarrow-BoldItalic
    /ArialNarrow-Italic
    /ArialUnicodeMS
    /BaskOldFace
    /Batang
    /Bauhaus93
    /BellMT
    /BellMTBold
    /BellMTItalic
    /BerlinSansFB-Bold
    /BerlinSansFBDemi-Bold
    /BerlinSansFB-Reg
    /BernardMT-Condensed
    /BodoniMTPosterCompressed
    /BookAntiqua
    /BookAntiqua-Bold
    /BookAntiqua-BoldItalic
    /BookAntiqua-Italic
    /BookmanOldStyle
    /BookmanOldStyle-Bold
    /BookmanOldStyle-BoldItalic
    /BookmanOldStyle-Italic
    /BookshelfSymbolSeven
    /BritannicBold
    /Broadway
    /BrushScriptMT
    /CalifornianFB-Bold
    /CalifornianFB-Italic
    /CalifornianFB-Reg
    /Centaur
    /Century
    /CenturyGothic
    /CenturyGothic-Bold
    /CenturyGothic-BoldItalic
    /CenturyGothic-Italic
    /CenturySchoolbook
    /CenturySchoolbook-Bold
    /CenturySchoolbook-BoldItalic
    /CenturySchoolbook-Italic
    /Chiller-Regular
    /ColonnaMT
    /ComicSansMS
    /ComicSansMS-Bold
    /CooperBlack
    /CourierNewPS-BoldItalicMT
    /CourierNewPS-BoldMT
    /CourierNewPS-ItalicMT
    /CourierNewPSMT
    /EstrangeloEdessa
    /FootlightMTLight
    /FreestyleScript-Regular
    /Garamond
    /Garamond-Bold
    /Garamond-Italic
    /Georgia
    /Georgia-Bold
    /Georgia-BoldItalic
    /Georgia-Italic
    /Haettenschweiler
    /HarlowSolid
    /Harrington
    /HighTowerText-Italic
    /HighTowerText-Reg
    /Impact
    /InformalRoman-Regular
    /Jokerman-Regular
    /JuiceITC-Regular
    /KristenITC-Regular
    /KuenstlerScript-Black
    /KuenstlerScript-Medium
    /KuenstlerScript-TwoBold
    /KunstlerScript
    /LatinWide
    /LetterGothicMT
    /LetterGothicMT-Bold
    /LetterGothicMT-BoldOblique
    /LetterGothicMT-Oblique
    /LucidaBright
    /LucidaBright-Demi
    /LucidaBright-DemiItalic
    /LucidaBright-Italic
    /LucidaCalligraphy-Italic
    /LucidaConsole
    /LucidaFax
    /LucidaFax-Demi
    /LucidaFax-DemiItalic
    /LucidaFax-Italic
    /LucidaHandwriting-Italic
    /LucidaSansUnicode
    /Magneto-Bold
    /MaturaMTScriptCapitals
    /MediciScriptLTStd
    /MicrosoftSansSerif
    /Mistral
    /Modern-Regular
    /MonotypeCorsiva
    /MS-Mincho
    /MSReferenceSansSerif
    /MSReferenceSpecialty
    /NiagaraEngraved-Reg
    /NiagaraSolid-Reg
    /NuptialScript
    /OldEnglishTextMT
    /Onyx
    /PalatinoLinotype-Bold
    /PalatinoLinotype-BoldItalic
    /PalatinoLinotype-Italic
    /PalatinoLinotype-Roman
    /Parchment-Regular
    /Playbill
    /PMingLiU
    /PoorRichard-Regular
    /Ravie
    /ShowcardGothic-Reg
    /SimSun
    /SnapITC-Regular
    /Stencil
    /SymbolMT
    /Tahoma
    /Tahoma-Bold
    /TempusSansITC
    /TimesNewRomanMT-ExtraBold
    /TimesNewRomanMTStd
    /TimesNewRomanMTStd-Bold
    /TimesNewRomanMTStd-BoldCond
    /TimesNewRomanMTStd-BoldIt
    /TimesNewRomanMTStd-Cond
    /TimesNewRomanMTStd-CondIt
    /TimesNewRomanMTStd-Italic
    /TimesNewRomanPS-BoldItalicMT
    /TimesNewRomanPS-BoldMT
    /TimesNewRomanPS-ItalicMT
    /TimesNewRomanPSMT
    /Times-Roman
    /Trebuchet-BoldItalic
    /TrebuchetMS
    /TrebuchetMS-Bold
    /TrebuchetMS-Italic
    /Verdana
    /Verdana-Bold
    /Verdana-BoldItalic
    /Verdana-Italic
    /VinerHandITC
    /Vivaldii
    /VladimirScript
    /Webdings
    /Wingdings2
    /Wingdings3
    /Wingdings-Regular
    /ZapfChanceryStd-Demi
    /ZWAdobeF
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /CropColorImages true
  /ColorImageMinResolution 150
  /ColorImageMinResolutionPolicy /OK
  /DownsampleColorImages false
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 900
  /ColorImageDepth -1
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 1.00111
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages false
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /ColorImageDict <<
    /QFactor 0.40
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasGrayImages false
  /CropGrayImages true
  /GrayImageMinResolution 150
  /GrayImageMinResolutionPolicy /OK
  /DownsampleGrayImages false
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 1200
  /GrayImageDepth -1
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 1.00083
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages false
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /GrayImageDict <<
    /QFactor 0.40
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasMonoImages false
  /CropMonoImages true
  /MonoImageMinResolution 1200
  /MonoImageMinResolutionPolicy /OK
  /DownsampleMonoImages false
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 1600
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.00063
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /CheckCompliance [
    /None
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile (None)
  /PDFXOutputConditionIdentifier ()
  /PDFXOutputCondition ()
  /PDFXRegistryName ()
  /PDFXTrapped /False

  /CreateJDFFile false
  /Description <<
    /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
    /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
    /DAN <>
    /DEU <>
    /ESP <>
    /FRA <>
    /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
    /JPN <>
    /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
    /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
    /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
    /PTB <>
    /SUO <>
    /SVE <>
    /ENU (Use these settings to create PDFs that match the "Suggested"  settings for PDF Specification 4.0)
  >>
>> setdistillerparams
<<
  /HWResolution [600 600]
  /PageSize [612.000 792.000]
>> setpagedevice


