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A Mnemonic Kalman Filter for Non-Linear Systems
With Extensive Temporal Dependencies
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Abstract—Analytic dynamic models for target estimation are
often approximations of the potentially complex behaviour of the
object of interest. Its true motion might depend on hundreds of
parameters and can involve long-term temporal correlation. How-
ever, conventional models keep the degrees of freedom low and
they usually assume the Markov property to reduce computational
complexity. In particular, the Kalman Filter assumes prior and pos-
terior Gaussian densities and is hence restricted to linear transition
functions which are often insufficient to reflect the behaviour of a
real object. In this letter, a Mnemonic Kalman Filter is introduced
which overcomes the Markov property and the linearity restriction
by learning to predict a full transition probability density with Long
Short-Term Memory networks.

Index Terms—Dynamic models, single target tracking, long
short-term memory, recurrent neural network, Kalman filter.

I. INTRODUCTION

THE careful design of dynamic models for target tracking
is an important task since the chosen assumptions have

a great influence on the quality of the state estimates. Some
objects commonly exhibit complex behaviours, such as vehicles
executing a series of standard manoeuvres or following specific
routes, and it might be hard to formalise them in a compact and
computationally feasible manner. Moreover, dynamic patterns
usually contain long-term correlation, i.e. the states far in the
past can influence state transitions at the current time (e.g. the
departure port might influence the destination port).

Standard dynamic models are simplified descriptions of phys-
ical motion with a low number of parameters and usually include
the Markov property, i.e. they are oblivious to most of the
state history. One common version of the single-target Bayes
recursion for Gaussian distributions is the well-known Kalman
Filter (KF) [1], which depends on the dynamic model being
linear and Markovian to preserve the Gaussianity of the prop-
agated density. The Extended and Unscented KF (EKF/UKF)
are approximations that relax the linearity assumption but still
do not tolerate highly non-linear dynamics [2]. While ensuring
tractability, such restrictions might poorly represent the true
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dynamic behaviour, leading to track loss in the presence of
occlusions or low detection rates. Temporal information has
previously been included via context data [3], if available, or
by adding previous time steps to the state vector as, e.g., in
auto-regressive modelling [4].

The very active field of machine learning has opened a non-
analytic way of defining and utilising mathematical models.
Instead of explicitly specifying the model equation, a neural
network approximates the required function intrinsically by
processing a set of training samples and optimising a possibly
large number of hidden parameters to fit the training set most
accurately. In this manner, neural networks have achieved im-
pressive results in computer vision and acoustics [5], [6]. One
specific type of network, the Recurrent Neural Network (RNN),
was especially designed for processing sequential data such as
language, which led to great advances in speech recognition,
translation, image captioning and other applications [7]–[9]. To
overcome the inherent exploding/vanishing gradient problem
of RNNs, Long Short-Term Memory (LSTM) networks were
introduced which are able to ‘remember’ temporal dependencies
for much longer time periods [10]. LSTMs were already applied
to model the KF matrices [11] or provide a simplified state pre-
diction which only estimates the variance in each state dimension
but not the full covariance [12]. In both cases, the transition
function is still assumed to be linear. Furthermore, LSTMs were
used in multi-object filters to estimate sets of target states without
uncertainty information [13], [14] or to model a pixel-wise
transition function for video tracking [15]. All of these methods
were formulated with first-order Markov transitions, hence they
are oblivious of the target state history. The Markov assumption
has been relaxed in [16], but the proposed state transition is a
linear transformation in terms of rotation and translation and it
does not explicitly predict uncertainty.

In this letter, the single-target Bayes recursion is reformu-
lated with a non-Markovian transition function to accommodate
long-term dependencies (Section II). An LSTM network is
trained to learn full Gaussian densities from sequences of input
states in the manner of [17] (Section III-A). This Multivariate
Density Long Short-Term Memory (MD-LSTM) network is
then used in the KF prediction step to estimate the future state
of a single object along with its covariance (Section III-B).
The network produces a Gaussian output by definition but it
is not restricted to linear transformations, being a universal
approximator [18]. It overcomes the Markov property through
long-term correlations that LSTMs are designed to encode. The
resulting framework is a Mnemonic Kalman Filter (MKF) that
learns complex, possibly highly non-linear object dynamics and
can predict a full probability density of the target state dependent
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on thousands of previous states. First experiments (Section IV)
show an improved performance of the MKF in comparison to
the standard KF, especially in the presence of occlusions or low
detection rates.

II. SINGLE-OBJECT BAYESIAN STATE ESTIMATION

In the following, let us assume that a stream of data is
received at discrete time steps with indices t ∈ N. Bayesian state
estimation recursively predicts the future dx-dimensional state
xt+1 of a dynamic system based on previous dz-dimensional
observations z0:t = {z0, . . . ,zt}, and then corrects this belief
according to the newly received measurement zt+1.

We wish to write the predicted Probability Density Function
(PDF) of the next target state xt+1 conditioned on the previous
observations z0:t as an integral over the previous time step t.
This is achieved with the Chapman-Kolmogorov equation

pt+1|t(xt+1|z0:t) =

∫
ft+1|t(xt+1|xt, z0:t)pt|t(xt|z0:t)dxt,

(1)
where pt|t is the posterior PDF at time t and ft+1|t denotes
the transition function to time t+ 1. Note that the observations
z0:t carry information on the previous (hidden) states x0:t =
{x0, . . . ,xt}, and they lead to estimates x̃0:t = {x0|0, . . . ,xt|t}
which are ideally sufficient statistics of z0:t.1 Usually, past
states x0:t−1 are disregarded in the state transition from t
to t+ 1, i.e. the state dynamics are regarded as a first-order
Markov process ft+1|t(xt+1|xt, z0:t) =̂ft+1(xt+1|xt). How-
ever, in the following, a non-Markovian transition function
ft+1|t(xt+1|xt, z0:t) =̂ft+1|t(xt+1|xt, x̃0:t) is used that is con-
ditioned on all previous estimates x̃0:t. With this, we arrive at a
non-Markovian Chapman-Kolmogorov equation of the form

pt+1|t(xt+1|z0:t)=

∫
ft+1|t(xt+1|xt, x̃0:t)pt|t(xt|z0:t)dxt.

(2)

Upon receiving a new measurement zt+1, the posterior PDF
pt+1|t+1 is obtained from (2) using Bayes’ Rule:

pt+1|t+1(xt+1|z0:t+1)=
pt+1|t(xt+1|z0:t)gt+1(zt+1|xt+1)∫

pt+1|t(x|z0:t)gt+1(zt+1|x)dx ,

(3)
gt+1(z|x) being the association likelihood between z and x.

To arrive at a variation of the KF from (2) and (3), the PDFs
are defined to be Gaussian. Analytically, the Gaussianity is
only guaranteed to be preserved under linear transformations,
meaning that the dynamic and measurement models are assumed
linear in traditional literature. This restriction naturally limits
the modelling choices. In Section III, we will describe a neural
network that is able to predict a full Gaussian PDF from a
sequence of states according to a non-Markovian and possibly
non-linear transition model.

III. MNEMONIC KALMAN FILTER

In this section, the Mnemonic Kalman Filter (MKF) is intro-
duced which uses an MD-LSTM network for the object state

1Note that xt denotes the hidden target state at time t, whereas xt|t′ is the
state estimate at time t conditioned on z0:t′ .

Fig. 1. Possible sources of uncertainty in behavioural patterns.

prediction. The filter is called mnemonic since the underlying
learning algorithm constructs an internal model that is used to
remember long-term dynamic dependences and therewith learns
to predict behavioural patterns of an object of interest.

A. Multivariate Density Long Short-Term Memory

For the MKF transition ft+1|t = fMKF, a specialised LSTM
generates a multivariate normal distribution N (xt+1|x̂t+1|t,
P̂ t+1|t) from the current estimate xt|t as well as the estimates

x̃0:t−1 inputted at previous time steps, where x̂t+1|t and P̂ t+1|t
are the predicted mean and covariance. By learning a Gaussian
PDF, it is possible to encode model-inherent uncertainty in
addition to the state vector, see Fig. 1. The two core aspects of
this network, i.e. encoding Gaussianity and learning long-term
information, are described below.

1) Learning a Gaussian PDF: The first step of constructing
the desired transition function fMKF is to define a way to train
an arbitrary neural network to predict a multivariate Gaussian
density N (x|x̂Y , P̂ Y ) from a multivariate random variable
Y . According to [17], this can be achieved by constructing
the network such that it produces d(d+ 3)/2 outputs forming
the multivariate mean x̂Y (having d entries) and the Cholesky
decomposition ĈY of the covariance P̂ Y (which hasd(d+ 1)/2
non-zero entries).2 The network is then trained by minimising
a suitable loss function, i.e. the negative log likelihood of the
multivariate normal distribution (see [17])

L(y1, . . . ,yN ) =

N∑
i=1

− log(N (yi|x̂Y , P̂ Y )). (4)

with respect to the elements of x̂Y and P̂ Y based on N reali-
sations {y1, . . . ,yN} of Y . The explicit implementation of the
loss function and its derivatives with respect to each of the output
variables is derived and explained with great detail in [17] and
is hence omitted here.

2) Learning Temporal Information: Like in [16], temporal
information will be included in the transition fMKF by using an
LSTM neural network. LSTM networks are recurrent, i.e. they
always feed their internal state back as an additional input such
that the current network output depends on many previous in-
puts. In contrast to basic RNNs, LSTMs have a special structure
that make it possible to remember relevant information over long
time sequences, see [10].

2Here, the Cholesky decomposition is used to guarantee that P̂ = Ĉ
T
Ĉ is

indeed a symmetrical, positive definite covariance matrix.
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Fig. 2. The MD-LSTM network architecture for fMKF.

In order to use an LSTM for tracking, the network has to be
trained through backpropagation on a set of sample trajectories
such that it learns the dynamics that the samples follow. For
robustness, an additional fully connected layer is incorporated
which adds another level of abstraction to the learned infor-
mation. An output layer reduces the number of hidden units to
dx(dx + 3)/2. The activation function used for the LSTM and
the dense layer is tanh, and the output layer is linear. The number
of parameters in each layer is as follows:
� Input: For each time step t, the network receives a state

estimate xt|t, i.e. each input is dx-dimensional.
� LSTM layer: The number of hidden units, NHU, in the

LSTM layer is a degree of freedom which is set according
to the complexity of the underlying dynamics.

� Dense layer:nNHU hidden units are set for this layer, i.e. an
n-fold multiple of NHU with n ∈ N.

� Output: As described in III-A1, the necessary number of
outputs to obtain x̂t+1|t and Ĉt+1|t is dx(dx + 3)/2.

The full network used in this article is shown in Fig. 2.

B. Filter Implementation

Once the network is trained in the manner of Section III-A,
it can be used to predict Gaussian PDFs inside the KF. The
trained predictor fMKF takes the previous dx-dimensional pos-
terior mean xt|t and returns a Gaussian density N (xt+1|x̂t+1|t,
P̂ t+1|t) by reverting the obtained Cholesky decomposition.
White process noise with covariance Qt+1 is added to com-
pensate for training inaccuracies. Consequently, the resulting
predicted mean and covariance are

xt+1|t = x̂t+1|t, (5)

P t+1|t = Ĉ
T

t+1|tĈt+1|t +Qt+1. (6)

It is important to note that fMKF is not necessarily linear,
however it returns a Gaussian by definition which makes it
suitable to be used in the KF. Therefore, the proposed MKF
can be updated using the conventional Kalman update [1]

yt+1 = zt+1 −Ht+1xt+1|t, (7)

St+1 = Ht+1P t+1|tHT
t+1 +Rt+1, (8)

Kt+1 = P t+1|tHT
t+1S

−1
t+1, (9)

xt+1|t+1 = xt+1|t +Kt+1yt+1, (10)

P t+1|t+1 = (Idx
−Kt+1Ht+1)P t+1|t (11)

with measurement matrix Ht+1, noise covariance Rt+1, and
the dx × dx identity matrix Idx

. The general workflow of the
proposed MKF recursion is displayed in Algorithm 1.

TABLE I
TRAINING PARAMETERS FOR THE SHOWN EXPERIMENTS

Fig. 3. Exp. 1: Predictions of an MD-LSTM.

The proposed algorithm’s online computational complexity
only differs from a standard KF by a small overhead ofO(NHU ),
leading to an overall complexity of O(NHU + d3x), where d3x
stems from the matrix inversion S−1

t+1 in Eq. (9).

IV. EVALUATION

In this section, two experiments demonstrate the functionality
of an MD-LSTM predictor and compare the full MKF (plotted
in red below) to a standard KF (plotted in blue). All sample
trajectories are corrupted with additional white noise with stan-
dard deviation σ to mimic data variation. The network is trained
on a system with an i7-6700 processor and 16 GB of RAM
with learning rate η, dropout rate pdrop and NHU LSTM hidden
units (resp. an n-fold multiple nNHU units in the dense layer)
over Ne iterations as listed in Table I. Version 1.0.0-beta4 of
deeplearning4j was used for the implementation.

A. The MD-LSTM as a Predictor

This experiment aims to show that MD-LSTMs can in fact
learn different dynamics of a single target and their transitions at
once, even if they partially coincide. To illustrate this, consider
one target which moves in x direction of a two-dimensional
Cartesian coordinate system with a constant velocity Δ = 0.1.
The first half of the path is always linear; at the origin, the target
either changes into a sinusoidal movement according to sin(tΔ)
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Fig. 4. Exp. 2: Ground truth and posterior densities for both filters, showing
the estimated covariances for trajectory 1.

with probability 0.5 or else continues its linear path. The two
cases are displayed in grey in Fig. 3.

During training, the network is presented with x/y positions
of both trajectories that are additionally corrupted by white noise
with standard deviation σ = 1.0Δ to simulate variation among
the samples. By training on many trajectories consecutively, the
network learns to predict the next 2-dimensional target position
x̂t+1|t and its covariance P̂ t+1|t based on the previous states
x0:t. The tentative predictions x̂t+1|t form the red trajectories
shown in Fig. 3(a) and 3(b), while the red ellipses are the learned
covariances based on the intrinsic uncertainty in the training
samples. The plots clearly show how the learned densities en-
code the uncertainty introduced by the variety in the training
set. Firstly, the estimated means get a bias towards the respective
other trajectory at the junction, which is a wanted effect since the
output density shall represent all possible trajectories at once.
Secondly, the variance only increases vertically at the junction
since the horizontal velocity is the same in both cases.

B. Tracking With Varying Detection Rates
and Under Occlusion

This experiment analyses how the MKF exploits long-term
dependencies to reconnoitre ambiguities at crossings with the
help of previous target locations. For this purpose, the network is
trained on noisy x/y positions of two Dubins trajectories shown
in Fig. 4. Pathway 1 starts at A ending in C and pathway 2 goes
from B to D. The performance of the MKF is compared with a
standard KF using a Near Constant Velocity (NCV) model in the
prediction. The KF target state is of the form xt = (x, ẋ, y, ẏ)
with both position and velocity components of the object in x
and y. For a given time interval T = 1 s we use the transition
F t = ( 1 T

0 1 )⊗ I2 and process noise matrices QKF
t = 0.008 ·

(T
4/3 T 3/2
T 3/2 T 2 )⊗ I2 [19]; for the MKF, we set QMKF

t = 0.002 ·
I2. Both filters adopt a linear measurement model according to
(7)–(11) with HKF

t = (1 0 0 0
0 0 1 0), H

MKF
t = I2 and Rt = 0.16 ·

I2.
Beside the ground truth, Fig. 4 displays the full posterior

Gaussian densities of the two filters on the example of target 1.
Here, the KF is much less certain about the target position
than the MKF whose covariance is only large at the beginning.
Moreover, the KF trajectory has a noticeable overshoot at the
turns while the MKF follows the ground truth accurately.

Fig. 5(a) and 5(b) display the filters’ performance in terms
of the Root Mean Square Error (RMSE) over 100 Monte
Carlo (MC) runs under different probabilities of detection pd ∈

Fig. 5. Exp. 2: Performance of KF and MKF with different detection
rates or under occlusion.

{0.4, 0.8, 1.0}; the target is detected in the beginning in both
cases to ensure proper initialisation. The MKF barely shows
any increase in error for decreasing pd and it is not affected by
the turns in either trajectory since it learned where they occur
based on the respective start point A or B. The KF, however,
suffers greatly under low detection rates, especially in the areas
around the turns. Fig. 5(c) and 5d show the RMSE over 100 MC
runs for pd = 1.0 in case the target is either detected or occluded
in the hatched area in Fig. 4. The overshoot of target 1 after the
manoeuvre and the turn of target 2 result in a sharp error increase
for the KF during the occlusion. The MKF, on the other hand,
can bridge the missing detections because it learned temporal
dependencies across the full track history, leading to almost no
loss in performance.

V. CONCLUSION

This work presented the Mnemonic Kalman Filter, a variation
of the Kalman Filter which incorporates arbitrarily non-linear,
non-Markovian dynamic models in the prediction step. To en-
sure that the predicted density is still Gaussian, a neural network
architecture based on Long Short-Term Memory was proposed
which constructs a multivariate normal distribution from a given
input state estimate but also with a dependence on previous
estimates. Simulations showed that the proposed filter performs
much better in the presence of occlusions or low detection
rates in comparison to the classic Kalman Filter since it has
learned long-time temporal dependencies. It can further predict
a full probability density which reflects both the target state and
uncertainty in the underlying complex target behaviour. Future
work shall provide a more thorough analysis in less controled
environments and explore the potential of MD-LSTM networks
for multi-target tracking.
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