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Pre-Training Audio Representations With
Self-Supervision

Marco Tagliasacchi , Beat Gfeller, Félix de Chaumont Quitry, and Dominik Roblek

Abstract—We explore self-supervision as a way to learn gen-
eral purpose audio representations. Specifically, we propose two
self-supervised tasks: Audio2Vec, which aims at reconstructing
a spectrogram slice from past and future slices and Temporal-
Gap, which estimates the distance between two short audio seg-
ments extracted at random from the same audio clip. We evaluate
how the representations learned via self-supervision transfer to
different downstream tasks, either training a task-specific linear
classifier on top of the pretrained embeddings, or fine-tuning a
model end-to-end for each downstream task. Our results show
that the representations learned with Audio2Vec transfer better
than those learned by fully-supervised training on Audioset. In
addition, by fine-tuning Audio2Vec representations it is possible
to outperform fully-supervised models trained from scratch on
each task, when limited data is available, thus improving label
efficiency.

Index Terms—Self-supervised learning, audio processing.

I. INTRODUCTION

THANKS to advances in supervised learning, it is now pos-
sible to train models that are able to successfully perform

a variety of audio tasks. Despite the indisputable success, this
approach suffers from two main shortcomings. First, it requires
collecting large annotated datasets specific to each task to be
solved. Second, separate models are typically trained for each
task, making it difficult to reuse computational resources when
multiple such models are deployed on a mobile device.

Unsupervised learning attempts to overcome these limita-
tions, by making it possible to learn from widely available unla-
belled datasets and by learning general purpose representations
that can be reused for different downstream tasks. In the area of
unsupervised learning, self-supervised learning has emerged as
an attractive approach [1]–[3].

In a nutshell, this approach formulates an auxiliary task based
on the available unlabelled data and a fully-supervised model
is trained to solve this task. The key idea is that by solving
the auxiliary task, the model is also learning some general pur-
pose representations in a lower dimensional embedding space.
Therefore, the embedding encoder, e.g., the portion of the model
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architecture mapping the input data to the embedding space, can
be reused as a feature extractor for different downstream tasks.

One of the earliest successes of self-supervised learning was
obtained in the context of language models, where Word2Vec
is used to map one-hot-encoded words to word embeddings [4].
Word2Vec can be formulated in two variants: i) continuous
bag-of-words (CBoW), or ii) skip-gram. In the former, the model
predicts the current word based on the context of surrounding
words. In the latter, the model predicts surrounding words given
the current word. Recently, a similar approach has been pro-
posed to map speech to fixed-dimensional embeddings [5]–[7].
The model used to solve the Speech2Vec task relies on a
speech segmentation step to isolate the temporal slices of the
spectrogram corresponding to different words. Then, a RNN
encoder-decoder is used to handle variable-length inputs and
outputs. In contrast, in our work we do not rely on the specific
characteristics of speech and we evaluate our results also on
non-speech related tasks.

In this letter we explore self-supervised learning of audio
representations. We posit that contextual temporal information
can be exploited in the case of general audio signals without
resorting to any form of explicit supervision. We argue that
solving properly designed tasks that involve the temporal context
requires extracting some sort of high level semantic information
from the underlying raw data, thus leading to reusable em-
beddings. In this respect, this letter makes the following main
contributions:

(i) We propose Audio2Vec, a self-supervised learning
task that is inspired by Word2Vec, but applied to audio
spectrograms. In the CBoW formulation (Fig. 1(a)) the
auxiliary task consists of reconstructing a temporal slice
of pre-determined duration from a number of past and
future slices. In the skip-gram formulation (Fig. 1(b)) the
roles of the target and surrounding slices are reversed.

(ii) We propose TemporalGap, a self-supervised learning
task that consists of estimating the distance in time
between any two pairs of audio segments extracted at
random from a longer audio clip (Fig. 1(c)).

(iii) We quantitatively evaluate the quality of the embeddings
produced by the feature encoders obtained by solving
the aforementioned self-supervised tasks, and compare
it to existing approaches such as autoencoder and triplet
loss. To this end we consider a wide variety of down-
stream tasks, including speech detection, music detec-
tion, speaker identification and language identification,
among others. Our results show that the representations
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Fig. 1. Overview of the proposed self-supervised learning tasks.

learned with Audio2Vec transfer better than those
learned by full-supervised training on Audioset [8]. In
addition, by fine-tuning Audio2Vec representations
it is possible to outperform fully-supervised models
trained from scratch on each task, in a setting where
the number of training examples per downstream task is
limited to 1000, thus improving label efficiency.

II. RELATED WORK

Learning audio representations: Unsupervised feature learn-
ing can lead to more descriptive representations than tradi-
tional handcrafted features, e.g., MFCCs. For example, differ-
ent autoencoder architectures have been explored, e.g., denois-
ing [9], convolutional LSTM autoencoders [10] and sequence-
to-sequence autoencoders [11]. A self-supervised version of the
triplet loss is proposed in [3]. In the absence of labels, the
authors create anchor-positive pairs by adding noise, shifting
in time and/or frequency, and sampling temporal neighbors. A
self-supervised task based on temporal data is proposed in [12].
Speech-specific representations based on self-supervision have
been explored in [5]–[7], [13], [14]

Learning visual representations: Several auxiliary tasks have
been explored to learn image representations, e.g., predicting
the relative position of a pair of patches extracted from the
same image [15], re-ordering image patches and solving jigsaw
puzzles [1], or asking the model to discriminate between a
patch and transformed version of it [16]. In some cases solving
seemingly simple tasks can lead to very powerful representations
such as, for example, detecting image rotations [2]. In other
cases, representations can be learned as a by-product of solving
useful tasks, e.g., in the case of image colorization [17] and
image inpainting [18]. In the case of video, it is possible to
exploit the temporal dimension to learn visual representations
by asking a model to learn whether frames are in the correct
temporal order [19], [20], to infer motion by observing a static
image [21], or detect whether a video is playing forwards or
backwards [22].

Learning multimodal representations: Several letters have
recently investigated learning audio representations exploiting
the correlation with other modalities, e.g., text [14], [23], im-
ages [24] and videos [25]–[29].

III. METHODS

Let x = {x1, x2, . . . , xn} denote an audio clip of n samples
in the time domain and X ∈ RT×F the corresponding mel spec-
trogram, which consists of T temporal frames and F frequency

bins. Note that we compute the logarithm of the modulus of
the spectrogram to compress the dynamic range of the am-
plitudes. Let Xi denote a N × F slice of the spectrogram X ,
starting at frame i with N temporal frames and zi = Enc(Xi)
a d-dimensional embedding computed by processing the input
spectrogram Xi with an encoder Enc(), whose architecture is
detailed in Section IV. Using this notation, in the following we
describe the proposed self-supervised learning models.

Audio2Vec: The task comes in two variants. In the CBoW
variant, we first select a target slice at random, together with a set
of surrounding slices used for prediction. Each of the predictor
slices is processed by the same encoder, which maps its input
into a fixed-dimensional embedding. These embeddings are then
concatenated and fed into a decoder, whose architecture mirrors
the one of the encoder, which computes a reconstruction of the
target slice. More specifically, let X(0) = Xi be a slice selected
at random from X . Then, a set of past (X(−P ), . . . , X(−1)) and
future slices (X(1), . . . , X(P )) are extracted from the same audio
clip. The temporal location of the start of slice X(p) is equal
to Xi+p(N+G), i.e., we consider non-overlapping slices of size
N , with an extra gap of G temporal frames between any two
consecutive slices. The gap is introduced to avoid that the self-
supervised model exploits the leakage between adjacent STFT
temporal frames as a shortcut [1] to solve the task. Each slice
is processed by the same encoder to obtain z(p) = Enc(X(p)).
Then, a vector z̄(0) = [z(−P ), . . . , z(−1), z(1), . . . , z(P )] is ob-
tained by concatenating the embeddings of each of the predictor
slices and fed into a convolutional decoder to obtain a reconstruc-
tion X̂(0) = Dec(z̄(0)). Note that the architecture of the decoder
is obtained by reversing the order of the layers in the encoder and
replacing max-pooling with nearest-neighbor upsampling. The
overall encoder-decoder architecture is trained end-to-end by
minimizing the mean-square error loss function ‖X(0) − X̂(0)‖.

The skip-gram variant of Audio2Vec uses a similar archi-
tecture. In this case we compute the embeddings of the middle
slice z(0) = Enc(X(0)), and then let the decoder reconstruct the

surrounding slices, i.e., [X̂(−P ), . . . , X̂(−1), X̂(1), . . . , X̂(P )] =
Dec(z(0)). The decoder is identical to the one used by the CBoW
variant, except for one important difference: the last convolu-
tional layer has 2P output channels, one for each of the slices
to be reconstructed. The loss function minimizes the average
mean-square error computed across the 2P reconstructed slices.

Temporal gap: For the TemporalGap task, we ask the
model to estimate the absolute value of the distance in time
between two slices sampled at random from the same audio
clip. More specifically, we sample the ground truth temporal
gap from a uniform distribution, i.e., Δ ∼ U(0, Nmax −N),
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where N and Nmax are the lengths (in time frames) of the slices
and the original sample, respectively, and define the normalized
temporal gap as δ = Δ/(Nmax −N) ∈ [0, 1]. Then, we extract
two slices Xi and Xj such that Δ = |i− j|. Note that we do not
impose a temporal order between the two slices. We concatenate
the embedding representations in a single 2d-dimensional vector
z = [Enc(Xi), Enc(Xj)] and we feed this vector into a fully
connected feed forward network with a single hidden layer of
size 64 that produces the scalar output δ̂. We train the model end-
to-end so as to minimize a cross-entropy lossLCE(δ, δ̂) between
the ground-truth and the predicted gap. In our experiments, we
found that this loss is to be preferred to the mean-square error,
presumably because it gives more weight to errors when the
ground truth δ is small.

IV. EXPERIMENTS

To evaluate the quality of the embeddings produced by dif-
ferent self-supervised learning methods, we observe how the
learned representations transfer to several, potentially hetero-
geneous, downstream tasks. To this end we consider a model
that consists of the sequence of a pre-trained encoder and a
linear layer, which maps the embeddings to the logits corre-
sponding to the class predictions of the downstream task. For
each combination of pre-trained encoder and downstream task,
we train the model in a supervised fashion using the labels
available for the downstream task, either using the whole training
dataset, or subsets containing 1000 training examples sampled
at random from the original training set. In the latter case we do
not explicitly constrain the sampling process to obtain exactly
the original class label balance. We evaluate our results in two
scenarios. In the first scenario, the encoder weights are frozen
and only the weights of the linear layer are trained. In the second
scenario the whole model is trained end-to-end, so that also the
encoder weights can be fine-tuned.

Encoder architecture: In our work we consistently use the
same audio frontend, which processes input sequences sam-
pled at 16 kHz, with a window size of 25 ms and a hop size
equal to 10 ms to compute the short-time Fourier transform
(STFT), and then computes F = 64 mel-spaced frequency bins
in the range 60–7800 Hz. For the encoder Enc(), we use a
convolutional neural network with 6 layers, each using 3× 3
filters and respectively [64, 128, 256, 256, 512, 512] channels.
All activation functions are ReLUs and batch normalization is
used in all convolutional layers. Max-pooling is used whenever
we increase the number of channels in the next layer, to reduce
the time-frequency dimensions by a factor of two. Finally, a
global max-pooling layer produces a vector, which is further
processed by a fully-connected layer to get the embeddings. We
set N = 96 (corresponding to 975 ms) and d = 128.

Encoder pre-training: We use AudioSet [8] to pre-train differ-
ent encoders, either with full or self-supervision. AudioSet con-
tains excerpts of 10 seconds from the soundtracks of YouTube
videos annotated with labels of 527 classes. In the case of
self-supervised pre-training, we ignore the labels.

We consider encoders pre-trained with six different
self-supervised models: Audio2Vec, in its two variants,
CBoW and skip-gram, TemporalGap, AutoEncoder,

ArrowOfTime and TripletLoss. The ArrowOfTime
model is the audio equivalent of the video-based arrow-of-time
task proposed in [22], where the task is to predict the temporal di-
rection of the clip (forward vs. backward) The TripletLoss
model was proposed in [3], in which positive/negative pairs are
obtained by extracting a slice from, respectively, the same or
a different original sample. The AutoEncoder model shares
the same encoder and decoder architectures as Audio2Vec.
For Audio2Vec we use P = 2 slices on each side of the
target, and a gap ofG = 2 temporal frames between consecutive
slices. In our preliminary experiments we observed that the
selection of the hyperparameter G is not particularly critical to
the quality of the pre-trained representations and similar results
are observed with larger values of G (e.g., 4 or 8 frames).
The work in [30] shows that embeddings trained on ImageNet
transfer to wide range a downstream visual tasks. Motivated
by this observation, we include in our study an encoder pre-
trained with full-supervision on AudioSet classes. All models
are trained with stochastic gradient descent and Adam optimizer
with default hyperparameters. The learning rate was set to 10−3

for Audio2Vec, AutoEncoder, while it was set to 10−4

for TemporalGap, TripletLoss, ArrowOfTime and the
supervised model trained on AudioSet. We use a mini-batch size
equal to 256 and we stop training after 3 million iterations.

Downstream tasks: We consider different publicly available
datasets to evaluate a variety of eight downstream tasks, covering
both speech and non-speech related tasks. We use the Speech
Commands dataset [31] (SPC) to evaluate keyword spotting on
35 distinct keywords. LibriSpeech [32] (LSP) contains audio
books read by 251 different speakers. We use the 100 hours
training set to evaluate a speaker identification task. The Spoken
Language Identification dataset [33] (LID) contains samples that
belong to three different languages: English, Spanish and Ger-
man, while the MUSAN dataset [34] (MUS) distinguishes across
three classes, namely music, speech and noise. The NSynth
dataset [35] contains synthesized musical notes and we used this
dataset for two different downstream tasks, i.e., distinguish 128
distinct pitch values (NPI) and classify instruments into 11 fam-
ilies (NIF). Finally, we use two datasets released in the context
of the DCASE2018 Challenge, Bird Audio Detection [36] and
TUT Urban Acoustic Scenes 2018 [37], which contains labeled
audio samples from 10 different urban environments. Note that
we deliberately avoid exploiting during pre-training any of the
datasets used for evaluating the downstream tasks. Since each
dataset is characterized by samples having different durations,
during both training and evaluation we extract equal-length
slices uniformly at random from the original sample and assign
the corresponding label to all of the extracted slices. We use input
samples with a duration ofT = 975ms, so as to match the size of
the temporal slices used when training the self-supervised tasks.
The choice of the tasks used for the evaluation is consistent
with the selected temporal granularity. When training for the
downstream task, we set the learning rate to 10−4 and we stop
after 100 k steps.

Metrics: For each combination of pre-trained encoder e ∈ E
and downstream task t ∈ T , we compute the accuracy on the eval
set ae,t,r. The index r denotes the fact that we repeat training of
each configuration over four replicas. Since downstream tasks
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Fig. 2. Normalized accuracy (averaged over tasks and replicas) obtained using different methods to pre-train the encoder, and using 1 k examples for each
downstream tasks. Note that a different scale is used for the x-axis in the two figures.

Fig. 3. Normalized accuracy (averaged over replicas) for different downstream tasks, using 1 k examples per downstream task.

TABLE I
NORMALIZED ACCURACY (AVERAGED OVER TASKS AND REPLICAS) OBTAINED

USING DIFFERENT ENCODER PRE-TRAINING METHODS

are characterized by a different number of classes and intrinsic
level of difficulty, we normalize the accuracy as follows:

ãe,t,r =
ae,t,r − āUntrained,t

āSupervised,t − āUntrained,t
(1)

where āSupervised,t is the average accuracy attained by a fully-
supervised model in which both the encoder and the linear
head are trained from scratch, while āUntrained,t is the average
accuracy attained by an untrained model in which the encoder
is randomly initialized (and frozen), while the linear head is
trained from scratch. In our results, we report averages across
replicas (āe,t) as well as across replicas and tasks (āe). We
also experimented with the metrics proposed in [38], which
averages logit-scaled accuracy values and we reached the same
conclusions as using the normalized accuracy in (1).

Main results: Table I summarizes the main results of the letter,
reporting the normalized accuracy averaged across replicas and
downstream tasks. For each scenario (frozen vs. fine-tuned
encoder), we consider training using either the full downstream
task datasets or subsets of 1 k examples extracted at random.
The reported intervals reflect the uncertainty of the results due
to the selection of the downstream task. Specifically, we applied
50 bootstrap iterations, resampling with replacement the down-
stream tasks used to compute the average. Intuitively, smaller
intervals imply that the results are less dependent on the specific
choice of downstream tasks. First, we focus the attention on the
results obtained when training on 1 k examples and keeping the
encoder weights frozen (column 2 in Table I and Fig. 2(a)). In this
scenario we can make a few important observations: i) training

a simple linear head, it is only partially possible to bridge the
gap with a fully-supervised model (max normalized accuracy
equal to 0.68); ii) there is a significant variation in the level of
normalized accuracy across different methods (between 0.10 and
0.68); iii) the Audio2Vecmodels produce representations that
outperform, on average, the ones obtained by all other models,
including a fully-supervised model trained on Audioset (0.68 vs.
0.40). Fig. 2(b) shows how the normalized accuracy substantially
increases when applying fine-tuning (note the change of the
scale of the x-axis). In this case all methods achieve a level of
accuracy comparable with a fully-supervised model (normalized
accuracy between 0.95 and 1.07). Still, the models based on
Audio2Vec seem to outperform fully-supervised models by a
significant margin. Indeed, Fig. 3(a) shows the per-task level of
normalized accuracy for a model pre-trained usingAudio2Vec
(confidence intervals represent the variation across replicas).
On all tasks, pre-training using Audio2Vec is better than a
fully-supervised model trained from scratch. The gain is par-
ticularly remarkable for Speech Commands, NSynth Pitch and
NSynth Intrument Family. Fig. 3(d) shows a similar breakdown
for an encoder pre-trained with full supervision on AudioSet. In
this case pre-training outperforms the baseline for some tasks,
and underperforms for others. When a fully supervised model is
trained having access to the whole training set (column 1 and 3 in
Table I), pre-training using Audio2Vec still outperforms all
other models, although the differences are smaller. In this case,
it achieves the same level of normalized accuracy as a model
trained from scratch, but it takes fewer iterations to converge.

V. CONCLUSION

We present a comprehensive evaluation of self-supervised
learning models on a variety of downstream audio tasks. We
evaluate novel methods, likeAudio2Vec andTemporalGap,
as well as previously proposed methods. Our results show that
when the number of examples per class are limited to 1 k,
fine-tuning the Audio2Vec representation outperforms fully-
supervised models trained from scratch on each downstream
task.
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