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Adaptive Graph-Based Total Variation for
Tomographic Reconstructions

Faisal Mahmood , Nauman Shahid , Ulf Skoglund*, and Pierre Vandergheynst*

Abstract—Sparsity exploiting image reconstruction (SER) meth-
ods have been extensively used with total variation (TV) regular-
ization for tomographic reconstructions. Local TV methods fail to
preserve texture details and often create additional artifacts due to
over-smoothing. Nonlocal TV (NLTV) methods have been proposed
as a solution to this but they either lack continuous updates due
to computational constraints or limit the locality to a small region.
In this letter, we propose adaptive graph-based TV. The proposed
method goes beyond spatial similarity between different regions of
an image being reconstructed by establishing a connection between
similar regions in the entire image regardless of spatial distance. As
compared to NLTV, the proposed method is computationally effi-
cient and involves updating the graph prior during every iteration
making the connection between similar regions stronger. Moreover,
it promotes sparsity in the wavelet and graph gradient domains.
Since TV is a special case of graph TV, the proposed method can
also be seen as a generalization of SER and TV methods.

Index Terms—Graphs, iterative image reconstruction, nonlocal
total variation, tomography, total variation.

I. INTRODUCTION

R ECONSTRUCTING tomographic densities from low-
dose electron tomography (ET) or computed tomography

(CT) data is an ill-posed inverse problem. Low-dose is a con-
straint to prevent sample degradation in ET [1], [2] and to reduce
exposure to ionizing radiation in CT [3]–[5]. Such requirements
are often met by collecting limited or low-contrast data which
renders noisy and erroneous reconstructions. Iterative image
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reconstruction (IIR) methods [6]–[10] have proved to be more
effective in handling noise when compared to analytical meth-
ods [11]–[13]. However, such methods are computationally
inefficient. Initial IIR methods were algebraic in nature [14]–
[19]. More recently, sparsity exploiting reconstructions have
been extensively used for image reconstruction. Such methods
are often used with total variation (TV) regularization [20]–[25].
We refer to the joint compressed sensing (CS) and TV setup
as CSTV in the sequel. Recently, nonlocal TV (NLTV) [26]
has been shown to be much more efficient for inverse problems
[27]–[31]. In contrast to simple TV, which takes into account the
similarity of a region with only its neighboring regions, NLTV
overcomes this limitation by associating a similarity measure
of every region of an image with all other regions (full NLTV)
or a few regions in a spatial neighborhood (partial NLTV).

A primary shortcoming of full NLTV is the high cost of asso-
ciating a similarity measure between every pair of regions in an
image (O(n4) for an n × n image). Hence, the similarity matrix
constructed in the beginning from the initial estimate or prior
is not updated throughout the algorithm [29], [30]. In order to
overcome the computational complexity for adaptive updates,
partial NLTV methods [26], [27] tend to limit the nearest neigh-
bors search to a local neighborhood of the pixel (hence we call
them partial), which depends on a parameter δ. For such meth-
ods, the computational cost drops down from O(n4) to O(n2δ2),
where δ � n. However, it is quite probable that two spatially
distant patches in an image are quite similar in structure. Thus,
such methods lack the capability to model the pairwise relation-
ships between the patches of an image on a global level. The
final reconstruction would be more faithful to the data if 1) the
similarity matrix is regularly updated during every iteration and
2) pairwise relationships are taken into account among all the
patches of the image.

Introduction to graphs: Graphs, a discrete way of charac-
terizing nonlocal variation methods, have emerged as a very
powerful tool for signal modeling [32], [33]. A graph is repre-
sented as a tuple G = {V, E,W}, where V is a set of vertices,
E a set of edges, and W : V × V → R+ a weight function.
The weight matrix W is assumed to be nonnegative, symmet-
ric, and with a zero diagonal. Each entry of the weight matrix
W ∈ R|V|×|V|

+ corresponds to the weight of the edge connecting
the corresponding vertices: Wi, j = W(vi , v j ), and if there is no
edge between two vertices, the weight is set to 0. For a vertex
vi ∈ V , the degree d(i) is defined as the sum of the weights of
incident edges: d(i) = ∑

j↔i Wi, j . Let D be the diagonal degree
matrix with diagonal entries Dii = d(i), then the graph Lapla-
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cian L is defined as the difference of the weight matrix W from
the degree matrix D, thus L = D − W , which is referred to as
combinatorial Laplacian. A more detailed account of the theory
of signal processing on graphs can be found in seminal letters
[32]–[36].

Contributions: Our previous work [37] has focused on using
graph-based TV for denoising the sinogram as a preprocessing
step followed by using standard reconstruction methods such as
Simultaneous Iterative Reconstruction Technique (SIRT) or Al-
gebraic Reconstruction Techniques (ART) for reconstruction. In
this letter, we propose Adaptive Graph Total Variation (AGTV)
as a novel method for simultaneous reconstruction and denois-
ing of tomographic data. Our proposed method can be seen as a
more sophisticated and adaptive form of full NLTV in the sense
that it enjoys a relatively lower computational complexity by us-
ing an approximate K-nearest neighbor search algorithm, where
K is fixed. Due to a significant computational cost reduction,
we can afford to update the graph in every iteration making the
setup adaptive. Furthermore, our proposed method models the
sparsity of the reconstructed image in: 1) wavelet domain and 2)
graph gradient domain. These improvements lead to state-of-the
art reconstruction results for both the phantom data with known
ground truth and the real ET data.

II. ADAPTIVE GRAPH TOTAL VARIATION (AGTV)

Let S ∈ �p×q be the sinogram corresponding to the projec-
tions of the sample X ∈ �n×n being imaged, where p is the
number of rays passing through X and q is the number of angu-
lar variations at which X has been imaged. Let b ∈ �pq be the
vectorized measurements or projections (b = vec(S)), where
vec(·) denotes the vectorization operation and A ∈ �pq×n2

be
the sparse projection operator. Then, the goal in a typical CT-
or ET-based reconstruction method is to recover the vectorized
sample x = vec(X ) from the projections b. We propose

min
x

‖Ax − b‖2
2 + λ‖�∗(x)‖1 + γ ‖∇G(x)‖1 (1)

where � is the wavelet operator and �∗(x), where ∗ represents
the adjoint operation, denotes the wavelet transform of x , and
‖∇G(x)‖1 denotes the TV of x w.r.t graph G. The first two terms
of the objective function above comprise the sparse reconstruc-
tion part of our method and model the sparsity of the wavelet
coefficients. The second term, to which we refer as the graph
total variation (GTV) regularizer acts as an additional prior for
denoising and smoothing. It can be expanded as

‖∇G(x)‖1 =
∑

i

‖∇Gxi‖1 =
∑

i

∑

j∈Ni

√
Wi j‖xi − x j‖1

where the second sum runs over all the neighbors of i , denoted
by Ni . The above expression states that GTV involves the mini-
mization of the sum of the gradients of the signals on the nodes
of the graphs. In our case, we assume that the elements of the
vector x lie on the nodes of the graph G which are connected
with the edges whose weights are Wi j . Thus, the minimization
of the GTV would ensure that xi and x j possess similar values
if Wi j is high and dissimilar values if Wi j is small or zero. As
compared to standard TV, the structure of the sample x is taken
into account for reconstruction. It is a well-known fact that l1

norm promotes sparsity, so the GTV can also be viewed as a
regularization which promotes sparse graph gradients. This cor-
responds to enforcing a piecewise smoothness of the signal x
w.r.t graph G.

The proposed method with GTV can be seen as a generaliza-
tion of the CS- and TV-based method studied in [24]. While,
the standard TV minimizes the gradients of the signal x w.r.t its
spatial neighbors only, the GTV does so in a region which is
not restricted only to the neighbors of the elements in x . Thus,
the standard TV can be viewed as a specific case of the GTV,
where the graph Ggrid is a grid graph. In a grid graph Ggrid of a
sample x , the pixels are only connected to its spatial neighbors
via unity weights.

An important step for our method is to construct a graph G
for GTV regularization. Ideally, G should be representative of
the reconstructed sample x ; however, this is unknown before the
reconstruction. To cater this problem, we propose to construct
G from the patches of an initial naive estimate of the sample
xfbp using analytical filtered back projection (FBP). In the first
step xfbp ∈ Rn×n is divided into n2 overlapping patches. Let si

be the patch of size l × l centered at the i th pixel of xfbp and
assume that all patches are vectorized, i.e, si ∈ �l2

. In the sec-
ond step, the search for the closest neighbors for all vectorized
patches is performed using the Euclidean distance metric. For
two patches si , s j , the distance metric is defined as ‖si − s j‖2.
Each si is connected to its K-nearest neighbors s j only, resulting
in |E | number of connections. This is realized by computing all
the pairwise distances between all possible patches si , s j and
then keeping only the most relevant K neighbors. In the third
step, the graph weight matrix W is computed using the Gaussian
kernel weighting scheme, for which the parameter σ is set ex-
perimentally as the average distance of the connected samples.
Hence, for the patches si , s j , the weighting scheme is defined as
Wi, j = exp(−‖si − s j‖2

2/σ
2). Finally, the combinatorial Lapla-

cian is computed.
Note that the computation of the weight matrix W for graph

G costs O(n4). As mentioned earlier, our goal is to avoid this
cost and update the graph in every iteration. For this purpose,
we propose to make the graph construction efficient by using
an approximate nearest-neighbor search algorithm by using the
FLANN library (Fast Library for Approximate Nearest Neigh-
bors searches in high-dimensional spaces) [38]. This reduces
the cost of graph construction from O(n4) to O(n2 log(n)).

The above description refers only to the nonadaptive part,
where the graph G is fixed. It is important to point out that the
initial estimate of the graph G, obtained via the FBP xfbp is
not very faithful to the final solution x . As x is being refined
in every iteration, it is natural to update the graph G as well
in every iteration. This simultaneous update of the graph G
corresponds to the adaptive part of the proposed algorithm and
its significance has been explained in detail in the supplement
with this letter.

III. OPTIMIZATION SOLUTION

In the spirit of similar nongraph methods such as [24], we
refer to (1) without the graph update as CS and GTV or simply
GTV. We make use of forward–backward-based primal dual
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Fig. 1. Complete methodology for AGTV. The input projections b ∈ Rp×q

is first used to obtained a filtered back projection (FBP) xfbp ∈ Rn×n . It is then
used to construct the initial patch graph G to be used by the GTV method. The
output of GTV is used to refine/reconstruct the graph and this process is repeated
until convergence.

method [39], [40] to solve GTV and then update the graph from
the obtained sample in every iteration, until convergence. The
complete algorithm with graph updates is called AGTV. The
main steps of this algorithm are visualized in Fig. 1.

The first term of (1), f : Rn2 → R is a convex differentiable
function defined as f (x) = ‖Ax − b‖2

2. This function has
a β-Lipschitz continuous gradient ∇ f (x) = 2A
(Ax − b).
Note that β = 2‖A‖2 where ‖A‖2 is the spectral norm (or
maximum eigenvalue) of A. The constant β has important
implications in deciding the time step in iterative optimization
methods. Let τ1, τ2, τ3 be the step size parameters. As a rule of
thumb, these parameters are typically set to the inverse of the
Lipschitz constant β. Hence, we set τ1, τ2, τ3 proportional to
1/β. Furthermore, note that these parameters are independent
of the regularization parameters λ and γ .

The proximal operator of the second function g = λ‖�∗(x)‖1

[in (1)] is the 	1 soft thresholding of the wavelet coefficients
given by the elementwise operations.

proxτ1g(x) = sgn(x) ◦ max(|x | − τ1λ, 0). (2)

The third term in (1) h : R|E |n → R, where |E | denotes the
cardinality of E the set of edges inG, is a convex function defined
as h(D) = γ ‖D‖1. The proximal operator, where ◦ denotes the
Hadamard product and D = ∇Gx is

proxτ2h(D) = sgn(D) ◦ max(|D| − τ2γ, 0). (3)

Using these tools, we can use the forward–backward-based
primal dual approach presented in [39], for AGTV, to define
Algorithm 1, where ε the stopping tolerance, I, J define the
maximum number of iterations, and δ is a very small number to
avoid a possible division by 0.

Complexity: We use the FLANN [38], whose computational
complexity for n2 patches of size l2 each and fixed K is
O(n2 log(n)). Let J and I denote the maximum number of
iterations for the algorithm to converge, then the computa-
tional cost of our algorithm is O(J |E |I ), where |E | denotes
the number of nonzeros edges in the graph G. For a K-nearest
neighbors graph, |E | ≈ Kn2, so the computational complexity
of our algorithm is linear in the size of the data sample n2, i.e.,

Algorithm 1: Forward–backward primal dual for AGTV.
x0 = xfbp

1. INPUT: U0 = x0, V0 = ∇Gx0, ε > 0
for i = 0, . . . I − 1 do

for j = 0, . . . J − 1 do
a. Pj = �(proxτ1g(�∗(U j ) − τ1�

∗(∇ f (U j )
+ ∇∗

GVj ))
b. Tj = Vj + τ2∇G(2Pj − U j )

c. Q j = Tj − τ2 prox 1
τ2

h

(
1
τ2

Tj

)

d. (U j+1, Vj+1) = (U j , Vj ) + τ3((Pj , Q j )
− (U j , Vj ))

if ‖U j+1−U j ‖2
F

‖U j ‖2
F +δ

< ε and ‖Vj+1−Vj ‖2
F

‖Vj ‖2
F +δ

< ε then
BREAK

end if
end for
2. xi = U j+1

3. Construct patch graph G from xi

if ‖xi −xi−1‖2
F

‖xi ‖2
F +δ

< ε then
BREAK

end if
end for
OUTPUT: xi

O(JKn2 I ). The graph G needs to be updated once in every
outer iteration of the algorithm I , thus the overall complexity is
O(I JKn2 + I n2 log(n)). Dropping constants GTV scales with
O(n2) and AGTV scales with O(n2(1 + log(n)).

IV. EXPERIMENTAL RESULTS

To test the performance of our AGTV method, we perform
reconstructions for many different types of phantoms from
different number of projections with varying levels of Poisson
noise, using GSPBOX [41], UNLocBox [42], and AIRTools
[16]. Reconstructions were judged on an 	2 reconstruction
error metric. We compare the performance of AGTV with
many state-of-the-art iterative and convex optimization-based
algorithms, which include FBP, ART (Kaczmarz), SIRT
(Cimmino), CS, CSTV, and GTV (FLANN approximation of
NLTV). All hyperparameters were tuned for best performance.

Each of these methods has its own model parameters, which
need to be set or tuned in an appropriate manner. ART (Kacz-
marz) and SIRT (Cimmino) were performed using FBP as a
priori. The stopping criteria for ART and SIRT was set to 100
iterations and the relaxation parameter (η) was tuned to achieve
the best result. For the graph-based reconstruction (GTV and
AGTV), a graph prior G was generated by dividing the result
from FBP into patches as explained previously. For example, for
a Shepp–Logan phantom of size 64 × 64, the graph was con-
structed by dividing it into 64 × 64 = 4096 overlapping patches
of size 3 × 3, K = 15, and setting σ for the weight matrix to
the average distance of the 15-nearest neighbors. For Algorithm
1, we set I = J = 30 and the convergence parameters τ1, τ2, τ3

were set automatically by UNLocBox. It is worth mentioning
here that GTV is a faster method of implementing NLTV by
using K-nearest neighbors graph approximation. Thus, the
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Fig. 2. Comparative analysis of reconstructing Shepp–Logan using various reconstruction methods. The sinogram of a 64 × 64 Shepp–Logan phantom corrupted
with 10% Poission noise was reconstructed using FBP (linearly interpolated, cropped Ram–Lak filter), CSTV (λ = 0.5, γ = 0.1, prior: FBP, stopping criteria =
100 iterations), GTV/NLTV (λ = 0.5, γ = 0.2, prior: patch graph from FBP, stopping criteria = 100 iterations), and AGTV (λ = 0.5, γ = 1, prior: patch graph
from FBP updated every iteration, I and J in Algorithm 1 set to 30). AGTV gives a better intensity profile as compared to all other methods while preserving the
edges.

Fig. 3. Comparative analysis of reconstructing a Shepp–Logan phantom using various reconstruction methods at 5% and 10% Poisson noise. FBP (linearly
interpolated, cropped Ram–Lak filter); ART (Kaczmarz/Randomized Kaczmarz, relaxation parameter (η) = 0.25, prior: FBP, stopping criteria = 100 iterations);
SIRT (Cimmino/SART, (η) = 0.25, prior: FBP, stopping criteria = 100 iterations); CS (500 Iterations, prior: FBP); CSTV (λ = 0.5, γ = 0.1, prior: FBP, stopping
criteria = 100 iterations); GTV (λ = 0.5, γ = 0.2, prior: patch graph from FBP, stopping criteria = 100 iterations); AGTV (λ = 0.5, γ = 1, prior: patch graph
from FBP updated every iteration, I and J in Algorithm 1 set to 30).

GTV- and NLTV-based regularization are approximately equiv-
alent in performance. Therefore, we did not include comparisons
with NLTV.

To explain the performance of our model in detail, we re-
constructed a 64 × 64 Shepp–Logan [43] phantom from 36 er-
roneous projections. A sinogram S was built by projecting the
phantom using Radon transform and 36 equally spaced projec-
tions were collected from 0◦ to 180◦. The sinogram was then
corrupted with 10% Poission noise. Fig. 2, 3 provide a compar-
ison of the reconstruction of the Shepp-Logan phantom using
various reconstruction algorithms. It can be seen that AGTV
performs better than GTV and CSTV. A similar experimental
setup was repeated by reconstructing a 128 × 128 Torso phan-
tom from 36 erroneous projections corrupted with 5% Gaussian
normalized noise and similar results were achieved (Fig. 3 in
the supplement). A graphical comparison for the reconstruction
of Shepp–Logan using various reconstruction methods at vary-
ing number of projections and noise levels has been given in
Fig. 3. AGTV shows promising results even with limited data
reconstructions and outperforms many other state-of-the-art re-

construction and denoising methods. A more detailed analysis
of these results has been presented in the supplement.

V. CONCLUSIONS

Similar to NLTV, our proposed method goes beyond spatial
similarity between different regions of an image being recon-
structed by establishing a connection between similar regions
in the image regardless of spatial distance. However, it is much
more scalable and computationally efficient because it uses the
approximate nearest-neighbor search algorithm for graph con-
struction, making it more likely to be adapted in a clinical setting.
Beyond NLTV, our proposed approach is adaptive. The nonlo-
cal graph prior is updated every iteration making the connection
between similar regions stronger, thus, improving the overall
reconstruction quality. Since TV is a special case of GTV, the
proposed method can be seen as a generalization of CS and
TV methods. Shortcomings of the proposed method include
decreased graph quality due to approximations and tedious hy-
perparameter tuning.
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Proc. Nat. Acad. Sci., vol. 106, no. 51, pp. 21 842–21 847, 2009.

[13] J. Hsieh, Computed Tomography: Principles, Design, Artifacts, and Re-
cent Advances. Bellingham, WA, USA: SPIE, 2009.

[14] R. Gordon, R. Bender, and G. T. Herman, “Algebraic Reconstruction
Techniques (ART) for three-dimensional electron microscopy and X-ray
photography,” J. Theor. Biol., vol. 29, no. 3, pp. 471–481, Dec. 1970.

[15] G. Cimmino and C. N. delle Ricerche, Calcolo approssimato per le
soluzioni dei sistemi di equazioni lineari. Rome, Italy: Istituto per le
applicazioni del calcolo, 1938.

[16] P. C. Hansen and M. Saxild-Hansen, “AIR tools—A MATLAB package
of algebraic iterative reconstruction methods,” J. Comput. Appl. Math.,
vol. 236, no. 8, pp. 2167–2178, 2012.

[17] L. Landweber, “An iteration formula for Fredholm integral equations of
the first kind,” Am. J. Math., vol. 73, no. 3, pp. 615–624, 1951.

[18] A. Brandt, “Algebraic multigrid theory: The symmetric case,” Appl. Math.
Comput., vol. 19, no. 1, pp. 23–56, 1986.

[19] T. Strohmer and R. Vershynin, “A randomized kaczmarz algorithm with
exponential convergence,” J. Fourier Anal. Appl., vol. 15, no. 2, pp. 262–
278, 2009.

[20] C. G. Graff and E. Y. Sidky, “Compressive sensing in medical imaging,”
Appl. Opt., vol. 54, no. 8, pp. C23–C44, 2015.

[21] G.-H. Chen, J. Tang, and S. Leng, “Prior image constrained compressed
sensing (piccs): A method to accurately reconstruct dynamic ct images
from highly undersampled projection data sets,” Med. Phys., vol. 35,
no. 2, pp. 660–663, 2008.

[22] J. Song, Q. H. Liu, G. A. Johnson, and C. T. Badea, “Sparseness prior based
iterative image reconstruction for retrospectively gated cardiac micro-ct,”
Med. Phys., vol. 34, no. 11, pp. 4476–4483, 2007.

[23] L. Ritschl, F. Bergner, C. Fleischmann, and M. Kachelrieß, “Improved
total variation-based ct image reconstruction applied to clinical data,”
Phys. Med. Biol., vol. 56, no. 6, p. 1545, 2011.

[24] J. Tang, B. E. Nett, and G.-H. Chen, “Performance comparison be-
tween total variation (TV)-based compressed sensing and statistical it-
erative reconstruction algorithms,” Phys. Med. Biol., vol. 54, no. 19,
pp. 5781–5804, Oct. 2009.

[25] Z. Tian, X. Jia, K. Yuan, T. Pan, and S. B. Jiang, “Low-dose ct reconstruc-
tion via edge-preserving total variation regularization,” Phys. Med. Biol.,
vol. 56, no. 18, p. 5949, 2011.

[26] Y. Lou, X. Zhang, S. Osher, and A. Bertozzi, “Image recovery via nonlocal
operators,” J. Sci. Comput., vol. 42, no. 2, pp. 185–197, 2010.
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