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An Adaptive Motion Model for Person Tracking
with Instantaneous Head-Pose Features
Rolf H. Baxter, Michael J. V. Leach, Sankha S. Mukherjee, and Neil M. Robertson

Abstract—This letter presents novel behaviour-based tracking
of people in low-resolution using instantaneous priors mediated by
head-pose.We extend theKalmanFilter to adaptively combinemo-
tion information with an instantaneous prior belief about where
the person will go based on where they are currently looking. We
apply this new method to pedestrian surveillance, using automat-
ically-derived head pose estimates, although the theory is not lim-
ited to head-pose priors.We perform a statistical analysis of pedes-
trian gazing behaviour and demonstrate tracking performance on
a set of simulated and real pedestrian observations. We show that
by using instantaneous ‘intentional’ priors our algorithm signifi-
cantly outperforms a standard Kalman Filter on comprehensive
test data.

Index Terms— Computer vision, context awareness, deep belief
networks, head pose estimation, tracking, video signal processing,
video surveillance.

I. INTRODUCTION

T RACKING error in the Kalman Filter (KF) increases
when rapid changes in target motion occur. In part, this

is caused by lag in adjusting the error covariance matrix. In
this letter we reduce pedestrian tracking error by combining
target velocity with an intentional prior, defined as a prior that
predicts rapid changes in target motion. Specifically, we use
the control input of the KF to steer the state estimate more
forcefully using pedestrian gazing behaviour.
As motivation, consider a scene in which pedestrians exhibit

ad-hoc obstacle avoidance (e.g. a goods-vehicle parked on the
sidewalk). To model motion, two approaches are available;
learning every eventuality (high model complexity), or learning
a new (informative) feature. In pedestrian tracking, typical mo-
tion can be learnt by using flow vectors and clustering but
often requires a strong assumption that motion patterns are
stable [2]–[5]. Persistent changes can be incorporated over time
but ad-hoc trajectories are still typically seen as outliers [6],
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Fig. 1. (Top) A real person trajectory/head pose behaviour and predicted tra-
jectory using a Kalman Filter (KF) and our intentional tracker (IT). Tracking
failures can lead to target data association errors. (Bottom) Frames from the
Benfold dataset [1] showing pedestiran head-pose.

[7]. The resulting models cannot accurately reflect pedestrian
response to spatio-temporal context which could cause tracking
failure and data-association errors, particularly if occlusions
occur (Fig. 1). In such cases an intentional prior (feature) that
can predict an ad-hoc change in trajectory is appealing. This
theory also generalises to other intentional features: consider
a car approaching a crossroads and the indicator light sig-
nals intention to turn; contextual knowledge enables better
predictions. Several authors have incorporated the concept
of ‘personal space’ and collision avoidance into pedestrian
tracking [8], [9]. Others have incorporated the idea that socially
grouped pedestrians will attempt to stay in close proximity
[10], [11]. Both concepts represent different intentional priors.
In our work we show a generic way of integrating intentional
priors into a Kalman Filter and demonstrate performance with
a novel head-pose prior.
Our pedestrian tracker takes as input the results of object

detection and head-pose estimation. These areas are themselves
challenging, especially in the presence of occlusions, camera
motion and illumination changes [12]. Head-pose estimation
is a thriving research topic producing ever increasing accu-
racy levels: [1] reports an error rate of 24 degrees on real
surveillance video. [13]–[15] report similar accuracy and model
anatomical constraints using joint body and head-pose esti-
mation. None of this prior work estimates pedestrian position
conditioned on head-pose, as we do in this letter.
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Robertson and Reid [16] have already shown that head pose
can facilitate behaviour explanation in low/medium resolution
images. Sankaranarayanan et al. proposed to use head-pose for
pedestrian tracking in [17], and presented an algorithm for ob-
taining high-resolution face images of pedestrians on-the-fly
using Pan-Tilt-Zoom cameras. Separate work by Tung et al. [12]
and Dee and Hogg [18], [19] consider a target’s goal location
when making motion prediction, but in all cases rely on learnt
goal and trajectory change locations. In contrast, we propose
that target motion can be predicted from head-pose.
No prior work has used head-pose to predict pedestrian po-

sition and applied it to real video data. In this letter we present
for the first time a full derivation and evaluation, following en-
couraging early work [20].

II. USING HEAD POSE TO PREDICT BEHAVIOUR

We consider the application of pedestrian surveillance and
tracking to demonstrate the efficacy of our method. The as-
sumption is that people tend to look where they are going which
makes head pose an informative intentional prior for pedestrian
targets. Within any tracking paradigm knowing a target’s desti-
nation is essential for dealing with occlusions and missing de-
tections. We return to head-pose extraction in more detail in
Section III-C.
We performed a statistical analysis of pedestrian trajectory

and head pose behaviour to validate our hypothesis on three
benchmark video datasets: Benfold [1], Caviar [21] and PETS
2007 [22]. We used manual annotations of person location
(bounding box), head location (bounding box) and head pose
direction (angle). We calculated the difference in angle between
head-pose and the travel bearing for each pedestrian. For the
Caviar and PETS datasets travel bearing was calculated using
the bounding boxes for each pedestrian to approximate the
location of their feet. These locations were projected to the
ground plane using Direct Linear Transformation with point
correspondances [23], from which trajectories could be derived
for each person. For each point in a trajectory the velocity was
calculated and then smoothed by taking the mean of a 24 frame
sliding window.
Formally, denote a person’s velocity direction at frame as

and their head pose direction as . The head pose/direction de-
viation can then be calculated as the error . The ex-
tracted deviations were then analysed to expose their statistical
properties which were analytically compared. Mean and vari-
ance were extracted for 37 pedestrians from the caviar dataset,
34 pedestrians from the PETS dataset, and 154 pedestrians from
the Benfold dataset.
Fig. 2 shows the probability density functions (PDFs) gener-

ated using the extracted statistics (underlying histograms were
approximately Gaussian). The PDFs show clear support for the
intuition that people look where they are going, showing high
probability of head pose deviations close to zero. However,
there are clear variations in behaviour between the datasets
which suggests that any head pose based intentional tracker
would need to be optimised for the scene to balance the relia-
bility of the feature. Given these results, we use the remainder of

Fig. 2. Probability density functions and associated statistics for head pose de-
viations extracted from three video datasets.

this letter to present our approach for integrating an intentional
priors into the KF with a head-pose based implementation.

III. KALMAN FILTER ADAPTATION

We now show how to integrate head pose information into
a tracker. Note that although the algorithm is applied to pedes-
trian tracking our approach remains generic and different inten-
tional priors could be used (e.g. car indicator). As a basis for our
tracker we use the KF [24] due to its clear assumptions, wide
spread use and efficiency.

A. Kalman Filter Preliminaries

For brevity we only highlight pertinent aspects of the KF (for
a thorough introduction see [24], [25]). The KF estimates the
state of a discrete-time controlled process governed
by the linear equation with
measurements (where indicates time).
We represent the position and velocity of a target by the state

vector , where and represent the
target’s velocity with respect to its position.

and are the process and measurement noise (respec-
tively) and are assumed to be independent and normally dis-
tributed with zero mean and covariance and (respec-
tively). relates the state of the process at to , is
the process control input model, is the control vector (set
to 1 in the experiments) and H is the observation matrix:

(1)

That is, we measure target position but not velocity, where a
measurement consists of the tuple and is
initialised as: .

B. Integrating Intentional Priors

We fuse intentional priors into the KF, firstly, by calculating
the strength of the prior, denoted , using the absolute mag-
nitude of the deviations for the last 10 time steps (arbitrarily
chosen). This allows to combine both the magnitude and per-
sistence of the prior signal. Rather than using the raw angles,
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Fig. 3. Confusion matrices and true positive/false positive rates (TPR/FPR) for our deep belief network head-pose classifier on the Benfold and Caviar datasets.
In square brackets: Number of head-pose examples.

we eliminate small fluctuations in deviation/detection inaccura-
cies by using a binning procedure to partition the velocity and
head pose into 8 bins (numerically numbered 1:8). Each bin
represents a 45 sector (see Fig. 3). This procedure allows a
smoothed estimate of the head-pose deviation signal (discussed
in Section II) to be generated. The signal strength at time is
then calculated as follows (where is the head pose direction
and is the direction of travel):

(2)

Next, weweight the influence of the prior. Intuitively, the weight
( ) should increase in line with the strength of the prior . A
sigmoid function applied to is a simple and effective way to
achieve this. The sigmoid is parameterised by and and could
be optimised for the scene to reflect the reliability of the prior,
where adjusts the rate at which the function moves from zero
to one and adjusts the ‘base-weight (weight given for zero
strength). Rather than optimising for any particular scene, we
use values for and that were empirically derived in [20] (see
Section IV for further details).

(3)

Having determined , the transition model ( ) is adjusted to
reduce the influence of the target’s previous motion. Denote

as the motion model at time and . The
motion model is then updated as follows:

(4)

This has the effect of reducing the influence of and by a
factor of during the prediction step of the algorithm. The
influence of the intentional prior is asserted using the control
matrix :

(5)

(6)

Where is the geometric distance travelled by the target
between and is the predicted travel direction based

on head pose angle . Two approaches could be used for
calculating : It could be estimated from , which
is an estimate of the targets velocity given observations .
Alternatively, a smoothed velocity could be calculated from

, where . In practice the
second approach was found to give better performance using
empirically derived .
Having finally defined all of the components required to gen-

erate , the remainder of the KF algorithm remains the same.
Predictions are now based on a target’s previous motion (with
weight ) and the intentional prior (with weight ).

C. Head-Pose Extraction

We validate our approach in a visual surveillance applica-
tion. Although not the focus of our work, we briefly discuss
the novel head-pose extraction procedure used within our vali-
dation. We trained a Deep Belief Network [26] using the com-
bined datasets: [1], [21], [27]. Heads were binned into 45 poses
and reflected in the y axis to reduce dataset bias. The histogram
equalised raw image data (cropped head bounding boxes) were
scaled to pixels each and provided to a Deep Belief Net-
work parameterised as follows: Number of units per layer; 1024,
400, and 8 (first, second and third layers respectively), dropout
rate; 20% (layer 1 only), unit type; rectified linear (layers 1
and 2), softmax (classifier layer (3)). All layers were trained for

Epochs each using variable learning rates. For the third
layer we used an 80:20 train/test split for the Benfold dataset,
and a 50:50 split for the caviar data. The resulting confusion
matrices are shown in Fig. 3.

IV. EXPERIMENTS

We compare performance of our tracker against the standard
KF (by which we mean having no head-pose information) using
the Benfold [1] and Caviar [21] video datasets. To overcome
the limited presence of obstacle avoidance behaviours within
these datasets (manifested as trajectories with sharp turns), we
also compare performance on a corpus of simulated trajecto-
ries and hope to obtain additional video examples in the future.
Our focus is the development of an intentional tracker so pri-
marily use hand annotated head-poses under the assumtion that
object detection/head-pose estimation is provided by the current
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Fig. 4. (Top) Trajectories for (i) basic and (ii-vii) obstacle avoidance behaviour.
(Bottom) Improvement gain by our intentional tracker vs. a standard KF on the
simulated corpus. Detection rate:100% (showing median std. deviation).
(a) Cumulative Log Likelihood, (b) Mean Square Error.

state-of-the-art. However, as final validation we also report per-
formance using detections from our deep belief network (Deep
BN.) head-pose classifier.
Throughout the experiments and ,

where indicates the n-dimensional identity matrix.
We use improvement in mean squared error (MSE) and

improvement in cumulative log likelihood (CLL) as our eval-
uation metrics, where MSE is the sum of squared differences
between predicted and real trajectories and improvement is
defined as: (IT: intentional tracker). CLL
is based on the measurement innovation and is defined as

and . Im-
provement in CLL is: . CLL measures how
well the innovation covariance is modelled and is a useful
metric when MSE cannot be calculated. We used the optimal
sigmoid parameters derived empirically in [20] throughout our
experiments ( , ) which gives high weight
to the head-pose prior. No further parameter optimisation or
tuning was performed for any of the datasets. For both the
simulated and real datasets we synthesised pedestrian detection
errors at different rates by withholding 0-40% of observations
(uniform distribution).

A. Obstacle Avoidance

We consider obstacle avoidance trajectories using a simulated
corpus containing 3500 trajectories of 200 time steps (typical
track length in a surveillance video). Representative trajectories
are shown in Fig. 4 to which Gaussian noise was added to the
true target positions ( , ) and to observations
( , ). The direction of travel between and (
) was used to simulate head-pose direction to which Gaussian
distributed noise was also added ( , ).
Fig. 4 shows that our approach outperforms the baseline for

each trajectory. Performance is degraded by the sharpness of
trajectory changes, with worst performance obtained for trajec-
tories ii and v.

B. Annotated Detections

Fig. 5(a) shows performance on the video datasets when using
annotated detections. This consisted of person head-pose for the
Intentional Tracker and body bounding box for the standard KF.
Our approach out performs the standardKF under all conditions.

Fig. 5. Improvement in Cumulative Log Likelihood (LL) by our intentional
tracker vs. a standard KF. (a) Using the simulated, Benfold, & Caviar datasets
under three head/body detection rates & hand-annotated head-pose. (b) Using
headpose classifications from our deep belief network (Deep BN).

TABLE I
PERCENTAGE IMPROVEMENT (REDUCTION) IN MEAN SQUARED ERROR (MSE)

DURING OCCLUSION FOR 7 TRAJECTORIES

At a detection rate of 60% we maintained improvements of
(Benfold) and (Caviar). The video datasets con-

tained fewer challenging (e.g. sharp turn) trajectories than the
simulated corpora, but head-pose behaviour was occasionally
effected by distractions (e.g. shop windows) making all datasets
equally challenging.

C. Real Detections

We next evaluate tracker performance with real head-pose
classifications. For the Benfold dataset head detections were
provided by a re-implementation of [1]. For Caviar the hand-
annotated head-detections we used. For both datasets detected
heads were classified using our novel Deep BN. head-pose clas-
sifier (Fig. 3).
Fig. 5(b) shows that we achieved median improvements of

5.9% on the Benfold data and 15.8% on Caviar. Since there are
only 7 examples of sudden trajectory changes in the Benfold
dataset (none are occluded), we synthesised occlusions on these
trajectories. Specifically, for each change in trajectory we with-
held a window of observations from each tracker to occlude the
change (see Fig. 1). Table I shows the improvement (i.e. reduc-
tion) in mean squared error (MSE) between the predicted and
withheld pedestrian observations. A mean reduction of 62.9%
was achieved across the 7 trajectories.

V. CONCLUSION

This work has shown that head-pose and direction of travel
are well correlated in some environments and we have proposed
head pose as a good intentional prior for pedestrian surveillance.
Our experimental validation showed that our intentional tracker
could significantly outperform the standard KF on both video,
and synthetic datasets containing sudden changes in behaviour.
In the future we intend to use contextual information to switch
between different intentional priors.
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