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Analytical Evaluation of VCO-ADC Quantization
Noise Spectrum Using Pulse Frequency Modulation
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Abstract—Oversampled ADCs based on voltage-controlled
oscillators have been analyzed using statistical models inherited
from sigma-delta modulation. This letter shows that the discrete
Fourier transform of a VCO-ADC output sequence can be calcu-
lated analytically for single tone inputs. The calculation is based
on the transformation of the VCO output into a pulse frequency
modulated signal that can be represented by a trigonometric
series. Knowledge of the VCO-ADC output spectrum allows
accurate evaluation of the SNDR dependence with the VCO oscil-
lation frequency and gain constant. The SNDR predictions of the
proposed model have been compared to behavioral simulations
displaying only a deviation of 0.7 dB.

Index Terms—Data conversion, sigma-delta modulation, time
encoding, voltage-controlled oscillators.

I. INTRODUCTION

O NE of the most promising analog-to-digital converter
(ADC) architectures nowadays is the VCO-based over-

sampled converter (VCO-ADC) [1]–[4]. A characterization
of its quantization noise spectrum and signal-to-quantiza-
tion noise ratio (SQNR) would represent a valuable design
tool. VCO-ADCs have been described [3], [4] as first-order
sigma-delta modulators. Based on these analyses, the SQNR
of such converters has been defined for sinusoidal inputs [3],
[4] using statistical models for quantization noise. To account
for a VCO center frequency different than the sampling rate,
[3], [4] show that a DC offset must be added to the input of an
equivalent sigma delta modulator. In [5], [6], a formal analysis
of a discrete-time first-order sigma-delta modulator showed
that its quantization error displays a discrete spectrum.
An analysis based on frequency modulation (FM) seems the

natural way to model a VCO-ADC. The spectrum of FM sig-
nals for sinusoidal inputs is well known and has been applied
to VCO-ADCs in [7]. However, direct application of FM spec-
tral coefficients to a VCO-ADC requires a least-squares min-
imization technique. In [8], [9]the link between quantization,
first-order sigma-delta modulation, and pulse frequency modu-
lation (PFM) was established.
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Fig. 1. Block diagram of a single-bit VCO-ADC.

In this letter, we propose an analysis complementary to [3],
[4], in which a VCO-ADC is first transformed into a pulse fre-
quency modulator whose spectrum is well known [10]–[12].
This analysis permits to investigate the structure of quantiza-
tion noise in a VCO-ADC beyond the formal equivalence with a
sigma-delta modulator. As a difference to FM, the spectrum of a
PFM signal does convey the baseband modulating input signal.
The transformation into a PFM brings two advantages. First, the
DFT of a finite sequence of a VCO-ADC output can be calcu-
lated analytically considering all parameters, such as the VCO
center oscillation. This result is not directly provided in [5].
The analytical calculation does not resort to statistical assump-
tions for quantization noise. Second, the model proposed in this
letter does not require expressing the VCO-ADC as a first-order
sigma-delta modulator to prove first-order noise shaping. In-
stead, the VCO-ADC is modeled as a pulse modulation signal
coder whose spectral components produce first-order shaped
aliases when sampled. This new point of view about VCO-
ADCs may extend the research in new data converter topolo-
gies [13].
The proposed model allows the evaluation of the peak SQNR

and dynamic range of a VCO-ADC at the system level design
stage. This analysis is necessary before any other circuit-related
consideration such as distortion, thermal noise, or clock jitter.
Our analysis will be restricted to sinusoidal inputs, which are
the standard test signals used to evaluate ADC parameters.

II. SYSTEM LEVEL MODEL OF A VCO-BASED ADC

In this section, we will review the model that explains the
similarity between a VCO-ADC and a discrete-time sigma-delta
modulator, to introduce our model afterwards. Multibit VCO-
ADCs use ring oscillators with several phases. We will analyze
first a single bit VCO-ADC to extend the results to the multibit
case later on.

A. Classical Analysis of a VCO-ADC

Fig. 1 displays the diagram of a single-bit VCO-ADC.
In Fig. 1, a VCO is modulated by input signal x(t) defined be-

tween . We will define parameter as the center
oscillation frequency of the and parameter
as the VCO frequency gain constant. The sampling frequency
for the ADC is . We will assume the bandwidth of the input
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Fig. 2. DFT of in Fig. 1: (a) simulated, (b) calculated.

signal x(t) to be much smaller than the center oscillation fre-
quency . Then, the instantaneous frequency of the oscillator
can be written as follows:

(1)

Previous analyses of this architecture [3], [4] use the fact that
x(t) modulates the frequency of the VCO; hence, the VCO phase

represents the integral of x(t). In [3], the ADC output (
in Fig. 1) is shown to depend on the VCO phase change and
a phase quantization error at the sampling instants:

(2)

Based on the fact that (2) shows a first-order shaped quantization
error, most system level analyses [3][4] assume the VCO-ADC
to be similar to a discrete sigma-delta modulator. The quanti-
zation error of a VCO-ADC has a discrete spectrum that de-
pends on center frequency . For example, Fig. 2(a) shows a
16k point FFT of obtained by behavioral simulation in
Matlab of Fig. 1, considering , , ,
and a input tone at . The peaks at high
frequency in Fig. 2(a) show that a white spectrum model for
quantization noise may not be correct.

B. Equivalence of a VCO-ADC with a Pulse Frequency
Modulator

Fig. 3(a) shows a modification of Fig. 1 where the XOR gate
and discrete unit delay have been moved to the left side of the
sampler. The discrete unit delay in Fig. 1 has been replaced by a
continuous time delay of seconds. We will define as

the time instants coincident with the edges
of w(t). We will impose that the minimum time between con-
secutive edges in w(t), , is larger than the sampling period
:

(3)

Otherwise, some edges in w(t) will not be detected after sam-
pling and the VCO-ADC will not encode the input signal prop-
erly. The output signal, in Fig. 3(a) is equivalent to
in Fig. 1 because the XOR operation may be assumed to be in-
dependent of time and the continuous time delay matches with

Fig. 3. Transformation of a VCO into a PFM.

one sample delay. This is expressed in the following equation,
where represents the XOR operation:

(4)
In Fig. 3(a), we define the output of the XOR gate as ,
which will be composed of square pulses of constant duration
located at . The modulation of is usually referred

to as PFM [9]–[12]. Note that the frequency of is twice
that of the VCO because both rising and falling edges in w(t)
produce a pulse in . Therefore, we will define the pulse
frequency as .
We may propose a further equivalent system to Fig. 3(a). In

Fig. 3(b), we have replaced the delay and XOR gate of Fig 3(a)
by a filter with square impulse response h(t) of duration that
is driven by signal d(t). Signal d(t) will have a Dirac delta at
times . Signal in Fig. 3(b) will be the output of the filter
and can be computed as follows:

(5)

Therefore, and in Fig. 1,
Fig. 3(a), and Fig. 3(b). The model of Fig. 3(b) reveals that filter
h(t) will shape the spectrum of . The transfer function of
this filter, , will be a sinc function whose zeroes are located
at integer multiples of .

C. Spectral Analysis Of A Pulse Frequency Modulator

The spectrum of pulse modulations was analyzed at the
beginning of digital communications. In particular, a trigono-
metric series expansion for a PFM signal having a center
frequency and linear FM (1) was calculated in [10][11] for
sinusoidal inputs x(t) of the form:

(6)

Signal in Fig. 3(b) corresponds to this class of modula-
tions. Knowledge of a trigonometric series expansion of
permits calculation of its Fourier transform, , which will
be a sum of Dirac delta functions. Once is known, we
may calculate the DFT of in Fig. 3(b) that will be coinci-
dent with the DFT of in Fig. 1. An analytical representa-
tion of the DFT of allows prediction of the spectrum and
SQNR of an ideal VCO-ADC without resorting to simulation.
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D. Oscillator Spectrum Before Sampling

According to [10], signal in Fig. 3(b) can be expanded
into the following trigonometric series:

(7)

In (7), is the rth order Bessel function of the first kind. This
series contains a constant component (DC) and a baseband com-
ponent (BB) representing the input signal. Coefficients CH(q,r)
represent the amplitudes of the harmonics of the center fre-
quency , and sideband tones around such harmonics. Integer
q indexes the harmonics of and integer r indexes the sideband
tones around each harmonic at . The sinc transfer function
corresponding to filter h(t) in Fig. 3(b) is reflected into coeffi-
cient CH(q,r), which is zero at integer multiplies of . The at-
tenuation and phase shift of x(t) due to h(t) are also reflected in
BB.
The Fourier transform will be a sum of Dirac deltas

weighted by the coefficients expressed in (7):

(8)

We have represented in Fig. 4(b) part of the modulus of
predicted by (8) with the same parameters defined for the
simulation of Fig. 2(a). The modulus of is also repre-
sented in Fig. 4(b) as a dotted line. We have marked the tones
weighted by CH(q,r) corresponding to the sidebands of the first
three harmonics of . The harmonic sidebands represented
by CH(q,r) occupy a bandwidth that increases with q and
whose average level decays with q. After some harmonics, the
sidebands overlap resembling a noise shaped by .
We may also observe in Fig. 4(b) the gap between the center

frequency sidebands and DC, inside of which the sideband en-
ergy is small. If the input analog band width (ABW) of the ADC
fits in this gap, the input signal will be encoded in with
nearly no error.
As a comparison, Fig. 4(a) represents the modulus of

plotted with data from the behavioral simulation of Fig. 2(a).

Fig. 4. Modulus of (a) simulated, (b) calculated.

In Fig. 4, we may observe the agreement of the simulated and
calculated values of and also the nulls imposed by .

E. Sampled Spectrum

Our interest in the system of Fig. 1 is to obtain a sampled
sequence of integer values that may represent x(t). Therefore,
we predict the DFT of a finite set of N samples of (N
even), as is usually done to evaluate the performance of an ADC.
This DFT can be calculated if the input tone at , the sampling
frequency , the center frequency , and the sequence length
N are all linked by integer factors , , and as follows:

(9)

These definitions force all tones in the spectrum of to fit
into a bin of the DFT of . All DFT bins that are not an
integer multiple of will be zero. Therefore, the DFT of
may be indexed by an integer multiplied by
. In practice, and we may find an integer that

closely approximates the desired .
We may evaluate , the DFT of , using the coef-

ficients of . A delta located at frequency ω in will
alias to DFT bin as follows:

(10)

In (10), mod represents the reminder of integer division by .
To calculate DFT bink , it suffices to add all the complex
coefficients of the Dirac deltas in that alias to that par-
ticular index k. Let R(k) be the set of all pairs (q,r) of integers
complying with condition (10). The values of are cal-
culated in (11). To calculate , we have approximated the
DFT bins of the DC component and input signal component BB
neglecting the contributions of the center frequency harmonic
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sideband aliases due to their proximity to the nulls of sinc func-
tion H( ).

(11)

We have applied (11) to reproduce the simulation in Fig. 2(a) by
analytical calculation of Y[k]. The result is shown in Fig. 2(b),
which replicates the peaks and shape of Fig. 2(a).
These results can be extended to a multibit VCO-ADC. A

VCO with M phases can be assumed equivalent to a single
bit VCO with a center frequency M times higher. To model a
multibit VCO-ADC we may still use the model of Fig. 3(b)
using a rest frequency but keeping as the du-
ration of the impulse response of h(t). In the multibit case, (3)
will no longer hold as there may bemore than one delta pulse per
sampling period in d(t). The square pulses at p(t) in Fig. 3(b)
will overlap forming amultilevel signal. The PFM spectrum cal-
culated in [11] refers to the delta pulse signal d(t) in Fig. 3(b).
The inclusion of the square pulse shaping filter h(t) in [10] only
introduces a sinc filtering in the spectrum over the series ex-
pansion calculated in [11]. Therefore, (8) and (11) may be used
regardless that the pulses overlap or not.

F. SQNR Prediction

Equation (11) describes the spectrum of and hence, it is
possible to predict the SQNR of the ADC. For this purpose, we
only need to calculate the DFT bins of that lie inside the
ABW defined by the sampling frequency and the oversampling
ratio (OSR). We may define index as the closest DFT bin
index corresponding to the edge of the ABW. Then, the value
of the SQNR will be:

int

(12)

Observing (11), we see that each set R(k) contains an infinite
number of values of q and r. However, CH(q,r) quickly de-
creases away from the center frequency harmonics, as shown
in Fig. 4. Therefore, to practically calculate (12), we may define
some bounds for q and r to truncate the summation. A simple
algorithm to calculate the SQNR is described next. Coefficients

can be computed by adding all the tone complex coeffi-
cients (11) that alias to DFT bin . We will establish a noise
floor below in which a termCH(q,r) in (7) can be discarded.

Fig. 5. Dynamic range comparison: (a) ;
(b) , , .

As larger values of CH(r,q) correspond to smaller values of q,
we will start at and sweep index r. When reaches
in the computation of CH(q,r), we no longer need to increase r
further and can jump to the next value of q. If the resulting index
k (10) is above , it can be discarded, which significantly
speeds the computation of SQNR.
Fig. 5 shows a comparison between the dynamic ranges

obtained by the behavioral simulation of Fig. 2(a) (simulated
SQNR) and the proposed method (calculated SQNR), consid-
ering an and . In Fig. 5, two cases have been
plotted (5.a and 5.b) to evaluate different center oscillation fre-
quencies , VCO gain constants , and input tone frequencies
. The SQNR calculations were performed with 32k point

FFTs and . The simulations deviate from the
analytical calculations in less than 0.7 dB.

III. CONCLUSIONS
In this letter, we have discussed the analogy between a

VCO-ADC and a pulse frequency modulator. This analogy
allows analytical calculation of the DFT of the output sequence
and expected SQNR of the converter for single tone inputs.
This modeling takes into account parameters such as center
oscillation frequency and gain constant of the VCO. The
mathematical derivations have been verified by evaluating the
dynamic range of a VCO-ADC example by calculations and by
a behavioral simulation, achieving a 0.7 dB mismatch.
In addition, the model of a VCO-ADC proposed here shows

an alternative explanation for noise shaping in which discretiza-
tion and quantization of the VCO phase are not required. In-
stead, the model shows that the VCO acts as an analog pulse
frequency signal coder (similar to other pulse-coded modula-
tors such as PWM, PDM, etc.) [7]. This is shown in the example
of Fig. 4, where a low-frequency input signal is encoded with
nearly no error in a narrow band. Quantization error is gener-
ated afterwards by aliases produced by sampling. Therefore, the
noise-shaping effect seems to depend on the square pulse em-
bedded in the post processing of the VCO output. This different
point of view allows devising other data-converter topologies
[13].
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