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Discrete Anamorphic Transform
for Image Compression

Mohammad H. Asghari, Member, IEEE, and Bahram Jalali, Fellow, IEEE

Abstract—To deal with the exponential increase of digital data,
new compression technologies are needed for more efficient rep-
resentation of information. We introduce a physics-based trans-
form that enables image compression by increasing the spatial co-
herency. We also present the Stretched Modulation Distribution,
a new density function that provides the recipe for the proposed
image compression. Experimental results show pre-compression
using our method can improve the performance of JPEG 2000
format.

Index Terms—Anamorphic transform, diffractive data com-
pression, dispersive data compression, image compression, physics
based data compression, space-bandwidth engineering, warped
stretch transform.

I. INTRODUCTION

I MAGE compression leading to efficient representation of
information is critical for dealing with the storage and trans-

mission of high resolution images and videos that dominate the
internet traffic. JPEG [1] and JPEG 2000 [2] are the most com-
monly used methods for image compression. To reduce the data
size, JPEG and JPEG 2000 use frequency decomposition via the
discrete cosine transform (DCT) [1] or wavelet transform [2] as
well as the frequency dependence of the human psychovisual
perception.
In this letter, we introduce the Discrete Anamorphic Stretch

Transform (DAST) and its application to image compression.
DAST is a physics-inspired transformation that emulates
diffraction of the image through a physical medium with spe-
cific nonlinear dispersive property. By performing space-band-
width compression, it reduces the data size required to represent
the image for a given image quality. This diffraction-based
compression is achieved through a mathematical restructuring
of the image and not through modification of the sampling
process as in compressive sensing (CS) [3]–[7]. Our technique
does not need feature detection and is non-iterative.
Compared to frequency dependent frequency decomposition

transforms such as warped DCT [8], [9] or chirped z- or wavelet
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transforms [10], [11], DAST is a nonlinear transform, both in
terms of amplitude and in terms of the phase operation, as shown
below.
DAST is related to the recently introduced method for analog

time-bandwidth compression of one-dimensional temporal sig-
nals [12]–[14]. Such a need arises in scientific research and
medicine where large numbers of real-time measurements
must be made in order to find statistically rare but important
information. To give an example, for rare cancer cell detection
in blood, screening of millions of cells in a high speed flow
stream is required. Such problems has fueled development of
record throughput real-time instruments such as the time-stretch
camera that allowed the detection of cancer cells in blood with
sensitivity of one cell in a million [15] and the time-stretch
spectrum analyzer enabling the discovery of Optical Rogue
Waves [16]. These instruments produce a fire hose of temporal
data approaching 1 Tbit/s. The challenges of managing such
data loads led to the development of the Anamorphic Stretch
Transform, an analog time-domain transform for capturing and
compressing high speed temporal signals in optical domain
[12]–[14].
Here we introduce the discrete-time representation of the

Anamorphic Stretch Transform and its generalization to -th
order and to two dimensional data [17]. We also present the
Stretched Modulation Distribution, a new discrete density
function that provides the recipe for the proposed image com-
pression. It explains graphically, how the transform reshapes
the image and how image compression is achieved. Exper-
imental demonstrations study the effect of DAST on image
coherence and bandwidth and show its application to enhance
JPEG 2000 format when used as pre-compression.

II. TECHNICAL DESCRIPTION

Different steps for implementation of DAST for application
to image compression are shown in Fig. 1. The original image is
represented by where and represent the two dimen-
sional discrete spatial variables. To compress the image using
our method, it is first passed through the DAST and then is uni-
formly re-sampled (down-sampled) at a rate below the Nyquist
rate of original image. To recover the original image form the
compressed one, the compressed image is first up-sampled and
then inverse DAST is applied to recover the original image.
DAST warps the image such that the intensity bandwidth is

reduced without proportional increase the image spatial size.
This increases the spatial coherence and reduces the amount of
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Fig. 1. In the proposed method for image comression, Discrete Anamorphic
Stretch Transform (DAST) is operated on the original image followed by
re-sampling (down-sampling) and secondary compression such as spatial or
entropy encoding as well as other standard image compression algorithms.
To recover the original image, the inverse operation is performed on the
compressed image.

data needed to represent the image. Mathematically, DAST is
defined as follows:

(1)

where is the absolute operator. For DAST operation, the orig-
inal image is convolved with DAST Kernel , and then
the -th power magnitude of the result is computed. In this
paper we have used the case of . The Kernel
is described by a nonlinear phase operation,

(2)

To compress the image, the nonlinear phase profile
should be chosen such that DAST applies a spatial warp to the
image with a particular profile described below. To describe the
applied warp, we define the DAST Local Frequency (LF) pro-
file as the 2D spatial gradient (derivative) of the DAST Kernel
phase function. LF is the equivalent of time domain instanta-
neous frequency but in 2D spatial domain.
For better understanding on selection of or the DAST

Kernel, we introduce a mathematical tool to describe the image
bandwidth and the resulting image spatial size after it is sub-
jected to the transformation. As we will show in Figs. 2 and 3,
this tool visualizes the DAST operation on the image and the
resulting data compression. To this end, we define discrete-do-
main Stretched Modulation ( ) Distribution as follows:

(3)

where the symbol represents complex conjugation. or
Anamorphic Distribution provides a tool for engineering the
image brightness space-bandwidth product through proper
choice of . The distribution can be described as the
cross-correlation of the complex output image spectrum with
its spatially shifted version. It shows spatial and spectral

Fig. 2. Stretched Modulation ( ) Distribution is a new density function used
to design the Kernel of Discrete Anamorphic Stretch Transform (DAST). It
shows the dependence of the image brightness on spatial and frequency vari-
ables. (a) Three different DAST Kernel Local Frequency (LF) profiles, (b)
Distribution of a randomly selected linescan in Lena image without the DAST,
(c)-(e) Distribution of the linescan after it is subjected to DASTwith LF pro-
files in (a). Figure shows that only the case with superlinear LF profile results in
image compression. (f) Distribution corresponding to another randomly se-
lected linescan in Lena image, for the case of superlinear LF profile confirming
the generality of operation on randomly chosen linescan (see also Fig. 3).

distributions of image intensity after diffractive propagation
through a dispersive medium that imparts a nonlinear phase
operation described by the Kernel . To show use of
the Distribution to design the DAST Kernel, we have plotted it
for the Lena image. For simplicity, we consider one randomly
chosen linescan of the image. The Distribution for the
linescan is shown in Fig. 2(b). At (i.e. spatial shift
of zero) the Distribution becomes the autocorrelation of the
brightness spectrum and its width gives the output intensity
bandwidth. Also the maximum absolute amount of spatial shift
that complex cross-correlation has non-zero values is image
spatial size. This is given by the half-height of the plot (see
Fig. 2(b)).
The Distribution provides a powerful and intuitive tool

for identifying the general shape of the Kernel that results in
image compression. As shown in Fig. 2(c), when the Kernel
has a linear local frequency, the Distribution is linearly tilted
resulting in a reduced bandwidth. However, the image size
is proportionally stretched. This offers no compression. Sim-
ilarly, if the Distribution is warped in the manner shown in
Fig. 2(d), corresponding to sublinear LF profile shown in (a),
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Fig. 3. Stretched Modulation ( ) Distribution of two randomly selected
linescans in “Barbara” and “Camera man” images after they are subjected
to Discrete Anamorphic Stretch Transform (DAST). (a) and (b) show the

Distribution for two linescans in Barbara image and (c) and (d) show
the Distribution for two linescans in Camera man image. For these plots we
have used the superlinear Local Frequency (LF) profile shown in Fig. 2(a)
normalized to the image spatial size.

Fig. 4. Analysis of Discrete Anamorphic Stretch Transform (DAST) effect on
Lena image, (a) Phase and Local Frequency (LF) profiles of the DAST Kernel
used for the examples studied in this letter, these plots are normalized to the spa-
tial dimensions of the image in each case. (b) Auto-correlation of original image
( ) compared to auto-correlation of transformed image usingDAST. The
broader autocorrelation indicates increased coherency. This is done without an
image size increase, i.e. the original and transformed images have
pixels with 8 bits/pixel accuracy. (c) Image intensity (brightness) spectrum be-
fore and after DAST operation which shows that the intensity bandwidth is com-
pressed after DAST. The compression is a result of the reshaping of the image
where sharp features are stretched more than coarse ones.

the space-bandwidth product is expanded and the data size is
increased. However, if we cause a nonlinear tilt (i.e. a warp)
having the shape shown in Fig. 2(e), corresponding to super-
linear LF profile shown in (a), the bandwidth is reduced but the

size is not stretched proportionally. In this case, one achieves
image compression. In Fig. 2(f), we have plotted the Distri-
bution corresponding to another randomly chosen linescan in
the Lena image confirming the generality of operation on ran-
domly chosen linescan. To show that DAST works on arbitrary
images, in Fig. 3 we have plotted the Distribution for two
randomly selected linescans in “Barbara” and “Camera man”
images. For these plots we have used the superlinear LF profile
shown in Fig. 2(a) normalized to the image spatial size. As
shown in Figs. 2(e) and (f) as well as Fig. 3, DAST operation
with superlinear LF profile, results in image compression by
reducing the spatial intensity bandwidth without proportional
increase in the image spatial size.
As suggested by Distribution plots, superlinear LF profile

in DAST Kernel results in image compression. One of the sim-
plest (e.g. least number of parameters) yet effective such profiles
is the tangent function:

(4)

where , , and are real-valued numbers. This LF profile
results in the following DAST Kernel phase profile:

(5)

where ln is the natural logarithm and cos is the Cosine function.
The , parameters are always normalized to the image size
to make sure & . An example of this phase
function is shown in Fig. 4(a). The slope of the LF profile at the
origin (related to and ) determines the amount of intensity
bandwidth compression. After the proper choice of and ,
the resulting spatial image size is related to the warping strength
(related to and ).
After the anamorphic transform with proper phase profile the

brightness bandwidth is compressed (the coherence increased).
The transformed image can now be re-sampled at a lower rate
without losing information given by the amount of brightness
bandwidth compression after DAST. The compressed image in-
cluding the re-sampled transformed image and its filtered one
using the discriminator kernel (described below) along with the
metadata , , , and re-sampling factor is sent to the
transmission channel or storage device. We note that only five
parameters (real numbers) are required for reconstruction, re-
sulting in negligible data overhead. The algorithm can also be
combined with vector quantization [19] and entropy encoding to
further reduce the image data size. Also, the re-sampled image
can be compressed further by a secondary compression, e.g.
JPEG or JPEG 2000. For application to color images the DAST
image compression is applied to each of the constituent color
components.
The decoding algorithm consists of up-sampling followed by

inverse propagation through the DAST which incorporates 2D
local frequency measurement. A number of techniques such as
phase discrimination or iterative methods can be used for this
purpose [12]–[14], [17], [18]. These phase discrimination tech-
niques are based on measuring two instances of the signal’s
scalar amplitude (one filtered and one unfiltered). The phase
is then recovered from these quantities. Although different dis-
criminator kernels can be used, in this paper we have used a
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Fig. 5. Performance of Discrete Anamorphic Stretch Transform (DAST). Left
column: image compressed by JPEG 2000. Right column: image pre-com-
pressed using DAST followed by JPEG 2000. In both cases the decoded image
PSNR is 52.1 dB but the case with DAST pre-compression has more than twice
compression factor.

simple filter with linear frequency response (Ramp filter) for
discrimination.

III. EXPERIMENTAL RESULTS

In this section, we study an example to show the effect of
DAST on images. We also examine the proposed image com-
pression method and compare it to JPEG 2000 image compres-
sion format. The phase and Local Frequency (LF) profiles of the
DASTKernel for the examples presented in this letter are shown
in Fig. 4(a). The parameters in these plots are normalized to the
dimensions of the image in each case.
We first study the effect of DAST on gray-scale Lena image

with pixels with 8 bits/pixel accuracy in TIF format.
To understand how the image data is compressed, in Fig. 4(b)
we compare the auto-correlation of the original image ( )
with the transformed image. As it can be seen, the autocorre-
lation is broadened leading to increased spatial coherence and
reduced spatial intensity bandwidth (Fig. 4(c)). This is done
without an image spatial size increase, i.e. the original and trans-
formed images have the same pixels with 8 bits/pixel
accuracy. The reduced spatial bandwidth (increased coherence)
allows one to re-sample the transformed image at the lower rate,
to achieve compression. However, it should be noted that com-
pression is not merely obtained from the re-sampling, but rather
from the increase in correlation caused by the reshaping. We
prove this experimentally in the following example.
To study the performance of DAST for image compression, in

the first example we show that DAST pre-compression can im-
prove the performance of JPEG 2000 for a given image quality.
The original image is Lena color image with pixels
in TIF format. The left column in Fig. 5 shows the image com-
pressed using JPEG 2000 with target Peak Signal to Noise Ratio
(PSNR) of 52.1 dB. The compression factor (original over com-
pressed image file sizes) in this case is 2.3 times. The right
column shows the image pre-compressed by DAST followed by
JPEG 2000 with the same recovered image PSNR of 52.1 dB.
The normalized phase profile of the DAST Kernel is shown in
Fig. 4(a). We note that the compressed file size in the case with
DAST pre-compression includes re-sampled transformed image
and its filtered one using the discriminator kernel (3 colors for
each) followed by JPEG 2000 plus the metadata. In the case of
using DAST pre-compression we achieved a compression factor

Fig. 6. Performance of Discrete Anamorphic Stretch Transform (DAST). Left
column: image compressed by JPEG 2000. Right column: image encoded using
DAST followed by JPEG 2000. In both cases the data size is reduced for 250
times but the case with DAST pre-compression shows superior compression
performance in terms of PSNR.

of 5.1. Thus, both cases provide the same PSNR but the case
with DAST pre-compression has more than twice compression
factor. For this example, we have not used any down sampling,
however since the spatial coherence of the image is increased,
we achieved more than twice better compression factor.
In the next example, we show how DAST pre-compression

can improve the performance of JPEG 2000 for a same high
compression factor. Results are shown in Fig. 6. The original
image for this example is Barbara color image with
pixels in TIF format. The left column in Fig. 6 shows the image
compressed using JPEG 2000 with compression factor of 250.
The right column shows the image pre-compressed by DAST
followed by JPEG 2000 with same total compression factor
of 250. This means that the total compressed data file size in
the case with DAST (re-sampled transformed image and its fil-
tered one using the discriminator kernel (3 colors for each) fol-
lowed by JPEG 2000 plus the metadata) is the same as the case
with JPEG 2000 alone. The normalized phase profile of the
DAST Kernel is shown in Fig. 4(a). As seen, image pre-com-
pressed with DAST has higher resolution even though the com-
pressed file sizes are the same. To numerically compare the
image compression performance, we have calculated the PSNR
and Structural Similarity (SSIM) [20]. In particular, PSNR in
the case of JPEG 2000 alone was 23.5 dB versus 26.3 dB for
the case of using DAST pre-compression. Also SSIM for the
case of JPEG 2000 without and with DAST pre-compression
were 87.2% and 95.3% respectively. This shows that pre-com-
pression using DAST has improved both PSNR and structural
similarity of the compressed image to the original image.
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