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On Generalized Auto-Spectral Coherence Function
and Its Applications to Signal Detection

Chengshi Zheng, Member, IEEE, Hefei Yang, and Xiaodong Li

Abstract—Considering that spectral components of one random
process are not necessarily independent for all types of signals,
this paper defines a generalized auto-spectral coherence function
(GAS-CF) to measure this spectral correlation. The GAS-CF is a
generalization of the temporal coherence function and the spec-
tral coherence function, where they have already been successfully
applied to detect howling components and transient noise compo-
nents, respectively. After defining the GAS-CF, this paper studies
its statistical properties in detail. Simulation results show that the
proposed GAS-CF can be applied to detect different types of sig-
nals, including transient noise, howling frequency and chirp signal,
in a simple way.

Index Terms—Auto-spectral coherence, chirp signal, signal de-
tection, temporal coherence, transient noise.

I. INTRODUCTION

S INCE Goodman defined the coherence function between
two wide-sense stationary random processes [1], it has

already been widely studied due to its wide applications
[2]–[10], such as signal detection, signal estimation and system
identification.
In [2], the fast Fourier transform (FFT) was first introduced

to calculate the coherence function and the overlapped FFT
was further proposed in [3], where these FFT-based coherence
functions will be referred as FFT-CF. To improve the frequency
resolution, Benesty et al. [5] proposed to estimate the coher-
ence function by the minimum variance distortionless response
(MVDR) approach, which will be referred as MVDR-CF. It is
well-known that the MVDR approach suffers from the serious
signal mismatch problem. To solve this problem, the canonical
correlation analysis (CCA) method was proposed, which will
be referred as CCA-CF [6]. In [7], Jakobsson et al. consid-
ered the 2-D coherence function estimation and proposed a
time-updating estimation method. The coherence function with
nonuniformly sampled sequences was first considered in [10].
The three nonparametric coherence functions, including the
FFT-CF, the MVDR-CF and the CCA-CF, were first treated in

Manuscript received November 08, 2013; revised February 19, 2014; ac-
cepted March 01, 2014. Date of publication March 11, 2014; date of current ver-
sion March 17, 2014. This work was supported by the National Science Fund
of China (NSFC) under Grants 61201403 and 61302126 , and was also sup-
ported in part by the Tri-Networks Integration Grant KGZD-EW-103-5(3). The
associate editor coordinating the review of this manuscript and approving it for
publication was Prof. Xiao-Ping Zhang.
The authors are with the Communication Acoustics Laboratory, Institute of

Acoustics, Chinese Academy of Science, Beijing 100190, Beijing, and also with
Acoustics and Information Technology Laboratory, Shanghai Advanced Re-
search Institute, Chinese Academy of Sciences, Shanghai 201210, Shanghai..
(e-mail: cszheng@mail.ioa.ac.cn).
Color versions of one or more of the figures in this paper are available online

at http://ieeexplore.ieee.org.
Digital Object Identifier 10.1109/LSP.2014.2310772

a unified way in [8], which makes it easier to understand these
existing coherence functions and their properties. All the above
mentioned coherence functions are used to measure some
properties of two wide-sense stationary random processes, such
as linear and nonlinear system analysis, signal-to-noise-ratio
(SNR) and time delay [11].
Unlike the coherence function defined before, Zheng et al.

defined a temporal coherence function (T-CF) and a spectral
coherence function (S-CF) for only one randomprocess to detect
howling components and transient noise components in [12] and
[13], respectively. This is based on the fact that the independence
assumption of spectral components is not necessarily true for all
types of signals. For example, the coherence times of howling
components are nearly infinite. Although numerous experi-
mental results have verified the validity of theT-CF and the S-CF
in detecting the howling and/or the transient noise components,
their relationship is still uncovered.Moreover, their applications
are not well discussed. In this paper, we will treat the T-CF and
the S-CF in a unifiedway, which will be referred as a generalized
auto-spectral coherence function (GAS-CF). Notice should be
given that the GAS-CF measures the coherence of different
frequency components for only one random process, which is
unlike the FFT-CF, the MVDR-CF and the CCA-CF that mea-
sure the cross-coherence of two random processes. Furthermore,
statistical properties of the GAS-CF will be studied in detail.
Finally, some applications in signal detection are discussed and
simulations are given to show the validity of the GAS-CF.
The remainder of this paper is organized as follows. The T-CF

and the S-CF are reviewed briefly in Section II, and the GAS-CF
is also introduced in this section. Statistical properties of the
GAS-CF are given in Section III. Practical implementation and
some applications of the GAS-CF are presented in Section IV.
Section V gives some conclusions.

II. BACKGROUND AND GENERALIZED AUTO-SPECTRAL
COHERENCE FUNCTION

Before giving the definition of the GAS-CF, we assume that
is a short-time wide-sense stationary random process

having zero mean with . Define
and , where is a non-negative integer
number. Assume that and are the N-point FFTs
of and , respectively, where is
the frequency index and is the frame index.
To rewrite the following defined coherence functions in a ma-

trix way, we further define the Fourier vectors:

(1)

where the superscript is the transpose of a vector and
, with . The covariance matrices of
and in the th frame can be given by:

(2)
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where , with the
frame shift and . The superscript denotes Hermi-
tian conjugate of a vector or a matrix. is the expectation
function.

A. Definition of the T-CF

When , with the positive integer number, holds
true, theT-CFcanbegivenby (3), shownat thebottomof thepage
[12],where the superscript is the complex conjugate function.
Eq. (3) can be rewritten in a matrix form, which is shown in

(4) at the bottom of the page.

B. Definition of the S-CF

In [13, (11)], the S-CF is only calculated for each frame. In
this paper, we propose to estimate the S-CF in each bin for each
frame, which can be given by:

(5)
where is a positive integer.
Eq. (5) can also be rewritten in a matrix form, which is:

(6)

C. Definition of the GAS-CF

A generalization of the T-CF and the S-CF, which is referred
as the GAS-CF, can be given by:

(7)

where . Notice should be given that is
included in (7), which is different from (5).
Obviously, (7) reduces to the T-CF defined in (3) as

and . (7) turns to the S-CF defined in (5) as
and . For the general case, both and
could be arbitrary integers.
The matrix form of (7) can be given by:

(8)

As can be seen from (7) and (8), the T-CF measures the co-
herence of the spectra of over time, while the S-CF mea-
sures the coherence of the spectra of over frequency. The
GAS-CF can measure the coherence of the spectra of over
both time and frequency. In the following section, statistical
properties of the GAS-CF are studied.

III. STATISTICAL PROPERTIES OF THE GAS-CF

The GAS-CF is a generalization of the T-CF and the S-CF,
we study the statistical properties of the GAS-CF in this session
to give an insight into the mechanism of the proposed GAS-CF
in signal detection.
Property 1: for all values of
Proof: Since , with , are assumed to be

non-negative definite, it is clear that , where the
result can also be derived by (7) directly, since both the numer-
ator and the denominator of (7) are non-negative.
Define and ,

(8) can be rewritten as:

(9)
Eq. (9) has the same form with ([5, (31)]), where
can be easily proved to be not larger than one using the same
method presented in [5, (32-37)].
By now, we can conclude that holds true

for all values of and . Property 1 reveals that the GAS-CF
is a normalized measure of similarity between two spectra of

, where its value ranges from 0 to 1.
When can be modeled by an ARMA process, it can be

whitened by applying a whitening filter. Thus, we only study
statistical properties of the GAS-CF for a wide-sense stationary
white Gaussian process in the following two parts.
Property 2: For the wide-sense stationary white Gaussian

noise, decreases as increases from 0 to
for
Proof: For the case , we have:

(10)

where is a identitymatrix.
is a zero matrix.
Substituting (10) into (8) for , we have:

(11)

Property 2 holds true due to that reduces from 1 to 0
as increases from 0 to as can be seen from (11). Property
2 shows that the more overlap there is, the higher the GAS-CF
is, where this result can also be found in [14].
Notice should be given that for all and

when , since in this case.
Property 3: For the wide-sense stationary white Gaussian

noise, for and

(3)

(4)



ZHENG et al.: ON GENERALIZED AUTO-SPECTRAL COHERENCE FUNCTION 561

Proof: We can substitute (10) into (8) for directly
with , then we have:

(12)

where if and only if and ,
has the maximum value, which equals to

. For , we have
since .
The above two properties reveal that, for the wide-sense

stationary white Gaussian process, the maximum value of
is only about for all . Moreover, the

maximum value of reduces dramatically with the
increasing of for .
Property 4: If

holds true for some values of and , where both
and are constant real values, then

Proof: When ,
(7) can be given by:

(13)

Property 4 expresses the two conditions when
holds true for some values of and . The first condition,

, indicates that and
have approximately a fixed ratio of the power spectral density
in the th bin of the th frame for some values of and .
The second condition, , means
that and should have a fixed phase difference in
the th bin of the th frame for some values of and . In
other words, if can be linear predicted by ,
then . There are at least three types of signals
including the transient noise components, the howling compo-
nents and the chirp signal that satisfy the two conditions approx-
imately, where we will give a brief proof in this part.
1) For the Transient Noise Components, for

and a Small Value of , where : By using
the transient noise model presented in [15, (2.1)], the two con-
ditions of property 4 can be derived from [15, (2.12)] directly.
Notice should be given that [15, (2.12)] holds true only in the
region defined by:

(14)

where is the center frequency of a stable, unit gain time-in-
variant bandpass filter as defined in [15] and is the bandwidth.
Generally, the bandwidth is not a large value, so should
not be too large to ensure that (14) holds true. We propose to use

in practice [13]. Moreover, since the transient noise is
highly non-stationary and its duration is extremely short,
should be chosen.
2) For the Howling Components, for

and Arbitrary Values of : It is well-known that the closed-
loop system becomes unstable if and only if the following two
conditions occur [16]:

(15)

where and are, respectively, theshort-termfre-
quency responsesof the forwardandfeedbackpathat in the th
frame.When (15) holds true, an oscillation at will occur, espe-
cially when the forward path and the feedback path are time-in-
variant [16]. In other words, the howling components are always
pureoscillations,whichmakes it havean infinite coherence times
for these howling components. Therefore, could be an arbi-
trary large value if we ignore its impact on the performance of
the detection lag, while should be selected.
3) For the Chirp Signal,

, where is the Amplitude, is a Random Phase,
is the Chirp Rate and is the Instantaneous Fre-

quency, , at and ,
Holds True After Compensating the Phase Difference for Each
Frame: Obviously, always holds true for this chirp
signal when and . Unfortunately,
the phase difference, , is not
a fixed value since it varies with . However, is not a
random variable, so we can compensate this definite phase
difference before calculating the GAS-CF. In other words, the
second condition in property 4 holds true after compensating
the definite phase difference for each frame.
Based on these statistical properties of the GAS-CF, we can

find that the GAS-CF can be easily applied in signal detec-
tion, such as detecting the transient noise components [13], the
howling components [12] and the chirp signal buried in not only
the wide-sense stationary white Gaussian process but also some
wide-sense stationary ARMA process of which spectral compo-
nents only have low spectral correlation. In next section, we will
showthat theGAS-CFcandetect these three typesof signals from
the noisy/clean speech effectively, where the clean/noisy speech
is a typical short-time wide-sense stationary ARMA process.

IV. PRACTICAL IMPLEMENTATION AND SIMULATIONS

A. Practical Implementation

To obtain and simultaneously, the value of
should be used in practice. The GAS-CF can be estimated

by (16), shown at the bottom of the page, where (16) averages

(16)
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frequency bins and frames to approx-
imate the expectation operator in (7). In general,

can be used in practice. For the real-time implementation,
should be chosen.

There are some general guidelines to choose and :
1) For the transient noise detection, should be chosen
since the duration of the transient noise is extremely short.
The value of could be large enough to reduce the vari-
ance of the estimated GAS-CF.

2) For the howling frequency detection, the value of could
not be too large to ensure that the frequency resolution is
high enough. The value of could have a large value to
reduce the variance of the GAS-CF.

3) For the chirp detection, the value of should not be too
large to reduce the influence of the noise and the value of
should not be too large to track the variation of the chirp

rate .
4) In all, the parameters and should be chosen manu-
ally according to the time-frequency properties of the input
signal.

B. Simulation Examples

In this part, we give some simulation examples to show the
validity of the proposed GAS-CF in signal detection. In all the
following three simulation examples, and
are used. Before calculating the FFT, a Hann window is applied
in each frame to reduce spectral leakage.
In the first example, the signal is themicrophone output signal

used in [12], where the time domain and the spectrogram of this
signal can be found in [12, Fig. 4(a) and (b)], respectively. The
close-loop sound reinforcement system in this example contains
a forward path and a backward path, where the forward path is
provided byWaterschoot and Moonen [16], while the backward
path is set to be a constant value, i.e. 1.79. The source signal
is the clean speech taken from the TIMIT database [17]. The
parameters , , , and are set in
this example. We assume that and are the null and
the alternative hypotheses, respectively, where indicates
that the howling dose occur at the th bin of the th frame, while

indicates that the howling is absent. The input signal-to-
noise-ratio (SNR) is about 0 dB.
In the second example, the transient noise is the mouse

clicking noise used in [13], which can be downloaded from the
website [18]. The same as [19], the clean speech taken from the
TIMIT database [17] is degraded by the mouse clicking noise.

, , and are used in this example.
indicates that the transient noise component dose exist,

while indicates that the transient noise component is
absent. The input SNR is 0 dB.
In the third example, the chirp signal is generated as follows:

(17)

where is a zero-mean white Gaussian noise process with
unit variance and is the clean speech that is also taken from
the TIMIT database [17]. , , and

are used. indicates that the chirp signal exists,
while indicates that the chirp signal is absent. The input
SNR is 0 dB.

Fig. 1. Empirical results of , with , for
(a) howling frequency detection; (c) transient noise detection; (e) chirp signal
detection. (b), (d) and (f) are the ROC curves of (a), (c) and (e), respectively.
Red dashed line with plus: normalized ; blue solid line

with circle: normalized .

Denote as the probability density func-
tion (p.d.f) of under . is
the p.d.f of under . Fig. 1 plots the empir-
ical results of for the above mentioned three
examples with . The receiver operating characteristic
(ROC) curves of these three examples are also plotted in this
figure, where indicates the probability of detection and
indicates the false-alarm rate.
As can be seen from Fig. 1(a), the GAS-CF is close to 1 at

the howling frequency, while its value is close to 0 at other fre-
quencies. For the transient noise, the GAS-CF is close to 1 when
the transient noise occurs, while it is close to 0 at other seg-
ments, where the results can be found from Fig. 1(c). For the
chirp signal, the GAS-CF has a large value that is close to 1 only
at the instantaneous frequency, while it is close to 0 at other fre-
quencies, where these results can be found from Fig. 1(e). Note
that the two p.d.f.s , with , have good
separation, implying that we can detect the expected signal ef-
ficiently by using the proposed GAS-CF. The ROC curves in
Fig. 1 further show that the proposed GAS-CF can detect these
signals correctly at very low false-alarm rate.
These results reveal that the proposedGAS-CF can be applied

to detect signal in a simple way. Because the GAS-CF is a nor-
malized measure of similarity between two spectra of the input
signal, it is not difficult to determine the detection threshold
in most cases, where the main reason is that the value of the
GAS-CF is not influenced by the relative value of the power
spectral density of the input signal.

V. CONCLUSION

The coherence function between two random processes is
very popular and well-known in signal processing. In this paper,
we define a generalized auto-spectral coherence function for
only one random process to measure the similarity between two
spectra of this random process. By studying statistical proper-
ties of the GAS-CF, we show how to apply it to detect signal.
Simulation results show the validity of the GAS-CF.
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