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Abstract—In recent years, deep learning has permeated the
field of medical image analysis gaining increasing attention from
clinicians. However, medical images always require specific pre-
processing that often includes downscaling due to computational
constraints. This may cause a crucial loss of information magnified
by the fact that the region of interest is usually a tiny portion of the
image. To overcome these limitations, we propose GROUSE, a novel
and generalizable framework that produces salient features from
medical images by grouping and selecting frequency sub-bands that
provide approximations and fine-grained details useful for building
a more complete input representation. The framework provides the
most enlightening set of bands by learning their statistical depen-
dency to avoid redundancy and by scoring their informativeness
to provide meaningful data. This set of representative features can
be fed as input to any neural model, replacing the conventional
image input. Our method is task- and model-agnostic, thus it can
be generalized to any medical image benchmark, as we extensively
demonstrate with different tasks, datasets, and model domains. We
show that the proposed framework enhances model performance
in every test we conduct without requiring ad-hoc preprocessing or
network adjustments.

Index Terms—Generalizable deep learning, medical image
analysis, mutual information, quaternion wavelet transform.

I. INTRODUCTION

D EEP learning methods have led to a breakthrough in
medical image analysis, learning to act as clinicians if

carefully designed and trained on representative data [1], with
promising results in a variety of tasks [2], [3], [4]. However,
most of these approaches cannot be directly applied to medical
images, as they require careful and ad-hoc preprocessing steps,
including resizing and downscaling due to computational con-
straints. Unfortunately, this procedure may compromise image
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Fig. 1. Random samples of TarGAN translations on the CHAOS dataset,
where the first column refers to the source image. The TarGAN produces
blurred translations, while when the input is first processed with GROUSE,
the translation is far better, as highlighted by the red boxes.

quality losing fine-grained details crucial in this kind of data.
Additionally, the region of interest (ROI) in a medical image is
usually a tiny portion of the whole acquisition and the model
may suffer before effectively focusing on the ROI. Therefore,
the prior processing of such data is essential [5], together with
the task of prior extracting salient features from samples to help
network training.

To alleviate these issues, a literature branch proposes to fuse
data modalities in a single sample with more informative con-
tents [6], [7]. Among these methods, wavelet functions have
reached promising results, as they process the input at multiple
resolutions and handle its low and high frequencies [8], [9], [10].
This transform has been recently widely adopted in deep learning
frameworks to distill information, help generation, and analyze
or enhance data at a multiresolution scale for vision [11], [12],
[13], [14], [15]. However, due to the lack of conventional wavelet
shift-invariance property, latest works involve the quaternion
wavelet transform (QWT) that provides 16 sub-bands being also
shift-invariant [16], [17], [18]. Recently, the adoption of quater-
nion algebra for neural networks applications is proliferating due
to the ability of these methods to preserve the multidimensional
structure of the input [19], [20], [21], [22].

In this letter, we propose GROUSE, a novel task- and model-
agnostic framework for medical neural imaging. The first step
of the framework consists in extracting bands at different
frequencies from an input image to produce a set of low-
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and high-frequency features to be fed as input to any neural
network. Low-frequency bands provide an approximation of
image content, while high-frequency ones give details useful
for fine-grained tasks such as reconstruction and generation.
Nevertheless, passing all the extracted features to the model
would be counter-productive as the bands may contain redundant
information. To this end, the second step of our framework
selects the most informative QWT sub-bands by discovering
the statistical dependence among the bands, clustering them
according to their mutual information score, and finally selecting
the most informative from each group. At convergence, the bands
from the same group will be statistically dependent on each other
while independent of the bands in other groups, thus ensuring
that selected features provide independent information to the
neural network, and avoiding redundancy.

One of the most important properties of our grouping and
selection-based approach is that it is task-agnostic, as it can be
applied to any dataset and for different tasks, without loss of gen-
eralization. It is also model-agnostic since it can be applied to any
neural network model. Another significant property of our ap-
proach is its generalizability. Indeed, GROUSE can be involved
to enhance the performance of real as well as quaternion-valued
neural networks, generalizing its adoption also to grayscale
and single-channel images. To prove the generalizability of
our method, we conduct an extensive experimental evaluation
of multiple tasks involving reconstruction, segmentation, and
image modality translation on different benchmarks such as
grayscale images, RGB ones, and multimodal datasets. Our
method improves the performance of the models in every test we
perform, proving that the QWT properly extracts salient features
from the medical sample and that the proposed algorithm selects
the most informative set of sub-bands to use as input.

The rest of the letter is organized as follows. Section II pro-
vides quaternion wavelet fundamentals, Section III introduces
the selection algorithm, and Section IV reports the experimental
evaluation, while we draw conclusions in Section V.

II. QUATERNION WAVELET TRANSFORM FOR MEDICAL

IMAGING

Wavelet transforms have been widely used in literature for
medical imaging thanks to their properties of extracting infor-
mation at different frequencies and with multiple resolutions
(e.g., [8], [9]).

Quaternions belong to the class of Clifford algebras over R.
A quaternion number is represented by a real-valued component
and three imaginary units, i.e. h = h0 + h1 ı̂1 + h2 ı̂2 + h3 ı̂3.

The imaginary units involved in quaternion numbers comply
with the properties ı̂21 = ı̂22 = ı̂23 = −1; ı̂1 × ı̂2 = ı̂3, ı̂2 × ı̂3 =
ı̂1, ı̂3 × ı̂1 = ı̂2, leading to the non-commutativity of the vector
product in this domain. Quaternions are widely adopted for
color images, due to their ability to encapsulate each channel
information in an imaginary component. This is not possible
in medical applications where images are usually grayscale.
However, wavelet transform allows for filling this gap.

Wavelets analyze data at different resolutions and trim it into
different frequency components. They are particularly suitable
for analyzing physical data whose signals contain discontinuities
and sharp spikes. The discrete wavelet transform (DWT) on a

2D input provides a scaling function φxφy and three sub-band
wavelets underlying diagonal φxφy, horizontal ψxφy, and verti-
cal details φxψy . However, due to the lack of phase information,
the DWT is not shit-invariant, therefore small shifts in image
content can affect the magnitude of the wavelet coefficients.
However, we can arrange the four output components of a DWT
in a quaternion number so as to leverage its magnitude-phase
representation, which may alleviate the shift-invariance issue
and provide the missing information.

To overcome DWT limitations, we can instead use the quater-
nion wavelet transform (QWT) that involves a real-valued DWT
and its three Hilbert transforms along thex, y, andxy axis, being
approximately shift-invariant [23]. The QWT cuts up data into
four different quaternion sub-bands, each with four real-valued
coefficients. At the end of the process, the QWT produces
16 real sub-bands comprising 4 low-frequency ones and 12
high-frequency ones, resulting in the following formulation:

φh = φg,xφg,y + φf,xφg,y ı̂1 + φg,xφf,y ı̂2 + φf,xφf,y ı̂3

ψV
h = ψg,xφg,y + ψf,xφg,y ı̂1 + ψg,xφf,y ı̂2 + ψf,xφf,y ı̂3

ψH
h = φg,xψg,y + φf,xψg,y ı̂1 + φg,xψf,y ı̂2 + φf,xψf,y ı̂3

ψD
h = ψg,xψg,y + ψf,xψg,y ı̂1 + ψg,xψf,y ı̂2 + ψf,xψf,y ı̂3,

(1)

in which g is a filter and f the corresponding Hilbert trans-
form, producing the scaling function φh that encloses low-
frequency coefficients and three wavelets ψV

h , ψ
H
h , ψ

D
h with

high-frequency details. A common choice for QWTs is con-
sidering the Daubechies wavelet with 8 vanishing moments
(db8) [24]. From this DWT we can then extract the decom-
position low-pass G L and high-pass filters GH to which the
Hilbert transform is applied in order to obtain the counterpart
filters FL and FH . The QWT is computed by combining the
filters in a couple, and interleaving them with a downsampling
operation [24], [25]. We show the QWT sub-bands for a samples
image in Fig. 2, where the four low-frequency bands Lg Lg , L
g Lf , L f Lg , and L f Lf are displayed in the first column and
the twelve high-frequency L g Hg , L g Hf , L f Hg , L f Hf , H g

Lg , H g Lf , H f Lg , H f Lf , H g Hg , H g Hf , H f Hg , and H f

Hf in the last three columns.

III. THE PROPOSED GROUSE FRAMEWORK

A common approach in literature for selecting real-valued
wavelet features is involving low-frequency sub-bands that have
been proven to improve classification accuracy [26]. A similar
method proposes to compute the energy for each sub-band and
then get the top k features with the highest energy [27]. However,
these methods aim at selecting separately the more informa-
tive or discriminative sub-bands. Indeed, while low-frequency
bands may be the most informative and obtain the highest
energy values, they may miss crucial details and high-frequency
characteristics suitable for proper signal analysis and synthesis.
Moreover, previous approaches implicitly assume independence
among sub-bands that does not hold in practice. For this rea-
son, when choosing the best sub-bands to feed as input to the
model, the selection method has to take into account both the
informativeness of the single sub-band and the total information
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Fig. 2. Proposed GROUSE framework. Medical images are processed with quaternion wavelet transform, grouped according to the mutual information, and then
the highest-energy sub-bands are selected to be fed as input to any neural model for analysis.

brought by the k sub-bands combined together. To this end,
we take inspiration from an approach that builds clusters for
real DWT tree sub-bands considering the dependence among
them and then perform an evaluation of individual sub-bands in
order to improve the accuracy of texture classification [28]. We
propose a quaternion wavelet transform sub-band GROUping
and SElection (GROUSE) approach that completely operates
in a quaternion fashion while being easy to be incorporated
into any real-valued analysis. The algorithm first discovers the
structure of the statistical dependence among QWT sub-bands,
split them into clusters based on the dependence value, then
an intra-cluster evaluation of wavelet features is performed by
computing the energy of each element, selecting the sub-band
with the highest energy as a candidate for the final set. While the
original approach [28] computes the DWT sub-band selection
on the training set and then involves the discovered sub-bands
for texture classification on the test set only, we insert a se-
lection method in the framework that preprocesses each input
image, and then with the preprocessed data, we perform model
training. This helps the model to take advantage of the QWT
extracted features during training and consequently improve the
performance at the testing stage. The potential of our approach is
that it does not require labels or additional information, so it can
be involved both in the training and testing stages, as preferred
by the user.

Energy function: To be consistent with the method adapted
for sub-band selection [28], in this letter we employ the squared
magnitude as the energy function, computed as:

Ei,j(si,j) =

H∑

h=1

W∑

w=1

[si,j,(h,w)]
2 (2)

wherebyH andW are the height and width of the sub-band sj of
the image Xi. In this way, the energy of a sub-band is regarded
as a second-order polynomial in terms of the pixel values of the
considered image.

Statistical dependency: The optimal result of the statistical
dependency discovering analysis is that sub-bands from the
same cluster are strongly dependent, while sub-bands coming
from diverse clusters are independent. If the clustering algo-
rithm converges to this solution, then it is possible to build

a meaningful representation of the input by selecting just the
most representative sub-band from each cluster. As a metric
for estimating the amount of dependency of a sub-band with
respect to a set of features we involve the mutual information
(I) [28]. Indeed, the mutual information quantifies how much
information the set of features contains about the sub-band,
being zero when the two objects are independent. The higher the
value of I, the better the estimation of the marginal distribution
of the sub-band will be. However, the estimate may be inaccu-
rate in case of high-dimensional distributions such as multiple
sub-bands and complex input data such as images thus, for this
reason, a many-to-one scalar mapping is involved, assuming
that the set of features in a cluster provides information about
the distribution S of the selected sub-band s through a function
T = f(X1, . . .,XN ). At this point, the mutual information can
be directly computed as I(S;T ) and remains open the choice
of the function f(·). From the data-processing theorem [29] we
know that the true mutual information I(S; {X, . . .,XN}) is the
upper bound of our approximation and that the equality holds
if and only if T is the sufficient statistics for the set of data
{X1, . . .,XN}. Therefore, the function f(·) has to be chosen
to maximize the estimate I(S;T ) while remaining convenient in
terms of computation. To this end, involving a linear model of the
type T = f(X1, . . .,XN ) =

∑N
i=1 WiXi, with Wi = 1/N ,

has been proved to match the required statistical properties being
the unbiased estimate of the mean of Xi [28], [30]. At this point,
the mutual information can be computed as:

I(S;T ) =
∑

s

∑

t

PS,T (s, t) log
PS,T (s, t)

PS(s)PT (t)
, (3)

in which PS,T (s, t) is the joint probability distribution while
PS(s) and PT (t) are the marginal probability distributions of
the selected sub-band and of the unbiased mean estimate T . A
formal definition of the GROUSE algorithm follows.

Algorithm: Given a dataset of images {X1, . . .,XN}, the pro-
posed quaternion wavelet sub-band GROUping and SElection
(GROUSE) algorithm can be formalized as:

1) Compute the QWT as described in Section II and extract
the sixteen sub-bands si,1, . . ., si,16 for each image Xi.
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2) For each sub-band s1:N,j , with j = 1, . . ., 16, estimate
the marginal probability density function of the energy
Ej(s1:N,j) in (2) using a Gaussian kernel.

3) Apply the k-Means algorithm involving the mutual infor-
mation in (3) as distance metric and generate the set of
clusters C = {C1, . . ., Ck}. In our experiments, to prop-
erly fit the input also in QNNs, we select k = 4.

4) From each cluster in C, select the sub-band with the
highest energy value, i.e. the most informative for the
given partition.

5) Involve the set of selected sub-bands as input to the neural
model.

We repeat the algorithm 20 times for more robust results.

IV. EXPERIMENTAL EVALUATION

In this section, we validate our theoretical claims on different
datasets and for various tasks. We consider the IXI dataset,
which comprises brain magnetic resonance (MR) images (T1
and T2) of dimension 256× 256. Then, we take into account the
Kvasir-SEG dataset that is composed of 1000 images 256× 256
of colon polyps. Finally, we take into consideration the CHAOS
dataset that is composed of CT and MR abdominal scans sliced
and resized at 128× 128, resulting in 4144 samples. We run
the GROUSE algorithm for each dataset, so to obtain the four
most representative sub-bands specific to the given data. For
the multimodal CHAOS dataset, we run the sub-band selection
algorithm specific for each modality, as CT, T1, and T2 are
unbalanced in the dataset and are quite different from each other
so the salient features may differ from one modality to another.
For the IXI and the Kvasir-SEG datasets GROUSE selects the
same bands (L g Lg , L f Lg , H f Hg , L f Hf ), while for the
CHAOS dataset we have three different samples. In the CT
modality the result is L g Lg , H g Lg , H g Hg , L f Lg , while
for T1 L g Lg , L f Lg , L f Hg , H g Lf and for T2 L g Lg , L f Lg ,
H g Lf , H g Hf . It is worth noting that GROUSE always selects
the low-frequency L g Lg band, as it is the most representative
of the input and the one with the highest energy.

We perform tests in multiple scenarios, involving reconstruc-
tion, segmentation, and image modality translation tasks. As
baselines, we consider a vanilla convolutional autoencoder (AE)
for reconstruction, a U-Net [31] and a more advanced U-Net++
[32] for segmentation, and the recent large-scale Target-aware
generative adversarial networks (TarGAN) [33] for the image
modality translation task. For each model, we involve the same
hyperparameters setting and network architecture of the original
works. Table I shows the objective scores for the three tasks,
where for the reconstruction task we compute the structural
similarity index (SSIM), the mean squared error (MSE), and
the Fréchet Inception distance (FID), for the segmentation task
the dice score coefficient (DSC), the mean intersection over
union (mIoU) and the mean absolute error (MAE), while for
the translation task, we consider a specific FID proposed for
medical images in [33], which rewards images that translate
better meaningful features. As it is evident from Table I, models
endowed with the proposed framework clearly outperform base-
line networks that directly involve grayscale or RGB images,
proving that our GROUSE approach can produce meaningful
features to be involved in neural network training. Addition-
ally, we show that our framework can be employed in various

TABLE I
RESULTS (AVERAGE SCORES OVER MULTIPLE RUNS) FOR RECONSTRUCTION,

SEGMENTATION AND IMAGE MODALITY TRANSLATION

TABLE II
RECONSTRUCTION RESULTS ON THE IXI DATASET FOR VANILLA

AUTOENCODERS DEFINED IN THE QUATERNION DOMAIN

medical image analysis and synthesis scenarios that comprise
different tasks and datasets without requiring specific operations
or modifications to either data or models. A visual comparison
of the translation task in Fig. 1 underlines the superiority of the
TarGAN that involves features provided by our framework. The
bounding boxes prove that our model can correctly translate
the ROI of the given image while the original fails. There-
fore, the task-agnostic GROUSE can be easily generalized to
multimodality datasets, while improving the performance of
large-scale models too.

Additionally, we also extend our approach to networks defined
in the quaternion domain in order to show how our framework
can generalize QNNs adoption in onedimensional problems.
Indeed, for such tasks, the common approach is to replicate the
single channel four times to fit the desired quaternion dimension,
so adding useless and redundant information [34]. We prove that
our GROUSE framework enhances the performance of QNNs
providing a representative set of sub-bands, as Table II shows
for the reconstruction task, where the quaternion autoencoder
(QAE) with GROUSE data far exceeds both the DWT and the
common channel repetition one [34].

V. CONCLUSION

In this letter, we introduce a generalizable framework that
can be integrated into any medical image analysis or synthesis
approach. Involving the GROUSE output as input to neural
models enhances model performance in a variety of tasks
and datasets, without requiring specific preprocessing or
modifications to existing networks. As a future work, we leave
the investigation of GROUSE on different applications such as
remote sensing [35], [36].
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