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Joint Separation and Localization of Moving
Sound Sources Based on Neural Full-Rank

Spatial Covariance Analysis
Hokuto Munakata , Yoshiaki Bando , Member, IEEE, Ryu Takeda , Kazunori Komatani , and Masaki Onishi

Abstract—This paper presents an unsupervised multichannel
method that can separate moving sound sources based on an
amortized variational inference (AVI) of joint separation and local-
ization. A recently proposed blind source separation (BSS) method
called neural full-rank spatial covariance analysis (FCA) trains a
neural separation model based on a nonlinear generative model of
multichannel mixtures and can precisely separate unseen mixture
signals. This method, however, assumes that the sound sources
hardly move, and thus its performance is easily degraded by the
source movements. In this paper, we solve this problem by intro-
ducing time-varying spatial covariance matrices and directions of
arrival of sources into the nonlinear generative model of the neural
FCA. This generative model is used for training a neural network
to jointly separate and localize moving sources by using only
multichannel mixture signals and array geometries. The training
objective is derived as a lower bound on the log-marginal posterior
probability in the framework of AVI. Experimental results obtained
with mixture signals of moving sources show that our method
outperformed an existing joint separation and localization method
and standard BSS methods.

Index Terms—Amortized variational inference, multichannel
signal processing, source separation and localization.

I. INTRODUCTION

SOUND source separation is a fundamental function for
various machine listening systems including distant speech

recognition and hearing aids [1], [2], [3], [4]. One approach to
source separation is to train a separation neural network (e.g.,
Conv-TasNet [5]) on a large number of pairs of isolated source
signals and their mixtures [5], [6], [7], [8]. Unsupervised sepa-
ration methods, on the other hand, have also been investigated
to address the lack of such a supervised dataset and domain
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Fig. 1. Overview of our time-varying neural FCA for joint source separation
and localization.

mismatch at the target environments [9], [10], [11], [12], [13],
[14], [15].

Blind source separation (BSS) has been actively studied to
separate source signals with little prior information based on a
generative model of a multichannel mixture signal [14], [15],
[16], [17], [18], [19], [20]. A fundamental method called full-
rank spatial covariance analysis (FCA) [14] represents each
time-frequency (TF) bin of a mixture as a sum of spatial co-
variance matrices (SCMs) of sources. Multichannel nonneg-
ative matrix factorization (MNMF) [15], [16], [17] improves
the performance of FCA by assuming the source spectra to be
low-rank. Its nonlinear extension called neural FCA [21], [22]
can precisely represent the source spectra with a neural network
called a deep spectral model [23], [24], [25], [26], [27]. This
model can be trained blindly by maximizing the log-marginal
likelihood for the training data of multichannel mixtures in
advance and was reported to be comparable with a multichannel
supervised model [21], [28].

Most BSS methods assume that sound sources hardly move,
and thus their performance is easily degraded by the movement
of the target sources. One solution is to allow source steering
vectors (the rank-1 special forms of SCMs) to be time-variant by
assuming a Markov process on the vectors [29]. If the geometry
of microphones is available, we can efficiently constrain the
steering vectors with the directions of arrival (DoAs) of sources
estimated by source localization [30], [31]. Furthermore, the
separation and localization can be performed jointly, based on a
unified generative model [32], to complementarily compensate
for their estimation errors.
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In this paper, we present an unsupervised neural method to
perform joint separation and localization for moving sources.
As shown in Fig. 1, we extend the neural FCA to handle the
source movements by introducing the time-varying SCM and
DoA for each source in the nonlinear generative model of a mul-
tichannel mixture signal. The joint separation and localization
is performed by an inference model that predicts the parameters
of each source from an input mixture. These inference and
generative models are jointly trained in an unsupervised manner
by maximizing a log-marginal posterior probability given only
multichannel mixtures and array geometries.

The main contribution of this study is to combine a time-
varying nonlinear (neural) BSS model with neural probabilistic
inference. While the full-rank SCMs generally improve the
performance from that obtained with the rank-1 SCMs, it was
difficult to introduce the Markov process or temporal smooth-
ness by modeling only with conjugate priors. We solve this
problem by introducing the temporal smoothness of SCMs with
the constraints on the neural inference model instead of the
generative model. The experimental results with the mixture sig-
nals of moving sources show that our method significantly out-
performed an existing joint localization and separation method
as well as standard BSS methods.

II. BACKGROUND

This section introduces a nonlinear BSS method called neural
FCA as a preliminary for the proposed method.

A. Blind Source Separation

Existing BSS models typically represent an M -channel mix-
ture signal xft ∈ CM as a sum of N target (and noise) source
signals snft ∈ C (n = 1, . . . , N ) in the TF domain as follows:

xft =
N∑

n=1

anfsnft, (1)

where anf ∈ CM is the time-invariant steering vector for source
n, and f = 1, . . . , F and t = 1, . . . , T are the frequency and
time frame indices, respectively. The source signal snft is rep-
resented by a complex Gaussian distribution as follows:

snft | λnft ∼ NC (0, λnft) , (2)

where λnft ∈ R+ is the power spectral density (PSD) of source
n. By marginalizing source signals snft, we obtain the following
likelihood function of the multichannel mixture xft:

xft | λ,H ∼ NC

(
0,

N∑
n=1

λnftHnf

)
, (3)

where Hnf = anfa
H
nf ∈ SM×M

+ is the SCM of source n. By
allowing the full-rankness of Hnf , this model called FCA [14]
can handle small source movements and reverberation.

B. Deep Spectral Model

A nonlinear (neural) source model has been utilized for
precisely representing complex source spectra [23], [24], [25],
[26], [27]. This model called a deep spectral model assumes that
the PSD λnft is represented by D-dimensional feature vectors

znt ∈ RD (t = 1, . . . , T ) as follows:

λnft = gθ,f (znt), (4)

where gθ,f : RD → R+ is a neural network with parameters θ
for transforming the feature vector to the PSD. Assuming znt
follows the standard Gaussian distribution:

znt ∼ N (0, I) , (5)

this model can be trained as the decoder of a variational autoen-
coder by using clean source signals [23]. This supervised source
model was reported to outperform NMF-based linear models in
speech separation or enhancement [26], [27], [28].

C. Neural Full-Rank Spatial Covariance Analysis

The deep spectral model can be trained in an unsupervised
manner by using only multichannel mixtures based on amortized
variational inference [21], [33]. This method called neural FCA
utilizes an inference (encoder) network to predict the speech
featuresZ � {znt}N,T

n,t=1 from an input mixtureX � {xft}F,T
f,t=1

as the posterior distribution qφ(Z | X), where φ represents the
network parameters. By using the generative model of a mixture
signal ((3)–(5)) as a decoder, the encoder and decoder are
jointly trained to maximize the following evidence lower bound
(ELBO) [33]:

Lθ,φ(X)=Eqφ [log pθ(X |Z,H)]−DKL [qφ(Z |X) |p(Z)],
(6)

where Eqφ [·] is the expectation by the posterior qφ, andDKL[·|·] is
the Kullback-Leibler (KL) divergence. The network parameters
θ and φ are updated by stochastic gradient ascent, and the SCMs
H � {Hnf}n,f are updated by an expectation-maximization
(EM) algorithm [14]. This training can be considered nonlinear
BSS performed on the training mixtures.

III. TIME-VARYING NEURAL FCA

We extend the original neural FCA to perform joint localiza-
tion and separation for moving sound sources.

A. Generative Model of Multichannel Mixture Signals

We assume that a mixture signal xft consists of N directional
moving sources snft and a diffuse noise nft as follows:

xft =

N∑
n=1

anftsnft + nft, (7)

where anft ∈ CM is a time-varying steering vector for source
n at time frame t. Assuming both the source and noise signals
follow the time-varying version of (2) and (3), we obtain the
following likelihood function:

xft | Z,H ∼ NC

(
0,

N∑
n=0

gθ,f (znt)Hnft

)
, (8)

where Hnft ∈ SM×M
+ are time-varying SCMs for the sources

(n = 1, . . . , N ) and noise (n = 0).
To exploit the localization results, we assume that the SCM

Hnft for each source (n = 1, . . . , N ) follows a conjugate prior
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conditioned by a unit vector unt ∈ R3 (‖unt‖ = 1) representing
the DoA of each source:

Hnft | unt ∼ IWC (ν, (ν +M)Gf (unt)) , (9)

where IWC(ν,Γ) ∝ |H|−(ν+M)|Γ|ν exp(−tr(ΓH−1)) is the
complex inverse Wishart distribution, and ν > M is a hyperpa-
rameter controlling degrees of freedom of Hnft. The mode of
this prior is equal to the prior SCM Gf (unt) defined as:

Gf (unt) = bf (unt)bf (unt)
H + εI, (10)

where ε > 0 is a small number to make Gf (unt) positive def-
inite, and bf (unt) ∈ CM is the steering vector for direction
unt calculated from the geometrically calculated time delays
of the microphones. The SCM for noise H0ft, on the other
hand, is assumed to be diffuse by replacing Gf (unt) in (9)
with an identity matrix. Note that we did not formulate any
temporal smoothness of Hnft because it is difficult to make
such a constraint in a generative model. As described in the next
section, we alternatively introduce it by the inductive bias of the
inference model.

B. Inference Model

Our inference model predicts the latent feature znt, SCMs
Hnft, and DoAs unt from a multichannel mixture signal xft
(Fig. 1). As the estimates of znt, following the original neural
FCA [21], the inference model predicts the posterior distribution
qφ(Z | X) as follows:

qφ(Z | X) =
∏
n,t,d

N (zntd ∣∣ μφ,ntd(X), σ2
φ,ntd(X)

)
, (11)

where μφ,ntd(X) ∈ R and σ2
φ,ntd(X) ∈ R+ are the outputs of

the inference network. Since the time-varying SCM Hnft is
difficult to estimate analytically, the inference model estimates
it as the moving average of masked observation added to the
prior SCM Gf (unt) with a weight hyperparameter γ0 ∈ R+:

Hnft ← γ0Gf (unt) +

T∑
t′=0

γ|t−t
′ |wφ,nft′(X)

Xft′X
H
ft′

‖Xft′ ‖2 , (12)

where wφ,nft(X) ∈ [0, 1] is a TF mask predicted by the infer-
ence network, and γ∈(0, 1] is a decay hyperparameter control-
ling the smoothness of Hnft. For numerical stability, Hnft is
normalized to tr(Hnft) be M . Lastly, DoA unt was predicted
with unit vectors ũφ,nt(X) ∈ R3 output by the network:

unt ←
T∑

t′=0

η|t−t
′ |ũφ,nt′(X), (13)

where η ∈ (0, 1] is a decay hyperparameter. The DoAs unt
are also normalized to be unit vectors. These moving averages
introduce the temporal smoothness of Hnft and unt.

C. Amortized Variational Inference for Unsupervised Training

We train the inference and generative models by using only
multichannel mixtures. The training objective for each mixture
is the ELBO L′θ,φ with a regularization term of Hnft:

L′θ,φ(X) = Lθ,φ(X) + log p(Hφ | Uφ), (14)

where Hφ and Uφ are the sets of inference results obtained by
(12) and (13), respectively. This ELBO is equivalent to a lower
bound on the following log-marginal posterior function:

log pθ,φ(Hφ | X,Uφ)
c
= log pθ(X | Hφ) + log p(Hφ | Uφ),

where
c
= denotes equality up to an additive constant. The net-

work parameters θ andφ are updated by using stochastic gradient
ascent. This method can be considered as training qφ(Z | X)
and Hφ by the original ELBO Lθ,φ(X), while the DoAs Uφ

regularize the SCMs Hφ and are optimized to maximize the
log-likelihood log p(Hφ | Uφ). After training these networks,
they can be used to separate and localize moving sources in an
unseen mixture. The source signals are obtained with the source
imagesYnft � gθ,f (µφ,nt(X))Hnft by a multichannel Wiener
filter [14], [21].

IV. EXPERIMENTAL EVALUATION

We evaluated our method on simulated speech mixtures due
to the need for reference signals. A demonstration with real
recordings can be found at https://ybando.jp/projects/spl2023.

A. Dataset

We generated a dataset of multichannel mixtures of moving
sources. The mixture signals were generated as observations
of six-channel microphone arrays in a way similar to the way
the spatialized WSJ0-2mix dataset was generated [34]. Each
mixture consisted of two source signals randomly selected from
the WSJ0 English speech corpus. The moving source signals
were generated by convoluting time-varying room impulse re-
sponses (RIRs) [35] generated every 0.1 s. The array with
random geometry was placed randomly around the center of
a room having dimensions of 5 m×5 m×3 m. Each source was
initially located randomly and moved around the array with a
constant speed drawing a horizontal circular arc. We sampled the
angular velocities of sources uniformly between 0◦/s and 45◦/s.
The angular difference between sources always had at least 45◦
through the movement. The reverberation time (RT60) was fixed
to 200 ms. The source signals were mixed with a signal-to-noise
ratio (SNR) randomly chosen between −5 and +5 dB. The
mixture signals were generated at 16 kHz, and Gaussian noise
was added with an SNR of 30 dB. The dataset consisted of 20000,
5000, and 3000 mixtures for training, validation, and test sets,
respectively. For comparison, we also generated a static dataset
in which no sources moved.

B. Experimental Condition

We used almost the same network configuration as that of
the original neural FCA [21], whose inference and generative
models consisted of temporal convolutional networks. We added
the dropout (p = 0.1) to avoid bad local optima and two output
layers to the inference model for estimating the TF mask and
DoA. To utilize the spatial information and array geometries, the
input feature consisted of a log-power spectrogram and a DoA
spectrogram [36] calculated with 1000 uniformly distributed
three-dimensional directions.

The networks were trained by an Adam optimizer [37] for
200 epochs with a learning rate of 0.001. The hyperparameters
D, ν, ε, γ0, and η were set to 50, M + 1, 0.001, 0.1, and 0.99,
respectively. We set γ to 0.99 for sources and 1 (time-invariant)

https://ybando.jp/projects/spl2023
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TABLE I
SEPARATION AND LOCALIZATION PERFORMANCE IN SDR AND DOA ERROR. THE MOVING CONDITION WAS DIVIDED INTO THREE SUBSETS ACCORDING TO

SOURCE ANGULAR VELOCITIES: SLOW (0/S–15◦/S), MID (15◦/S–30◦/S), AND FAST (30◦/S–45◦/S). TV STANDS FOR “TIME-VARYING.”

for noise. We scaled the log p(Hφ|Uφ) in (14) with 0.001
to avoid over-constraining the SCMs. Following [21], we also
performed the cyclic annealing [38] for scaling the KL term
in (6). The spectrograms were obtained by the short-time
Fourier transform with a window size of 512 samples and a
hop length of 128 samples. The mixture spectrograms were fed
to the network by splitting them into 500-frame clips. The batch
size for training was 128 clips. These hyperparameters were
determined empirically.

Our time-varying neural FCA was compared with exist-
ing BSS methods, a joint separation and localization method,
and the original neural FCA. As BSS methods, we evaluated
cACGMM [18], FCA [14], FastMNMF2 [17]. An external fre-
quency permutation solver was used for the cACGMM and the
FCA as in [21], and the number of basis vectors for FastMNMF2
was set to 8. We evaluated a joint method based on the clustering
of TF bins with a DoA-HMM [32]. This method can separate
moving sound sources and was initialized by the localization
results using MUSIC [39]. The original (time-invariant) neural
FCA was trained with the same input features as the proposed
method. The number of the iteration for estimating the SCM
Hnf was 5. We evaluated the separation performance with
the average signal-to-distortion ratio (SDR) in dB [40] and
the localization performance with the average DoA error in
degrees [41]. The DoA error was averaged on non-silent frames
whose powers of oracle source signals were larger than−20 dB
from the average.

C. Experimental Results

The separation and localization performance is summarized in
Table I. We can first see that the SDRs of the original neural FCA
and the standard BSS methods were significantly degraded by
the source movements. In contrast, our method (the bottom row)
improved the average SDR by more than 4 dB for the moving
condition from these methods. Although its SDR for the static
condition was 1.8 dB worse than that of the original neural FCA,
our method was still better than FastMNMF2. Furthermore, our
method outperformed the DoA-HMM-based clustering in both
the SDRs and DoA errors and MUSIC in the DoA errors for
both static and moving conditions. As shown in Fig. 2, while
the original neural FCA output unseparated sources or silence,
our method successfully estimated speech sources over almost
all the time frames.

Our method consists of three extensions of the neural FCA:
estimatingHnf with TF masking, estimating time-varyingHnft

by (12), and performing joint localization and separation. As

Fig. 2. Results for separation of a moving source signal by the original and
proposed time-varying neural FCAs.

Fig. 3. DoAs estimated by our method. DoAs whose source was silent are
omitted. Gray lines are ground-truth DoAs.

in the bottom two rows of Table I, the time-varying extension
degraded the performance for the static condition because it
cannot exploit the statistics of entire time frames. In contrast,
this extension is key to improving the performance in the moving
condition. The temporal smoothness of DoAs introduced by (13)
was also an important key as demonstrated in Fig. 3. Our method
without the smoothness failed to track each source and estimated
two DoAs that were almost the same. The localization results
with the smoothness, on the other hand, were estimated correctly.

V. CONCLUSION

We presented an unsupervised multichannel method that can
separate and localize moving sound sources without any su-
pervision. Our method trains a joint separation and localiza-
tion model only from multichannel mixture signals and array
geometries. This training is based on an extension of neural
FCA to incorporate the time-varying DoAs of each source. The
experimental results with moving sound sources demonstrated
that our method outperformed existing BSS methods and a joint
source separation and localization method. Our future work
includes further extending the neural FCA to handle variable
numbers of sound sources and long reverberation, which will
enable the separation of real-world recordings.



388 IEEE SIGNAL PROCESSING LETTERS, VOL. 30, 2023

REFERENCES

[1] S. Watanabe et al., “CHiME-6 challenge: Tackling multispeaker speech
recognition for unsegmented recordings,” in Proc. Workshop Speech Pro-
cess. Everyday Environments, 2020, pp. 1–7.

[2] N. Turpault et al., “Improving sound event detection in domestic environ-
ments using sound separation,” in Proc. Detection Classification Acoust.
Scenes Events Workshop, 2020, pp. 205–209.

[3] T. V. Neumann et al., “End-to-end training of time domain audio separation
and recognition,” in Proc. IEEE Int. Conf. Acoust., Speech, Signal Process.,
2020, pp. 7004–7008.

[4] D. Marquardt, V. Hohmann, and S. Doclo, “Interaural coherence preserva-
tion in multi-channel Wiener filtering-based noise reduction for binaural
hearing aids,” IEEE/ACM Trans. Audio, Speech, Lang. Process., vol. 23,
no. 12, pp. 2162–2176, Dec. 2015.

[5] Y. Luo and N. Mesgarani, “Conv-TasNet: Surpassing ideal time–frequency
magnitude masking for speech separation,” IEEE/ACM Trans. Audio,
Speech, Lang. Process., vol. 27, no. 8, pp. 1256–1266, Aug. 2019.

[6] C. Subakan, M. Ravanelli, S. Cornell, M. Bronzi, and J. Zhong, “Attention
is all you need in speech separation,” in Proc. IEEE Int. Conf. Acoust.,
Speech, Signal Process., 2021, pp. 21–25.

[7] T. Ochiai, M. Delcroix, R. Ikeshita, K. Kinoshita, T. Nakatani, and S. Araki,
“Beam-TasNet: Time-domain audio separation network meets frequency-
domain beamformer,” in Proc. IEEE Int. Conf. Acoust., Speech, Signal
Process., 2020, pp. 6379–6383.

[8] M. Kolbæk, D. Yu, Z.-H. Tan, and J. Jensen, “Multitalker speech separation
with utterance-level permutation invariant training of deep recurrent neural
networks,” IEEE/ACM Trans. Audio, Speech, Lang. Process., vol. 25,
no. 10, pp. 1901–1913, Oct. 2017.

[9] K. Saijo and R. Scheibler, “Spatial loss for unsupervised multi-channel
source separation,” in Proc. Interspeech, 2022, pp. 241–245.

[10] S. Wisdom, E. Tzinis, H. Erdogan, R. Weiss, K. Wilson, and J. Hershey,
“Unsupervised sound separation using mixture invariant training,” in Proc.
Adv. Neural Inf. Process. Syst., 2020, vol. 33, pp. 3846–3857.

[11] L. Drude, D. Hasenklever, and R. Haeb-Umbach, “Unsupervised training
of a deep clustering model for multichannel blind source separation,” in
Proc. IEEE Int. Conf. Acoust., Speech, Signal Process., 2019, pp. 695–699.

[12] L. Drude, J. Heymann, and R. Haeb-Umbach, “Unsupervised train-
ing of neural mask-based beamforming,” in Proc. Interspeech, 2019,
pp. 1253–1257.

[13] M. Togami, Y. Masuyama, T. Komatsu, and Y. Nakagome, “Unsupervised
training for deep speech source separation with Kullback-Leibler diver-
gence based probabilistic loss function,” in Proc. IEEE Int. Conf. Acoust.,
Speech, Signal Process., 2020, pp. 56–60.

[14] N. Q. Duong, E. Vincent, and R. Gribonval, “Under-determined re-
verberant audio source separation using a full-rank spatial covariance
model,” IEEE/ACM Trans. Audio, Speech, Lang. Process., vol. 18, no. 7,
pp. 1830–1840, Sep. 2010.

[15] H. Sawada, H. Kameoka, S. Araki, and N. Ueda, “Multichannel exten-
sions of non-negative matrix factorization with complex-valued data,”
IEEE/ACM Trans. Audio, Speech, Lang. Process., vol. 21, no. 5,
pp. 971–982, May 2013.

[16] D. Kitamura, N. Ono, H. Sawada, H. Kameoka, and H. Saruwatari,
“Determined blind source separation unifying independent vector analysis
and nonnegative matrix factorization,” IEEE/ACM Trans. Audio, Speech,
Lang. Process., vol. 24, no. 9, pp. 1626–1641, Sep. 2016.

[17] K. Sekiguchi, Y. Bando, A. A. Nugraha, K. Yoshii, and T. Kawahara,
“Fast multichannel nonnegative matrix factorization with directivity-
aware jointly-diagonalizable spatial covariance matrices for blind source
separation,” IEEE/ACM Trans. Audio, Speech, Lang. Process., vol. 28,
pp. 2610–2625, 2020.

[18] N. Ito, S. Araki, and T. Nakatani, “Complex angular central Gaus-
sian mixture model for directional statistics in mask-based microphone
array signal processing,” in Proc. Eur. Signal Process. Conf., 2016,
pp. 1153–1157.

[19] K. Yatabe and D. Kitamura, “Determined blind source separation via
proximal splitting algorithm,” in Proc. IEEE Int. Conf. Acoust., Speech,
Signal Process., 2018, pp. 776–780.

[20] R. Scheibler and N. Ono, “Fast and stable blind source separation with
rank-1 updates,” in Proc. IEEE Int. Conf. Acoust., Speech, Signal Process.,
2020, pp. 236–240.

[21] Y. Bando, K. Sekiguchi, Y. Masuyama, A. A. Nugraha, M. Fontaine,
and K. Yoshii, “Neural full-rank spatial covariance analysis for blind
source separation,” IEEE Signal Process. Lett., vol. 28, pp. 1670–1674,
2021.

[22] Y. Bando, T. Aizawa, K. Itoyama, and K. Nakadai, “Weakly-
supervised neural full-rank spatial covariance analysis for a front-end
system of distant speech recognition,” in Proc. Interspeech, 2022,
pp. 3824–3828.

[23] Y. Bando, M. Mimura, K. Itoyama, K. Yoshii, and T. Kawahara, “Statis-
tical speech enhancement based on probabilistic integration of variational
autoencoder and non-negative matrix factorization,” in Proc. IEEE Int.
Conf. Acoust., Speech, Signal Process., 2018, pp. 716–720.

[24] L. Li, H. Kameoka, and S. Makino, “Fast MVAE: Joint separation and
classification of mixed sources based on multichannel variational autoen-
coder with auxiliary classifier,” in Proc. IEEE Int. Conf. Acoust., Speech,
Signal Process., 2019, pp. 546–550.

[25] S. Leglaive, X. Alameda-Pineda, L. Girin, and R. Horaud, “A recurrent
variational autoencoder for speech enhancement,” in Proc. IEEE Int. Conf.
Acoust., Speech, Signal Process., 2020, pp. 371–375.

[26] H. Kameoka, L. Li, S. Inoue, and S. Makino, “Supervised determined
source separation with multichannel variational autoencoder,” Neural
Comput., vol. 31, no. 9, pp. 1891–1914, Sep. 2019.

[27] S. Leglaive, L. Girin, and R. Horaud, “Semi-supervised multichannel
speech enhancement with variational auto encoders and non-negative
matrix factorization,” in Proc. IEEE Int. Conf. Acoust., Speech, Signal
Process., 2019, pp. 101–105.

[28] S. Seki, H. Kameoka, L. Li, T. Toda, and K. Takeda, “Generalized multi-
channel variational autoencoder for underdetermined source separation,”
in Proc. Eur. Signal Process. Conf., 2019, pp. 1–5.

[29] D. Kounades-Bastian, L. Girin, X. Alameda-Pineda, S. Gannot, and R.
Horaud, “A variational EM algorithm for the separation of time-varying
convolutive audio mixtures,” IEEE/ACM Trans. Audio, Speech, Lang.
Process., vol. 24, no. 8, pp. 1408–1423, Aug. 2016.

[30] J. Nikunen, A. Diment, and T. Virtanen, “Separation of moving sound
sources using multichannel NMF and acoustic tracking,” IEEE/ACM
Trans. on Audio, Speech, Lang. Process., vol. 26, no. 2, pp. 281–295,
Feb. 2018.

[31] M. Taseska and E. A. Habets, “Blind source separation of moving
sources using sparsity-based source detection and tracking,” IEEE/ACM
Trans. Audio, Speech, Lang. Process., vol. 26, no. 3, pp. 657–670,
Mar. 2018.

[32] T. Higuchi, N. Takamune, T. Nakamura, and H. Kameoka, “Underdeter-
mined blind separation and tracking of moving sources based on DOA-
HMM,” in Proc. IEEE Int. Conf. Acoust., Speech, Signal Process., 2014,
pp. 3191–3195.

[33] D. P. Kingma and M. Welling, “Auto-encoding variational bayes,” in Proc.
Int. Conf. Learn. Representations, 2014, pp. 1–14.

[34] Z.-Q. Wang, J. L. Roux, and J. R. Hershey, “Multi-channel deep clustering:
Discriminative spectral and spatial embeddings for speaker-independent
speech separation,” in Proc. IEEE Int. Conf. Acoust., Speech, Signal
Process., 2018, pp. 1–5.

[35] J. B. Allen and D. A. Berkley, “Image method for efficiently simu-
lating small-room acoustics,” J. Acoustical Soc. Amer., vol. 65, no. 4,
pp. 943–950, 1979.

[36] M. Togami, “Spatial constraint on multi-channel deep clustering,” in Proc.
IEEE Int. Conf. Acoust., Speech, Signal Process., 2019, pp. 531–535.

[37] D. P. Kingma and J. Ba, “Adam: A method for stochastic optimization,”
in Proc. Int. Conf. Learn. Representations, 2015, pp. 1–15.

[38] H. Fu, C. Li, X. Liu, J. Gao, A. Celikyilmaz, and L. Carin, “Cyclical
annealing schedule: A simple approach to mitigating KL vanishing,” in
Proc. Conf. North Amer. Chapter Assoc. Comput. Linguistics: Hum. Lang.
Technol., 2019, pp. 240–250.

[39] D. Salvati, C. Drioli, and G. L. Foresti, “Incoherent frequency fusion
for broadband steered response power algorithms in noisy environments,”
IEEE Signal Process. Lett., vol. 21, no. 5, pp. 581–585, May 2014.

[40] E. Vincent, R. Gribonval, and C. Févotte, “Performance measurement in
blind audio source separation,” IEEE/ACM Trans. Audio, Speech, Lang.
Process., vol. 14, no. 4, pp. 1462–1469, Jul. 2006.

[41] S. Adavanne, A. Politis, J. Nikunen, and T. Virtanen, “Sound event local-
ization and detection of overlapping sources using convolutional recurrent
neural networks,” IEEE J. Sel. Topics Signal Process., vol. 13, no. 1,
pp. 34–48, Mar. 2019.



<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /None
  /Binding /Left
  /CalGrayProfile (Gray Gamma 2.2)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Warning
  /CompatibilityLevel 1.4
  /CompressObjects /Off
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJobTicket false
  /DefaultRenderingIntent /Default
  /DetectBlends true
  /DetectCurves 0.0000
  /ColorConversionStrategy /sRGB
  /DoThumbnails true
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 1048576
  /LockDistillerParams true
  /MaxSubsetPct 100
  /Optimize true
  /OPM 0
  /ParseDSCComments false
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveDICMYKValues true
  /PreserveEPSInfo false
  /PreserveFlatness true
  /PreserveHalftoneInfo true
  /PreserveOPIComments false
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts true
  /TransferFunctionInfo /Remove
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
    /Algerian
    /Arial-Black
    /Arial-BlackItalic
    /Arial-BoldItalicMT
    /Arial-BoldMT
    /Arial-ItalicMT
    /ArialMT
    /ArialNarrow
    /ArialNarrow-Bold
    /ArialNarrow-BoldItalic
    /ArialNarrow-Italic
    /ArialUnicodeMS
    /BaskOldFace
    /Batang
    /Bauhaus93
    /BellMT
    /BellMTBold
    /BellMTItalic
    /BerlinSansFB-Bold
    /BerlinSansFBDemi-Bold
    /BerlinSansFB-Reg
    /BernardMT-Condensed
    /BodoniMTPosterCompressed
    /BookAntiqua
    /BookAntiqua-Bold
    /BookAntiqua-BoldItalic
    /BookAntiqua-Italic
    /BookmanOldStyle
    /BookmanOldStyle-Bold
    /BookmanOldStyle-BoldItalic
    /BookmanOldStyle-Italic
    /BookshelfSymbolSeven
    /BritannicBold
    /Broadway
    /BrushScriptMT
    /CalifornianFB-Bold
    /CalifornianFB-Italic
    /CalifornianFB-Reg
    /Centaur
    /Century
    /CenturyGothic
    /CenturyGothic-Bold
    /CenturyGothic-BoldItalic
    /CenturyGothic-Italic
    /CenturySchoolbook
    /CenturySchoolbook-Bold
    /CenturySchoolbook-BoldItalic
    /CenturySchoolbook-Italic
    /Chiller-Regular
    /ColonnaMT
    /ComicSansMS
    /ComicSansMS-Bold
    /CooperBlack
    /CourierNewPS-BoldItalicMT
    /CourierNewPS-BoldMT
    /CourierNewPS-ItalicMT
    /CourierNewPSMT
    /EstrangeloEdessa
    /FootlightMTLight
    /FreestyleScript-Regular
    /Garamond
    /Garamond-Bold
    /Garamond-Italic
    /Georgia
    /Georgia-Bold
    /Georgia-BoldItalic
    /Georgia-Italic
    /Haettenschweiler
    /HarlowSolid
    /Harrington
    /HighTowerText-Italic
    /HighTowerText-Reg
    /Impact
    /InformalRoman-Regular
    /Jokerman-Regular
    /JuiceITC-Regular
    /KristenITC-Regular
    /KuenstlerScript-Black
    /KuenstlerScript-Medium
    /KuenstlerScript-TwoBold
    /KunstlerScript
    /LatinWide
    /LetterGothicMT
    /LetterGothicMT-Bold
    /LetterGothicMT-BoldOblique
    /LetterGothicMT-Oblique
    /LucidaBright
    /LucidaBright-Demi
    /LucidaBright-DemiItalic
    /LucidaBright-Italic
    /LucidaCalligraphy-Italic
    /LucidaConsole
    /LucidaFax
    /LucidaFax-Demi
    /LucidaFax-DemiItalic
    /LucidaFax-Italic
    /LucidaHandwriting-Italic
    /LucidaSansUnicode
    /Magneto-Bold
    /MaturaMTScriptCapitals
    /MediciScriptLTStd
    /MicrosoftSansSerif
    /Mistral
    /Modern-Regular
    /MonotypeCorsiva
    /MS-Mincho
    /MSReferenceSansSerif
    /MSReferenceSpecialty
    /NiagaraEngraved-Reg
    /NiagaraSolid-Reg
    /NuptialScript
    /OldEnglishTextMT
    /Onyx
    /PalatinoLinotype-Bold
    /PalatinoLinotype-BoldItalic
    /PalatinoLinotype-Italic
    /PalatinoLinotype-Roman
    /Parchment-Regular
    /Playbill
    /PMingLiU
    /PoorRichard-Regular
    /Ravie
    /ShowcardGothic-Reg
    /SimSun
    /SnapITC-Regular
    /Stencil
    /SymbolMT
    /Tahoma
    /Tahoma-Bold
    /TempusSansITC
    /TimesNewRomanMT-ExtraBold
    /TimesNewRomanMTStd
    /TimesNewRomanMTStd-Bold
    /TimesNewRomanMTStd-BoldCond
    /TimesNewRomanMTStd-BoldIt
    /TimesNewRomanMTStd-Cond
    /TimesNewRomanMTStd-CondIt
    /TimesNewRomanMTStd-Italic
    /TimesNewRomanPS-BoldItalicMT
    /TimesNewRomanPS-BoldMT
    /TimesNewRomanPS-ItalicMT
    /TimesNewRomanPSMT
    /Times-Roman
    /Trebuchet-BoldItalic
    /TrebuchetMS
    /TrebuchetMS-Bold
    /TrebuchetMS-Italic
    /Verdana
    /Verdana-Bold
    /Verdana-BoldItalic
    /Verdana-Italic
    /VinerHandITC
    /Vivaldii
    /VladimirScript
    /Webdings
    /Wingdings2
    /Wingdings3
    /Wingdings-Regular
    /ZapfChanceryStd-Demi
    /ZWAdobeF
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /CropColorImages true
  /ColorImageMinResolution 150
  /ColorImageMinResolutionPolicy /OK
  /DownsampleColorImages false
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 900
  /ColorImageDepth -1
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 1.00111
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages true
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /ColorImageDict <<
    /QFactor 0.40
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasGrayImages false
  /CropGrayImages true
  /GrayImageMinResolution 150
  /GrayImageMinResolutionPolicy /OK
  /DownsampleGrayImages false
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 1200
  /GrayImageDepth -1
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 1.00083
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages true
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /GrayImageDict <<
    /QFactor 0.40
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasMonoImages false
  /CropMonoImages true
  /MonoImageMinResolution 1200
  /MonoImageMinResolutionPolicy /OK
  /DownsampleMonoImages false
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 1600
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.00063
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /CheckCompliance [
    /None
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile (None)
  /PDFXOutputConditionIdentifier ()
  /PDFXOutputCondition ()
  /PDFXRegistryName ()
  /PDFXTrapped /False

  /CreateJDFFile false
  /Description <<
    /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
    /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
    /DAN <>
    /DEU <>
    /ESP <>
    /FRA <>
    /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
    /JPN <>
    /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
    /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
    /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
    /PTB <>
    /SUO <>
    /SVE <>
    /ENU (Use these settings to create PDFs that match the "Suggested"  settings for PDF Specification 4.0)
  >>
>> setdistillerparams
<<
  /HWResolution [600 600]
  /PageSize [612.000 792.000]
>> setpagedevice


