
CiFi: Versatile Analysis of Class and Field
Immutability

1st Tobias Roth
Software Technology
Technische Universität
Darmstadt, Germany

roth@cs.tu-darmstadt.de

2nd Dominik Helm
Software Technology
Technische Universität
Darmstadt, Germany

helm@cs.tu-darmstadt.de

3rd Michael Reif
Software Technology
Technische Universität
Darmstadt, Germany

mi.reif.mr@gmail.com

4th Mira Mezini
Software Technology
Technische Universität
Darmstadt, Germany

mezini@cs.tu-darmstadt.de

Abstract—Reasoning about immutability is important for pre-
venting bugs, e.g., in multi-threaded software. So far, static
analysis to infer immutability properties has mostly focused
on individual objects and references. Reasoning about fields
and entire classes, while significantly simpler, has gained less
attention. Even a consistently used terminology is missing, which
makes it difficult to implement analyses that rely on immutability
information. We propose a model for class and field immutability
that unifies terminology for immutability flavors considered
by previous work and covers new levels of immutability to
handle lazy initialization and immutability dependent on generic
type parameters. Using the OPAL static analysis framework,
we implement CiFi, a set of modular, collaborating analyses
for different flavors of immutability, inferring the properties
defined in our model. Additionally, we propose a benchmark
of representative test cases for class and field immutability. We
use the benchmark to showcase CiFi’s precision and recall in
comparison to state of the art and use CiFi to study the prevalence
of immutability in real-world libraries, showcasing the practical
quality and relevance of our model.

Index Terms—class and field immutability, static analysis

I. INTRODUCTION

Immutability is the property of a program element stating

that it is unchangeable or not changed after its creation [1].

The immutability property is important for program correctness

and security: Immutable data structures are not prone to race

conditions in multi-threaded applications [2]–[4]. Immutable

values are less prone to security issues, hence recommended by

the Secure Coding Guidelines for Java SE [5]. Some APIs, like

Java’s Map interface, assume objects, used as keys, not to be

mutated1 [6]. Immutability is also a prerequisite for precisely

deriving other properties, e.g., method purity [7], [8].

In this paper, we focus on immutability of classes and

fields. Previous research on immutability has often focused

on individual objects and references [8]–[12]. However, it

has been argued [13], [14] that focusing on classes and

fields simplifies the implementation of systems that enforce

immutability restrictions2 and their usage by developers.

We address the following limitations of the state of the art

in checking and enforcing class and field immutability.

First, existing approaches address only individual specific lev-

els of immutability. For instance, with their final, resp. val

1Mutations that don’t effect equals() comparisons are allowed.
2Immutability restrictions can be, e.g., in the form of annotations.

annotations, the Java and Scala programming languages support

a weak level of immutability called non-assignability [1], [8].
Coblenz et al. [14] and Porat et al. [15] deal only with

transitive immutability, where every value referred to directly

or transitively by a transitively immutable class or field is

immutable. Nelson et al. [16], on the other hand, deal with

non-transitive immutability of fields, where non-transitive
immutability only guarantees that the respective field is non-

assignable. However, none of the approaches handles both

transitive and non-transitive immutability.
Second, existing approaches do not properly cover com-

mon programming patterns, as we elaborate in Section II.

Examples of programming patterns that are not properly

handled are lazy initialization and generic type parameters

often found in collections and collection-like classes (e.g.

java.util.Optional). With lazy initialization (cf. List-

ing 1), a field is assigned only when it is accessed for the first

time. Here, the field cannot just be restricted to assignments in

the class’ constructor. In turn, care has to be taken to ensure

that really only a single initialization can be performed. Also,

it has to be ensured that the field cannot be observed before

its initialization, as observing different values before and after

initialization contradicts the guarantees that immutability aims

to provide. Generic classes require special treatment, too, as

their immutability can depend on the immutability of their type

parameters. In Listing 2, the immutability of class Generic
depends on the type parameter T used for the final field t.

1 class C {
2 private Object object;
3 public synchronized Object getObject() {
4 if (object==null)
5 object = new Object();
6 return object;
7 } }

Listing 1. Thread-safe Lazy Initialization Example

1 class Generic<T> {
2 private final T t;
3 public Gen(T t){ this.t = t; }
4 }

Listing 2. Dependently Immutable Class Example

Finally, we lack a common model that provides unified

terminology for different levels of class and field immutability.

979

2021 36th IEEE/ACM International Conference on Automated Software Engineering (ASE)

Work licensed under Creative Commons Attribution 4.0 License. https://creativecommons.org/licenses/by/4.0/
DOI 10.1109/ASE51524.2021.00090

20
21

 3
6t

h
IE

EE
/A

C
M

 In
te

rn
at

io
na

l C
on

fe
re

nc
e

on
 A

ut
om

at
ed

 S
of

tw
ar

e
En

gi
ne

er
in

g
(A

SE
) |

 9
78

-1
-6

65
4-

03
37

-5
/2

1/
$3

1.
00

 ©
20

21
 IE

EE
 |

D
O

I:
10

.1
10

9/
A

SE
51

52
4.

20
21

.9
67

89
03

For instance, deep respectively shallow immutability are used

[1], or just immutability [17] to refer to the same concepts

as (non)-transitive immutability. Hence, we need a unified

model that not only considers trivial cases, like final fields

with immutable types, but also common programming patterns

such as lazy initialization and generic classes.

The work presented here addresses the above limitations.

First, we define a model for class and field immutability that

incorporates all relevant levels of immutability and precisely

defines their meaning and relations, thus establishing a consis-

tent terminology. Second, based on the model, we define CiFi,

a set of modular, independent, collaborating static analyses

to infer the different levels of immutability for fields and

classes, including entire class hierarchies. CiFi uses our OPAL

framework [18] and can be used to reason about codebases

and their immutability guarantees directly by developers or by

further analyses.

We evaluate our work along several dimensions. First, we

demonstrate the expressiveness of the proposed model by

categorizing it along the classification system for immutability

support proposed by Coblenz et al. [13]. Second, we

evaluate CiFi against CiFi-Bench, a set of handcrafted test

cases annotated with immutability properties. To the best

of our knowledge, such a benchmark did not exist yet –

CiFi-Bench can be used to guide and test other analyses of

class and field immutability. We use it to evaluate Glacier, the

state of the art in class- and field-immutability enforcement,

to compare its precision and recall with those of CiFi. Finally,

we investigate the extent to which immutability flavors (e.g.,

class and field immutability) and levels (e.g., mutable, or

(non-)transitively immutable) defined in our model are found

in real-world libraries. In short, we show that CiFi (i) precisely

identifies important immutability patterns, while soundily

over-approximating remaining edge cases, (ii) thereby clearly

outperforms Glacier, and (iii) identifies significant amounts of

immutable data in real-world libraries.

To recap, our contributions are:

• A literature survey on the definitions and terminology

used for class and field immutability (Section II).

• A comprehensive, fine-grained lattice-based model of all

relevant levels of class and field immutability (Section III).

• CiFi, a set of modular, collaborating static analyses that

infer the properties defined in the model (Section IV).

• A handcrafted benchmark to serve as a ground truth for

class and field immutability analyses (Section V-B1).

• An extensive evaluation of CiFi based on the benchmark,

real-world libraries, and the state of the art (Section V).

We discuss threats to validity in Section VI, present further

related work regarding object and reference immutability in

Section VII, and conclude the paper in Section VIII.

II. STATE OF THE ART

We survey prior work on different levels of class and field

immutability. In lack of an existing consistent terminology, we

use the original names for the considered levels.

Weak levels of immutability enforcement have been part of

programming language design since decades. In Scala, fields

can be declared with the keyword val which corresponds

to Java’s final modifier. These constructs prevent the field

from being reassigned, but give no guarantee that the object

referenced by the field is immutable. With case classes in Scala

and Records [19] introduced in Java 16, these languages also

offer classes that store data in fields that, implicitly, cannot be

reassigned. However, mutable objects can be assigned to them.

To sum up, while the above language features underline the

importance of immutability, they enforce only weak guarantees

that other authors call non-assignability [1], [8].

Potanin et al. [1] introduce the terms shallow and deep
immutability to distinguish between non-assignable fields

referring to mutable objects or arrays (shallow) and non-

assignable fields (transitively) referring to objects or arrays

that cannot be mutated either (deep). Listing 3 illustrates

both cases. The final (non-assignable) field s refers to a

java.util.String (known to be deeply immutable), thus,

s is deeply immutable. In contrast, the public field iArr refers

to an array that can be mutated outside its class (arrays are

mutable), thus, iArr is shallowly immutable.

1 public final String s = ”string”; // deeply immutable
2 public final int[] iArr = {42}; // shallowly immutable

Listing 3. Deep/Shallow Immutability Example

Coblenz et al. [13] use different terms for the same immutability

concepts, namely non-transitive for shallow and transitive for

deep. Their Glacier [14] system uses annotations for Java

classes and fields, with @Immutable enforcing transitive
immutability and @MaybeMutable stating that a field or

class is not guaranteed to be transitively immutable. Gordon et

al. [2] call transitively immutable fields just immutable, whereas

Nelson et al. [16] use the term immutable for final fields,

i.e., fields only guaranteed to be non-transitively immutable.

Glacier has no direct support for non-assignability or non-

transitive immutability, arguing that non-transitive immutability

provides only weak guarantees [13]. In order for a class C to be

@Immutable in Glacier, (a) all fields of C must be transitively

immutable and may only be assigned in the class’ constructors,

and (b) C must have only @Immutable subclasses. Because

of (a), Glacier cannot handle cases where fields are assigned

outside a constructor, e.g., in lazy initialization. For generic

classes annotated as @Immutable, Glacier enforces that type

parameters are instantiated with @Immutable types. This is

overly conservative, as type parameters do not necessarily

influence a class’ immutability. Also, it prevents generic

immutable classes such as immutable collections from being

annotated @Immutable if they are used to store mutable or

non-transitively immutable data.

Porat et al. [15] propose an inter-procedural data-flow

analysis to detect transitively immutable classes and fields

in Java. According to their definition, a field is immutable if

its value or referee is not mutated after being assigned in the

static initializer or constructor. Like Glacier, this restrictive

immutability definition cannot handle lazy initialization. A

980

class is said to be immutable, if all of its non-static fields are

immutable. The approach was implemented and evaluated on

the Java Development Kit (JDK) 1.2 (released in 1998); thus,

it lacks support for newer features of Java, e.g., generics.

Kjolstad et al. [17] use the term immutable for classes

that have only transitively immutable instance fields. Their

refactoring tool Immutator transforms mutable classes to

immutable ones in order to benefit from the guarantees provided

by transitive immutability. To ensure that all fields are initialized

in the constructor, Immutator adds two new constructors: A

public one without parameters initializes all fields with a default

value and a private one taking an initialization parameter for

each field. Finally, it rewrites all methods mutating the transitive

state into factory methods and all client methods such that they

access class instances in an immutable way. Immutator makes

transformed classes final to prohibit mutable subclasses.

Thus, the refactoring is limited to classes without subclasses.

With fields made final, lazy initialization is not possible.

Also, Immutator does not handle generic classes.

� The survey of the state of the art in analyzing class and field
immutability reveals that we lack a consistent terminology
for class and field immutability. While some authors use deep

and shallow, others use transitive and non-transitive. Still
others use immutable with different meanings.
� None of the existing approaches can simultaneously handle
both non-transitive and transitive immutability. Also, none
of the presented approaches can recognize lazy initialization
and properly handle immutability of generic classes.
� Each approach focuses on a fixed composition of im-
mutability flavors, e.g., class and field immutability, and
a single level—most often transitive immutability—and it is
not possible for client analyses to get information for other
immutability flavors or levels.

III. MODEL

We present our unified model of immutability properties for

fields, classes, and types along with their order and relations

structured in lattices. While they are simple chains only, this

is in line with the OPAL framework’s [18] terminology and

requirements. We exemplify the properties with Java code

snippets, but the model can be used for any object-oriented

language.

A. Field Assignability

Potanin et al. [1] define assignability to indicate whether

a static or instance field is or can be reassigned after it

is initialized. We extend on that, defining several levels

of assignability which we elaborate below. Their order is

illustrated in Fig. 1.
1) (Effectively) Non-Assignable Fields: Fields can explicitly

be enforced to be non-assignable, e.g., using Java’s final
keyword, or can be effectively non-assignable because there is

no reassignment present and none can be added through other

code that is not analyzed.

Definition 1: A field is non-assignable if it is only assigned

once and cannot be reassigned.

Definition 2: A field is effectively non-assignable if it cannot

be observed with different values.

This distinction allows to find fields that are not yet enforced

to be non-assignable but could be made so. Examples for both

cases are given in Listing 4. The field imm (Line 2) is final
and, thus, it is only assigned once (during the execution of

the implicit constructor). As a result, it cannot be reassigned.

Similarly, the field effImm (Line 3) is initialized only once and

is never reassigned again. As effImm is declared private,

no code outside of class C can assign to it, thus rendering it

effectively non-assignable.

1 class C {
2 private final int imm = 42;
3 private int effImm = 42;
4 }

Listing 4. (Effectively) Non-Assignable Fields

2) Lazily Initialized Fields: This is a common pattern used

to avoid the cost of computing or storing a value if it is

never accessed, while performing the computation only once

if it is accessed repeatedly. It is often implemented by a field

accessible only through a single method that only computes

and stores the value if the field still has its default value.

An example of a lazily initialized field was given in Listing 1.

As the field object is private, no other code can access the

field except through the method getObject. This method will

initialize the field object only if its value is still null. As

the method is synchronized, it is guaranteed that the field

is only initialized once, even in the presence of multi-threaded

execution. Without the synchronized annotation, the field

object could be assigned to more than once. This happens if

concurrent threads each see object at its default state (null)

in Line 4 before any of them performs the assignment in Line 5.

In this case, each thread may assign a different instance to

object, with only the last assignment being persistent. Yet,

for programs known to be single-threaded, one can still provide

a valuable guarantee. For this reason, we define two properties

related to lazy initialization: lazily initialized (Definition 3)

and unsafely lazily initialized (Definition 4):

Definition 3: A field is lazily initialized, if its lifetime can

be divided into two distinct phases: During the first phase,

no accesses to the referenced value are made except to check

whether the field must be transferred to the second phase.

During the second phase, the field is effectively non-assignable.

Definition 4: A field is unsafely lazily initialized if, as long

as only one thread accesses it, its lifetime can be divided into

two distinct phases: During the first phase, no accesses to the

referenced value are made except to check whether the field

must be transferred to the second phase. During the second

phase, the field is effectively non-assignable.

3) Assignable Fields: Assignable is the top (least precise)

value of the field-assignability lattice:

Definition 5: A field is assignable if none of the previous

definitions apply.

981

assignable

unsafely lazily initialized

lazily initialized

effectively non-assignable

non-assignable

Fig. 1. Field-Assignability Lattice

Fig. 1 gives the lattice order of the previously defined levels

of assignability based on the provided guarantees: while non-

assignable fields cannot be assigned outside the constructor,

effectively non-assignable fields could be reassigned but

provably are not. In turn, (unsafely) lazily initialized fields are

reassigned once. However, they can be observed before they

are initialized only by the check for the default value.

B. Field Immutability

Field immutability combines assignability of a given static

or instance field f with the immutability of f’s value. Our

lattice for field immutability is shown in Fig. 2. The top (least

precise) value of the field-immutability lattice is mutable:

Definition 6: A field is mutable if and only if it is assignable.

For the purpose of this definition, we treat an unsafely lazily
initialized field as assignable if it is unknown whether multiple

threads might access the field.

If a field f is not assignable, its immutability depends on the

immutability of the values f can potentially refer to. Primitive

values are always immutable. Array values are mutable (Java

has no concept of immutable arrays), hence, the immutability

of a field f that refers to an array arr depends on whether

arr or any of its elements is actually mutated or could be

mutated by unknown code. The same applies to objects values,

too. However, unlike arrays, for some objects it is possible

to infer whether such mutation is actually possible either by

inspecting the static type of f or by analyzing the potential

runtime types of objects that f may refer to. Line 2 in Listing 5

illustrates a non-assignable field that refers to an array that is

not and cannot be mutated. Line 3 illustrates a non-assignable

field of type java.lang.String—known to be immutable.

1 class C {
2 private final int[] iArr = new int[]{ 1, 2, 3, 4 };
3 private final String finalString = ”final string”;
4 }

Listing 5. Field Immutability Example

Our immutability lattice distinguishes between transitively
immutable and non-transitively immutable fields:

Definition 7: A field is transitively immutable if it is not

assignable and no object (or array) that can transitively be

reached through the field can ever be mutated.

Definition 8: A field is non-transitively immutable if it is

not assignable, but objects (or arrays) transitively reachable

through the field might be mutated.

mutable

non-transitively immutable

dependently immutable

transitively immutable

Fig. 2. Immutability Lattice

Finally, we define the level dependently immutable, which

models the effect of generic types on immutability. A field

with a generic type T (i.e., private final T t;) that is

not assignable (including unsafely lazily initialized only if it

is known that only one thread accesses the field) can either

be transitively or non-transitively immutable depending on the

concrete runtime type of T. Thus, we say that such a field is

dependently immutable. The property dependently immutable
is—as generic types are—parameterized over all types that

influence the reference’s immutability, e.g., above generically

typed field t is said to be dependently immutable for T.

Definition 9: A field is dependently immutable if it is not

assignable and the (transitive) immutability of the referenced

object depends on at least one generic type parameter.

C. Class and Type Immutability

To determine whether a field is transitively immutable or

not, we need information about class and type immutability.

Class immutability takes the same values as field immutability,

i.e., the ones given in Fig. 2 and is defined through field

immutability as follows:

Definition 10: The immutability of a class is the least

upper bound (join) of the immutability of all of its instance

fields, respecting specialization of generic types for dependently

immutable fields.

As a corollary, class immutability is the least upper bound

(join) of the immutability of all possible instances of that class

(because the instance fields’ immutability is determined by

the immutability of their values, which make up the state of

the class’ instances). Not all instances of a class necessarily

have the same immutability property. The following factors

can lead to a more precise immutability of a particular instance

in comparison to the immutability of its class:

Firstly, while some instance field f of a class C may, in

general, not be effectively non-assignable, it may provably not

be assigned to for a particular instance o. This is, e.g., the

case, if no method that assigns to f ever gets invoked on o.

Secondly, during the creation of a particular instance o of a

generic class, type parameters can be substituted by concrete

types. This determines whether dependently immutable fields of

o are actually transitively or non-transitively immutable. Finally,

while the declared type of a field f might not be transitively

immutable, the concrete object assigned to f can be, in which

case f becomes transitively immutable after assignment. Thus,

an instance of a class with fields that are not transitively

immutable can still be transitively immutable depending on how

982

Escape

Field Assignability Field Immutability

Class ImmutabilityType Immutability
dependency
cyclic dep.

Fig. 3. Analysis Dependencies

it is created. This is illustrated in Listing 6. Depending on the

constructor used, the field nonTransitive in Line 2 can be

assigned either a MutableClass or an ImmutableClass
instance. While an instance of C created with the first

constructor is non-transitively immutable, one created with

the second constructor is transitively immutable.

1 class C {
2 private final Object nonTransitive;
3 public C(MutableClass mc) { nonTransitive = mc; }
4 public C(ImmutableClass ic) { nonTransitive = ic; }
5 }

Listing 6. Immutability Dependent on Constructor

It is often useful to determine the immutability at the level

of types, e.g., to quickly determine whether a field of a given

static type can be transitively immutable. In object-oriented

languages, a type is either populated by one class (of the same

name as the type) and all of its (potential) subclasses or by

an interface (of the same name as the type) and all of its

implementing classes. Type immutability is defined through

class immutability and also uses the lattice from Fig. 2.

Definition 11: The immutability of a type is the least upper

bound of the immutability of all classes populating that type.

As a corollary, the type of a final class has the same

immutability as the class. Depending on the analysis scenario,

the set of potential subclasses may not be known completely,

e.g., when analyzing an extensible library; in this case the type

must conservatively be considered to be mutable [15], [20].

IV. CIFI: ANALYSIS IMPLEMENTATION

CiFi implements the presented model as a set of collaborat-

ing modular analyses for field assignability and for field, class,

and type immutability based on our static analyses framework

OPAL [21]. OPAL enables the composition of decoupled inter-

dependent static analyses that collaborate via a blackboard

architecture [18] model for fixed-point computations. The

results of CiFi can be used to derive immutability guarantees

introduced in Section I or to reveal their possible absence.

A. Overall Architecture of CiFi

Fig. 3 shows the dependencies between CiFi’s analyses.

Field immutability depends on field assignability and type

immutability. The latter depends on class immutability, which,

in turn, depends on field immutability. The analysis for field

assignability depends on an escape analysis for determining

effective non-assignability of fields. This analysis is not shown

in bold font as we used an escape analysis provided by OPAL.

As indicated by the red arrows in Fig. 3, there is a circular

dependency of analyses. Thanks to OPAL’s blackboard archi-

tecture and fixed-point solver, analyses, including cyclically

dependent ones, execute in an interleaved way, even if otherwise

autonomous. Thus, despite the cycle, our analyses can profit

from the intermediate results of each other. This simplifies

the implementation of CiFi’s analyses and enables to easily

exchange their implementation or add further analyses for

trading off precision, soundiness, and performance.

B. Field-Assignability Analysis

The field-assignability analysis is based on the respective

lattice (cf. Fig. 1) and is a prerequisite for the field-immutability

analysis. We omit a discussion of more trivial aspects and focus

on handling assignments outside of constructors. Simplified

pseudocode for handling lazy initialization is shown in Listing 7.

The analysis checks whether an initialization is only performed

after a default-value check (e.g., null in case of objects) has

succeeded (Line 2). To determine thread safety, the analysis

checks whether the initialization is performed in a synchronized

method or a block synchronized on the object holding the

field (Line 3). Furthermore, the analysis ensures that even if

exceptions are thrown within the lazy initialization method,

either the field is guaranteed to be written before its value is

returned, or its value is not returned at all (Line 4).

1 fun isFieldLazilyInitialized(field):
2 if(initializationNotWithinDefaultValueCheck(field) ||
3 initializationNotSynchronized(field) ||
4 exceptionsLeakUninitializedField(field)) false
5 else true

Listing 7. Lazy Initialization Recognition (Pseudocode)

Additionally, CiFi is able to recognize fields that are assigned

only on freshly created instances before they can be accessed

elsewhere. For this purpose CiFi checks that the instance does

not escape before it is returned. This pattern, illustrated in

Listing 8, is often used to implement the clone method.

1 class C {
2 private int i;
3 public C clone(){
4 C c = new C();
5 c.i = i;
6 return c;
7 }
8 }

Listing 8. Clone Pattern

C. Field-Immutability Analysis

The field-immutability analysis combines results from anal-

yses for field assignability and class and type immutability. Its

logic is sketched in Listing 9. It always considers assignable

fields mutable (Line 2). For all other fields, it checks whether all

objects assigned to the field can be identified (Line 3). If this is

the case, the join of the respective class immutability properties

is computed and used (Line 4), otherwise the immutability for

the field’s static type is checked (Line 5).

983

1 fun getFieldImmutability(field):
2 if (isFieldAssignable(field)) Mutable
3 else if (canAllAssignedObjectsBeIdentified(field))
4 join(getAssignedObjects(field).map(.getClassImmutability))
5 else if (getTypeImmutability(field)==TransitivelyImmutable)
6 TransitivelyImmutable
7 else if (hasGenericType(field)) // Dependent Immutablity
8 if (onlyTransitivelyImmutableTypeParams(field))
9 TransitivelyImmutable

10 else if (hasANotTransitivelyImmutableTypeParam(field))
11 NonTransitivelyImmutable
12 else DependentlyImmutable
13 else NonTransitivelyImmutable

Listing 9. Field Immutability Analysis (Pseudocode)

The analysis recognizes dependently immutable fields using

information from the field’s Signature attribute in the Java

Bytecode. If the Signature attribute contains generic type

parameters, the field might be dependently immutable (Line 7).

In this case, it is checked whether all generic type parameters

are instantiated with transitively immutable types (Line 8);

if this is the case, the field is transitively immutable. It is

next checked whether at least one generic type parameter was

instantiated with a type that is non-transitively immutable or

mutable (Line 10). In this case, the field is non-transitively

immutable. If neither of the latter two cases applies, the field

is dependently immutable (Line 12).

This handling of fields with generic types is exempli-

fied in Listing 10. First note that class GC is dependently
immutable for T because of its generically typed field

genericField (Line 2). For field gcTransitive in

Line 6, the single generic type parameter is instantiated

with the transitively immutable type java.lang.Integer.

Thus, gcTransitive is also transitively immutable. In

turn, the generic type parameter of field gcMutable in

Line 7 is instantiated with the (presumably mutable) type

MutableClass. Thus, gcMutable is only non-transitively

immutable. Finally, for field gcGeneric in Line 8, the

generic type parameter is instantiated with another generic type

parameter, T. Thus, gcGeneric is dependently immutable.

1 final class GC<T> {
2 private final T genericField;
3 public GC(T value){ this.genericField = value; }
4 }
5 class C<T> {
6 private final GC<Integer> gcTransitive;
7 private final GC<MutableClass> gcMutable;
8 private final GC<T> gcGeneric;
9 [...]

10 }
Listing 10. Dependent Immutability

D. Class- and Type-Immutability Analysis

The class-immutability analysis of a class C joins the

immutability of C’s parent class and the immutability of the

instance fields declared in C (cf. Definition 10). Simplified pseu-

docode of its logic is shown in Listing 11. Note that interfaces

implemented by C do not have to be considered as they cannot

contain instance fields. As analyzing java.lang.String’s

immutability is far from trivial, CiFi is configured to treat it as

transitively immutable. This is in line with other immutability

analyses (e.g., [15]) that are configured similarly. Also, we do

not consider specialization of generic type parameters.

1 fun getClassImmutability(class):
2 classImm = getClassImmutability(getSuperClass(class))
3 for field in class.instanceFields
4 fieldImm = getFieldImmutability(field)
5 if (fieldImm > classImm) classImm = fieldImm
6 classImm

Listing 11. Class Immutability Analysis (Pseudocode)

The type-immutability analysis’ logic is sketched in List-

ing 12. It follows the definition of type immutability in

Definition 11, joining the individual classes’ immutability

properties while taking into consideration whether the analysis

is performed in a closed- or open-world scenario (Line 2).

1 fun getTypeImmutability(class):
2 if (isExtensible(class)) return Mutable
3 typeImm = getClassImmutability(class)
4 for subclass in class.allSubclasses
5 classImm = getClassImmutability(subclass)
6 if (classImm > typeImm) typeImm = classImm
7 typeImm

Listing 12. Type Immutability Analysis (Pseudocode)

While other tools usually support only one (cf. [13]), CiFi lets

users configure either open- or closed-world assumption. Under

open-world assumption, it assumes classes can be added to all

packages except for subpackages of java3 and all non-final

classes can be extended. Under closed-world assumption, it

assumes no classes can be added to existing packages and

existing classes cannot be extended. However, public fields

and methods are assumed to be accessible.

E. Threats To Soundness

CiFi does not consider any field access by means of reflection,

sun.misc.Unsafe, or native methods calls. Such accesses,

potentially anywhere in the program, cannot reliably be linked

to specific fields. Consciously omitting such features in order

to improve precision is called soundiness by Livshits et al. [22].

Doing so is in line with other state-of-the-art static immutability

analyses; e.g., Porat et al. [15] do not consider native code and

“dynamic effects resulting from reflection” in their class- and

field-immutability analyses.

V. EVALUATION

Our evaluation4 targets the following research questions:

RQ1 How expressive is our model relative to the classification

of immutability facets defined by Coblenz et al. [13]?

RQ2 How precisely and soundily does CiFi fulfill our model?

RQ3 How does CiFi compare to the state of the art5 with

respect to the previous question?

3The classloader usually prohibits adding new classes to these packages.
4For reproducibility: https://doi.org/10.5281/zenodo.5227231
5We consider Glacier [14] (cf. Section II) as the state-of-the-art approach

in enforcing class and field immutability.

984

RQ4 Does our model reflect immutability facets in the real

world?
The rationale for these questions is as follows. Once we

demonstrate the model’s conceptual quality (RQ1) and check

that CiFi precisely and soundily implements it (RQ2, RQ3),

we use CiFi to assess the model’s practical quality (RQ4).

A. Expressiveness of the Model
For RQ1, we use the system that Coblenz et al. [13] proposed

for classifying mutability restrictions along several dimensions.
a) Type of Restriction: Our model considers the im-

mutability of fields, classes and types, not just read-only

restrictions on individual references. This provides stronger

guarantees for developers [13]. We also consider assignability

for fields. We do not consider ownership of objects, which we

discuss in Section VII together with read-only restrictions.
b) Scope: Our model focuses on class immutability, which

Coblenz et al. [13] point out to be frequently needed.
c) Transitivity: We consider both transitive and non-

transitive immutability. This enables a more fine-grained view

compared to systems surveyed by Coblenz et al.
d) Initialization: We do not support explicit relaxing of

restrictions during initialization. However, our definition of lazy

initialization also encompasses delayed initialization, if fields

are assigned only once, also enabling cyclic data structures.
e) Abstract vs. Concrete State: We consider the set of all

instance fields of an object, i.e., its concrete state. Immutability

can also be defined on abstract state [9], [11]6, encoded by

annotations. Assuming such annotations are available, our

model can be applied to abstract state, too.
f) Backward Compatibility: Our approach performs static

analysis to infer immutability; it does not require developers to

use specific language features or annotations. Thus, it is soundy

regardless of potentially unknown code interfacing with the

analyzed software when used with an open-world assumption.

If the analyzed program cannot be extended, a closed-world

assumption can be used to uncover more immutability.
g) Enforcement: We infer immutability instead of enforc-

ing it, but do provide static guarantees on immutability. Static

enforcement may burden developers if they have to annotate

all relevant program constructs [13]. This concern does not

apply to our automated inference.
h) Polymorphism: Handling mutable and immutable

parameters of functions is not applicable to our approach that

infers actual immutability instead of enforcing restrictions.

� Our model is more expressive than approaches surveyed
by Coblenz et al. [13] without completely covering the
described design space. To balance expressiveness with
usability [14], we focus on fields, classes, and types, which
improves usability [13], [14]. Yet, the model can be easily
extended, e.g., with object or reference immutability. Such
extensions are well-supported by CiFi’s inference approach
(no annotations) and its modular architecture, enabling
to plug-and-play analyses depending on what results are
considered relevant.

6Excluding some non-essential state, e.g., fields used for caching.

B. Precision and Recall

A ground truth is needed to validate precision and recall

of CiFi and other analyses w.r.t. our model. To the best of

our knowledge, no benchmark for class and field immutability

exists that could be annotated with our model’s properties.

Thus, we handcrafted CiFi-Bench.

1) Benchmark: CiFi-Bench7 includes a total of more than

470 test cases for all immutability levels defined in our model,

organized into 13 categories:

• Assignability: different (effectively) (non-)assignable fields

including clone pattern (counter)examples.

• General: simple cases, e.g., static fields, interfaces, trivially

transitively immutable and mutable classes.

• Known Types
– Single: cases where a single concrete object is assigned

to a field, yielding stronger immutability guarantees than

possible to infer from the field’s static type.

– Multiple: cases where different objects can be assigned

to a field and stronger immutability guarantees can be

inferred than possible from the field’s static type, including

cases where concrete objects or only their types are known.

• Generic
– Simple: cases of immutability in combination with generic

types, i.e., dependent immutability.

– Extended: advanced usages of generics such as multiple

nested generic types and generic types with bounds.

• Arrays
– Non-Transitive: cases with mutable arrays resulting in

non-transitively immutable fields.

– Transitive: cases with arrays that cannot be or are not

mutated, resulting in transitively immutable fields.

• Lazy Initialization
– Arrays: cases of lazy initialization of array typed fields.

– Objects: cases of thread-safely as well as unsafely lazily

initialized fields with object types.

– Primitive Types: lazy initialization without synchroniza-

tion which can be thread-safe for primitive types.

– Scala Lazy val: an example modeled after Scala 2.12’s

implementation of lazy val [23].

• String: a class with two fields modeled after the

shared char array and hashCode method of

java.lang.String.

We annotated fields, classes, and types with the respective

assignability and immutability properties as expected with an

open-world assumption.

2) Results for CiFi: For each test case tc, CiFi either

produces the precise value annotated in tc (in five categories),

or a soundy over-approximation, i.e., a value further up in the

respective lattice, which is less precise than possible but can

be soundily used by further analyses/optimizations. CiFi did

not produce any unsoundy results, i.e., values further down in

the lattice. In some more detail, the results are as follows:

7https://github.com/opalj/CiFi-Benchmark

985

• CiFi inferred immutability properties precisely for the cate-

gories: Assignability, General, Known Types, Generic/Sim-
ple, Arrays/Non-Transitive, Lazy Initialization/Arrays, and

Lazy Initialization/Objects.

• In category Generic/Extended, CiFi soundily over-

approximates some complex test cases such as doubly

nested generic classes (Gen<Gen<T>>), generic cases

with bounds, and more complex lazy initialization patterns

than the one we described in Section IV-B. For doubly

nested generics, the approximation is not mutable, but non-
transitively immutable, retaining some precision. Generic

classes with bounds are soundily over-approximated as

dependently immutable.

• In Arrays/Transitive, CiFi soundily over-approximates

all tests to non-transitively immutable, and in Lazy
Initialization/Primitive Types to unsafely lazily initialized
or assignable. All test cases in Lazy Initialization/Scala
Lazy Val and String are soundily over-approximated to

assignable, except for the field referring to the final

char array in the category String which is soundily over-

approximated to non-transitively immutable.

� CiFi matches the annotated properties of the benchmark
either precisely or soundily over-approximates them. The
observed over-approximations are due to missing support
for the respective features. Leaving complex features out
of scope when the expected benefit is small is in line with
other immutability analyses [15]. Handling these complex
features precisely would not lead to considerably more
immutability being recognized, as they represent rare corner
cases. Handling each of these corner cases would only
prevent few over-approximations.

C. Comparison with Glacier

To answer RQ3, we run Glacier [14], the state-of-the-art

tool for enforcing class and field immutability on CiFi-Bench.

As Glacier only considers transitive immutability, we can

only evaluate it w.r.t. this level of immutability. Hence, we

annotated all classes and fields of CiFi-Bench with Glacier’s

@Immutable annotation. We consider Glacier to pass a test if

either of the following holds: (a) it does not output an error for

transitively immutable fields and classes, (b) it outputs such an

error for fields and classes that are not transitively immutable

(since Glacier, does not handle non-transitive or dependent

immutability, respective fields have to be considered mutable).

The results for each category are as follows.

• For category Known Types/Multiple, Glacier can enforce

transitive immutability.

• For two cases in General resp. Known Types/Single,

Glacier produces unsound results. First, Glacier treats

both @Immutable and @MaybeMutable classes as

subtypes of java.lang.Object. Thus, a mutable

object can be assigned to an @Immutable field of type

Object. Second, while Glacier prohibits assignments

to fields outside of the constructor, it does not check

whether a field being assigned in a constructor belongs to

the object being constructed. Thus, @Immutable fields

can be mutated while constructing other objects. Both

cases are shown in Listing 13.

1 @Immutable class C {
2 @Immutable private Object o;
3 public C(C parent, Object o){ parent.o = o; }
4 }

Listing 13. Glacier Unsoundness Example

• Glacier was unsound in three Assignability tests. Two

are again due to @MaybeMutable being a subtype of

java.lang.Object, but the third one revealed another

issue: Glacier ignores compound-assignment operators

like +=. Thus, primitive or java.lang.String fields

can be mutated outside of constructors. In CiFi, such

omissions are less likely to occur accidentally as it

analyzes bytecode. Additionally, Glacier could not handle

the clone pattern cases properly because of assignments

outside of constructors.

• Glacier passed all test cases in Generic as it enforces that

only @Immutable types are used for type parameters

of @Immutable classes and only @Immutable classes

can extend @Immutable classes. But this means that

Glacier cannot handle dependent immutability, which

results in lost opportunities for being more precise.

• In category Arrays, non-transitively immutable fields are

handled correctly. Some transitively immutable fields

are also enforced correctly, but require four anno-

tations: @Immutable int @Immutable[] arr =
new @Immutable int @Immutable[5]; Glacier

cannot enforce transitive immutability where array ele-

ments are not mutated, despite not being @Immutable.

• In category Lazy Initialization, Glacier cannot enforce tran-

sitive immutability due to its rule that in @Immutable
classes, fields may only be assigned in constructors.

• In category String, Glacier handles the case concerning

the char array shared between identical strings precisely,

but it cannot enforce immutability for the lazily initialized

field caching the hashCode method’s result.

� Glacier can only recognize transitive immutability com-
pared to CiFi’s fine-grained immutability results.
� Glacier shows three cases of unsoundness.
� While Glacier strictly enforces transitive immutability for
generics, including nested and bounded generic types, it lacks
the flexibility of dependent immutability to allow generic
classes to be treated differently depending on whether they
are instantiated with transitively immutable types or not.
Additionally, Glacier does not handle lazy initialization.
� To recap, CiFi is more soundy and often more precise than
Glacier without requiring manual effort for annotations. As
a result, CiFi can be applied easily to existing codebases
and third-party code, even if source code is not available.

D. Immutability Prevalence

To answer RQ4, we analyzed the following libraries: Open-

JDK 1.8.0 292, Google Guava 30.1.1, Eclipse Collections

986

TABLE I
LIBRARY RESULTS ASSIGNABILITY (OPEN WORLD)

Library ass. unsafe l. i. l. i. eff. non ass. non ass.
∑

OpenJDK 26 684 351 189 8 615 58 115 93 954
Eclipse 2 380 0 0 30 11 478 13 888
Guava 656 12 0 4 3 215 3 887
Apache 275 18 0 4 652 949
Scala 1 249 0 0 4 5 373 6 626

ass. = assignable, l. i. = lazily initialized, eff. = effectively

TABLE II
LIBRARY RESULTS IMMUTABILITY (OPEN WORLD)

Library Analysis mutable non-tra. dep. tra.
∑

time (s)

Field 27 035 23 004 78 43 837 93 954
5.47

OpenJDK Class 12 398 4 259 27 5 393 22 077
(6.17)

Type 20 155 1 475 6 3 203 24 839

Field 2 380 7 620 142 3 746 13 888
1.56

Eclipse Class 883 4 410 61 2 247 7 601
(2.72)

Type 6 186 364 41 1 057 7 648

Field 668 1 995 35 1 189 3 887
1.06

Guava Class 636 785 17 721 2 159
(1.79)

Type 1 697 195 9 391 2 292

Fields 293 360 18 278 949
0.81

Apache Class 262 147 7 69 485
(1.66)

Type 424 49 1 50 524

Field 1 249 3 433 344 1 600 6 626
1.57

Scala Class 490 2 109 74 1 150 3 823
(5.50)

Type 3 331 661 60 430 4 482

dep. = dependently immutable, tra. = transitively immutable

10.4, Apache Commons Collections 4.4.4., and Scala 2.12.10.

We performed the evaluation on a server with two AMD(R)

EPYC(R) 7542 CPUs (32 cores / 64 threads each) @ 2.90

GHz and 512 GB RAM. For runtimes, we report the median

of 15 executions as runtimes of OPAL vary significantly.

CiFi was run using OpenJDK 1.8.0 292, Scala 2.12.13, and

the Scala build tool sbt 1.4.6 with 32 GB of heap memory. In

this experiment, we applied an open-world assumption. To

ease analysis, OPAL replaces invokedynamic bytecode

instructions with synthetic fields and classes that are also

included in the result figures. The number of fields having

the respective levels of assignability and the total number

of analyzed fields are shown in Table I. Results for the

field-, class-, and type-immutability analyses are given in

Table II, listing the number of entities with respective levels of

immutability, total count and execution time for all analyses

combined. Total runtime including preparatory steps, e.g.,

loading the libraries’ files is given in parentheses. While the

numbers for types include interfaces, those for classes do not

(interfaces don’t contain potentially mutable state).

The results provide empirical evidence that most of the

immutability properties defined in Section III are prevalent in

real-world libraries. Even if absolute numbers for dependent

immutability appear to be low, one has to consider that generic

classes are often widely used collections and thus can have

a significant impact. We found several hundreds of safely

TABLE III
LIBRARY RESULTS ASSIGNABILITY (CLOSED WORLD)

Library ass. unsafe l. i. l. i. eff. non ass. non ass.
∑

OpenJDK 22 885 435 198 12 321 58 115 93 954
Eclipse 2 380 0 0 30 11 478 13 888
Guava 598 30 0 44 3 215 3 887
Apache 269 21 0 7 652 949
Scala 1 249 0 0 4 5 373 6 626

ass. = assignable, l. i. = lazily initialized, eff. = effectively

TABLE IV
LIBRARY RESULTS IMMUTABILITY (CLOSED WORLD)

Library Analysis mutable non-tra. dep. tra.
∑

time (s)

Field 23 320 24 269 80 46 285 93 954
7.61

OpenJDK Class 11 573 4 741 31 5 732 22 077
(8.58)

Type 13 378 5 225 35 6 201 24 839

Field 2 380 7 595 142 3 771 13 888
1.92

Eclipse Class 883 4 397 61 2 260 7 601
(3.27)

Type 950 4 552 60 2 086 7 648

Field 628 1 931 36 1 292 3 887
1.58

Guava Class 633 773 18 735 2 159
(2.35)

Type 715 848 20 709 2 292

Fields 290 353 18 288 949
1.17

Apache Class 262 142 9 72 485
(1.98)

Type 294 146 9 75 524

Field 1 249 3 314 359 1 704 6 626
2.48

Scala Class 490 2 064 96 1 173 3 823
(6.53)

Type 770 2 196 134 1 382 4 482

dep. = dependently immutable, tra. = transitively immutable

and unsafely lazily initialized fields in the JDK and some

in Guava and Apache Commons Collections, but none in

Eclipse Collections. We studied the latter library’s source code

and indeed Eclipse Collections seems not to use any lazy

initialization at all. CiFi does not (yet) handle Scala’s lazy
val, but lazy initialization is a prominent feature of the Scala

language, too. We can also see that all libraries have significant

quantities of (effectively) non-assignable fields; OpenJDK has

about 46% of transitively immutable fields, while the other

libraries have mostly non-transitively immutable fields. All

libraries also have significant shares of (non-)transitively and

dependently immutable classes, ranging from 43% to 88%. To

recap, the results presented so far signify the relevance of our

immutability model in practice. The properties of the model

prevail despite the fact that CiFi over-approximates the model

in several cases (cf. RQ2) and that it was executed with a

conservative open-world assumption. To investigate the effect

of the latter, we re-executed CiFi on the same libraries with

the same setup but with a closed-world assumption. Results

for field assignability are given in Table III and for the other

analyses in Table IV. Comparing to the open-world scenario

(cf. Tables I and II), we make the following observations.

First, the number of types with stronger immutability

guarantees increases significantly. This is to be expected, as no

subclasses can be added in the closed-world scenario. Second,

the impact on the number of fields and classes found to

987

exhibit different levels of assignability and immutability is

minimal. Differences are most significant for OpenJDK, where

14.2% of formerly assignable and 13.7% of formerly mutable

fields and 6.7% of formerly mutable classes exhibit stronger

guarantees for assignability or immutability, respectively. The

increased number of types with stronger immutability guar-

antees does not proportionally influence field immutability

due to the high percentage of fields with primitive types or

type java.lang.String (e.g, > 50% in OpenJDK). Third,

the runtime increased by 23% up to 58%. This is because

in an open-world scenario, we avoid performing expensive

computations, e.g., for extensible types or for protected non-

final fields in extensible classes, which are just mutable.

� All immutability levels and flavors of our model are
prevalent in real-world libraries. This means that (a) the
definitions in our model reflect immutability in practice and
(b) the versatile inference of CiFi is needed to consider fine-
grained levels and diverse flavors of immutability.
� Except for type immutability, applying an open-world
assumption does not seem to significantly reduce precision
while consuming significantly less computation time. Thus, it
may be beneficial to use an open-world assumption even if
all program code is available. CiFi gives users the flexibility
to choose between an open- and a closed-world assumption.

VI. THREATS TO VALIDITY

An internal validity threat arises if CiFi-Bench does not

cover relevant aspects of class and/or field immutability, or if

its test cases are annotated incorrectly. To mitigate this threat,

tests were created by one author based on the literature survey

and checked by a second author. All authors have years of

experience in static analysis and immutability research.

An external threat to validity arises if the libraries used for

evaluation are not representative of real-world immutability.

However, we chose well-known libraries of significant size that

include a significant number of data structures many of which

are documented to be immutable. The Scala standard library

also provides an insight into immutability for Java Virtual

Machine bytecode not compiled from Java source code.

VII. RELATED WORK

In this section, we discuss approaches to object and reference

immutability. They are related but not the main focus of this

work. We surveyed approaches that, like our work, address

class and field immutability in Section II.

Haack et al. [4] distinguish observational and state-based
immutability. Observational immutability describes that an

observer is not able to see any difference in an object at

any two points in time after its initialization. State-based

immutability describes that the internal state of an object

does not change at all. Like in our model, for state-based

immutability, the distinction is made between transitive and

non-transitive immutability. Haack et al. express their belief

that observational immutability is more intuitive while state-

based immutability is better-suited for static analysis. This is

in line with our approach which also considers state-based

immutability.

Potanin et al. [1] distinguish between abstractly immutable
objects that may change their internal representation while

preserving their semantics as visible by their clients and

representationally immutable objects that never change their

internal representation. This corresponds to observational and

state-based immutability as used by Haack et al.

Zibin et al. [11] enforce transitive immutability of fields that

belong to an object’s abstract state with their language extension

Immutability Generic Java (IGJ) that uses Java generics to

describe the immutability of a class through an additional type

parameter (Mutable, Immutable, or ReadOnly).

Ownership Immutability Generic Java (OIGJ) [24] by Zibin

et al. uses ownership to enforce object immutability. As only an

object’s owner can mutate it, it is easy to check for mutations

if the owner is known. Leino et al. [25] also use ownership to

freeze any object at any time during program execution. When

an object is frozen, its owner is changed to be the freezer
object. As that object is not exposed to the rest of the program,

and as changing fields requires ownership, the frozen object

becomes immutable and cannot be unfrozen again. This applies

to objects owned transitively by the frozen object as well.

For references, the readonly property has been studied

extensively [8]–[12], [26]–[28]. Tschantz and Ernst use it in

the Javari type system [9]. Through a readonly reference,

the referenced object and all transitively referenced objects

belonging to the abstract state of the referenced object cannot

be mutated, while they may still be mutated through other

references. Thus, readonly is different from the transitive
immutability property – the latter requires the referenced

object, including all transitively referenced objects, to be

immutable through any reference. Additionally, a romaybe
modifier expresses polymorphic immutability of references,

i.e., whether the reference returned by a method is mutable or

not depends on the context in which the method is accessed and

whether the object referred to by this reference, also transitively,

is mutated or not. That is, a method may return a potentially

mutable but not yet escaped object as romaybe, allowing the

caller to treat it as immutable or mutate it. To support lazy

initialization, it is possible to exclude lazy initialized fields from

the abstract state in Javari (cf. [8]). Gordon et al. [2] describe a

similar concept to readonly, but use the term readable instead.

Huang et al. use Javari as a basis for their type system

ReIm and their immutability and purity analysis ReImInfer [8].

However, they use polyread instead of romaybe. Additionally,

while Javari’s readonly modifier refers to the abstract state,

here readonly applies to the concrete state of the referenced

object, i.e., it includes all fields and referenced objects.

Milanova and Dong [29] build upon ReIm to infer and check

object immutability by combining a reference immutability

analysis with escape analysis. They consider transitive im-

mutability, enforcing that no transitively referenced values,

objects, or arrays of an immutable object are mutated. They

also address delayed object initialization with their endorse
modifier for statements. This results in the analysis ignoring the

988

statement’s effects on immutability, which is, e.g., necessary to

support circular initialization. With the unstrict block, Gordon

et al. [2] present a similar approach.

Quinonez et al. [10] find it “tedious and error-prone” to

manually add modifiers like readonly to existing code bases.

They propose to infer them automatically with Javarifier, which

can also infer Javari’s modifiers for arrays and their values as

well as for the type parameters of generic classes.

Boyland [30] cautioned against adding readonly to the Java

language because its transitive rule would be too restrictive

while it cannot prevent harmful observational exposure, i.e., the

state of a mutable field can be seen via a readonly reference

while it can be modified through another reference. This leads

to problems, e.g., in multi-threading contexts or when a client

expects a non-mutable object. Our model is in line with Boyland

and considers the immutability of an entire class rather than the

immutability through a given reference. This avoids harmful

observational exposure because a transitively immutable class

has only transitively immutable instances.

VIII. CONCLUSION

We proposed a comprehensive, fine-grained lattice model for

field assignability and for field, class, and type immutability.

Based on a literature survey, the model unifies the terminology

of the research area, which has so far been used inconsistently.

Unlike the state of the art, the model distinguishes between

these different flavors of immutability and provides levels

of immutability to represent relevant aspects such as lazily

initialized fields and dependent immutability for generic classes.

As we have shown, our model covers a wider range of

immutability than previous models. Accompanying this model,

we provide CiFi-Bench, a handcrafted set of test cases to serve

as a ground truth for class- and field-immutability analyses.

We introduced CiFi, a set of modular analyses for each of

the immutability flavors of our model. We used CiFi-Bench to

showcase CiFi’s precision and recall, then used CiFi to study

the prevalence of immutability in real-world libraries.

In future work, we plan to investigate possibilities to

increase CiFi’s precision further without degrading its runtime

performance disproportionately. This may include the ability to

precisely find more lazy initialization patterns and additional

support for generic type parameters, e.g., regarding their

instantiation or their statically provided bounds. It is also

possible to extend CiFi with further modular analyses, e.g., for

object or reference immutability.

ACKNOWLEDGMENTS

This research work has been funded by the German Federal

Ministry of Education and Research and the Hessian Ministry

of Higher Education, Research, Science and the Arts within

their joint support of the National Research Center for Applied

Cybersecurity ATHENE and by the German Research Foun-

dation (DFG) as part of Collaborative Research Centre 1119

CROSSING.

REFERENCES

[1] A. Potanin, J. Östlund, Y. Zibin, and M. D. Ernst, “Immutability,” in
Aliasing in Object-Oriented Programming. Berlin, Heidelberg: Springer-
Verlag, 2013, pp. 233–269.

[2] C. S. Gordon, M. Parkinson, J. Parsons, A. Bromfield, and J. Duffy,
“Uniqueness and Reference Immutability for Safe Parallelism,” Microsoft
Research, Tech. Rep. MSR-TR-2012-79, October 2012.

[3] P. Helland, “Immutability changes everything,” Communications of the
ACM, vol. 59, no. 1, pp. 64–70, 2015.

[4] C. Haack, E. Poll, and A. Schubert, “Immutable objects in Java,” in
Programming Languages and Systems, ser. ESOP’07. Springer Berlin
Heidelberg, 2007, pp. 347–362.

[5] Oracle. (2020, Sep.) Secure Coding Guidelines for Java SE. Oracle.
https://www.oracle.com/java/technologies/javase/seccodeguide.html.

[6] Oracle. (2021) Map (Java SE 16 & JDK 16). https://docs.oracle.com/en/
java/javase/16/docs/api/java.base/java/util/Map.html. Oracle.

[7] D. Helm, F. Kübler, M. Eichberg, M. Reif, and M. Mezini, “A Unified
Lattice Model and Framework for Purity Analyses,” in Proceedings of
the 33rd ACM/IEEE International Conference on Automated Software
Engineering, ser. ASE’18. New York, NY, USA: ACM, 2018, pp.
340–350.

[8] W. Huang, A. Milanova, W. Dietl, and M. D. Ernst, “Reim & ReImInfer:
Checking and Inference of Reference Immutability and Method Purity,”
in Proceedings of the ACM International Conference on Object Oriented
Programming Systems Languages and Applications, ser. OOPSLA’12.
New York, NY, USA: ACM, 2012, pp. 879–896.

[9] M. S. Tschantz and M. D. Ernst, “Javari: Adding reference immutability
to Java,” in Object-Oriented Programming Systems, Languages, and
Applications (OOPSLA 2005), San Diego, CA, USA, October 18–20,
2005, pp. 211–230.

[10] J. Quinonez, M. S. Tschantz, and M. D. Ernst, “Inference of reference
immutability,” in ECOOP 2008 — Object-Oriented Programming, 22nd
European Conference, ser. ECOOP’08, Paphos, Cyprus, Jul. 2008, pp.
616–641.

[11] Y. Zibin, A. Potanin, M. Ali, S. Artzi, A. Kie—un, and M. D. Ernst,
“Object and Reference Immutability Using Java Generics,” in Proceedings
of the the 6th Joint Meeting of the European Software Engineering
Conference and the ACM SIGSOFT Symposium on The Foundations of
Software Engineering, ser. ESEC-FSE’07. New York, NY, USA: ACM,
2007, pp. 75–84.

[12] J. T. Boyland, J. Noble, and W. Retert, “Capabilities for Sharing: A
Generalisation of Uniqueness and Read-Only,” in ECOOP, 2001.

[13] M. Coblenz, J. Sunshine, J. Aldrich, B. Myers, S. Weber, and F. Shull,
“Exploring language support for immutability,” in 2016 IEEE/ACM 38th
International Conference on Software Engineering (ICSE), 2016, pp.
736–747.

[14] M. Coblenz, W. Nelson, J. Aldrich, B. Myers, and J. Sunshine,
“Glacier: Transitive class immutability for Java,” in 2017 IEEE/ACM 39th
International Conference on Software Engineering (ICSE). IEEE, 2017,
pp. 496–506.

[15] S. Porat, M. Biberstein, L. Koved, and B. Mendelson, “Automatic
detection of immutable fields in Java.” in CASCON, 2000, p. 10.

[16] S. Nelson, D. J. Pearce, and J. Noble, “Profiling field initialisation in
Java,” in International Conference on Runtime Verification. Springer,
2012, pp. 292–307.

[17] F. B. Kjolstad, D. Dig, G. Acevedo, and M. Snir, “Refactoring for
immutability,” University of Illinois, Tech. Rep., 2010.

[18] D. Helm, F. Kübler, M. Reif, M. Eichberg, and M. Mezini, “Modular
collaborative program analysis in OPAL,” in Proceedings of the 28th
ACM Joint Meeting on European Software Engineering Conference
and Symposium on the Foundations of Software Engineering, ser.
ESEC/FSE’20, 2020, pp. 184–196.

[19] G. Bierman. (2021, Mar) JEP 395: Records. Oracle.
https://openjdk.java.net/jeps/395.

[20] M. Reif, M. Eichberg, B. Hermann, J. Lerch, and M. Mezini, “Call
graph construction for Java libraries,” in Proceedings of the 2016 24th
ACM SIGSOFT International Symposium on Foundations of Software
Engineering, ser. ISSTA’16, 2016, pp. 474–486.

[21] M. Eichberg, F. Kübler, D. Helm, M. Reif, G. Salvaneschi, and M. Mezini,
“Lattice Based Modularization of Static Analyses,” in Companion
Proceedings for the ISSTA/ECOOP 2018 Workshops, ser. ISSTA ’18.
New York, NY, USA: ACM, 2018, pp. 113–118.

989

[22] B. Livshits, M. Sridharan, Y. Smaragdakis, O. Lhoták, J. N. Amaral, B.-
Y. E. Chang, S. Z. Guyer, U. P. Khedker, A. Møller, and D. Vardoulakis,
“In defense of soundiness: A manifesto,” Communications of the ACM,
vol. 58, no. 2, pp. 44–46, 2015.

[23] A. Prokopec, D. Petrashko, M. Garcia, J. Zaugg, H. Plociniczak, V. Klang,
and M. Odersky. (2021, Apr) SIP-20 - Improved Lazy Vals Initialization.
https://docs.scala-lang.org/sips/improved-lazy-val-initialization.html.

[24] Y. Zibin, A. Potanin, P. Li, M. Ali, and M. D. Ernst, “Ownership and
Immutability in Generic Java,” SIGPLAN Not., vol. 45, no. 10, pp. 598–
617, Oct. 2010.

[25] K. R. M. Leino, P. Müller, and A. Wallenburg, “Flexible immutability with
frozen objects,” in Working Conference on Verified Software: Theories,
Tools, and Experiments. Springer, 2008, pp. 192–208.

[26] A. Birka and M. D. Ernst, “A practical type system and language for
reference immutability,” ACM SIGPLAN Notices, vol. 39, no. 10, pp.
35–49, 2004.

[27] W. Dietl and P. Müller, “Universes: Lightweight Ownership for JML.”
Journal of Object Technology, vol. 4, no. 8, pp. 5–32, 2005.

[28] G. Kniesel and D. Theisen, “JAC—access right based encapsulation for
Java,” Software: Practice and Experience, vol. 31, no. 6, pp. 555–576,
2001.

[29] A. Milanova and Y. Dong, “Inference and Checking of Object Immutabil-
ity,” in Proceedings of the 13th International Conference on Principles
and Practices of Programming on the Java Platform: Virtual Machines,
Languages, and Tools, ser. PPPJ’16. New York, NY, USA: ACM, 2016,
pp. 6:1–6:12.

[30] J. Boyland, “Why we should not add readonly to Java (yet).” Journal of
Object Technology, vol. 5, no. 5, pp. 5–29, 2006.

990

