
Towards Zero Trust: An Experience Report
Jason Lowdermilk

Chip Scan, Inc.
New York, NY

jlowder@chipscan.us

Simha Sethumadhavan
Chip Scan, Inc.
New York, NY

simha@chipscan.us

Abstract—Risk from supply chain attacks have gained promi-
nence. In response to these attacks, regulators have suggested
building systems on the principles of “zero-trust”, an aspirational
motto that urges system designers to take measures to minimize
trust. But, to what degree can one minimize trust in realistic
systems? The answer to this question, of course, depends on the
context. In this paper, we explore this question in the context of a
satellite ground station front end processor – a critical component
in satellite ground stations, in both standalone and cloud settings.
Based on our design and implementation experience that spanned
18 months, we observe that it is possible to achieve a significant
reduction in trust as measured by the lines of code. We also
find that minimizing the lines of code improves productivity and
the performance of our design. Finally, we find trust can be
minimized to a greater extent for standalone systems than cloud
systems.

Index Terms—hardware, security, HLS, high-level synthesis,
debloating, zero-trust

I. INTRODUCTION

A number of prominent supply chain attacks have domi-
nated news headlines in recent years. In 2018, the Bloomberg
Businessweek’s story regarding implanted devices in Super-
micro motherboards created widespread concern [1]. Even
though the allegations have been largely debunked, it still
demonstrates a widespread risk in global supply chains [2].
More recently, the SolarWinds supply chain attack has brought
these concerns back into focus, demonstrating the fragility
of our critical assets arising within an increasingly complex
global supply chain [3].

One appropriate defense against these types of attacks is to
adopt a Zero Trust security model [4]. When this model is
applied to its fullest extent, the Zero Trust paradigm requires
practitioners to eliminate implicit trust in any one element of
a computer system, including its hardware elements. Critics of
the Zero Trust paradigm argue that even if the software in a
system could somehow be fully trusted through verification
and validation, there are still potential trust issues at the
hardware level: hardware may also contain exploitable bugs
and malicious intrusions similar to software, and issues like
Spectre and Meltdown have caused unexpected trust issues
with hardware [5], [6]. Furthermore, there are concerns that
third-party IP which has been integrated into a System on a
Chip to represents another large attack vector for hardware [7].
And, even if these design stage issues are resolved, the
hardware may still be tampered with during manufacturing,
such as via stealthy dopants. [8]. The essence of this line of
argument is that trust is a race to the bottom.

In this paper we report on our experiences at implementing
full-system Zero Trust. We detail design choices we made to
minimize trust in a context of a realistic engineering effort
and under reasonable cost constraints. We decided the best
way to think about eliminating trust is from the hardware up:
in other words, the way to win the race to the bottom is to start
from the bottom! In this paper we show how this hardware-up
methodology worked and concretely describe the difficulties
we encountered in applying this methodology, and also attempt
to quantify the benefits of this method.

For our case study, we chose a satellite ground station
“front-end processor” system. The reason for choosing this
system was that we are quite familiar with the workings of
satellite systems, and it is a real, substantial system that is
a critical piece of the satellite ecosystem. At a high-level,
this system processes health and status data from the satellite
(Telemetry) and sends out commands. Thus hackers who can
take control of the ground control system can cause havoc in
a number of ways. For example, two orbiting satellites could
crash into each other splintering their debris into thousands of
pieces, that in turn cause the debris to crash in other satellites,
causing a catastrophic chain reaction that brings down GPS,
weather, defense, surveillance, science, and communication
and satellites, technologically setting us back to the 1950s 1.

To achieve full-system Zero Trust using our hardware-up
method, we made the following design decisions:
• Our first major decision was to implement the system on

an FPGA because we can trust the reconfigurable portion of
the FPGA fabric not to have backdoors because it is difficult
for the foundry to envision all possible designs that can be
mapped on the FPGA and break them in a predictable manner.
Further, unlike CPUs, FPGAs reconfigurable fabric does not
have speculative execution so it is not vulnerable to some
modern CPU vulnerabilities of this genre.
• To make programming these FPGAs easier, we used

High-Level Synthesis. We converted legacy C code and Clash
(Haskell-like language) code directly into FPGA bitstreams.
Using a functional language and an imperative language al-
lowed us to study the generality of the hardware-up method for
achieving Zero Trust. The conversion was done using a widely
used commercial high-level synthesis compiler. We wished
to formally verify the correctness of our implementation but

1This scenario is known as the Kessler’s Syndrome and has gained some
attention with New Space companies like SpaceX launching several small sats

79

2021 IEEE Secure Development Conference (SecDev)

978-1-6654-3170-5/21/$31.00 © 2021, Jason Lowdermilk. Under license to IEEE.
DOI 10.1109/SecDev51306.2021.00027

20
21

 IE
EE

 S
ec

ur
e

D
ev

el
op

m
en

t C
on

fe
re

nc
e

(S
ec

D
ev

) |
 9

78
-1

-6
65

4-
31

70
-5

/2
1/

$3
1.

00
 ©

20
21

 IE
EE

 |
D

O
I:

10
.1

10
9/

Se
cD

ev
51

30
6.

20
21

.0
00

27

could not find easily usable tools to complete the work in the
time frame for the project.
• Since we wanted to reduce the trust on the compilation

and conversion tools, we used a commercially available tool
(ESPY) to check that no backdoors were inserted into the
design during this process.

Our findings are mixed. Compared to implementing the sys-
tem with Linux running on a traditional server CPU/NIC, we
found that implementing the system in hardware (specifically,
on commodity FPGAs using commodity tools) substantially
reduces the lines of code and improves the speed of the
system. This is somewhat unsurprising and expected. However,
a surprising and unexpected result was that hardware design
technology had matured to a point where it was not only
possible to complete the design and validate it in a shorter
amount of time than equivalent software, but also provide a
sufficient level of assurance that it is free of backdoors and
trojans using current commercial tools. This level of assurance
is simply not possible with software today. We also found
that if the redesigned system were to be hosted on the cloud,
a significant amount of trust would need to be placed on
the cloud provider because of how FPGAs are integrated
into the cloud system. This level of trust could be reduced
further by implementing a few simple redesigns into the cloud
architecture.

The rest of the paper is organized as follows: in Section
2 we provide background on satellite ground stations. In
Section 3 we describe the design decisions and rationale in
our ground station design; in Section 4 we describe the results
of comparisons with typical software implementations of our
system. In Section 5 we discuss related work, and conclude
in Section 6.

II. BACKGROUND: SATELLITE ARCHITECTURES

Satellite Ground Segments: Satellite communication con-
sists of telemetry and commanding. Telemetry refers to data
being received from the satellite, whereas commanding refers
to the data being transmitted to the satellite. For this paper we
will focus on telemetry, which generally requires higher data
rates than commanding.

Fig. 1. Components of the Ground Segment

The ground segment of a typical satellite system contains
several terrestrial-based pieces of equipment: antennas and
modems reside in ground stations, which are located physically
in places where they have visibility to the satellite as it orbits
the Earth. Analog signals are received by the antenna and then
demodulated and digitized by the modem.

The resulting digital data stream is transmitted across a
network to the Satellite Operations Center2 (SOC) which
is often centrally located and staffed with flight operations
personnel. Inside the SOC, two major components are the
front-end processor (FEP) and the command and control (C2)
system. The FEP is responsible for signal processing, forward
error correction, and decryption of the telemetry data, whereas
the C2 system provides the user interface for flight operations.

Front-End Processors (FEP): The FEP is considered a
“cross-domain equipment” since it handles the decryption of
the telemetry, and therefore resides at the boundary of two
different classification levels: unclassified (black) as telemetry
arrives in encrypted form, and classified (red) as it leaves the
FEP after decryption. This usually requires the FEP to be split
into two physically separate devices, a red FEP and a black
FEP, in order to satisfy red-black separation requirements.
An approved cryptographic device is placed between these to
perform the decryption function.

Additionally, there is often a need for plaintext information
to travel between the black and red FEPs. In some cases this is
nothing more than metadata items, such as timestamps and bit
rate information, which were inserted by the modem. In other
cases, some portions of the arriving telemetry data frames
may arrive from the satellite as plaintext. In these cases, the
plaintext data must pass through an approved cross-domain
device known as the data guard which validates that the data
is in an acceptable format.

Fig. 2. FEP Architecture

The functions performed by the red and black FEPs are very
different. The black FEP is responsible for signal processing
and managing the transmission of data through the crypto and
data guard paths. The red FEP must merge the data arriving
from the crypto and data guard and then process the data as
required to support the interface to the C2 system. This often
involves demultiplexing data packets from different virtual
channels.

2also called Mission Control Center (MCC) or Control Center (CC)

80

III. MOTIVATION: FEP ATTACK SURFACE

Modern FEPs are often deployed on commodity servers
running Linux. The data guard consists of one or more
additional servers, also running Linux. Cryptos are generally
implemented as application specific network appliances, not on
general-purpose computers. The total attack surface of a FEP
consists of the combined hardware, firmware, and software
making up these commodity servers.

In terms of software, the Linux kernel weighs in at over
20 million lines of code. For a typical Linux distribution,
the kernel represents 10% or less of the total, with the
rest consisting of libraries, utilities, frameworks, and user-
space applications. The total amount of code in a full Linux
distribution can therefore exceed 200 million lines of code.

Even though Linux is open-source and frequently reviewed
for security, a recently discovered decade-old privilege esca-
lation vulnerability in sudo [9] has made it clear that even
well-reviewed code that is directly related to security can
still contain severe vulnerabilities which remain undetected
for years at a time.

Another significant attack vector is the FEP software itself.
Since FEPs are deployed in a physically secure environment
with strong perimeter defenses, security is often not a top pri-
ority for FEP developers. Because the FEP will not be directly
connected to the internet, the types of security precautions
deemed necessary in other public-facing deployments are not
made a priority. As a result, any malicious code brought into
the SOC through the supply chain or other means (since the
task of the FEP is to receive inputs) may have a relatively easy
time locating targets.

IV. (RE)-DESIGN OF THE FRONT-END PROCESSOR

A. Inner workings of a FEP
The FEP is responsible for performing digital signal pro-

cessing on the raw data arriving from the modem (see Fig 3).
The data arriving from the modem can be viewed as a stream
of bits which are not byte-aligned, and begins at an arbitrary
point within the data stream where the satellite signal was
acquired. Frame synchronization is performed to align the data
on frame boundaries, effectively discarding all data up to the
beginning of the first complete frame. Derandomization is then
necessary to remove the pseudo-random pattern that has been
mixed with the data before transmission from the satellite.
The randomization is done to increase binary data transitions,
making data extraction at the modem more reliable. Forward
error correction is then performed to correct any bit errors
incurred during transmission through the atmosphere. Integrity
verification consisting of a CRC check is then performed to
ensure that the data has been fully corrected; any frames which
still contain bit errors at this point are dropped. Generally,
each frame contains one or more packets or packet fragments,
and each frame belongs to a set of virtual channels which
are multiplexed together to form the telemetry downlink.
The packet extraction step demultiplexes and aggregates the
packet fragments to produce complete packets, which are then
forwarded to the C2 system.

Fig. 3. FEP Inner Workings.

B. Design Methodology

The primary method of reducing the overall code size (and
trust) is to replace software with hardware. The functionality
that was previously performed in software is now implemented
instead using hardware primitives on an FPGA, without a
general purpose processor. This eliminates vast amounts of
software required to run the application in the form of the
operating systems, hypervisors, libraries, and support utilities
required to implement the runtime environment necessary to
run software.

To implement the FEP, we faced a familiar set of questions:
should we develop new code to implement on the FPGA, or
reuse existing code? And, which programming languages are
the most appropriate in each case? For the first question, we
determined that we would reuse code to implement certain
aspects of the FEP such as encryption/decryption and forward
error correction, since these would be too time consuming to
implement and test from first principles. For these functions,
we decided to either reuse existing RTL implementations or
use High-level Synthesis to convert existing high-level code
to FPGA bitstreams.

For forward error correction, we decided to reuse an existing
open source implementation in C language from the package
libfec by Phil Karn. The libfec (Forward Error Correction, RS
255,223 code) version includes support for dual-basis mapping
and virtual fill, but not code block interleaving. Our first
step was to add interleaving support to the C implementation.
Then, we refactored the code to partition the functionality into
loading, decoding, and storing portions. This allows the code
to function in a byte-streaming manner where each invocation
provides one byte to buffer for the next decode operation, and
simultaneously returns one byte from the result of the previous
decoding operation. This allows the decoder to operate in
a fixed amount of memory and behave with reliable and
predictable timing. In order to support high data rates, we
created a parallel decoding mechanism that uses up to 64
decoder cores with a round-robin scheduler, enabling multiple
frames to be decoded simultaneously while maintaining a byte-
streaming interface capable of operating at the full data rate.

We considered both Bambu and Vitis HLS for conversion
to RTL, and ultimately chose Vitis HLS. In both cases, the
resulting RTL was able to produce a result after about 140,000
clock cycles to decode a single 255-byte code block. However,
the Bambu version failed to signal the result properly due to
unknown reasons, whereas the Vitis HLS version did not share
this problem.

81

For the encryption and decryption functions, we reused
a proven RTL implementation of AES available as open
source from SecWorks [10]. This implementation conforms
with NIST FIPS 197 and supports both 128 and 256-bit keys.
The interface to this module is based on reading and writing
a bank of 32-bit registers to load keys and data, configure
the encryption/decryption functions, and control the device.
Our first step was to implement an adapter component that
presents a byte-streaming interface to the rest of the system
while using a finite-state machine to interface with the AES
register bank in order to configure and control all aspects
of the AES core. We again found it necessary to deploy
multiple AES accelerators with a round-robin mechanism in
order to achieve high data rates. In effect, this created a parallel
ECB encryptor/decryptor unit. Our final step was to add an
additional component layer to manage nonce values in order
to implement CFB encryption and decryption.

For less-complex aspects of the FEP such as frame syn-
chronization, CRC validation, BCH code generation, and space
packet demultiplexing, we decided to implement these features
using HLS. Because hardware behaves in a manner similar
to functional programming in which a module’s input signals
resolve to output signals on every clock cycle, we wanted
to use an HLS based on a functional language. We initially
considered Chisel (Constructing Hardware in a Scala Embed-
ded Language), which is an HLS that has gained popularity
in recent years. We also considered a newer language called
Clash, which is based on Haskell. Compared to Chisel, Clash
provides clearer separation of sequential and combinational
logic through the use of Signal domains and through the use
of Mealy and Moore transformations which are available as
part of the language. We ultimately selected Clash as the HLS
to use for implementing all new code, including the AES
functions described above.

C. Synthesis and Checking

The HLS tools used for hardware design and synthesis
provide options to utilize different types of memory that are
available to the FPGA device, such as external DDR4 memory,
on-chip high-speed memory or block RAM, and flip-flop
memory. These options manifest themselves in the generated
RTL as “hints” inserted at appropriate places in the code which
will be subsequently interpreted by the synthesizer to generate
interfaces for the specified memory type. For the FEP, we
chose flip-flop memory in order to avoid the use of 3rd-party
IP for memory controllers.

Since we do not have any 3rd-Party IP, the main concern
for backdoors is through the corruption of the HLS process.
To mitigate this concern we ran the ESPY hardware security
verification tool after synthesis. At a high level, the tool checks
for wires in the design that do not influence the outputs and
flags them as potential candidates for backdoors.

D. System Integration

The system described above can be deployed on any stan-
dalone FPGA. However, we decided to implement the FEP

on a cloud instance since we wanted to be able to connect
to a real antenna and a real satellite, and the only reasonable
cost solution is to rent these services through a cloud ser-
vice provider. We used the system architecture described in
Figure 4 and deployed this on the Amazon Cloud. As shown
in the figure, the ground station currently transmits only to a
service running on the host CPU. Similarly, to send the data to
the C2 System, it needs to go through a CPU host application.
In the future if Amazon (or another cloud provider) allows the
FPGA instance to talk directly to other network services, we
can avoid the unnecessary communication through the host
CPU.

Fig. 4. System Architecture

V. RESULTS

A. Debloating and Code Size Reductions

In a standalone mode, i.e., not the Amazon cloud deploy-
ment, the FEP architecture can run without an hypervisor or
OS, just requiring some basic firmware/BIOS for management
functions such as loading the bitstream and initializing the
FPGA and the cards. This alone leads to a debloating of
millions of lines of code. In a cloud setting, two things need
to happen to achieve code size reductions comparable to the
standalone setting 1) FPGAs are permitted to host services and
communicate with other services bypassing the CPU and 2)
confidential computing capabilities such as SGX or isolation
primitives for FPGAs, are extended to the FPGA. These are not
serious technical obstacles. In fact, there are research papers
on how to do these for heterogeneous accelerators such as
the GPU [11], and extending them to FPGAs would not be a
significant task for the cloud providers if they choose to do
so.

The second source of code increase is because of High Level
Synthesis. The code in high level language is compact but it
is converted to RTL for every component in the FEP. Clash
language was used to develop all new modules, and Vitis HLS
was used to convert the Reed Solomon decoder. The results are
summarized in table I. Code written in Clash produced RTL
with 4.5 times more lines of code, and Vitis HLS produced an
increase of 4.8x to RTL. This represents a significant savings
in terms of the development time required, and is fairly typical
of the 5-10x ratio that is often advertised by HLS vendors. On
average, each line of HLS code produced 36 logic gates.

82

TABLE I
HLS CODE GENERATION

Module Name HLS Lines RTL Lines Logic Gates
killbuffer 59 563 109375

crc 50 110 408
derand 51 109 354

framesync 87 316 1736
roundrobin 44 124 286
deserial8 37 99 82
deserial32 36 98 390

serial8 42 146 1175
serial32 30 83 571

tlmpreproc 49 170 3704
demux 139 984 1377

rsdecoder 4324 20804 58952

B. Productivity

We developed the FEP over a period of 18 person-months,
including the development of a simple telemetry simulator and
integration with a C2 system. Based on our past experience,
a conservative estimate for the development of a typical
modern software FEP is roughly 2 person-years, given a
typical environment consisting of development work shared
over multiple engineers. We believe this reduction in schedule
can be attributed to increased productivity due to the use of
HLS and hardware-up techniques.

C. Security benefits: Memory Safety

Improper use of dynamic memory allocation can result in
buffer overflows, use-after-free errors, type confusion errors,
and many other errors that can become security vulnerabil-
ities [12]. For the development of our FEP, we chose to
avoid dynamic memory allocation altogether and use only
statically allocated memory. This was possible because all
data buffering in the system occurs only at the network
interfaces, and the maximum size required can be determined.
The network interface between the modem and the FEP is
UDP datagrams containing raw, non byte-aligned data; the
FEP receives datagrams which have a fixed size dictated by
the Maximum Transmission Unit (MTU) length. The data
from each datagram is placed in a static MTU-size memory
buffer while it is passed through a FIFO to the hardware. The
FPGA ultimately converts the raw bits into packets, which
are returned to the software layer and again stored in a
static memory buffer before being passed to the C2 system.
These network packets are multiplexed over a maximum of 64
channels, and each packet has a maximum size of 64 kilobytes.
This represents a total of 4 megabytes of static memory in a
worst-case scenario to store the maximum amount of data from
every virtual channel.

D. Trust Benefits

We used ESPY to perform a security scan on every compo-
nent produced by HLS techniques. The results are summarized
in table II. While no backdoors were detected and the ratio of
false positives were reasonable, the RTL generated from Mealy
transformations in Clash code consistently generated false

positives. This is because of the highly-specific comparators
generated by the state machine RTL.

TABLE II
ESPY SCAN RESULTS

Module Name Backdoors Detected False Positives
killbuffer 0 4

crc 0 4
derand 0 1

framesync 0 16
roundrobin 0 3
deserial8 0 0
deserial32 0 0

serial8 0 4
serial32 0 1

tlmpreproc 0 9
demux 0 20

rsdecoder 0 5

E. Performance

The FEP uses a bit-serial dataflow architecture in which
one bit (maximum) is transferred on every clock cycle. When
deploying to the Amazon EC2 F1 environment3, the clock
period used for custom logic (CL) has an 8 nanosecond period.
This represents a maximum data rate of 125 Mbps.

F. Lessons Learned

Need for a FPGA cloud or FPGA confidential compute:
Currently, for a cloud-based deployment such as Amazon
AWS F1, it is not possible to fully eliminate the software
stack after the FPGA is programmed. The operating system is
required to first load the FPGA and then must remain active
during the life of the FPGA session, otherwise the AWS EC2
framework will reclaim the F1 instance. Other architectures
have the potential to allow the operating system and related
software to be atrophied after the FPGA is programmed. In
particular, this would be possible with non-cloud (standalone)
implementations and possibly with other cloud services that
provide a network offloading capability, such as Microsoft
Azure who recently started providing satellite antenna capabil-
ities. With these alternative architectures, it would be possible
to implement the network interfaces completely within the
FPGA and eliminate the need for any software running on the
computer’s processor at runtime. This would have the desired
effect of debloating the 200+ million lines of code required
for a full Linux installation even for the cloud deployment.

Need for isolation features within FPGAs: The FPGAs in
our design are highly underutilized (less than 50% utilization).
As such we can integrate more features from the ground
station into the FPGA. Ideally, we could eliminate the need for
red/black separation between FEPs, data guards, and cryptos,
and allow all of these functions to be performed securely
within a single FPGA rather than over multiple physical
commodity servers. FPGAs provide the “Moats and Draw-
bridges” isolation primitives which could effectively isolate

3The Amazon EC2 F1 service provides a cloud-based FPGA computing
environment

83

these different parts, viz., FEP, crypto, and guard components
to ensure that side channel paths due to signal entanglement
are not present. Unfortunately, none of the available FPGA
cloud hosting services currently provide FPGAs that are com-
patible with this mechanism. As a result, it is still necessary
to maintain a red/black boundary using physically separate
servers at this time. This presents a future opportunity for
FPGA designers to provide higher levels of consolidation and
security.

Building on productivity gains: In our design, the FEP
uses a dataflow architecture consisting of many independent
modules. In our design, receiving modules must always be
available to receive data even if that means it has to tem-
porarily buffer data internally until it is ready. We chose this
design because pushing back all the way to the data source
(the satellite) is not possible, and any push-back mechanism
between internal modules would only delay an inevitable over-
flow while complicating the design of each module. However,
during implementation we discovered that this type of modular
design is not ideal for HLS implementations since it masks one
of the main benefits of HLS: automatic management of timing
between stages. Since every module is implemented separately
and then connected using a standard Verilog toplevel, the HLS
compiler is not able to manage the timing between modules.
Standard RTL development tools were still necessary in order
to achieve the necessary timing characteristics between mod-
ules, including waveform viewers, virtual JTAG interfaces, and
standard SystemVerilog testbenches. This diluted the overall
promise of using HLS to some degree. However, other benefits
of HLS such as increased productivity and higher-level logic
were still realized. A concrete recommendation for HLS
compilers would be to perform timing management across
modules.

VI. RELATED WORK

Alternate approaches to enhancing trust: In this work,
we equated minimizing trust to minimizing the amount of
code, and then checking that the remaining code is trustworthy
by using automated tools. However, trustworthy execution
can be achieved irrespective of the code size as long as
formal verification techniques can be applied for reactive
systems. This area has been improving rapidly and soon may
offer a promising replacement for achieving trust [13], [14].
Another promising trust reduction technique is homomorphic
execution [15], [16]. While homomorphic execution zeroes out
trust during program execution, the creation of homomorphic
programs on host computers requires only a minimal amount
of trust that might be acceptable. While the minimize-and-
verify potpourri approach described in the paper does not
have the concisely articulated guarantees offered by end-to-
end formally verified systems or encrypted execution, a nice
property of this approach is that it is applicable today.

High-level Synthesis: The complexity of today’s hardware
designs is driving designers to use high-level synthesis (HLS)
techniques [17]. HLS provides a higher level of abstraction
for designers by allowing hardware components to be designed

and implemented in a way that is more similar to software than
traditional register-transfer level (RTL) descriptions4. With
HLS, the specification is provided in a high level language
such as C language and automatically translated or compiled
into RTL descriptions. The RTL descriptions are then used to
synthesize, technology map, and place & route as is typical
for a hardware development workflow.

HLS has a long history that goes back to the 1970s [18]–
[20]. Over time, HLS has seen many perturbations and com-
petitive vendor offerings. Today, HLS is a mature and effective
alternative to RTL workflows. Supported high level languages
generally include C and C-like languages, as well as newer
HLS tools that are based on functional languages. Examples
that use C language include Vitis HLS and Bambu. Functional
language examples include Chisel (based on Scala) and Clash
(based on Haskell). For our hardware-up method, we selected
Vitis HLS to use for converting legacy C code into RTL, and
Clash for any new hardware development.

There are many benefits to using HLS. Developers realize
an increase in productivity by using already-familiar languages
and workflows. Existing software components which have al-
ready been functionally verified can be directly converted into
hardware, improving reuse. Additionally, the time required for
functional verification time can be reduced with HLS due to
using larger and more comprehensive software testbenches,
rather than RTL testbenches.

Hardware Trust Tools and Techniques Hardware devel-
opment is susceptible to supply-chain attacks at several points
in the development workflow. Backdoors can be introduced
directly at the RTL level by corrupted EDA tools (such as
HLS compilers) or through a malicious actor. Backdoors can
also be introduced at the synthesis, mapping, and place & route
steps by corrupted EDA tools.

Hardware backdoors are very difficult to detect through
traditional testing techniques due to the size of the search space
involved. Since any input value may be used to trigger the
backdoor by waiting for a specific data pattern to accumulate
over time, the search space increases exponentially on every
clock cycle. This property enables the stealth required for a
backdoor to remain undetected during testing. If a backdoored
circuit survives the testing phase, it can be placed into the
commercial supply chain and ultimately end up being used in
critical defense or weapon systems.

For our hardware-up method, we used a security scanning
tool called ESPY to ensure that all RTL is free of back-
doors [21], [22]. ESPY measures the stealth of every wire in a
hardware design in order to detect areas of the circuit that rely
on stealth to either become active or to shield activity from
affecting the primary outputs of a circuit. This is an effective
way to scan RTL designs to ensure they are free from stealthy
backdoors.

VII. CONCLUSIONS

Trust can be viewed as a set of axioms used to define the
security of the system against specific attack vectors. While

4usually Verilog or VHDL

84

Zero Trust is ideal, the goal of security designers has been to
minimize the level of trust. In this paper we showed that it
is possible to minimize trust to a very large degree by using
modern technologies and hardware oriented techniques. We
conservatively estimate a 100x reduction in code size, and
a significant level of security against hardware backdoors.
Admittedly this is one example, and more applications of
the methodology described in the paper would be needed to
validate the results in the paper.

REFERENCES

[1] D. Mehta, H. Lu, O. P. Paradis, M. A. M. S., M. T. Rahman, Y. Iskander,
P. Chawla, D. L. Woodard, M. Tehranipoor, and N. Asadizanjani, “The
big hack explained: Detection and prevention of pcb supply chain
implants,” J. Emerg. Technol. Comput. Syst., vol. 16, Aug. 2020.

[2] “Supermicro rebuttal.” https://www.supermicro.com/en/pressreleases/
supermicro-statement-bloombergs-claims.

[3] NIST, “CVE-2020-10148..” Available from NIST, CVE-ID CVE-2020-
10148., December 2020.

[4] “Department of defense (dod) zero trust reference architecture.”
https://dodcio.defense.gov/Portals/0/Documents/Library/(U)ZT RA v1.
1\(U) Mar21.pdf.

[5] P. Kocher, D. Genkin, D. Gruss, W. Haas, M. Hamburg, M. Lipp,
S. Mangard, T. Prescher, M. Schwarz, and Y. Yarom, “Spectre attacks:
Exploiting speculative execution,” CoRR, vol. abs/1801.01203, 2018.

[6] M. Lipp, M. Schwarz, D. Gruss, T. Prescher, W. Haas, A. Fogh,
J. Horn, S. Mangard, P. Kocher, D. Genkin, Y. Yarom, and M. Hamburg,
“Meltdown: Reading kernel memory from user space,” in Proceedings of
the 27th USENIX Conference on Security Symposium, SEC’18, (USA),
p. 973–990, USENIX Association, 2018.

[7] S. Ray, E. Peeters, M. M. Tehranipoor, and S. Bhunia, “System-on-chip
platform security assurance: Architecture and validation,” Proceedings
of the IEEE, vol. 106, no. 1, pp. 21–37, 2018.

[8] G. T. Becker, F. Regazzoni, C. Paar, and W. P. Burleson, “Stealthy
dopant-level hardware trojans,” in CHES, pp. 197–214, Springer, 2013.

[9] NIST, “CVE-2021-3156..” Available from NIST, CVE-ID CVE-2021-
3156., April 2021.

[10] “secworks / aes.” https://github.com/secworks/aes.git.
[11] S. Volos, K. Vaswani, and R. Bruno, “Graviton: Trusted execution

environments on gpus,” in 13th USENIX Symposium on Operating
Systems Design and Implementation, October 2018.

[12] “We need a safer systems programming lan-
guage.” https://msrc-blog.microsoft.com/2019/07/18/
we-need-a-safer-systems-programming-language/.

[13] G. Klein, J. Andronick, K. Elphinstone, G. Heiser, D. Cock, P. Derrin,
D. Elkaduwe, K. Engelhardt, R. Kolanski, M. Norrish, T. Sewell,
H. Tuch, and S. Winwood, “Sel4: Formal verification of an operating-
system kernel,” Commun. ACM, vol. 53, p. 107–115, June 2010.

[14] Y. Bertot and P. Castéran, Interactive theorem proving and program
development: Coq’Art: the calculus of inductive constructions. Springer
Science & Business Media, 2013.

[15] C. Gentry, A Fully Homomorphic Encryption Scheme. PhD thesis,
Stanford, CA, USA, Stanford, CA, USA, 2009.

[16] “Intel HEXL (release 1.1.1).” https://arxiv.org/abs/2103.16400, Mar.
2021.

[17] P. Ranganathan, D. Stodolsky, J. Calow, J. Dorfman, M. Guevara, C. W.
Smullen IV, A. Kuusela, R. Balasubramanian, S. Bhatia, P. Chauhan,
A. Cheung, I. S. Chong, N. Dasharathi, J. Feng, B. Fosco, S. Foss,
B. Gelb, S. J. Gwin, Y. Hase, D.-k. He, C. R. Ho, R. W. Huffman Jr.,
E. Indupalli, I. Jayaram, P. Kongetira, C. M. Kyaw, A. Laursen, Y. Li,
F. Lou, K. A. Lucke, J. Maaninen, R. Macias, M. Mahony, D. A.
Munday, S. Muroor, N. Penukonda, E. Perkins-Argueta, D. Persaud,
A. Ramirez, V.-M. Rautio, Y. Ripley, A. Salek, S. Sekar, S. N. Sokolov,
R. Springer, D. Stark, M. Tan, M. S. Wachsler, A. C. Walton, D. A.
Wickeraad, A. Wijaya, and H. K. Wu, “Warehouse-scale video ac-
celeration: Co-design and deployment in the wild,” in Proceedings of
the 26th ACM International Conference on Architectural Support for
Programming Languages and Operating Systems, ASPLOS 2021, (New
York, NY, USA), p. 600–615, Association for Computing Machinery,
2021.

[18] G. Martin and G. Smith, “High-level synthesis: Past, present, and future,”
IEEE Design & Test of Computers, vol. 26, pp. 18–25, 07 2009.

[19] J. Cong, B. Liu, S. Neuendorffer, J. Noguera, K. Vissers, and Z. Zhang,
“High-level synthesis for fpgas: From prototyping to deployment,” IEEE
Transactions on Computer-Aided Design of Integrated Circuits and
Systems, vol. 30, no. 4, pp. 473–491, 2011.

[20] “Vitis high-level synthesis.” https://www.xilinx.com/products/
design-tools/vivado/integration/esl-design.html.

[21] A. Waksman, M. Suozzo, and S. Sethumadhavan, “Fanci: Identifica-
tion of stealthy malicious logic using boolean functional analysis,” in
Proceedings of the 2013 ACM SIGSAC Conference on Computer &
Communications Security, CCS ’13, (New York, NY, USA), p. 697–708,
Association for Computing Machinery, 2013.

[22] “ESPY / chipscan products.” https://chipscan.us/products/.

85

