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Abstract—Remote unlocking for Android devices may benefit
both users and manufacturers. Users can continue using the
device without factory-resetting when they unexpectedly forget
their passphrases. Manufacturers can improve non-face-to-face
customer services in the COVID-19 era. Nevertheless, not many
manufacturers support remote unlocking services for Android
devices. If the remote unlocking service is triggered by requests
over-the-air, it may increase the attack surface of Android
security. Android security is hardware-based (e.g., hardware-
backed Keystore), so we seek to preserve this security level by
designing a new remote unlocking service without modifying
trusted execution environments. Our design supports two-factor
authentication, distributed authority, trust-boundary minimiza-
tion, and key management. Since a synthetic password used for
remote unlocking is not exposed to the outside of an Android
device, the manufacturer still cannot unlock the device without
user consent. We identify 208 security threats in the proposed
remote unlocking service using the STRIDE model and ensure
that our design has countermeasures for all high-level security
threats. After passing quality verification and penetration tests,
the proposed remote unlocking service has been officially installed
on commercial devices.

Index Terms—Security, Android, Remote unlocking, Synthetic
password, STRIDE

I. INTRODUCTION

An Android remote unlocking service allows its user to
unlock an Android device through the Internet. ! Once a user
registers a passphrase such as a PIN, pattern, or password
with an Android device, a screen lock is set. If supported,
the user can also activate the remote unlocking service for
her device. After this, when the user cannot unlock the device
(say, forgetting her passphrase), the user can visit the remote
unlocking service website and make the device unlocked via
the Internet. The device receives a secure message over the
Internet and can be unlocked.

Not many manufacturers support such a service due to
the difficulty of designing and implementing a secure remote
unlocking service. From the perspective of security, the remote
unlocking service can be risky since it inevitably increases
the attack surface. Because, unlike conventional offline device
unlocking, this service allows device unlocking through the
Internet. Thus, if the remote unlocking service is not carefully

'If you are unfamiliar with what a remote unlocking service is, we
recommend watching the demo video (1min 17sec long) in A.7 first.
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designed, the device might be unlocked by a malicious attacker
and its user’s personal data might leak.

However, from the perspective of usability, the remote un-
locking service benefits both users and device manufacturers.
If the device users accidentally forget the passphrase of the
screen lock, the remote unlocking service provides users with
an alternative method of unlocking their device. In this way,
the device can be reused without performing factory-resetting.
In contrast, an Android device that does not support the remote
unlocking service needs factory-resetting to be reused if the
device cannot be unlocked. > Due to the unwanted factory-
resetting, users lose valuable data such as photos, contacts, and
text messages that have not been backed up. Briefly, since the
remote unlocking service allows users to unlock their devices
without going through factory-resetting, the users can avoid
this data loss.

Remotely unlocking devices also helps increase the man-
ufacturer’s profit. The manufacturers can improve customer
services by supporting remote unlocking services. Also, since
non-face-to-face services reduce customer visits to the service
center, the manufacturers can save their customer service costs.
Especially in the COVID-19 era, adopting non-face-to-face
services is highly encouraged.

For the devices with Android 10 or higher, file-based
encryption (FBE) is essential to obtain Google mobile service
(GMS) certificates [1]. Once FBE is applied to an Android
device, the master key that encrypts the device is derived from
the user’s passphrase. Thus, even its manufacturer, who has
the system permission authority, cannot obtain the information
about the encryption key. It means that it is hard for the
manufacturer to overhaul the locked device. Assume that
there is an Android device that cannot be unlocked. If the
user claims that the correct passphrase cannot unlock the
device, the manufacturer must struggle to determine whether
the user typed an incorrect passphrase or the device is
defective. In general, any software and hardware have the
possibility of malfunctioning. Moreover, the Android user
authentication consists of various modules such as Keyguard,
Lockscreen, Gatekeeper, LocksettingService, Keymaster, and
Keystore. Thoughtful manufacturers conduct comprehensive

2If the factory reset protection (FRP) feature to prevent the use of stolen
devices is activated, the user must also unlock the FRP to reuse the device
after factory-resetting.



testing before launching their devices, but testing all use-cases
is impossible. If the device supports the remote unlocking
service and the user enabled the service, the manufacturer
can help the user unlock her device. Then, under the user
agreement, the manufacturer can examine the locked device
to find which module went wrong.

The advantages and challenges of the remote unlocking
service are evident. While this service benefits both users and
manufacturers, it also increases the attack surface. Thus we
seek to develop a new remote unlocking service that preserves
the security level of Android. The proposed remote unlocking
service utilizes a synthetic password (SP). Therefore, it pre-
serves the hardware-backed security level, but it requires no
modifications to the Android hardware security. To the best
of our knowledge, the proposed remote unlocking service is
the first case to leverage the SP for personal users, not for
enterprises.

We adopt the STRIDE model [2] to identify the threats
and add the corresponding countermeasures in security design.
Finally, the proposed solution has been installed onto commer-
cial devices after passing quality verification by a manufacturer
and penetration tests by a third party.

The rest of this paper consists of the following. Section II
briefly describes the current Android security features. Section
III addresses our security design. Section IV explains our
security design from an implementation perspective. Section V
analyzes security threats and describes their countermeasures.
Section VI compares our research with other works. In Section
VII, we share the conclusions.

II. BACKGROUND

Android provides various security features, which are lever-
aged to design the proposed remote unlocking service.

A. Synthetic Password (SP)

User authentication in modern Android devices is based
on hardware security [3]. User passphrases are encrypted
and stored in the device’s hardware-backed Keystore and not
exposed outside the device. For personal Android devices, a
device user is the same as its owner. However, in enterprise
scenarios, a device user and an owner may be different. 3 In the
enterprise scenario, the device owner should be able to reset
the passphrase set by the previous user so that other users
can reuse the device. For this, Android introduces a security
primitive, the SP, starting from its version 8 (or Oreo). The
DevicePolicyManager (DPM) in the Android framework pro-
vides application programming interfaces (APIs) that only the
device owner (specifically, the organization’s IT administrator)
can activate and use the SP to unlock the device with a reset
password token (RPTkn) [4]. #

3 A typical example is a device that a company distributes to an employee.
The owner of the device is the company (or administrator), but the user is the
employee.

4RPTkn is also called the escrow token in the Android framework’s
LockSettingService and other documents.
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B. Android Application Sandbox

The Android platform uses Linux user-based protection
to identify and isolate an app’s resources [5]. The user ID
(UID) that Android assigns to each app provides a kernel-
level app sandbox, and each app runs in the sandbox. Thus,
Android apps cannot communicate directly with each other by
default. Instead, only limited access through the OS is allowed.
Also, since the app sandbox is inside the kernel, this security
mechanism protects all modules above the kernel. To break the
sandbox, the Linux kernel must be compromised. However, as
Android has been upgraded, various access controls such as
SELinux and kernel protection schemes have been applied [5].

C. Android Application Integrity

All apps running on the Android platform must be signed by
their developers [6]. Also, legitimately signed apps normally
run with different UIDs. However, if an app wishes to share
the same sandbox with other apps at runtime, these apps must
be signed with the same key. The apps signed with the same
key can declare a shared UID in their Android manifest files.
As the Android app signing scheme has been upgraded, the
performance and security have been further enhanced [6].

D. Android Permissions

Android apps declare permissions in their manifest files to
interact with other apps. Specific permissions are verified at the
app’s install time or execution time. Thus, they can be limited
depending on the app’s signature. Also, new permissions can
be declared to restrict access from other apps [7].

III. SECURITY BY DESIGN

The security level of modern Android devices is deemed
hardware-backed security [8] [9]. This means that a user’s
keys are not exposed outside of its hardware security module
(HSM). Thus, even the device manufacturer cannot arbitrarily
unlock the device without the consent of the user.

A. Design Goals

In this section, we cover the security goals in the design of
our remote unlocking service.

1) Preserving hardware-backed security: Security parame-
ters used in remote unlocking must have a trust anchor that has
its basis in the HSM. In a nutshell, a symmetric key for an AES
cipher should not be exposed outside of the Android hardware
Keystore, and the private key of an RSA cipher should not be
disclosed outside of the HSM. See §IV.A for details.

Even standard security measures would have vulnerability if
poorly operated or unexpectedly misimplemented. Therefore
relying on a single security measure would not provide a
sufficient security level. So, we intentionally overlap multiple
security measures if the security enhancement is needed. See
§IV.F for details.



2) Two-factor authentication: In general, there are three
types of authentication mechanisms, what-you-know, what-
you-have, and what-you-are. A password represents what-you-
know authentication. A credit card is an example of what-
you-have. Biometric features such as fingerprint and iris are
what-you-are authentication. We secure the proposed remote
unlocking service by combining two of the three authentication
techniques. First, requesting the user to enter her ID and
password is the what-you-know authentication. Second, a
mobile device itself can be the what-you-have authentication
as only the user who possesses the device can trigger the
remote unlocking service (say, selects a button in the device
screen). Therefore, even the service providers 5 cannot unlock
the device they do not have. See Figure 2 and §II.C.2 for
details.

3) Distributed authority: The unlocking server can be
implemented as a single entity. However, to avoid the single
point of compromise, our design divides the unlocking server
into three entities: an account server, a database server, and a
web interface server. That is, the compromise of a single server
will not lead to unlocking an arbitrary device. (Suppose that
the attacker obtains an Android device of arbitrary victims.)
See Figure 2 and §II1.C.2 for details.

4) Trust-boundary minimization: Besides third-party apps
signed with the private keys of corresponding developers, an
Android device has many system-privileged apps of different
developers signed with the same platform key. ® As the system-
privileged apps can also call the SP-related APIs even if they
are not related to the remote unlocking service, we need to
add a new access control mechanism beyond the Android
permission system. See §IV.D for details.

5) Key management and compatibility: The server admin-
istrators should be able to change the public/private key pairs
in their HSMs, e.g., due to key expiration or cipher change.
Also, the proposed design should support forward compati-
bility by allowing the administrators to add new parameters
related to the ciphers or expand the service functions. Mean-
while, it must consider backward compatibility for devices
whose update support is expired. See §IV.F for details.

B. Design Components

The structure of our service is shown in Figure 1. This
section describes the major data elements and functional
components of our service.

1) Reset password token (RPTkn): This is a 256-bit
random value generated by an Android device that may have
to be unlocked later. This is neither stored in the device storage
nor left in the memory. Immediately after being generated, the
RPTkn is encrypted with the hardware-backed AES key and
then encrypted again with the RSA public key of the database
server (DBS) by the remote unlocking app (RUApp). It will
then be delivered to the DBS over TLS and zeroized in the
device. When the device registration phase completes, the DBS

SIn this paper, we use the expressions of manufacturer, service provider,
and server administrator interchangeably in context.
5The platform key is a term of a private key of the manufacturer in Android.
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Fig. 1. A data flow diagram illustrates the device registration phase.

stores the AES encrypted RPTkn. Thus, even the DBS cannot
see the plaintext RPTkn.

2) User service account (USAcnt): This is the user’s
service account value saved in the device, for example,
userid @manufacturer.com. To activate the remote unlocking
service, the user saves her account in the AccountManager of
the Android framework and agrees to the terms of the service.
The service agreement includes that a network connection
is enabled by RUApp when the remote unlocking service is
triggered. Since the USAcnt is authenticated by a single entity,
which is the account server, the same USAcnt is used in both
the device and the web interface server (WIS). This data is
encrypted with the RSA public key of the WIS by RUApp and
decrypted in the WIS. Thus, the DBS cannot see the plaintext
USAcnt.

3) Device Identifier (Devld): This data is an inherent value
by which the service provider identifics a specific device. This
is an international mobile equipment identity (IMEI) value for
a device that can make a phone call, or a manufacturer serial
number (MSN) value for a device that supports WiFi only.
This is encrypted with the RSA public key of the DBS and
transmitted to the DBS and WIS over TLS.

4) Remote unlocking app (RUApp): We develop this app
from scratch for the remote unlocking service. Only this app
can access new DPM APIs that control the SP in personal
use scenarios. (See §1V.D) It also performs TLS connection
setup with the DBS, payload encryption using an RSA cipher,
payload signature/nonce/timestamp verification, RPTkn gener-
ation, AES encryption, and decryption of an RPTkn using the
Android Keystore.

5) Database server (DBS): This server handles the com-
munication with the device over TLS and stores the encrypted
RPTkn of the device. The payload received from RUApp is
decrypted using the DBS’s RSA private key stored in its HSM.
Also, the DBS delivers a part of the payload from RUApp to
the WIS or the payload received from the WIS to RUApp.

6) Web interface server (WIS): We develop this server
from scratch to handles the unlocking request from the user.
The user visits the WIS and logs in using her USAcnt, which



was saved on her device. When the device is waiting for
remote unlocking, the user can select the device on the web
page using another online machine.
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Fig. 2. A data flow diagram illustrates the device unlocking phase.

C. Data Flow Diagrams (DFDs)

Our remote unlocking service has two phases: device reg-
istration and device unlocking. Each phase consists of the
following interactions. See §IV.F for details.

1) Device registration: Figure 1 shows the DFD of the
device registration phase. After the user sets her passphrase
with LockSettingsApp, she can activate the remote unlocking
service. As a precondition 7, (R1) LockSettingsApp calls
AccountApp to set her USAcnt. (R2) The device user logs
into her USAcnt via the Account server. (R3) If succeeded,
the USAcnt is saved in AccountManager. (R4) The user
activates the remote unlocking service. (RS) LockSettingsApp
checks whether the user accepts the service agreement and
(R6) requests RUApp to create an RPTkn. (R7) RUApp
creates the RPTkn using remote unlocking APIs added to the
DPM and performs AES encryption using the Keystore. (R8)
RUApp returns only the pass/fail result of RPTkn creation to
LockSettingsApp. (R9) LockSettingsApp calls KeyGuardApp
to request the user to input the passphrase again. (R10) The
user inputs the current passphrase. 8 (R11) LockSettingsApp
requests RUApp to register the RPTkn with the DBS. (R12)
RUApp gets the USAcnt through AccountManager and en-
crypts it with the RSA public key of the WIS. The RPTkn
and Devld are encrypted with the RSA public key of the
DBS. (R13) Then RUApp transmits the payload (see Figure 3)
including the device’s nonce (DevNonce) to the DBS through
a TLS connection. (R14) The DBS decrypts the payload
by using its HSM. (R1S5) The DBS sends the Devld and
encrypted USAcnt to the WIS. (R16) The WIS uses its HSM
to decrypt and store the USAcnt. (R17) The DBS sends the

7If the user already saved her USAcnt in the device, R1~R3 can be skipped.
In addition, the USAcnt can be saved via the Settings app.

8If the user fails to input the correct passphrase at this time, the device
registration is canceled. By this, a malicious attacker cannot arbitrarily activate
the remote unlocking service.
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result (see Figure 3) of the device’s remote unlocking service
registration and its signature to RUApp. (R18) RUApp verifies
the DBS’s signature with the DevNonce and returns the result
to LockSettingsApp. (R19) LockSettingsApp shows the result
of the device registration to the user.

2) Device unlocking: Figure 2 shows the DFD of unlocking
the registered device. (U1) The user fails to unlock the device
several times (say, forgets her passphrase). (U2) Keyguard
checks the user consent to use the remote unlocking service
through AccountApp and (U3) checks whether the remote
unlocking service is activated through the DPM. If both
conditions are satisfied, a throttling screen ° displays a button
to start the remote unlocking service. (U4) The user selects
the button. (US) KeyGuard calls RUApp. (U6) RUApp sends
a payload (see Figure 4) including a fresh DevNonce to request
(1) the RPTkn, and (ii) the WISSign (see §IV.E.9) to the DBS
through a TLS connection. (U7) The DBS requests a payload
from the WIS. (U8) Using another machine, the user logs in
to the WIS with her USAcnt. (U9) The WIS authenticates the
user through the account server. (U10) The user selects the
device currently waiting for remote unlocking. (U11) The WIS
uses its HSM to sign her USAcnt with the WIS’s timestamp
(WISTimeStamp). (U12) The WIS sends the payload to the
DBS securely. (U13) The DBS uses its HSM to complete
the payload (see Figure 4). (U14) Then the DBS replies to
the RUApp’s request over the TLS connection. (U15) RUApp
verifies the freshness of WISTimeStamp and the WIS signature
with the USAcnt saved in AccountManager. Also, RUApp
verifies the DevNonce and the DBS signature. (U16) If they
are valid, RUApp decrypts the RPTkn and unlocks the device.
If succeeded, the user can see the unlocked device. (U17)
RUApp notifies the DBS of the device unlocking result over
the TLS connection. (U18) The DBS notifies the WIS of the
result. (U19) The user can also see the remote unlocking result
from the WIS.

The device could send the data intended for the WIS directly
to the WIS instead of passing through the DBS. But we design
for the device to send the data through the DBS for the
following benefits. First, it can simplify the channel device
should have. A simplified communication channel can narrow
the attack surface of the service. Second, this design can
guarantee cooperation between DBS and WIS. Third, if the
device connects DBS and WIS sequentially, it may increase
the total round trip time. Because generally, Android device
uses a wireless connection, but DBS and WIS are the servers
with a high speed wired network.

IV. IMPLEMENTATION

This section covers the implementation of the remote un-
locking service.

A. Security Requirements
The security algorithms used by the remote unlocking
service require sufficient security strengths. Thus, we follow

9This is a screen that KeyGuard temporarily restricts the passphrase input
to prevent the brute force attack.



the recommendations of the NIST [10]. Table I shows the
requirements of the cryptographic algorithms applied to the
remote unlocking service. RUApp has the X.509 certificates
from the DBS and the WIS as its raw assets. The certificates
containing the public key can be changed through app updates.
An RPTkn and a DevNonce are generated using the Se-
cureRandom module of Java software development kit (SDK),
which complies with FIPS 140-2 security requirements [11].
TLS 1.2 or higher is used for the communications between the
RUApp and the DBS. The trust anchor of the server certificates
must reach one of the root CA certificates stored in Android
CredentialStorage.

TABLE I
SECURITY REQUIREMENT DETAILS

Feature

RSA key size
RSA padding
Digital signature
Signature padding
RPTkn encryption
RPTkn size
Nonce size
RUApp preload

[ Parameters

2048 bits (or higher)
OAEPwithSHA-256andMGF1
SHA256withRSA/PSS

MGF1 SHA256

Hardware-backed AES256 / CBC block mode
256 bits (32 bytes)

256 bits (32 bytes)

DBS RSA public key, WIS RSA public key
(Both are in X.509 PEM certificates)

TLS (1.2 or higher), OAuth (2.0 or higher)
(Trust anchor reaches to the AOSP root CA)
SecureRandom (complies FIPS 140-2)

Communication channel

Random generation

B. Application Signing

RUApp needs the system privilege. Thus, we wrote the
Android.mk build file for RUApp, which is to be signed with
the Android platform key at the build time. In this way, the
Android security features mentioned in §I1.B, §II.C, and §I1.D
can be applied.

C. Hide Annotation

We add the hide annotation (@hide) to the DPM’s remote
unlocking service APIs to hide them from the SDK [12]. From
Android 9 (API level 28), the APIs with the hide annotation
can only be called by an app with system privileges [13]. Since
RUApp is signed with the platform key, it can call the remote
unlocking service APIs. In contrast, third-party apps are not
allowed to call these APIs.

D. Call Stack Monitoring

This feature restricts other system privilege apps on the
device from calling the remote unlocking service APIs. Thus,
we can prevent unexpected internal attacks. Table II shows the
partial code that checks the call stack and blocks API calls by
arbitrary system apps. If the caller is not specified in the API,
a SecurityException is thrown. Therefore, the trust boundary
is minimized.

E. Custom Permission

We add custom permission to RUApp to regulate arbitrary
accesses from third-party apps. Moreover, even system apps
cannot access RUApp unless its custom permission is explic-
itly declared in their AndroidManifest.xml file. Thus, it can
guarantee accountability. Table III shows a partial code of
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TABLE II
CALL STACK MONITORING CODE SNIPPET IN DEVICEPOLICY MANAGER

/! @hide
public boolean remoteUnlock(byte[] token) {
throwIfInvalidCaller (REMOTE_UNLOCK_CLASS);
[snip]
private void throwIfInvalidCaller (String validCaller ) {
StackTraceElement[] callStack =
Thread. currentThread () . getStackTrace () ;
String caller = callStack [4]. getClassName();
String called = callStack [3]. getMethodName();
if (! caller .equals( validCaller )) {
throw new SecurityException( caller + " is not allowed to call
" + called);

the custom permission declared in AndroidManifest.xml of
RUApp.

TABLE III
CUSTOM PERMISSION CODE SNIPPET IN ANDROIDMANIFEST.XML

<permission
android :name="permission. REMOTE_UNLOCK"
android : protectionLevel =" signature "/>
<service
android : name=".RemoteUnlockService"
android : directBootAware="true"
android : permission="permission. REMOTE_UNLOCK">
<intent— filter >
<action
android :name="remoteunlock. REMOTE_UNLOCK_SERVICE"/>
</ intent — filter >
</ service>

Device
Magic + Version + DevNonce + DBSAlias +
RsaEncrypted(CMD + Devld + AesEncryptedRPTkn)

S :

+ ToWIS(WISAlias + RsaEncrypted(USAcnt))

Magic + ToBeSigned(DevNonce | CMD) + DBSSign

Fig. 3. Secure protocol in the registration phase is illustrated.

F. Secure Protocol

TLS protects the communication between the RUApp and
the DBS. On top of TLS, we add multi-layered security
mechanisms to preserve the hardware-backed security level.
Figures 3 and 4 show our secure protocol. The payload format
is the JavaScript Object Notation (JSON) type, which consists
of field-value pairs. Therefore, it can be flexibly expanded
without the restriction of order and length. To represent all
values as human-readable characters, we use Base64 encoding
if necessary. Those human-readable characters make it easy
to debug and respond to security incidents. Also, Base64
encoding is able to encode arbitrary binary data into a channel
that is not "8-bit clean" (i.e., not any 8-bit character is allowed
on the channel). The major fields in the payload are as follows.

1) Magic: Opening ports can be sensitive for server ad-
ministrators. The DBS administrator opens only ports with
security countermeasures such as network firewall and intru-
sion protection system (IPS). That is, the DBS may use the
secure port for multiple purposes. This field value specifies



that an arriving packet at the port of the DBS is for the remote
unlocking service.

2) Version: This represents the remote unlocking service
version known to the device. Depending on the update level
of the device, the version of the remote unlocking service can
vary. Also, new fields can be added as the version goes up.
The DBS must be able to provide the service for the version
the device knows. This field allows forward and backward
compatibility to be achieved.

3) DevNonce: RUApp generates a new random value in
the DevNonce field value every time it sends a request
packet. The DBS signs the corresponding response, including
this random value. When RUApp receives the response from
the DBS, it verifies the signature DBSSign with the RSA
public key of the DBS. RUApp keeps the DevNonce values
generated in the current session. Thus, to prevent the replay
attack, RUApp drops the response from the DBS if the
DevNonce is not matched.

4) DBSAlias (or WISAlias): This field serves as the
index of the server’s public/private key pairs. If the device has
received the new certificate of the server and uses the new
public key, this field value lets the server know which public
key is used in the payload.

5) RsaEncrypted: This field is for an RSA ciphertext.
Its plaintext may contain a CMD representing the device mes-
sage (e.g., RPTkn request), DevId, AES encrypted RPTkn,
and USAcnt.

6) ToWIS: This field is passed to the WIS by the DBS.
It contains the WISAlias, which indicates the RSA public
key of the WIS that the device uses. It also includes the RSA
encrypted USAcnt in the registration phase. Since the USAcnt
is encrypted with the public key of the WIS, the DBS cannot
see the USAcnt of the device.

7) ToBeSigned: The response includes the device-issued
DevNonce and the CMD containing the server message (e.g.,
RPTkn response). The AES encrypted RPTkn is also included
when the user requests remote unlocking via the WIS.

8) DBSSign: This field has the signature for the values
in the ToBeSigned field. This is generated using the DBS
RSA private key. Since ToBeSigned includes DevNonce,
every response has a different signature that defends against
the replay attack.

9) FromwWIS: The WIS passes this field to RUApp through
the DBS. This field contains the WISTimeStamp and the sig-
nature WISSign, which proves the integrity of the USAcnt of
the user whose authentication succeeds. WISSign is generated
by signing the USAcnt concatenated by WISTimeStamp. Thus,
the WISSign is different every time. Also, as the plaintext
USAcnt is not included, the DBS cannot know the USAcnt of
the device.

In the device registration phase, the secure protocol works
in a single transaction as shown in Figure 3. However, in the
device unlocking phase, the secure protocol requires server
polling for synchronization as follows. The user calls RUApp
on the throttling screen. According to the user agreement,
the device enables its network connectivity. The device enters
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Device
Magic + Version + DevNonce + DBSAlias +
RsaEncrypted(CMD + Devld) + ToWIS(WISAlias)

Magic + ToBeSigned(DevNonce | CMD) + DBSSign

After the web request: Magic +
ToBeSigned(DevNonce | CMD | AesEncryptedRPTkn)
+ DBSSign + FromWIS(WISTimeStamp + WISSign)

®) (B

Fig. 4. The secure protocol in the unlocking phase is illustrated.

the remote unlocking standby state and requests a remote
unlocking payload (the black arrows in Figure 4) at regular
intervals to the DBS. Until the user makes an unlocking
request via the WIS, the response using CMD from the DBS
is "wait." (the grey arrow in Figure 4). ©

Once the user request is valid at the WIS, it creates a
FromWIS and sends it to the DBS. The DBS completes the
payload (the green arrow in Figure 4) and sends it to RUApp.
Then, RUApp tries unlocking the device and sends its result
(the blue arrow in Figure 4) to the DBS. The DBS sends the
received result to the WIS, which displays the unlocking result
to the WIS user. The detailed operations are shown in Figure
4 and §III.C.2.

V. EVALUATION
A. Threat Analysis

We adopt the STRIDE model to identify the threats the
proposed unlocking service may have. The STRIDE model is
a threat modeling method that is the most mature and helps
identify relevant mitigating techniques [14]. The DFDs of the
registration and unlocking phases are given to Microsoft’s
automatic tool for the STRIDE model analysis [15] (See A.2).
As a result, 208 possible threats from our design are identified.
Next, we assess the risk level of each threat based on the
OWASP risk rating [16]. Table IV summarizes the result of
the threat analysis and risk assessment. We publish the whole
data in A.3.

TABLE IV
SUMMARY OF THE THREAT ANALYSIS AND THE RISK ASSESSMENT

HIGH MEDIUM LOW Total
Spoofing identity 7 7 24 38
Tampering with data 2 3 11 16
Repudiation 4 4 17 25
Information Disclosure 4 1 12 17
Denial Of Service 0 20 31 51
Elevation Of Privilege 4 11 46 61
Total 21 46 141 208

B. Security Countermeasures

According to the result of our risk assessment as shown
in A.3, the high-level threats exist in the interactions R13,
R17, U6, and Ul4 (see Figures 1 and 2). These are in the

10Tf the device’s polling continues forever, the user’s network resource could
be maliciously exhausted. Thus, we define the maximum standby duration as
5 minutes. After the maximum time has elapsed, the device standby state is
canceled. The user can restart the remote unlocking manually. The interval
and the threshold also help the DBS to be protected against the DoS attack.



communication channel between the RUApp and the DBS.
The proposed secure protocol uses TLS, RSA, AES, and
SHA256withRSA digital signature to defend against spoofing
identities, tampering with data, repudiation, and information
disclosure. For the medium-level threats, the device platform
can be divided into a framework layer and an app layer. As to
the potentially vulnerable interactions between apps, they are
secured by using RUApp’s Android custom permission. The
DPM’s remote unlocking service APIs restrict unauthorized
access by leveraging application signing, hide annotation, and
call-stack monitoring. To secure interactions R2 and U9, the
account server utilizes OAuth 2.0. For the interaction U8, the
WIS can lock the USAcnt in the case of multiple login failures
to protect against the brute force attack. !' As a result, our
security design takes security countermeasures against all the
high-level threats and most of the medium-level threats.

VI. RELATED WORK

As mentioned in section I, this is the first paper that handles
the Android SP. Utilizing the SP, we propose a new remote
unlocking service over the current offline Android unlocking
system. Also, we seek to preserve the current Android security
level based on applying Android security features and invent-
ing new security mechanisms. Thus, this paper doesn’t open
potential vulnerabilities in Android security.

Android security has been enhanced as its version grows.
Therefore, the previous security issues mentioned in related
works may not works for now. Also, considering that well-
known formula “likelihood x impact” in the risk assessment
step of various threat modelings, the Android security issues
in the related works can be assessed differently up to its cases.

So, we overview the previous researches about Android
security and compare them with our research briefly.

Hassan Khan et al. proposed an implicit authentication
framework for Android [17]. Their study starts with the survey
result that about 53% of Android users do not use the screen
lock of the Android in 2013. Their research can improve the
Android security for the users who do not use the screen lock.
On the contrary, our study focuses on the users who set a
passphrase for their Android devices.

Jie Huang et al. studied the privacy issue in the Android ac-
cessibility service [18]. The accessibility service is a valuable
function that helps people with disabilities. But, some features
of the Android accessibility service can be abused. Thus, they
proposed a secure accessibility service. On the contrary, our
study utilizes the DPM of android and focuses on the newly
designed remote unlocking service.

Muhammad Shahzad et al. proposed a gesture-based An-
droid unlocking mechanism [19]. They claim that the An-
droid screen lock is vulnerable to shoulder surfing attacks
and smudge attacks. Therefore, they invent a gesture-based
Android unlocking mechanism that the attacker can see but
can not quickly reproduce. Their study seems similar to our
research in designing a new unlocking mechanism of the

'I'The user can unlock her USAcnt via email authentication.
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Android device, but our study doesn’t focus on the shoulder
surfing attacks and smudge attacks.

Sebastian Uellenbeck et al. research the vulnerability that
Android pattern unlocking may have [20]. Their study sta-
tistically suggested that the existing 3 x 3 pattern unlocking
doesn’t provide sufficient entropy. Also, they proposed an
improved pattern lock mechanism via changing pattern layout.
On the contrary, our study doesn’t focus on the current
Android pattern unlocking.

Timothy J. Forman et al. also proposed a new Android
pattern unlocking [21]. They invent Double Patterns (DPatts)
to improve the entropy of the Android pattern unlocking. But,
as mentioned, our study doesn’t focus on the current Android
pattern unlocking.

Muhammad Rehman Zafar et al. analyzed fingerprint au-
thentication for smart devices [22]. Their research suggested
more classified levels are needed in designing fingerprint
authentication for security. On the contrary, our research does
not focus on biometric authentication mechanisms.

Lukas Janik et al. invented a two-factor authentication that
uses an additional simple game on existing Android pattern
unlocking to improve the security level [23]. In the game,
behavioral biometrics-based on touch screen interaction pro-
vides secondary authentication. On the contrary, our unlocking
service does not rely on behavioral biometrics.

Fadi Aloul et al. proposed two-factor authentication that
uses the OTP via SMS [24]. Due to the SMS that cannot
be used while the device is locked, their mechanism seems
unusable for unlocking devices. On the contrary, our proposed
two-factor authentication scheme focuses on device unlocking.

Ammar H. Ali et al. designed an Android app to provide
secure chatting [25]. Their design uses ECDH, AES, and RC4
ciphers. On the contrary, our design utilizes RSA, AES, and
SHA256withRSA ciphers that meet the NIST recommenda-
tions.

Junsung Cho et al. opened a vulnerability on Android 5.1
(Lollipop) that an attacker can unlock the arbitrary Android
device [26]. Their scheme uses Firebase push message to send
an attack payload. Also, a Brute force attack is conducted
on the victim’s screen lock. But, their attacking scheme is
expected to be outdated for now. Because the gatekeeper
throttles the brute force attack targeting the screen lock. Also,
FBE doesn’t allow the Firebase push message until the device
is unlocked.

VII. CONCLUSION

We presented a new Android remote unlocking service using
the synthetic password. The proposed service can improve the
user experiences while preserving the Android hardware-based
security. Also, our design supports two-factor authentication,
distributed authority, trust-boundary minimization, key man-
agement, and compatibility.

We evaluated the security of the proposed remote unlocking
service through the STRIDE model and the OWASP risk
rating. We identified 208 threats and assessed each threat’s
risk level using public tools.



We added the corresponding countermeasures to the pro-
posed unlocking service against all the identified high-level
threats.

The developed remote unlocking service has been installed
on commercial devices after passing quality verification and
penetration tests.
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