
Tutorial: The Correctness-by-Construction Approach
to Programming Using CorC

Ina Schaefer
TU Braunschweig

Braunschweig, Germany
i.schaefer@tu-bs.de

Tobias Runge
TU Braunschweig

Braunschweig, Germany
tobias.runge@tu-bs.de

Loek Cleophas
TU Eindhoven

Eindhoven, The Netherlands
Stellenbosch University

Stellenbosch, South Africa
l.g.w.a.cleophas@tue.nl

Bruce W. Watson
Centre for AI Research

School for Data-Sci. & Comp. Thinking
Stellenbosch University

Stellenbosch, South Africa
bruce@fastar.org

Abstract—The Correctness-by-Construction tutorial focuses
on a structured programming approach for correct software
development. Besides functional correctness, also non-functional
properties such as security properties can be guaranteed using
the CbC approach. In this tutorial, the participants learn a
good practice to develop software that is midway between formal
approaches and a “hack into correctness” style.

Index Terms—tutorial, formal methods, correctness-by-
construction

I. INTRODUCTION

The purpose of the tutorial is to influence the way partici-
pants approach the task of developing algorithms, with a view
to improving code quality. The tutorial features: a step-by-step
explanation of how to derive provably correct algorithms using
small and tractable refinements rules; a detailed illustration of
the methodology through a set of carefully selected examples
of increasing complexity; a demonstration of how practical
non-trivial algorithms have been derived. The focus is on
bridging the gap between two extreme methods for developing
software. On the one hand, some approaches are so formal that
they scare off all, but the most dedicated theoretical computer
scientists. On the other, there are some who believe that any
measure of formality is a waste of time, resulting in software
that is developed by following gut feelings and intuitions.

II. CORRECTNESS-BY-CONSTRUCTION

Correctness-by-Construction (CbC) [KW12], [Mor94] is an
approach to incrementally create formally correct programs
guided by pre- and postcondition specifications. A program
is created using refinement rules that guarantee the resulting
implementation is correct with respect to the specification.

The CbC approach to program development begins with a
Hoare triple comprising a precondition, an abstract statement,
and a postcondition. Such a triple should be read as a total
correctness assertion, if the precondition holds, and its abstract
statement executes then the execution will terminate, and its
postcondition will hold. This triple can be refined by using a
set of refinement rules, i.e., the statement is replaced by more
concrete statements. For example, a loop is introduced, or an
abstract statement is replaced by an assignment. If no abstract
statement remains, the code is fully specialized.

III. CBC BY EXAMPLE

The tool CorC [RSC+19] is a hybrid textual and graphi-
cal IDE for the development of functional correct programs
using CbC. In the tool, a starting Hoare triple specification
{P}S{Q} with a precondition P , a postcondition Q, and
an abstract program S is refined stepwise to a correct im-
plementation. The refinement is done by applying refinement
rules which guarantee that the refined program still satisfies its
starting specification. CorC checks the side-conditions of each
applied refinement automatically such that the programmer
gets direct feedback whether a refinement cannot be proven.

In Fig. 1, we construct a linear search algorithm. Each node
represents one Hoare triple. An arrow is the application of a
refinement, connecting a Hoare triple with the refined Hoare
triple. The linear search algorithm has a precondition P :=
appears(a, x , 0 , a.length). This predicate states that the ele-
ment x appears in the array a between the boundaries 0 and the
array length. The postcondition Q := modifiable(i); a[i] = x
states that the element at index i in array a is equal to the
searched element x. With modifiable we specify that only
the variable i can be altered. In CorC, the used parameters and
local variables are declared in a node on the top right. Below
this node, global conditions are expressed. These conditions
(e.g., invariants) have to be true in each step of the program.

To find the element in a linear search, we traverse
the array from back to front. As invariant, we specify

! appears(a, x , i + 1 , a.length). We split the array in two
parts: the part which we already examined and where x is
not found; and the part that should still be examined. The
program is constructed with four refinement steps. First, the
composition rule [KW12] splits the starting Hoare triple into
two triples with an intermediate condition which is equal to
our invariant. The first statement statement1 is refined to
an assignment to start at the end of the array. The second
statement statement2 is refined to a loop. We repeat the loop
until we found x. The loop body is refined in the last step.
Here, we decrease the variable i. Each refinement is verified
automatically by CorC to prove that the refined program
satisfies the starting specification. For example, in the last
refinement step, we prove that the invariant is preserved in

1

2021 IEEE Secure Development Conference (SecDev)

978-1-6654-3170-5/21/$31.00 © 2021, Tobias Runge. Under license to IEEE.
DOI 10.1109/SecDev51306.2021.00012

20
21

 IE
EE

 S
ec

ur
e

D
ev

el
op

m
en

t C
on

fe
re

nc
e

(S
ec

D
ev

) |
 9

78
-1

-6
65

4-
31

70
-5

/2
1/

$3
1.

00
 ©

20
21

 IE
EE

 |
D

O
I:

10
.1

10
9/

Se
cD

ev
51

30
6.

20
21

.0
00

12

Fig. 1. Linear Search algorithm constructed in CorC

each iteration. The green borders of the nodes indicate the
proven program refinements.

IV. CONTENT OF THE TUTORIAL

In the tutorial, we want to introduce participants to the
CbC approach to programming using the tool CorC. First,
we provide the theoretical background of refinement rules.
Afterwards, we apply the CbC approach to a series of ex-
amples. By using a tool CorC1, the participants can try
the CbC approach on their own during the tutorial without
any installation burden. We present how CbC supports the
construction of large-scale algorithmic families, and compare
CbC against post-hoc verification. While CbC traditionally
focuses on functional correctness (specifications), we will also
consider the constructive development of non-functional prop-
erties, such as security properties, which can be formulated
as information flow properties [SRK+18], [RKTS20]. The
construction of secure programs by checking information flows
will be the second part of the tutorial.

The audience for this tutorial is everyone interested in
software development that wants to get insights into an alter-
native programming style that values a structured and correct
programming process. The purpose of the tutorial is to influ-
ence the way the participants approach the task of developing
algorithms. Instead of specifying a problem and solving the
problem by coding with gut feelings and intuitions, we want to
focus on the more formal CbC approach to construct programs.
The expected learning outcome should be that the participants
reflect on their coding style and find their best practice to
construct formally correct programs [RTC+20], [WKSC16].

The tutorial relies on Kourie and Watson’s easily accessi-
ble text book The Correctness-by-Construction Approach to
Programming [KW12] and other publications by the tutorial
presenters and co-authors [RSC+19], [RTC+20], [SRK+18],

1https://www.isf.cs.tu-bs.de/WebCorC/,https://github.com/TUBS-ISF/CorC

[RKTS20], [WKSC16]. These publications are additional ma-
terial for interested participants.

V. AGENDA

1. Introduction to CbC (Motivation and Foundations). We
introduce Hoare logic, refinement rules, and supplemen-
tary specification such as loop invariants.

2. CbC examples step-by-step. Small algorithms like linear
search and pattern matching are constructed stepwise to
explain the CbC approach.

3. Introduction to the CorC tool. The participants can im-
plement algorithms using CorC on their own.

4. CbC for security (non-functional properties). We intro-
duce how security-critical programs can be incremen-
tally constructed using a refinement procedure. CbC is
extended to track the information flow of the programs
during each refinement step.

5. Advanced CbC and ongoing research.
– Construction of algorithm taxonomies. We show how

to construct an algorithmic family using taxonomies
by stepwise refinements. A taxonomy describes the
commonalities and differences of algorithms for the
same algorithmic problem in a hierarchical structure.

– CbC in comparison to post-hoc verification. We dis-
cuss the differences of both approaches to construct
programs, but we will also show how to combine
both approaches for synergistic effects.

– Discussion. We close the tutorial with a discussion
about the CbC approach and the introduced tool.

VI. PREVIOUS TUTORIALS

The CbC tutorial was held four times. At the International
Symposium on Formal Method (FM) in 2014 and 2019, at the
International Conference on Software Quality, Reliability &
Security (QRS) in 2017, and at the International Colloquium
on Theoretical Aspects of Computing (ICTAC) in 2018.

REFERENCES

[KW12] Derrick G Kourie and Bruce W Watson. The Correctness-by-
Construction Approach to Programming. Springer Science &
Business Media, 2012.

[Mor94] Carroll Morgan. Programming from Specifications. Prentice Hall,
2nd edition, 1994.

[RKTS20] Tobias Runge, Alexander Knüppel, Thomas Thüm, and
Ina Schaefer. Lattice-Based Information Flow Control-by-
Construction for Security-by-Design. In FormaliSE, FormaliSE
’20, page 44–54, New York, NY, USA, 2020. ACM.

[RSC+19] Tobias Runge, Ina Schaefer, Loek Cleophas, Thomas Thüm,
Derrick G. Kourie, and Bruce W. Watson. Tool Support for
Correctness-by-Construction. In FASE, pages 25–42. Springer,
2019.

[RTC+20] Tobias Runge, Thomas Thüm, Loek Cleophas, Ina Schaefer, and
Bruce W. Watson. Comparing Correctness-by-Construction with
Post-Hoc Verification—A Qualitative User Study. In Refine,
pages 388–405. Springer, 2020.

[SRK+18] Ina Schaefer, Tobias Runge, Alexander Knüppel, Loek Cleophas,
Derrick Kourie, and Bruce W. Watson. Towards Confidentiality-
by-Construction. In ISoLA, pages 502–515. Springer, 2018.

[WKSC16] Bruce W Watson, Derrick G Kourie, Ina Schaefer, and Loek
Cleophas. Correctness-by-Construction and Post-hoc Verifica-
tion: A Marriage of Convenience? In ISoLA, pages 730–748.
Springer, 2016.

2

