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Abstract— Visual inspection of microscopic samples is still
the gold standard diagnostic methodology for many global
health diseases. Soil-transmitted helminth infection affects 1.5
billion people worldwide, and is the most prevalent disease
among the Neglected Tropical Diseases. It is diagnosed by
manual examination of stool samples by microscopy, which is a
time-consuming task and requires trained personnel and high
specialization. Artificial intelligence could automate this task
making the diagnosis more accessible. Still, it needs a large
amount of annotated training data coming from experts.

In this work, we proposed the use of crowdsourced annotated
medical images to train AI models (neural networks) for the
detection of soil-transmitted helminthiasis in microscopy images
from stool samples leveraging non-expert knowledge collected
through playing a video game. We collected annotations made
by both school-age children and adults, and we showed that,
although the quality of crowdsourced annotations made by
school-age children are sightly inferior than the ones made by
adults, AI models trained on these crowdsourced annotations
perform similarly (AUC of 0.928 and 0.939 respectively), and
reach similar performance to the AI model trained on expert
annotations (AUC of 0.932). We also showed the impact
of the training sample size and continuous training on the
performance of the AI models.

In conclusion, the workflow proposed in this work combined
collective and artificial intelligence for detecting soil-transmitted
helminthiasis. Embedded within a digital health platform can be
applied to any other medical image analysis task and contribute
to reduce the burden of disease.

I. INTRODUCTION

Achieving Universal Health Coverage by 2030 is one of
the Sustainable Development Goals and World Health Orga-
nization priorities (WHO) [1]. Half the world’s population
lacks access to essential health services and diagnosis is
a key step to achieve universal healthcare. Many of those
diseases are diagnosed by visual inspection, which requires
experts in front of the microscope and other medical devices
at a certain time, a resource that is not always available.
Artificial intelligence (AI) presents an opportunity to sup-
port these diagnostic processes. The number of AI-based
medical devices for diagnosis is increasing. From 2015 to
2020, 222 AI devices were approved in USA and 240 in
Europe [2]. Most of them were developed for radiology and
cardiovascular diseases, and none of them is for microscopy
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applied to microbiology. Recently a few algorithms were
trained to detect Malaria’s parasites [3], [4] and helminth’s
eggs in fecal samples [5]–[7], showing the potential of
AI algorithms for microscopic images. Notwithstanding the
above, more studies are needed to create algorithms approved
by regulatory institutions.

Soil-transmitted helminthiasis (STH) is a neglected trop-
ical disease (NTD) that affects the poorest and most de-
prived communities. According to WHO’s report, there are
1.5 billion people affected by Helminths worldwide. WHO
established a roadmap to eliminate STH to reduce the global
health burden. To accelerate the elimination, innovation and
new technologies like AI are needed [8]. The recommended
diagnosis method for STH is Kato Katz, which is a laboratory
method for preparing stool samples for the later detection and
quantification of STH eggs under a microscope [9].

Image annotation to train AI models is a time-consuming
labour that poses an important burden into experts. However,
in recent years, the use of crowdsourcing has been proposed
to overcome this problem by delegating this task on a
large group of untrained annotators. Several studies have
already demonstrated the validity of the use of crowdsourcing
for annotating medical images. In 2012, Luengo-Oroz et.
al demonstrated that the combination of the annotations
collected using a video game of 22 players achieved a
malaria parasite counting accuracy higher than 99% in thick
malaria smears [10]. In 2019, Linares et. al demonstrated
that combined annotations form 25 players were able to
distinguish most Malaria species with an accuracy of 99%
[11]. Furthermore, Keshavan et. al combined crowdsourcing
and Deep Learning (DL) to predict the quality of Magnetic
Resonance Imaging [12].

Within this context, this work proposes a methodology
to train DL algorithms for quantifying parasitic infection
in microscopy images with the following objectives: 1)
to assess the feasibility of training DL algorithms for the
differentiation of helminths eggs based on microscopy im-
ages with annotations obtained from crowdsourcing using a
custom video game, 2) to identify the relationship between
the amount of training data and the deep learning model
performance using incremental training and 3) to compare
the performance of AI models trained with data annotated
by both untrained school-age children and adults (general
population).
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II. METHODOLOGY

A. Crowdsourcing image annotation

We developed SpotWarriors (SW), a publicly available1

set of mini-games that contribute to the diagnosis of dis-
eases while playing, by generating crowdsourced annotated
medical images. For the purpose of this project, we focused
on a mini-game for the classification of small image patches
from digitized stool samples for the identification of differ-
ent helminths eggs, including Ascaris spp., Trichuris spp.,
Hookworms, and images without eggs. Figure 1 shows a
screenshot of the game used.

All data used in this study for training, validation and
testing of the AI algorithm came from 41 digitized stool
samples from 6 different infected patients who were part
of a follow-up study. Digitization of samples were made at
10x magnification. Ethical approval was obtained from the
Kenya Medical Research Institute (KEMRI) Ethics Review
Committee (SERU 3873).

From all digitized samples, we generated a total of 10319
cropped image patches (256x256 pixels) without overlap.
Our interpretation is that all image patches can be considered
as independent although they come from a limited number
of subjects. We introduced 700 randomly selected image
patches in the video game which were annotated by at least
20 adults and 20 school-age children (from 11 to 18 years
old) players. These annotated images were used for training
DL algorithms. For comparative purposes, and to assess the
quality of crowdsourced annotations, these training images
were also analyzed by experts microscopists.

Annotations from school-age children were obtained by
organizing workshops in different schools. The workshops,
presented in collaboration with the teachers, included an
explanation of the project and concepts related to global
health, artificial intelligence and collective intelligence in
addition to playing the game. Data from adults was collected
anonymously from online players.

Additionally, the remaining images were annotated by
experts and were used as validation and test sets (2932
and 6678 images respectively, randomly separated). For
crowdsourced annotated images, the ground truth (GT) was
generated using the majority voting rule, where the most
common response among players was chosen. The final
distributions for the training set (those images introduced in
the game), validation set, and test set are presented in Table
I.

B. AI architecture: Deep learning model

In the present work, we used a Convolutional Neural Net-
work (CNN)-based algorithm to solve the classification task
for differentiating helminths eggs along with non infected
sample images. The algorithm, given an image, returns an
output probability distribution along the different classes
under study, and the final predicted label is then computed as
the one that has the highest probability. Particularly, we used

1https://spotwarriors.org/en/, also available at Google Play
Store and Apple App Store.

Fig. 1: Screenshot of the mini-game used to collect data with
Ascaris spp. (left) and Trichuris spp. (right)

Train Validation Test
E SAC A E E

Ascaris spp. 179 182 176 1258 2819
Trichuris spp. 212 198 211 241 570

Healthy 309 320 313 1433 3298
Total 700 700 700 2932 6687

TABLE I: Distribution of the training, validation and test
sets. Training images are annotated by three groups: experts
(E), school-age children (SAC) and adults (A).

the MobileNet V2 model [13], a light-weighted architecture
designed to run on mobile phones in an efficient manner. This
particular architecture has three main components including
depthwise convolutions that significantly reduce the number
of parameters, inverted residual connection blocks which
modify residual blocks for efficiency purposes, and linear
bottleneck layers without any non-linear activation function
in order to preserve information in the low dimensional
space. MobileNet V2 architecture is composed by 157 layers
and involves only 3.5 million of parameters, compared to
the 138,4 million of parameters that are involved in the well
known VGG-16 architecture along its 23 layers [14].

To overcome the limitation of having a small training
dataset, we used a transfer learning technique by pretraining
the MobileNet V2 model on a large dataset (ImageNet [15])
and fine-tuning it in our dataset for the classification of
helminths eggs. Fine-tuning was performed by freezing the
earlier layers which learn generic features, and retraining
later layers, responsible for extracting specific features of
the problem under study. Using this technique we can reduce
the computational cost and result in better performance than
training from scratch, specially when little training data is
available.

Because crowd-sourced annotations usually contain some
incorrect labels, we used soft bootstrapping cross entropy
loss function, which minimize the damage of incorrect labels
by dynamically updating the targets of the prediction based
on the actual state of the model [16]. The loss function is
defined as equation 1, where q is the prediction, t is the
target, β is the scaling factor between predictions and targets
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and L is the number of classes under study.

Lsoft (q, t) =

L∑
k=1

[βtk + (1− β)qk] log (qk) (1)

Furthermore, we used data augmentation including rota-
tion, shift, flip, zoom, and shear transformations to generate
more training data to further improve the model performance.
Additionally, we also used early stopping technique during
the training process with a patience of 10 iterations to avoid
overfitting on the training set.

DL models were designed and trained using Keras with
Tensorflow, and using a GPU NVIDIA Tesla T4 16GB.

III. EXPERIMENTS AND RESULTS

In this section, we first evaluated the quality of crowd-
sourced annotations using a majority voting mechanism.
We continued with the study of the effect of the training
sample size on the performance of the model. And finally
we compared the DL model trained with school-age children
and adults annotations.

To evaluate the quality of crowdsourced annotations, we
used the accuracy metric, which is defined as ACC = TP +
TN/N where TP, TN and N stand for true positives, true
negatives and total number of samples respectively.

We used the area under the receiver operating charac-
teristic curve (AUC) for evaluating the performance of DL
algorithms. AUC measures the performance of the model
across all possible probability thresholds. Macro-average
AUC along classes is computed in order to avoid bias due
to imbalanced class distribution.

In order to obtain a robust metric not affected by training
instability, we repeated the training process 5 times, and
calculated the mean and standard deviation of the perfor-
mance metrics. The training of the models was carried out
using the training set while the validation set was used for
hyperparameter tuning. The incremental training experiment
and the final performance evaluation were assessed on the
test set.

It should be noted that we did not include Hookworm
class in the analysis due to the lack of representativity in
our database. No preprocessing was made on the images.

A. Quality of crowdsourced annotations

In order to select the optimal size of the quorum that
best performs in comparison with the expert annotations,
we used a bootstrap sampling method. For each image,
we generated the final annotation using the majority voting
rule considering only N randomly selected annotations. To
measure the stability of each quorum size (N) we repeated
this process 10 times. Table II shows the difference on the
quality of crowdsourced annotations using different quorum
sizes, by comparing the generated annotations by players and
annotations made by experts. As derived from the table, we
can observe that annotations based on 20 different player
responses obtained the best performance.

Even though adult annotations obtained better accuracy
with respect to expert annotations, annotations from 20

school-age children were found to be of enough quality
(accuracy > 94%).

Quorum size (N) School-age children Adults
5 0.842 (0.007) 0.966 (0.004)
10 0.910 (0.006) 0.988 (0.002)
15 0.931 (0.005) 0.989 (0.003)
20 0.946 (0.004) 0.991 (0.002)

TABLE II: Mean accuracy and the standard deviation of
crowdsourced annotations using different quorum sizes com-
pared to the ones made by experts.

B. DL model: hyperparameter tuning

Mobilenet V2 is built on different blocks. To determine
the optimal number of layers to be fine-tuned during transfer
process, we froze a determined number of blocks and fine-
tuned the rest. For this experiment, models were trained with
experts annotations.

Furthermore, with the aim of evaluating the effectiveness
of soft bootstrapping loss for noisy labels, and to select the
best loss function for this particular case study, we trained
the DL model using both conventional cross entropy and
soft bootstrapping cross entropy (β = 0.95) loss functions.
Models were trained with school-age children and adults
annotations (expert annotations do not contain noisy labels).
As derived from Table III, the best performance was obtained
when the first 46 layers were not fine-tuned and when
bootstraping categorical cross entropy was used as the loss
function.

Hyperparameter AUC
Number of frozen layers

19 (block 2) 0.873 (0.033)
46 (block 5) 0.919 (0.019)
73 (block 8) 0.914 (0.014)
99 (block 11) 0.917 (0.011)

Loss function

Children Cross entropy 0.927 (0.007)
Bootstrapping cross entropy 0.932 (0.006)

Adults Cross entropy 0.911 (0.014)
Bootstrapping cross entropy 0.925 (0.016)

TABLE III: Hyperparameter selection. Mean AUC and stan-
dard deviation are shown.

C. Incremental training

To study the effect of training sample size on the models
performance we trained the model incrementally using dif-
ferent sample sizes. We performed this incremental training
by steps of 100 training images from 100 to 700.

Figure 2 shows the results of the incremental training ex-
periment, revealing the importance of the number of samples
used for training and its impact on the model performance.

D. Differences between annotator groups

We compared the performance of the AI model trained
with school-age children, adults and expert annotations.
Table IV summarizes the results of the three models using all
available training samples (N=700). The results show that all
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Fig. 2: Evolution of the model performance (AUC) as the
training sample size increases. Results from data annotated
by children, adults and experts are presented independently.

models perform similarly, highlighting the power of the use
of crowdsourced annotations which obtained similar results
when compared to the ones obtained by the model trained
on expert-based annotations. It should be noted that although
the quality of school-age children annotations were lower
than the ones collected by adults (difference of 4.5% in the
accuracy, see Table II), the AI algorithm is robust to noisy
labels and decreases the difference in terms of the model
performance (0.9%).

AUC Experts Adults Children
Ascaris spp. 0.960 (0.003) 0.958 (0.007) 0.948 (0.002)

Trichuris spp. 0.912 (0.002) 0.926 (0.015) 0.912 (0.026)
Healthy 0.924 (0.019) 0.932 (0.010) 0.923 (0.008)
Mean 0.932 (0.015) 0.939 (0.01) 0.928 (0.012)

TABLE IV: Detailed performance of the DL algorithm
trained with different annotations. Mean AUC and standard
deviation is reported.

Figure 3 shows the prediction result of the model on
different images from the test set, including the three classes
under study (Ascaris spp., Trichuris spp. and healthy). In
addition, we computed the gradient-weighted class activation
mapping (Grad-CAM) to visualize the the regions in the
image that is important for the model to make the decision
[17].

IV. CONCLUSIONS

This work shows promising results on the use of crowd-
sourced annotation for the development of AI-based diagno-
sis systems, and validates its use in the medical image field,
where manual annotations from experts is a time-consuming
labour, and requires high specialization.

In this work, we collected crowdsourced annotations by
using a customized video game to classify different species
of Helminths eggs, and used these annotations to train a
CNN architecture (MobileNet V2). Particularly, we obtained
crowdsourced annotations from both untrained school-age
children and adults, and the results showed that DL models
trained on those annotations performed in a similar manner

Fig. 3: Examples of image samples representing all classes
under study (upper row) along whit its activation maps
generated by the DL algorithm (bottom row). Correct label
(GT) as well as predictions (Pred) appear above each image.
Activation maps for healthy samples (HEA) focused on the
entire image with no significant activation, while activation
maps for Ascaris spp. (ASC) and Trichuris spp. (TRI)
focused exactly on the egg location.

compared to the ones trained with expert annotations (AUC
of 0.928, 0.939 and 0.932 for children, adults and expert
annotations respectively). No significant differences in the
model performance were found when used children, adults
or experts annotations.

On the other hand, we showed the impact of the training
sample size on the performance of the AI models. We
showed that we obtained better performance as the training
sample size increases. In particular, model performances
increased approximately by a factor of 20% when trained on
all available samples (700) compared to the result obtained
when only 100 images were used for training. As derived
from this experiment, we can conclude that we could train
our DL model in an iterative manner as we obtain more
images annotated by players, and thus obtaining a more
robust algorithm with a better predictive capacity.

Additionally, this work lays the foundation for the use
of video games as data enrichment platforms to automate
and scale the medical image labeling process using human
collective intelligence, enhancing human relevance in the
process of developing AI algorithms.

ENVIRONMENTAL IMPACT

In this study a cumulative of 43 hours of computation was
performed on GPU (Tesla T4), which 20 hours contributed
to obtain the final results. The total emissions, estimated by
MachineLearning Impact calculator presented in [18], was
0.9 kg of CO2. Virtual machines that host our SpotWarriors
game are estimated to emit 0.39 kg CO2eq per month.

ACKNOWLEDGMENTS

This project was granted by Nesta (innovation foundation)
and supported by Red.es and FEDER (2018/C003/00010900
”Impulso al Sector del Videojuego”) to develop SpotWarrios.
LL and UPM members were supported by the industrial doc-
torate program of the Community of Madrid (IND2019/TIC-
17167). We thank all schools that allowed us to organize
workshops to collect annotations by using SpotWarriors
game.

3347



REFERENCES

[1] United Nations. Transforming our world: the 2030 Agenda for
Sustainable Development — Department of Economic and Social
Affairs, 2015.

[2] U. J. Muehlematter et al. Approval of artificial intelligence and
machine learning-based medical devices in the USA and Europe
(2015–20): a comparative analysis. The Lancet Digital Health, 0(0),
jan 2021.

[3] F. Yang et al. Deep Learning for Smartphone-Based Malaria Parasite
Detection in Thick Blood Smears. IEEE Journal of Biomedical and
Health Informatics, 24(5):1427–1438, may 2020.

[4] Vijayalakshmi A and Rajesh Kanna B. Deep learning approach
to detect malaria from microscopic images. Multimedia Tools and
Applications, 79(21-22):15297–15317, jun 2020.

[5] O. Holmström et al. Point-of-care mobile digital microscopy and
deep learning for the detection of soil-transmitted helminths and
Schistosoma haematobium. Global Health Action, 10(3), 2017.

[6] A. Yang et al. KankaNet: An artificial neural network-based object
detection smartphone application and mobile microscope as a point-of-
care diagnostic aid for soil-transmitted helminthiases. PLoS Neglected
Tropical Diseases, 13(8):e0007577, 2019.

[7] B. A. Mathison et al. Detection of intestinal protozoa in trichrome-
stained stool specimens by use of a deep convolutional neural network.
Journal of Clinical Microbiology, 58(6):1–13, 2020.

[8] WHO. Ending the neglect to attain the Sustainable Development Goals
– A road map for neglected tropical diseases 2021–2030 (Geneva:
World Health Organization), pp. 55. Accessed on 7th July 2020.
Technical report, 2020.

[9] N. Katz et al. A simple device for quantitative stool thick-smear tech-
nique in Schistosomiasis mansoni. Revista do Instituto de Medicina
Tropical de Sao Paulo, 14(6):397–400, nov 1972.

[10] M. A. Luengo-Oroz et al. Crowdsourcing malaria parasite quantifi-
cation: An online game for analyzing images of infected thick blood
smears. Journal of Medical Internet Research, 14(6):1–14, nov 2012.

[11] M. Linares et al. Collaborative intelligence and gamification for on-
line malaria species differentiation. Malaria Journal, 18(1):21, dec
2019.

[12] A. Keshavan et al. Combining citizen science and deep learning to
amplify expertise in neuroimaging. Frontiers in Neuroinformatics,
13:29, may 2019.

[13] M. Sandler et al. MobileNetV2: Inverted Residuals and Linear
Bottlenecks. Technical report, 2018.

[14] K. Simonyan and A. Zisserman. Very deep convolutional networks
for large-scale image recognition. Technical report, 2015.

[15] O. Russakovsky et al. Best of both worlds: Human-machine collabo-
ration for object annotation. Technical report, 2015.

[16] S. E. Reed et al. Training deep neural networks on noisy labels with
bootstrapping. 3rd International Conference on Learning Representa-
tions, ICLR 2015 - Workshop Track Proceedings, pp. 1–11, 2015.

[17] R. R. Selvaraju et al. Grad-CAM: Visual Explanations from Deep
Networks via Gradient-based Localization. International Journal of
Computer Vision, 128(2):336–359, oct 2016.

[18] A. Lacoste et al. Quantifying the carbon emissions of machine
learning. arXiv preprint arXiv:1910.09700, 2019.

3348


